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The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes’ spiral

diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are

propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the

phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of

plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on

axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel

beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral

diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive

device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.
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I. INTRODUCTION

Diffraction of waves, the spreading of the wave packet upon

propagation, represents one of the most known properties of

wave physics. However, there exist particular solutions of the

wave equation that are immune to diffraction. Among them, the

Bessel beams [1] are diffraction-free solutions with remarkable

features. Of special interest are the high-order Bessel beams

(HOBBs), characterized by high amplitude concentric rings

with a profile given by the nth-order Bessel function on

the plane transverse to the beam axis. Any Bessel beam is

characterized by an annular radiation in the far field, therefore

the magnitude of the spatial spectrum of these beams does not

depend qualitatively on the order of the beam. The difference

between zeroth order and HOBBs is that the phase of the

HOBBs shows a linear variation along its annular spectrum in

the azimuthal direction. Thus, the wave field presents a helicoid

phase dependence containing screw-type phase singularities,

leading to an intensity minimum at the beam axis. Solutions of

such kinds are of infinite transverse extent and thus cannot be

generated experimentally. However, it is possible to generate

finite size approximations for Bessel beams which propagate

over extended distances in a diffraction-free manner providing

potential applications for the wave physics community [2–7].

Whereas zeroth-order Bessel beams present a bright central

maximum and can be useful for applications that require

focusing of energy [8], the vortex beams generated by the

HOBBs can be useful for manipulating particles in both

optics [9] and acoustics [10].

In the case of electromagnetic (optical) waves, vortex beams

have experimentally been demonstrated by means of computer

generated holograms [2,11] or by axicons illuminated with

a Laguerre-Gaussian mode [3]. Other methods include an

azimuth-dependent retardation on the optical field using spiral

phase plates (SPPs) [4] or diffraction gratings with groove
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bifurcation. In the latter case, vortex beams with an arbitrary

topological charge have been created [12]. This kind of

beam has been shown to be very useful for the optical

manipulation of particles. Since the first observations of the

manipulation of particles using optical beams [13–15], an

unexpected radial force field appeared, called the gradient

force, that dragged colloidal particles towards the axis in

addition to the axial radiation pressure that pulls particles

towards the beam. In this way, particles can be trapped into

the beam axis under conditions where the dragging gradient

force dominates over the pulling radiation pressure. This

regime can be achieved using strongly focused light beams

and for particles smaller than the wavelength leading to the

possibility of manipulating objects as small as 5 nm [16]. These

so-called optical tweezers have been employed in many other

macromolecular, biological, and medical applications [16].

However, high intensity beams are necessary for exerting

strong forces leading to unwanted effects as heating, so in

practical applications optical tweezers can exert forces up to

100 pN [16].

Compared to optical manipulation, ultrasonic waves be-

come advantageous for manipulating heavier objects: The

smallness of the sound speed leads to larger drag forces from

3 to 4 orders of magnitude [10], and because of the size

of the acoustic wavelength, bigger objects can be trapped.

In addition, the interaction of Bessel beams with particles

has also been studied intensively in acoustics. Two main

remarkable effects have been reported: On one hand, the

transference of orbital momentum from the acoustical vortex

to the particle [17,18], and on the other hand, the appearance

of negative axial acoustic radiation forces, observed first by

Marston [5,19]. This fact has motivated the development of

experimental approaches to generate acoustical vortex beams.

Different methods using either single acoustic sources have

been developed. Phase dislocations using a single source were

first proposed by Nye and Berry [20]. The acoustic analog

of the optical SPP has also been proposed [21,22], consisting

of a transducer with a surface properly deformed to create the
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helicoidal beam. This method is restricted to a single operating

frequency. Other approaches with single sources include the

use of a photoacoustic effect to generate a helical beam [23]

or the use of metasurfaces based on Helmholtz resonators to

control the angular phase [24].

On the other hand, the generation of acoustical vortices

with arrays of sources is also possible [25] and has widely

been used in acoustics for multiple applications: particle

manipulation [26], acoustical tweezers [10,27–29], angular

momentum transfer [30], acoustic spanners [31], multiple-

particle trapping [32], precise manipulation and sorting of

cells for life sciences research [33,34], or microbubble cap-

turing [35]. Recently Baresch and co-workers developed the

first all-acoustical single-beam trapping [10] where a negative

gradient pulling force with acoustic waves was demonstrated

using a single vortex beam. However, although the array of

sources provides active steering and control of the vortex beam,

in such active systems, the resolution of the vortex is restricted

by the number of transducers in the array [36], leading to

technologically complex systems in the case of vortices of

high topological charge.

