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Slow magnetoacoustic waves are omnipresent in both natural and laboratory plasma systems. The wave-induced mis-

balance between plasma cooling and heating processes causes the amplification or attenuation, and also dispersion, of

slow magnetoacoustic waves. The wave dispersion could be attributed to the presence of characteristic time scales in

the system, connected with the plasma heating or cooling due to the competition of the heating and cooling processes

in the vicinity of the thermal equilibrium. We analysed linear slow magnetoacoustic waves in a plasma in a thermal

equilibrium formed by a balance of optically thin radiative losses, field-align thermal conduction, and an unspecified

heating. The dispersion is manifested by the dependence of the effective adiabatic index of the wave on the wave

frequency, making the phase and group speeds frequency-dependent. The mutual effect of the wave amplification and

dispersion is shown to result into the occurrence of an oscillatory pattern in an initially broadband slow wave, with

the characteristic period determined by the thermal misbalance time scales, i.e. by the derivatives of the combined

radiation loss and heating function with respect to the density and temperature, evaluated at the equilibrium. This effect

is illustrated by estimating the characteristic period of the oscillatory pattern, appearing because of thermal misbalance

in the plasma of the solar corona. It is found that by an order of magnitude the period is about the typical periods of

slow magnetoacoustic oscillations detected in the corona.

I. INTRODUCTION

Magnetohydrodynamic (MHD) waves in natural and lab-

oratory plasma systems are subject to intensive recent

studies1,2. The growing interest in MHD waves is, in par-

ticular, connected with their potential to act as seismological

probes in remote diagnostics of the plasmas, which requires

detailed understanding of the effects affecting the wave ex-

citation, propagation and damping (see e.g. Refs. 3 and 4,

for the discussion and implications of the MHD coronal seis-

mology methods). Importance of MHD waves is also stim-

ulated by recent case studies revealing their potential ability

to locally heat the corona5. However, a full picture of the

role of MHD waves in the energy transport through the up-

per layers of the solar atmosphere is to be understood. An

interesting feature of compressive MHD waves is possible

overstability caused by the misbalance of the local energy

losses, e.g. dissipative processes and radiation, and heating

(e.g. Ref. 6 and references therein). Instability of a plasma

caused by the thermal misbalance has intensively been studied

in the context of star formation7, solar prominence formation8,

and edge-localised modes in tokamaks9, see also Ref. 10 for

a comprehensive review. An important example of a poten-

tially thermally-unstable plasma is the corona of the Sun, in

which the observed local thermal equilibrium is supported by

a)E-mail: D.Kolotkov.1@warwick.ac.uk

a competition of the radiative and thermal conductive energy

losses with a yet unidentified heating mechanism that could

be connected, for example, with magnetic reconnection or

wave dissipation11. Slow magnetoacoustic waves that are con-

fidently detected in the corona12,13 have the energy clearly in-

sufficient to heat the coronal plasma14, but are a promising

tool for the plasma diagnostics, including its thermodynami-

cal properties.

A perturbation of an initial thermal equilibrium by a com-

pressive wave leads to the misbalance between the heating and

cooling rates. This in turn can affect the wave via the tem-

perature and density variations, thus establishing a feedback

between the perturbed medium and the perturbing wave, re-

sulted in the wave over-stability. The thermal misbalance is

known to lead to either damping or amplification of compres-

sive waves6. In the latter case, the plasma acts as an active

medium. A traditional description of thermal overstability of

MHD waves is the evolutionary equation method, based usu-

ally on the assumption that the non-adiabatic effects are weak.

In that limit, the over-stability is independent of the wave-

length. In combination with short-wavelength dissipation

(e.g., by finite thermal conduction, viscosity or resistivity) and

the waveguide dispersion caused by a plasma non-uniformity,

it may lead to the occurrence of stationary nonlinear dissipa-

tive structures, such as autowaves and autosolitons15,16.

