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Abstract

The uses of biochar as soil fertilizer can offset global warming and reduce dependence on limited mineral resources in 

the future circular economy, yet biochar may contain contaminants that can ultimately enter the food chain. In particular, 

persistent free radicals are emerging contaminants previously detected in biochar but underlying mechanisms of radical 

formation are not yet established. Here we studied radical generation during hydrothermal carbonization of waste sludge at 

160–220 ºC for 0.5–2 h with solid weight ratios of 10%w–40%w using electron paramagnetic resonance and Fourier trans-

form infrared spectrometry. Results reveal that radical concentration increases with temperature, reaction time, and weight 

ratio in sludge biochars, reaching a content of 47.2 ×  1015 spins/g for 220 ºC, 2 h heating, and 40%w solid ratio. Moreover, 

low temperature of about 160 ºC favors the production of oxygen-centered radicals, whereas higher temperature of 220 ºC 

produces carbon-centered radicals. Our findings imply that biochar ecotoxicity should be assessed prior applications to 

prevent adverse health effects.
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Introduction

Waste sludge is the byproduct produced from wastewater 

treatment process, containing organic matter, minerals, and 

various contaminants (Gao et al. 2016a, b; Lichtfouse et al. 

2005; Raheem et al. 2018). In China, the production of waste 

sludge is increasing sharply and reaching approximately 56.6 

million tons with a moisture of 80% in 2018 (GEP Research 

2018). Recycling waste sludge for recovery of resources and 

energy is favorably recommended by the Chinese govern-

ment and is actively studied (Peccia and Westerhoff 2015). 

Waste sludge is commonly valued as soil fertilizer or adsor-

bent (Devi and Saroha 2017; Seleiman et al. 2020). Waste 

sludge has been recently upgraded as biochar by hydro-

thermal carbonization for energy recovery (Coronella et al. 

2017), yet its environmental consequences are still discussed 

(Tasca et al. 2019; Xu and Jiang 2017). In particular, owing 

to the presence of organics and metals in sludge, radicals are 

expected to be formed during hydrothermal conversion, but 

this fact has not been established (Khachatryan et al. 2011). 

Temperature and other factors were reported to influence 

radical formation during hydrothermal carbonization of sew-

age sludge (Zhu et al. 2019), but little information on their 

influencing patterns and mechanisms is available for biochar.

Persistent free radicals (PFRs) have been identified as 

emerging contaminants (Vejerano et al. 2018) in various 

environmental matrix including contaminated soils (dela 

Cruz et al. 2012; Jia et al. 2017), sediments (dela Cruz et al. 

2014), aerosol particles (Arangio et al. 2016; Yang et al. 

2017; Xu et al. 2019), and fly ashes (Zhao et al. 2019). These 
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radicals are of increasing concern owing to their strong dura-

bility and potential toxicity. Indeed, several studies suggest 

that PFRs produce reactive oxygen species (ROS) that can 

damage biological systems and cause adverse effects on 

infant health (Lieke et al. 2018; Reed et al. 2015; Saravia 

et al. 2013). Radicals are known to be primarily generated 

during heat treatment such as thermal decomposition of 

biomass during high-temperature pyrolysis and relatively 

low-temperature hydrothermal carbonization (Dellinger 

et al. 2007; Qin et al. 2018; Volpe et al. 2019). Ruan et al. 

(2019) summarized sources, formation, and characteristics 

of PFRs in biochars produced by pyrolysis and hydrothermal 

carbonization. Temperature controls the hydrolysis degree of 

raw materials and formation of final products during hydro-

thermal process (Brindhadevi et al. 2021; Zhang et al. 2019).

Although biochar radicals are less active than ROS 

such as the hydroxyl radical •OH, they can act as electron 

donors and carriers to promote electron transfer in chemical 

reactions (He et al. 2019; Wang et al. 2019). In particular, 

biochar generates ROS such as •OH, sulfate radical anion 

 SO4
•−, hydrogen peroxide  H2O2, and ozone  O3, thus enhanc-

ing decomposition of organic contaminants (Chen et al. 

2017; Qin et al. 2017). For example, biochar radicals have 

increased the production of •OH and  H2O2 under daylight 

irradiation and, in turn, have enhanced the degradation of 

sulfadimidine (Chen et al. 2017). Similarly, Qin et al. (2017) 

observed that biochar radicals acted as electron donors for 

Fe(III) reduction, thus promoting •OH generation and ala-

chlor degradation. PFRs are usually sorted as carbon- and 

oxygen-centered radicals (dela Cruz et al. 2011), of which 

the oxygen-centered radicals appeared to be more reactive 

than carbon-centered radicals (Zhang et al. 2020). Thus, the 

concentration and type of radicals influence their catalytic 

ability and, in turn, the transformation of contaminants, yet 

knowledge of radical formation is limited (Fang et al. 2015; 

Wang et al. 2019).