In this paper we study the diffraction of a plane wave

by a multiple-arm Archimedes’ spiral diffraction grating and

propose a passive and robust method for the formation of

HOBBs using such gratings. The scattering of plane acoustic

waves by the spiral grating leads to the formation of the

acoustic vortex with zero pressure on axis and the angular

phase dislocations characterized by the spiral geometry. The

order of the generated Bessel beam and, as a consequence, the

size (width) of the generated vortex can be fixed by the number

of arms of the spiral diffraction grating. The obtained results

allow for obtaining Bessel beams with controllable vorticity by

a passive device, which has potential applications in low-cost

acoustic tweezers and acoustic radiation force devices. First,

in Sec. II we present a theoretical model for the diffraction of

plane waves by the multiple-arm spiral grating with infinite

radial extent. Then we numerically analyze the effects of

the finite size of the sample, considering also the effects of

the vibration of the scatterers. The numerical confirmation

of the HOBBs is reported in Sec. III showing the generation

of the vortex in the axis and its dependence on the topological

charge of the spiral diffraction grating. Finally, in Sec. IV we

experimentally test the main results of this paper by measuring

the acoustic field scattered by a steel grating embedded in

water. Particularly, we show the phase dislocation and the

acoustic vortex generation by a first-order Bessel beam.

II. DIFFRACTION BY A SPIRAL GRATING

The proposed structure is a multiple-arm Archimedes’

spiral diffraction grating as shown in Figs. 1 and 2. As the

arms of the Archimedes’ spiral present a uniform separation,

the incident field is diffracted at an angle, given by diffraction

grating theory. Therefore, the diffracted field is of a conical

wave front as in Ref. [7] but here with the azimuthal rotating

phase due to the spiral geometry. When converging to the axis,

the conical wave front forms a HOBB. The diffracted pressure

field by the grating generates an acoustic vortex line with a

characteristic screw dislocation.

FIG. 1. Scheme of the first-order Bessel beam formation by the

Archimedes’ spiral grating. The incident plane wave is scattered into

a converging and diverging conical wave front in which the phase

of the wave (φ) is a linear function of the angle (θ ). A corkscrew

dislocation in the wave front is produced, leading to an acoustic

vortex and a zero pressure on-axis r = 0. The minimum along the

symmetry axis results from the destructive interference of first-order

diffraction generated at opposite sides of the axis.

A. Infinite diffraction grating

The harmonic pressure field diffracted by a grating with

source velocity distribution vz(r0) can be calculated using

the Rayleigh-Sommerfeld integral at any point in cylindrical

coordinates r = (r,θ,z) as

p(r) =
−iωρ0

2π

∫

S0

vz(r0)
exp(ik|r − r0|)

|r − r0|
dS(r0), (1)

where r0 = (r0,θ0,z0) is the radius vector of a surface element

dS, ω is the angular frequency, the wave number is k = ω/c0,

and ρ0 and c0 are the density and speed of sound of the medium.

A time dependence exp(−iωt) was assumed. The plane of the

source is assumed to be at the origin of the coordinates for

simplicity z0 = 0, then, without loss of generality we can write

vz(r0,θ0,z0 = 0) = vz(r0,θ0).

The Fresnel approximations assume that the first two terms

of the square root Taylor expansion are sufficient to correctly

represent the phase, provided that z is large enough (parabolic

expansion),

|r − r0| = z

√

1 +
(x − x0)2

z2
+

(y − y0)2

z2

≃ z

(

1 +
r2

2z2
+

r2
0

2z2
−

rr0 cos(θ0 − θ )

z2

)

, (2)

and by neglecting the radial contributions in the denominator

of the Rayleigh integral: |r − r0| ≃ z.
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n = 1 n = 3

n = 20n = 7

FIG. 2. Examples of Archimedes’ spirals with multiple arms

(a) n = 1, (b) n = 3, (c) n = 7, and (d) n = 20.