Stronger heating/cooling misbalance violates the as-

sumption of the weak non-adiabaticity, making the effect

frequency- (or wavelength-) dependent, i.e. causing the linear
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wave dispersion17–19. This dispersion is not connected with

the plasma non-uniformity that is often attributed to the ob-

served dispersive effects20. In the latter case, the geometrical

dispersion is known to result into the development of quasi-

periodic fast magnetoacoustic wave trains with the period-

icity determined by the properties of the waveguiding non-

uniformity (see, e.g. Ref. 1 for a comprehensive discussion of

this topic in the context of the solar corona and Earth’s magne-

tosphere). For slow waves this effect has not been considered

due to the relatively weak geometrical dispersion. However,

the dispersion caused by a thermal misbalance may be suffi-

ciently strong.

In this paper, we demonstrate the formation of a quasi-

periodic structure in a linear slow magnetoacoustic wave, i.e.

formation of linear quasi-periodic slow magnetoacoustic wave

trains, in a thermally active plasma due to the linear dispersion

associated with the thermal misbalance. The discussed effect

is generic and may appear in different plasma environments.

In this work, we focus on the general consideration of the role

of the thermal misbalance in magnetoacoustic wave dynamics

and illustrate this effect in the plasma of the solar corona.

II. GOVERNING EQUATIONS

We consider slow magnetoacoustic waves in a uniform

medium in the infinite field approximation, which allows

us to study the wave dynamics in terms of a reduced one-

dimensional hydrodynamic model (see also works 21–26,

where this approximation is extensively used for modelling

slow magnetoacoustic waves),

ρ
dVz

dt
= −∂P
∂z
, (1)

∂ρ

∂t
+
∂

∂z
(ρVz) = 0, (2)

P =
kBTρ

m
, (3)

CV

dT

dt
− kBT

mρ

dρ

dt
= −Q(ρ,T ) +

κ

ρ

∂2T

∂z2
, (4)

where Vz is the velocity component along the z-axis coincid-

ing with the magnetic field direction; ρ, T , and P are the den-

sity, temperature, and pressure, respectively; kB is the Boltz-

mann constant, m is the mean particle mass, CV is the specific

heat capacity at constant volume, κ is the field-aligned ther-

mal conductivity, and d/dt stands for the convective deriva-

tive. The heating/cooling function

Q(ρ,T ) = L(ρ,T ) − H(ρ,T ) (5)

combines the effects of the heating H(ρ,T ) and radiative

losses L(ρ,T ). Astrophysical plasmas are often observed to

be approximately isothermal along the magnetic field, see e.g.

Fig. 9 in Ref. 27 and references therein for recent detections

of an isothermal plasma in active regions of the solar corona.

Hence, we consider an isothermal initial equilibrium, at which

Q(ρ0,T0) = 0, where the index 0 indicates the equilibrium

quantities. Model (1)–(4) implies that we focus on the propa-

gation of waves strictly along the ambient magnetic field lines.

Hence, the latter is not explicitly present in the governing

equations. Under this approximation, the magnetic field is

assumed to be infinitely strong, so that it acts as an infinitely

stiff guiding background for the field-aligned motions in slow

waves. Therefore, in this approximation, the waves do not

perturb the field, and their speed is independent of it. In a

low-β plasma, validity of this approximation can be illus-

trated by the following simple estimation: for e.g. β = 0.1

and adiabatic index γ = 5/3, the standard sound speed cS

is found to differ from the tube speed cT = cS/
√

1 + (γ/2)β

(for obliquely propagating slow waves) by less than 4%.

In the zero-β limit considered in this paper, the slow waves

were shown to degenerate into pure acoustic waves (see

e.g. wave equation (8) in Ref. 28 and dispersion relation

(74) in Ref. 29 for cT → cS and for the Alfvén speed

cA → ∞). Eqs. (1)–(4) thus coincide with the equations of

one-dimensional acoustics.

For clarity, the optically thin radiation loss function in the

solar corona can be modelled as

L(ρ,T ) = χρT β, (6)

where the parameters χ and β depend on the temperature,

and are determined, for example, from the CHIANTI atomic

database30,31 (see Fig. 1). We would like to stress that in this

work we do not aim to address any specific problem of the so-

lar corona. The plasma of the corona is mentioned here as an

illustrative example only, as the most nearest candidate among

the thermally active astrophysical plasmas.