Practical applications suggested that a temperature range 

of 180–210 ºC is suitable for hydrothermal carbonization 

of sewage sludge in terms of performance and profitability 

(HTCycle 2021). Therefore, here we studied the concentra-

tion, abundance, and type of PFRs during hydrothermal con-

version of waste sludge at 160- 220 ºC for 0.5–2 h with solid 

weight ratio of 10%w–40%w, using electron paramagnetic 

resonance (EPR) and Fourier transform infrared spectrom-

etry (FTIR).

Experimental

Materials and chemicals

Waste sludge was collected from a municipal sewage 

treatment plant located at Songjiang in Shanghai. The 

raw sludge was first precipitated for 24 h for solid–liq-

uid separation. The resulting residues were centrifuged 

at 4000 rpm, then freeze-dried for 24 h with a LGJ-10E 

from Sihuan, Beijing, China. Dried solids were ground 

into powder, passed through a 40-mesh sieve, then stored 

in an amber glass bottle at 4 ºC prior to use. Potassium 

bromide (KBr) was purchased from Sinopharm Chemical 

Reagent Co., Shanghai, China. 2, 2-diphenyl-1-picrylhy-

drazyl (DPPH) from Sigma-Aldrich was used as a stable 

radical standard.

Hydrothermal preparation of sludge biochar

The apparatus and procedures for sludge biochar have been 

previously reported (Gao et al. 2016b, 2018). Typically, the 

preparation was performed in a para-polyphenylene (PPL) 

lined 100-mL stainless steel autoclave at a stirring speed of 

800 rpm with the aid of magnetic stirrer. The samples were 

heated at 160, 180, 200, and 220 °C for 0.5, 1 h, and 2 h, 

with solid weight ratios of 10%w, 20%w, and 40%w. After 

completion of the reaction, the reactors were allowed to cool 

down to room temperature. The solid residues were washed 

with ethanol and deionized water several times, followed by 

centrifuging and freeze-drying.

Characterization

Persistent free radical (PFRs) formation in biochar samples 

was measured at room temperature with a Bruker EMX 

micro-6/1/P/L EPR instrument (Karlsruhe, Germany). 

Approximately 50 mg of each sample was transferred into 

a 4-mm-inner-diameter electron paramagnetic resonance 

(EPR) quartz micro-tube. The micro-tube was sealed 

with grease at one tip and placed in the EPR instrument 

for measurement. Free radical signals were continuously 

recorded. EPR running parameters were microwave fre-

quency 9.8 GHz (X-band), central field 3504.3 G, micro-

wave power of 0.5024 MW, modulation frequency 1.0 G, 

scanning width 80 G, time constant 0.01 ms and scanning 

time 30 s. Then, radical concentrations were obtained using 

the Bruker’s Xenon program and comparison with standard 

based on the quantitative theory of spin calculation. Fou-

rier transform infrared spectrometry (FTIR) spectra were 

recorded with a Bruker Tensor 27 spectrometer, Ettlingen, 

Germany. Approximately 3 mg of each biochar sample was 

mixed with 300 mg of KBr, ground uniformly with an agate 

mortar, and compressed for scanning over wavelength range 

of 4000–400  cm−1 with a resolution of 4  cm−1. Metal con-

tents in raw sludge and biochar samples were measured by 

an inductive coupled plasma emission spectrometer (ICP-

OES) Prodigy from Leeman Labs, USA.



Statistical analysis

Averages and standard deviations of data for PFRs were 

calculated by Microsoft Excel 2016. Statistical analyses 

were performed using SPSS 19.0 from SPSS Inc., Chicago, 

IL, USA, and significance was accepted at p below 0.05. 

All plots were generated with OriginPro 9.0 software from 

OriginLab Corporation, USA.

Results and discussion

We studied the concentration, abundance, and type of persis-

tent free radicals (PFRs) during hydrothermal conversion of 

municipal waste sludge at 160–220 ºC for 0.5–2 h with solid 

ratios of 10%w–40%w, by electron paramagnetic resonance 

(EPR) and Fourier transform infrared spectrometry (FTIR). 

Data is given in Table S1.

Effect of temperature

Figure 1 shows the effect of heating sludge at 160–220 °C. 