Expressing the surface element in cylindrical coordinates

dS = r0dθ0dr0, Eq. (1) transforms to the following form:

p(r,θ,z) = A(r,z)

∫ ∞

0

∫ 2π

0

vz(r0,θ0) exp

[

i
k

2z
r2

0

]

× exp

[

−i
kr

z
r0 cos(θ0 − θ )

]

r0dr0dθ0, (3)

where A(r,z) is an independent expression on the integration

variables r0 and θ0,

A(r,z) =
−iωρ0

2πz
exp

[

ik

(

z +
r2

2z

)]

. (4)

We suppose that an incoming plane wave uniformly

illuminates the spiral grating at z = 0. The source velocity

distribution can be characterized by a complex-amplitude

transmission function [2],

vz(r0,θ0) = v0 exp[−ikrr0] exp[−iφ(θ0)], (5)

where v0 is the particle velocity amplitude. The factor

exp[−ikrr0] is the phase of the conical wave front. The

continuity of the transversal component of the wave vector

kr at the interface between the homogeneous medium and the

diffraction grating with scatterers separated by a distance a re-

sults in k2 =
√

k2
r + k2

z with kr = 2πN/a and kz = kr/ tan β

as the axial and longitudinal wave numbers, respectively, N

is the diffraction order, and β = arcsin Nλ/a is the angle of

the conical wave front with respect to axis z. Here and below

we will work in the range of frequencies that only excites the

first diffraction order, therefore we assume N = 1. The last

factor exp[−iφ(θ )] is a phase accounting for the azimuthal

dependence of the phase of the conical wave front.

In the case of a pure axisymmetric grating [7] where the

sources are distributed in concentric circles separated at a

distance a,

φ(θ0) = krR(θ0) =
2π

a
R(θ0) = const.,

exp[−iφ(θ0)] = cte. (6)

Therefore, due to the constant radius of each of the concentric

rings, the phase is independent of azimuthal angles, and no vor-

tex can be produced. In this paper we consider an Archimedes’

spiral grating which provides the azimuthal dependence of the

phase in our system. The general mathematical expression for

a curve describing n arms of Archimedes’ spirals starting from

an origin can be expressed in polar coordinates as

R(θ0) =
na

2π
θ0 + la, (7)

with 0 � l � n − 1 as the index of the lth arm and a as the

raidal separation between arms. Figure 2 shows examples of

spirals with multiple arms. The phase term of Eq. (5) can be

expressed as

exp[−iφ(θ0)] = exp[−ikrR(θ0)] = exp[−inθ0]. (8)

The velocity function can be obtained by substituting Eq. (8)

into Eq. (5),

vz(r0,θ0) = v0 exp[−ikrr0] exp[−inθ0]. (9)

Therefore, the particle velocity field at the source plane

corresponds to a conical wave front with an azimuthal phase

rotation proportional to the number of arms of the spiral.

Explicitly, the phase of the field scattered by a N -arm spiral

rotates by 2πN , thus, forming the phase singularity of the N th

order. The analysis of the other velocity function to obtain

vortex beams can be found in the literature [37].

The pressure field can be obtained by substituting the source

field velocity in the double integral in Eq. (3),

p(r,θ,z) = A(r,z)

∫ ∞

0

r0 exp

[(

k

2z
r2

0

)]

×
∫ 2π

0

v0 exp[−ikrr0] exp[−inθ0]

× exp

[

i

(

kr

z
r0 cos(θ0 − θ )

)]

dr0dθ0. (10)

The terms without azimuthal dependence that can be factorized

out of the azimuthal integral in Eq. (10) are as follows:

p(r,θ,z) = A(r,z)v0

∫ ∞

0

r0 exp

[

i

(

k

2z
r2

0 − krr0

)]

×
∫ 2π

0

exp[−inθ0]

× exp

[

−i
kr

z
r0 cos(θ0 − θ )

]

dr0dθ0. (11)

Using the Jacobi-Anger expansion,

Jn(α) =
in

2π

∫ 2π

0

exp[inβ] exp[−iα cos(β)]dβ, (12)

and simple algebra with a change in variable, the integration

over the azimuthal angle θ0 in Eq. (11) can be solved and leads
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to

p(r,θ,z) = B(r,z)F (r,z), (13)

where

B(r,z) = A(r,z)2πv0 exp
[

in
(

θ −
π

2

)]

, (14)

and

F (r,z) =
∫ ∞

0

r0 exp

[

i

(

k

2z
r2

0 − krr0

)]

Jn

(

kr

z
r0

)

dr0.