The heating function could be taken in the form

H(ρ,T ) = h ρaT b, (7)

where the constant h is determined from the thermal equilib-

rium condition Q(ρ0,T0) = 0, and the indices a and b are

associated with the specific heating mechanism19,32. In par-

ticular, a = 0 and b = 1 correspond to the Ohmic heating,

that is used as an illustrative example in this paper. As the

radiation and heating depend on ρ and T differently, the wave

perturbations of these quantities cause the thermal misbalance

that can either damp or magnify the wave. In other words, the

considered waves do not contribute into the heating process,

but may alter its efficiency via perturbations of the physical

parameters of the plasma, which affect the heating.

III. DISPERSION RELATION AND CHARACTERISTIC TIME

SCALES

Consider dynamics of a small-amplitude perturbation, gov-

erned by (1)–(4) supplemented with expressions (6) and (7).

Linearising it around the initial equilibrium, and excluding all

variables except the density perturbation ρ1, we obtain

∂3ρ1

∂t3
− γkBT0

m

∂3ρ1

∂t∂z2
=
κ

ρ0CV

(

∂4ρ1

∂z2∂t2
− kBT0

m

∂4ρ1

∂z4

)

−
Q[ρ]T

CV

(

∂2ρ1

∂t2
−

Q[P]T

Q[ρ]T

kBT0

m

∂2ρ1

∂z2

)

, (8)



3

FIG. 1. Radiative losses per unit mass (the black solid line) obtained

from CHIANTI v. 8.0.7 atomic database for the plasma concentration

n0 = 1010 cm−3 (left), and absolute values of the misbalance charac-

teristic times τ1 and τ2 (see Eq. (11), the blue and red solid lines,

respectively) and the thermal conduction time τcond (see Eq. (9), the

green line) for λ = 100 Mm (right). The pink-shaded area in the

right-hand panel shows typical observed periods of slow magnetoa-

coustic waves in the solar corona, namely from 1 to 30 min.

where Q[ρ]T = (∂Q/∂T )ρ, Q[P]T = (∂Q/∂T )ρ −
(ρ0/T0) (∂Q/∂ρ)T = (∂Q/∂T )P. Being a third-order equa-

tion with respect to time, Eq. (8) describes three wave modes,

which are two slow magnetoacoustic modes and one entropy

mode (see e.g. Ref. 33 and references therein, for the descrip-

tion of the physical properties of the latter, which are out of

the scope of this study). Previous theoretical estimations14,34

show that the characteristic time scale of the thermal con-

duction is highly sensitive to the equilibrium temperature and

density of the plasma and to the wavelength of the oscillation,

λ,

τcond = ρ0CVλ
2/κ, (9)

where the thermal conduction coefficient κ could be estimated

as κ = 10−11T
5/2

0
W m−1 K−1. On the other hand, there is a

broad variety of the temperatures and densities in the astro-

physical plasma structures (see e.g. Ref. 35 for proper-

ties of coronal loops, including those associated with direct

observations of slow oscillations in Ref. 36). Hence, in the

further analysis we address rather dense (n0 = 1010 cm−3)

and warm (1 MK < T0 < 3 MK) plasma of the solar corona

and assume the oscillation wavelength to be sufficiently long

(λ ∼ 100 Mm), for which the thermal conduction time is a few

orders of magnitude longer than typical observed slow mag-

netoacoustic oscillation periods (see Fig. 1). That allows us to

neglect the effect of thermal conduction on the slow wave in

the following calculations.

Dispersion relations for slow waves in the presence of the

heating/cooling misbalance, are obtained from Eq. (8) by as-

suming the harmonic dependence upon the time and spatial

coordinates,

ω2

k2
=

1 − iωτ1

1 − iωτ2

γQ

kBT0

m
, (10)

where ω and k are the cyclic frequency and wavenumber, re-

spectively. Dispersion relation (10) is a limiting case of the

FIG. 2. Low-frequency effective adiabatic index γQ (see Eq. (12), the

blue solid line), determined for the radiative cooling by CHIANTI

and heating by the Ohmic dissipation. The dashed orange line shows

the standard (high-frequency) adiabatic index γ = 5/3.

dispersion relations derived in Refs. 18 and 19 in neglect-

ing the effects of thermal conduction and oblique propagation.