Figure 1a displays a single signal between 3480 and 3520 G 

for the raw sludge and sludge biochars. The weak signal of 

the raw sludge is most probably due to the presence of iron 

at 35.2 mg/g and aluminum at 5.4 mg/g (Table S2, Dellinger 

et al. 2007). The concentration of radicals increases sharply 

from 19.7 ×  1015 spins/g at 160 ºC for 0.5 h to 47.2 ×  1015 

spins/g at 220 ºC for 2 h (Fig. 1b). This increase is ten-

tatively explained by the hydrolysis of sludge cellulose at 

high temperature, which induces the formation of func-

tional groups bearing free radicals (Gao et al. 2012). Other 

reactions are likely to generate radicals. For instance, it has 

been shown that C–C and C-heteroatom bonds are broken by 

catalysis and oxidation in the presence of subcritical water 

(Hu et al. 2014). Then, as temperature and time increase, 

reactions such as dehydration, decarboxylation, condensa-

tion, polymerization, and aromatization take place and could 

Fig. 1  Effect of temperature on the formation of persistent free radicals (PFRs) in biochars produced by hydrothermal conversion of waste sludge 

with a weight ratio of 40%w. a–c electron paramagnetic resonance (EPR) and d Fourier transform infrared spectrometry (FTIR)



generate radicals (Demirbaş 2000). Noteworthy, similar 

reactions involving free radicals occur over geological ages 

during the formation of coal and petroleum (Rouxhet and 

Robin 1978; Tissot and Welte 1984; Lichtfouse et al. 1994).

Figure  1c shows that g-factors are in the range of 

2.0030–2.0040 and vary with temperature. This implies the 

coexistence of oxygen- and carbon-centered radicals (Jia 

et al. 2017). The sharp decrease of g-factor with tempera-

ture for the longest time treatment of 2 h is likely to result 

from declining oxygen-centered radicals and rising carbon-

centered radicals because the latter are more stable at high 

temperature.

In Fig. 1d, peaks at around 1050  cm−1, attributed to C–O 

stretching vibrations of phenolic groups according to Ishi-

zaki and Martí (1981), are rising with temperature. Whereas 

peaks at around 1240  cm−1 due to C–O–H bend according 

to Zhang et al. (2018) are declining then almost disappear 

above 180 ºC. This suggests that C–O–H groups are trans-

formed into phenoxyl radicals at elevated temperatures. 

Moreover, single-molecule free radicals can be formed from 

the cleavage of some weak chemical bonds such as β-O-4 

(Sabio et al. 2016). The increase of newly-formed phenolic 

C-O structures may also represent potential precursors 

of phenoxyl radicals (Fig. 1d). Peaks at 1550–1670  cm−1 

related to carboxyl, quinonyl, and aldehyde C=O are weak-

ened with increasing temperature, which suggests the forma-

tion of oxygen- and carbon-centered radicals in the presence 

of transition metals (Zhu et al. 2019). Last, the presence of 

aromatic rings is suggested by the presence of a C=C infra-

red peak at around 1440  cm−1 (Fig. 1d). Indeed, such a peak 

has been attributed to C=C in aromatic and heterocyclic 

rings (He et al. 2013), suggesting that aromatic radicals were 

possibly generated by electron migration in the presence of 

metal oxides (Fang et al. 2014; Jia et al. 2016). Overall, 

our findings show an increase of radical concentration with 

temperature, which is likely to result from various chemi-

cal reactions such as formation of phenoxyl radicals then 

carbon-centered radicals at higher temperature.

Effect of reaction time

Figure 2 shows the effect of reaction time from 0.5 to 2 h on 

PFRs formation during hydrothermal conversion of waste 

sludge into biochar. The results show that radical concentra-

tions increase highly with reaction time at any temperature 

(Fig. 2a,b). Specifically, radical concentration increases from 

11.9 ×  1015 to 47.2 ×  1015 spins/g with reaction time from 

0.5 to 2 h at 220 °C. Previous studies revealed that, on the 

contrary, the concentration of biochar radicals declined con-

tinuously from 1 to 6 h of reaction time (Gao et al. 2018; Lu 

et al. 2013). This opposite trend is probably due to different 

raw materials and reaction conditions, such as rice straw 

under hydrothermal conditions, the radical concentration of 

which reduced rapidly when reaction time increased (Gao 

et al. 2018). Different raw materials and reaction conditions 

may change the nature of chemical reactions, inducing in 

particular formation of precursors such as phenolic and poly-

cyclic compounds.