(15)

Note that n is the number of arms in the spiral that is also the

order of the Bessel function.

The radial integral in Eq. (15) can approximately be solved

by using the method of the stationary phase [2,3,38]. Rapid

oscillations of the exponential term of the integral in Eq. (15)

mean that F (r,z) ≃ 0 over those regions and only significant

nonzero contributions to the integral occur in regions of the

integration range where the phase term is constant, i.e., at

points of the stationary phase. In our case, the approximated

solution to leading order of the radial integral at point (r,θ,z)

reads as

F (r,z) ≃
krz

k
exp

[

−i

(

kr2

2z
+

zk2
r

2k

)]

√

2πz

k
Jn(krr). (16)

Higher-order terms not considered in this solution give

corrections to off-axis areas [38].

By substituting Eq. (16) into Eqs. (14) and (12) as well as

using Eq. (4), the pressure field is written as

p(r) ≃ −ip0kr

√

2πz

k
Jn(krr) exp[ikzz] exp[in(θ − π/2)],

(17)

where p0 = ρ0c0v0 and the paraxial approximation of the

axial wave number kz = k(1 − k2
r /2k2) was used. The radial

distribution is given by the nth-order Bessel function, whereas

the amplitude is proportional to
√

z, which is in fact the

expression for a nth-order Bessel beam. As an example we

evaluate the amplitude of the pressure field along the first

lobe of the first-order Bessel beam (n = 1) generated by an

infinite spiral with a/λ = 1.2 embedded in water. The black

dashed line in Fig. 3(a) shows the evaluation of Eq. (17) for this

spiral, showing the
√

z dependence. Notice that the normalized

intensity pp∗/ρ0c0 grows linearly with distance z with a rate

given by 2πk2
r J

2
n (krr)/k. A simple physical interpretation

of the
√

(z) dependence in Eq. (17) is that the radiation at

increasing z arrives scattered from the arms of spirals of the

increasing radius with proportionally increasing energy.

B. Finite size effects

The previous section deals with an infinitely extended

diffraction grating. This is not the real situation; in experiments

finite size effects are present. In order to analyze these

finite size effects we have applied two different methods.

On one hand we have numerically integrated the Rayleigh-

Sommerfeld diffraction integral Eq. (1) for structures with

finite extent. This allows for studying the effects due to the

finite radial size of the spiral. On the other hand, numerical

simulations using a three-dimensional (3D) pseudospectral

time-domain method using a k-space corrector operator [39]
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FIG. 3. (a) Longitudinal pressure distribution along the first

lobe of the Bessel beam obtained from Eq. (1) for (blue) M =
40, (gray) M = 1000, (red) k-space simulation considering elastic

scatters, and (black dashed) analytic Eq. (17). (b) Pressure map

distribution obtained by numerical evaluation of the Rayleigh-

Sommerfeld diffraction integral Eq. (1) for a spiral of M = 40.

(c) Transversal pressure distribution at z/λ = 25 obtained from

Eq. (1) for (blue) M = 40, (red) k-space simulation considering

elastic scatters, and (black dashed) analytic Eq. (17). (d) Far field

showing the characteristic ring of the Bessel beam, where kr = 2π/a.

were also performed. In these simulations, a steel spiral

grating embedded in water is considered, allowing the acoustic

waves to penetrate in the grating’s bulk material, so the

physical compressibility and impedance of the material were

considered.

Figure 3(b) shows the pressure field from the spiral

grating analyzed in the previous section as obtained now by

numerical integration of the Rayleigh-Sommerfeld diffraction

integral Eq. (1) for a finite spiral structure of M = 40 loops

(R = 40a). The formation of a first-order Bessel beam with

the elongated zero field at the axis can be observed. An

axial cross section along the first lobe of the Bessel beam

is shown in Fig. 3(a) (blue line). This numerical integration

of the Rayleigh-Sommerfeld integral agrees well with theory

(black dashed line). It is worth noting here that the longitudinal

field oscillations, observed also in Bessel beams generated by

axicons, are not present in Eq. (17) as long this result was

derived for a nontruncated spiral M → ∞. As the number

of spiral loops increases, the longitudinal oscillations tend
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to disappear, and the field converges to the one given by

Eq. (17). To prove this we have evaluated a spiral grating with

M ′ = 1000 with the same radius as the previous spiral (i.e.,

the distance between the scatterers, a′’s scaled, respectively,

R = M ′a′ = 40a); the gray curve in Fig. 3(a) clearly shows

this convergence.