Equation (10) includes characteristic times

τ1 = γCV/Q[P]T , τ2 = CV/Q[ρ]T , (11)

whose absolute values determine the time scales at which dis-

persive properties of the wave, caused by the thermal mis-

balance, are most pronounced. Fig. 1 illustrates the depen-

dence of |τ1,2| on temperature, in the case of the solar coronal

plasma. The ratio of the wave period and the characteristic

times τ1 and τ2 determines two qualitatively different lim-

its in the slow wave evolution, i.e. the high-frequency (HF)

limit, ω ≫ 1/min {|τ1|, |τ2|} and the low-frequency (LF) limit,

ω ≪ 1/max {|τ1|, |τ2|}. Characteristic times in form (11) allow

for a direct association of a weak/strong non-adiabaticity with

the high-frequency/low-frequency limits, respectively. In-

deed, considering the derivatives Q[P]T and Q[ρ]T to be small,

the characteristic times τ1 and τ2 tend to infinity, thus corre-

sponding to the high-frequency regime. In this limit, the right-

hand side of the linearised energy equation (4) can be assumed

to be small (cf. Refs. 6 and 26). Likewise, the low-frequency

regime corresponds to the large values of those derivatives

(small values of τ1 and τ2), resulting in the domination of the

thermal effects in the linearised energy equation (4). The new

thermal misbalance time scales τ1,2 are not associated with the

radiative cooling time of the background plasma, which deter-

mines the cooling rate in the case of steady, i.e. non-varying,

heating or in its full absence. For example, Ref. 37 consid-

ered such a constant heating term, neither contributing into the

wave dynamics nor being affected by it. In contrast to this, we

account for the heating and radiative cooling processes, both

varied by the wave. One of the important implications is that

the effects discussed below occur even in isothermal waves23.

In that regime, the waves are not subject to damping by ther-

mal conduction, while the cooling and heating functions, and

hence their wave-induced misbalance, are affected by the per-

turbations of the density in the wave.

The combination of parameters on the right-hand side of

Eq. (10),

γeff = γQ

1 − iωτ1

1 − iωτ2

=























γ ≡ CP

CV
, HF regime,

γQ ≡ Q[P]T

Q[ρ]T
, LF regime,

(12)
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can be treated as a frequency-, density-, and temperature-

dependent effective adiabatic index of a slow magnetoacoustic

wave in a plasma with the heating/cooling misbalance, where

γQ is the effective adiabatic index in the low-frequency limit

ω ≪ 1/max {|τ1|, |τ2|}, determined by the heating and cool-

ing processes only. Dependence of γQ on the temperature is

shown in Fig. 2, which is obtained using the radiative loss

function calculated with CHIANTI v. 8.0.7, and assuming the

Ohmic heating. The value of γQ can be either higher or lower

than the standard adiabatic index γ = 5/3, ranging from about

1.4 to 3.2 in the considered temperature interval and for the

chosen heating model.

In the limits ω × min {|τ1|, |τ2|} → ∞ and ω ×
max {|τ1|, |τ2|} → 0, Eq. (10) reduces to the equations describ-

ing propagation of slow waves without dispersion and dissi-

pation at the phase speeds

cS =

√

γ
kBT0

m
, cSQ =

√

γQ

kBT0

m
, (13)

respectively. In these limiting cases the misbalance does not

cause any dispersion and damping/amplification of slow

waves. In the specific case τ1 = τ2 providing γ = γQ and

cS = cSQ, slow waves also propagate without any disper-

sion and damping or amplification. In contrast, for the in-

terim frequencies including those comparable to the character-

istic time scales |τ1,2|−1, the effect of misbalance may be im-

portant. Interestingly that for the typical temperature interval,

∼ 106–107 K within which slow magnetoacoustic waves are

usually detected in the corona12,13, the values of τ1,2 are found

to be comparable to their typical oscillation periods (ranging

from about 1 min to 30 min, see Fig. 1).