Figure 2c shows that g-factors rise or decrease slightly 

from 0.5 to 1 h reaction time. Then g-factors either increase 

sharply at 160 °C or decrease sharply at 180–220 °C for 

2 h of reaction time. These findings support the stepwise 

formation of oxygen-centered radicals then carbon-centered 

radicals. Indeed, we speculate that the lowest temperature of 

160 °C induces generation of oxygen-centered radicals, but 

is not high enough to raise the proportion of carbon-cen-

tered radicals within 2 h, whereas, carbon-centered radicals 

become predominant at 180–220 °C.

Figure  2d displays the evolution of biochar infrared 

spectra with reaction time. The results show that peaks of 

C–O–H, around 1240   cm−1, and quinonyl C=O, around 

1550  cm−1, are weakened, while peaks associated with phe-

nolic C-O and aromatic C=C are enhanced. These trends 

thus partly explain the increase of radical concentrations. 

The increase of aromatic C=C peak at about 1440  cm−1 sup-

ports the formation of carbon-centered radicals, according to 

Fang et al. (2014). Overall, our findings reveal the increase 

of PFRs with reaction time in biochars from hydrothermal 

treatment of sludge, and strengthen the stepwise formation 

of oxygen-centered radicals followed by carbon-centered 

radicals.

Effect of solid weight ratio

Figure 3 shows the effect of solid weight ratio from 10%w 

to 40%w on the production of PFRs during hydrothermal 

conversion of waste sludge into biochar. The results show a 

gradual increase of radical concentration with solid weight 

ratio (Fig. 3a,b). Specifically, radical concentration increases 

from 29.5 ×  1015 to 47.2 ×  1015 spins/g when the weight ratio 

increases from 10%w to 40%w at 220 ºC during 2 h of reac-

tion time. This result indicates that the higher weight ratio 

results in higher abundance of PFRs in biochars. Normally, 

a higher weight ratio provides more active moieties for PFRs 

formation from the cleavage of bonds in sludge components, 

and also weakens interactions between water molecules and 

sludge components. By contrast, a lower weight ratio facili-

tates complete hydrolysis of sludge components owing to the 

solvent and catalytic effects of subcritical water, promoting 

saturation of PFR-forming compounds by donation of suf-

ficient hydrogen ions and enhancing recombination of PFRs 

(Sabio et al. 2016). Moreover, water protons can promote 

ring-opening of heterocycles under subcritical conditions 

(Ogunsola and Berkowitz 1995), thus reducing formation 

of PFRs in biochars.



Figure 3c shows slight decreases of g-factors when the 

solid weight ratio increases from 10%w to 20%w, then 

slight increases when the weight ratio increases to 40%w. A 

higher solid weight ratio may cause insufficient carboniza-

tion of sludge, while a lower ratio should result in generation 

of more oxygen-centered radicals, because more oxygen-

containing moieties are likely to be formed. The g-factors 

exhibit a variation in the range of 2.0032- 2.0034 at 200–220 

ºC for 2 h of reaction time. This indicates the dominance of 

carbon-centered radicals at high temperatures.

Figure 3d displays the evolution of biochars infrared 

spectra with solid weight ratio. Results show that peak of 

aromatic C=C at about 1440  cm−1 is enhanced, while peak 

associated with quinonyl C=O at around 1550  cm−1 is weak-

ened and almost disappear when the weight ratio is 40%w. 

This suggests the formation of carbon-centered radicals. 

Overall, our findings indicate that weight ratio also has an 

effect on the abundance and type of PFRs in biochars from 

hydrothermal treatment of sludge.

Conclusion

The formation of persistent free radicals (PFRs) in bio-

chars from hydrothermal carbonization of municipal waste 

sludge was investigated. The results showed that PFRs 

formation in biochars depends on temperature, reaction 

time, and weight ratio. Radical concentration increased 

with increasing temperature (160–220 ºC), reaction time 

(0.5–2 h), and weight ratio (10%w–40%w). A lower tem-

perature of 160 ºC facilitated the formation of oxygen-cen-

tered radicals, whereas a relatively higher temperature at 

220 ºC produced carbon-centered radicals. These finding 

can provide a new route for recycling of waste sludge to 

produce valuable PFRs-containing biochars, which can be 

used as an alternative for transformation of environmental 

contaminants.

Supplementary Information The online version contains supplemen-

tary material available at (https ://doi.org/10.1007/s1031 1-021-01198 

-8).

Fig. 2  Effect of reaction time on the formation of persistent free radicals (PFRs) in biochars produced by hydrothermal conversion of waste 

sludge with a weight ratio of 40%w. a–c electron paramagnetic resonance (EPR) and d Fourier transform infrared spectrometry FTIR
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