Furthermore, the beam amplitude follows Eq. (17) increas-

ingly along z from z = 0. However, as shown in Fig. 3(a) for

the case of the truncated systems (blue line) the amplitude

grows up to a given distance z = zF . This distance can

be estimated geometrically through the zeroth-order Bessel

beams as [7]

zF =
Ra

Nλ

√

1 −
(

Nλ

a

)2

, (18)

where N ∈ N is the diffraction order and R = Ma is the radius

of the spiral with M as the windings. The zF for the spiral

with M = 40 is shown in Fig. 3(a) whereas for the case with

M = 1000 it is out of the limits of the plotted frequencies.

The estimation of zF is in good agreement with the numerical

integration of Eq. (1).

In the radial direction, the beam follows a Bessel profile

Eq. (17). A transversal cross section at z/λ = 25 and y = 0 is

presented in Fig. 3(c), showing good agreement between the

radial field distribution obtained by the numerical integration

and theory. In order to prove this, Fig. 3(d) shows the far

field of the truncated grating where the characteristic ring of

a Bessel beam is observed, corresponding to the wave vector

kr = 2π/a.

Finally, we analyze the effect of the rigidity of the material

of the spiral grating on the scattered field using numerical

simulations. We analyze the scattering by the spiral grating

with M = 40a radiated by a plane wave. In these simulations,

no losses were included, and the thickness of the grating

was λ/4. The simulation result, the red curve in Fig. 3(a),

presents axial oscillations due to the finite aperture of the

grating as already predicted by the direct integral of Eq. (1).

Here, excellent agreement is found between simulations and

theory. The small discrepancies are caused by the fact that the

scatterers are of finite size, i.e., not the perfect punctual sources

(as assumed in the Rayleigh-Sommerfeld integral) and due to

the bulk resonances into the body of the steel grating. The

radial profile, shown in Fig. 3(c), also shows the Bessel profile

in good agreement with the theory and the direct integration of

Eq. (1). Therefore, the effect of the rigidity of a steel grating

embedded in water is small.

III. HIGH-ORDER BESSEL BEAMS

One of the consequences of the procedure described above

is that it is possible to generate HOBBs by using multiple-arm

spirals (n > 1). The parametric Eq. (7) describes n arms,

separated by a fixed distance a. In the case of n > 1, the

rate of growth of each individual arm is increased by a factor

of n as it is underlined by the dark arms in Fig. 2. The variation

of the phase (φ) with the angle (θ ) is therefore increased, and

the conical wave front formed by the axisymmetric grating

presents a total phase shift of 2πn over a complete turn

as follows from Eq. (9). When converging to the axis, the

conical wave front forms a Bessel beam in the same way

as in the previous section. However, as the phase rotation is

increased, the vortex presents a topological charge of n. The

conformed Bessel beam is therefore a nth-order Bessel beam,

and as a consequence the hollow central area of the beam is

extended.

Figure 4 presents the formation of HOBBs for the cases of

n = 3, 7, 20 and 50. In Figs. 4(a)–4(d), the transversal pressure

distribution at z = zF and y = 0 is presented. In this case, the

solid line presents the analytical solution for the transverse

field of an ideal Bessel beam Jn(krr), and the symbols are the k-

space numerical solutions assuming a steel grating embedded

in water. The simulations are in agreement with theory, even

in the case of n = 50. Notice here the discrepancies at high

radial values in which the approximated theoretical solution

fails because corrections of higher order should be taken into

account, and the finite size effect of the sample is noticed in

these regions.

The complete transversal map at z = zF is shown in

Figs. 4(e)–4(h). When the areas of strongly reduced sound

around the symmetry axis appear, the larger is n, the larger are

the zero-field areas. The radius of the reduced sound areas can

be estimated from the position of the first maximum of the nth

Bessel function as

rn =
j ′
na

2π
≃

(n + 0.8086n1/3)a

2π
, (19)

where j ′
n is the first zero of the first derivative of the nth Bessel

function [40]. For the case of n = 7, j ′
n ≃ 8.57, therefore

r7/λ = 1.64 in agreement with the results shown in Fig. 4(b).

The axial map of the field shown in Figs. 4(i)–4(l) also shows

the dependence of the hollow central part of the beam on

the increasing order n. Of special interest is the generation

of high-order beams, e.g., n = 50. In this case, j ′
n ≃ 57.12,

therefore the zero in the center of the hollow beam covers a

cylindrical volume with a diameter of 2r50/λ = 21.82 in the

interior of which the scattered sound is almost absent.

Finally, the phase of the field is presented in the subpanels

Figs. 4(m)–4(p) at z = zF . It can be seen that the number of

times the phase rotates in each turn, i.e., the topological charge,

is proportional to the order of the Bessel beam, in accordance

with Eq. (17). The formed fields are therefore vortex beams

of topological charge n where the topological charge of the

vortex can be controlled directly by the number of arms of the

spiral grating.

These results show that HOBBs can be generated even by

acoustically permeable gratings for a water-to-steel impedance

contrast ratio, i.e., under realistic conditions for common

ultrasound applications.

IV. EXPERIMENTAL VALIDATION: A FIRST-ORDER

BESSEL BEAM FORMED BY A SPIRAL GRATING

A spiral grating in water is studied experimentally in

order to create an acoustic vortex by this kind of passive

structure. A spiral profile in a stainless steel plate of 0.8 mm

thickness was laser cut. The diameter of the scattering area

was 
r = 0.75 mm and the grating period of a = 1 mm. The

width of the open slits is a − 
r = 0.25 mm for the open

slits. The spiral winds M = 20 times, and the total radius
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FIG. 4. nth order Bessel beams formed by spiral gratings of n arms. (a)–(d) Transversal pressure distribution at z = zF and y = 0,

(continuous line) Eq. (17), and (markers) k-space numerical solution of the wave equation assuming a steel grating embedded in water. Pressure

magnitude obtained at (e)–(h) z = F and (i)–(l) x = 0. Color bars in normalized units p/pmax. (m)–(p) The phase of the field is calculated at

z = zF ; color bars are in normalized units of φ/π .

is R = 50 mm. The spiral plate is aligned and placed in

front of a flat ultrasonic transducer of the same diameter

as the grating as can be seen in Fig. 5(a). The source was

driven by a 50 cycle sinusoidal pulse burst of a frequency of

f0 = 2.22 MHz using a function generator (14 bits, 100 MS/s,

model PXI5412, National Instruments) and a linear rf amplifier

(ENI 1040 L, 400 W, 55 dB, ENI, Rochester, NY). The

pressure wave forms were recorded with the help of a HNR

500 μm needle polymer polyvinylidenfluorid hydrophone

(Onda Corp., CA), and a digitizer (64 MS/s, model PXI5620,

National Instruments) was used. A three-axis micropositioning

system (OWIS GmbH, Germany) was used to move the

hydrophone in three orthogonal directions with an accuracy of

10 μm, and a National Instruments PXI-Technology controller

NI8176 was used to control all the devices. As Fig. 5(a) shows,

the grating was placed in the near field just above the flat

piezoelectric element at a distance of 0.5 mm. Because of

this gap, cavity resonances between the diffraction plate and

the source appear. These resonances cause beam aberrations,

however, as we will show below, the main features of the

HOBB are retained.

The pressure field is represented in Fig. 5(b) by the

numerical integration of Eq. (1). Transversal cross sections

were measured at different axial distances where the axial

pressure field along the first maximum x = 0.45λ (0.3 mm)

was evaluated. The corresponding axial pressure distribution

is shown in Fig. 5(c) where the experiment agrees well with

the theory. The experimental measurements and numerical

integration of both the pressure field and the phase pro-

files in the transverse planes are shown in Figs. 5(d)–5(g),

5(i)–5(l), and 5(n)–5(q) at distances of z1 = 8.8λ (6 mm),

z2 = 17.6λ (12 mm), and z1 = 26.5λ (18 mm), respectively.

The experimental magnitude of the pressure field matches

the characteristics of the first-order Bessel beams with null

amplitude on axis and a set of rings of pressure maxima with

increasing radii, which shows good agreement with the theory.
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FIG. 5. (a) Spiral grating used in experiments. The inset shows a zoom were the spiral pattern can clearly be seen. (b) Pressure map

distribution obtained by numerical integration of the Rayleigh-Sommerfeld integral. (c) Axial pressure distribution at x = 0.45λ obtained by

the Rayleigh integral for the finite aperture grating (continuous), theoretical for infinite aperture grating (dashed), and experiments (markers).

(d), (i), and (n) Experimental field magnitude and (e), (j), and (o) theoretical cross sections at z1 = 8.8λ (6 mm), z2 = 17.6λ (12 mm), and

z1 = 26.5λ (18 mm), respectively; (f), (k), and (p) and (g), (l), and (q) corresponding phases. Color bars in normalized units (p/p0 for the field

magnitude and φ/π for the phase). (h), (m), and (r) Traversal beam cross sections at different axial distances obtained by the Rayleigh integral

for the finite aperture grating (continuous), analytic expression of the first-order Bessel beam (dashed), and experiments (markers). The vertical

dotted line represents the position where the field is null.

Some differences between theory and experiments appear,

that are mainly caused due to technical imperfections: First, the

resonances between the grating and the piezoelectric source

cause beam distortion and aberrations: there exist multiple

reflections in the cavity formed between the spiral plate and

the source, and secondary diffracted beams with progressively

lower amplitude are generated contributing to vortex beam

aberration. There exist other sources of aberration, including

the misalignment among the grating, the transducer, and the

nonuniform vibration of the piezoelectric element, which is

constrained by the manufacturing process of the transducer.

The phase of the field presents the characteristic screw

phase dislocation at the center of the beam: A complete loop

around a point centered on the axis represents a linear and

continuous variation of the phase from 0 to 2π , i.e., the

topological charge of the acoustic vortex is one. We remark

that a shift of π in phase is observed between any point and its

image with respect to the central axis of the plane containing

the spiral. This result proves that the wave transmitted through

the grating is therefore an acoustic vortex.

Finally, transversal cross sections of the pressure field

are shown in Figs. 5(h), 5(m), and 5(r) for the distances of

z1, z2, and z3, respectively. The transversal cross section in

the experiments (markers) was chosen for an azimuthal angle

on the (y,x) plane at θ = 70◦, 30◦, and −51◦. The traversal

profiles agree well with the shape of the first-order Bessel

beam (continuous black line) and the finite aperture prediction

by the numerical integration of the Rayleigh-Sommerfeld

equation. Although minor differences are visible, the main

features of the HOBB, i.e., its central zero and rotational vor-

tices, are correctly reproduced by the proposed experimental

setup.
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V. CONCLUSIONS

The formation of HOBBs by scattering of plane waves on an

Archimedes’ spiral grating is theoretically and experimentally

reported in this paper. The effect of the finite size of the sample

is analyzed numerically. The main result is that, due to finite

size of the sample, the HOBBs are truncated. All the beams

analyzed are characterized by a zero of the pressure field along

the z axis, i.e., the vortex line. The size of this hollow part

of the beam is dependent on the topological charge of the

HOBB, which is controlled directly by the number of arms of

the spiral. Experimental tests in the ultrasound regime have

been performed showing the case of a truncated first-order

Bessel beam. Good agreement among theory, experimental

measurements, and numerical simulations is found for the

acoustic pressure field amplitude as well as for the screw phase

dislocations. Therefore, the system shown in this paper seems

to be of special interest for the generation of arbitrary nth-order

Bessel beams using regular spiral patterns with n arms.

The system shown in this paper to synthesize HOBBs

presents a high potential in ultrasound particle manipulation

techniques and, in general, in acoustic radiation force appli-

cations in which the HOBBs have attracted great interest.

This method provides the possibility of generation of Bessel

beams of arbitrary order by a passive and cheap device if

compared with acoustical vortices generated by active arrays

of transducers. The generation of an acoustic vortex by active

arrays is limited by the amount of active elements and its

size. In contrast, the beam resolution by the proposed setting

is limited only by the ratio between the wavelength and

the spacing between slits. It is worth noting here that a

modification of the present device based on coiling slits was

presented simultaneously with the present paper [41]. By

not using Archimedes spirals the vortex properties can be

controlled by passive devices. Nowadays, with the increase in

the performance of 3D printing and laser cutting techniques,

the conformation of HOBBs by spiral gratings offers an

alternative to multielement transducers to generate acoustical

vortices.

ACKNOWLEDGMENTS

We acknowledge financial support from MINECO of the

Spanish Government under Grants No. MTM2012-36740-

C02-02, No. FIS2015-65998-C2-1-P, and No. FIS2015-

65998-C2-2-P. N.J. acknowledges financial support from

PAID-2011 Universitat Politècnica de València.
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