Consider the LF and HF limits of Eq. (10) keeping the first

order of the small parameter ω × max {|τ1|, |τ2|} or 1/(ω ×
min {|τ1|, |τ2|}), respectively,

ω2 − c2
SQk2 = −ik2ωτ2

(

c2
S − c2

SQ

)

, LF regime, (14)

ω2 − c2
Sk2 = −ik2

(

c2
S − c2

SQ

)

/ωτ2, HF regime. (15)

Unlike the zero-order approximation (that is

ω × max {|τ1|, |τ2|} → 0 and ω × min {|τ1|, |τ2|} → ∞)

described above, in these limits both the wave dispersion

and decay/amplification appear. Moreover, implying the

assumption of a weak amplification/attenuation on a wave-

length, i.e. assuming the frequency ω to be always real, while

the wavenumber is complex, k = kR + ikI, with kR ≫ kI,

Eqs. (14)–(15) further reduce to

kcSQ ≈ ω + iω2τ2(γ − γQ)/2γQ, LF regime, (16)

kcS ≈ ω + iτ−1
2 (γ − γQ)/2γ, HF regime. (17)

The latter corresponds to the specific case considered in

Ref. 6, where the slow wave evolves without dispersion,

but with the amplification or attenuation due to a non-zero

imaginary part kI. This analysis implies that the amplifica-

tion/attenuation of slow waves by the thermal misbalance per-

sists across the whole frequency spectrum, from the LF to HF

limit, while the phase speed approaches the constant values

cSQ and cS in those limits.

IV. WAVE SPEED AND INCREMENT/DECREMENT

Under the assumption kR ≫ kI which is satisfied when

|(τ2 − τ1)/τ1| ≪ 1 (i.e. the values of the characteristic mis-

balance times are sufficiently close to each other, or, equiv-

alently, |(γQ − γ)/γ| ≪ 1), dispersion equation (10) gives us

the frequency-dependent phase and group speeds,

cph(ω) =
ω

kR

≈

√

√

c2
SQ
+ ω2τ2

2
c2

S

1 + ω2τ2
2

, (18)

cgr(ω) =

(

∂kR

∂ω

)−1

=
c3

ph
(ω)

c2
ph

(ω) − Λ(ω)
, (19)

where Λ(ω) = ω2τ2
2

(

c2
S
− c2

SQ

)

/
(

1 + ω2τ2
2

)2
. In the high-

frequency (ω ≫ 1/min {|τ1|, |τ2|}) and low-frequency (ω ≪
1/max {|τ1|, |τ2|}) limits, both the phase and group speeds tend

to the constant values cS and cSQ (13), respectively.

In contrast to cS which is a standard value of the sound

speed in an ideal medium, cSQ is defined by the heating and

cooling processes. In particular, the low-frequency slow wave

that is highly influenced by the thermal misbalance, can prop-

agate at the phase speed which is substantially different from

that of the high-frequency wave. The effect of this disper-

sion is most pronounced when the wave period is about the

characteristic times |τ1,2|, and reaches its maximum near the

frequency

ωM ≈ (τ1τ2)−1/2 =

√

Q[ρ]T Q[P]T

CVCP

, (20)

which is determined as the frequency at which dcph/dω is

highest.

The discussed scenario is illustrated in Fig. 3 (left-hand

panels) which shows how cph and cgr vary with the wave

period and plasma temperature. The departure of cgr from

cS is quantified via the introduction of a normalised differ-

ence (cgr − cS)/cS whose absolute value grows with the in-

crease in dispersion, thus delineating the parametric region

where the discussed effect is the most pronounced. As seen in

Fig. 3, cgr could be either greater or lower than cS depending

upon a specific combination of the wave period and plasma

temperature. We need to mention here that according to

Fig. 3, the highest deviation of cgr from cS is detected to be

about 10% which is well consistent with the above-made

assumption of a relatively weak dispersion and amplifica-

tion/attenuation of the wave on the wavelength, kR ≫ kI.

The slow wave damping/amplification due to the wave-

induced thermal misbalance is determined by the wave incre-

ment/decrement kI obtained from dispersion relation (10),

kI ≈
ω2ξ

2c3
ph

(ω)ρ0

, ξ =
ρ0τ2

(

c2
S
− c2

SQ

)

1 + ω2τ2
2

, (21)

where ξ is an effective thermal misbalance-caused bulk

viscosity coefficient17,38. Similarly to the effective phase

and group speeds (18)–(19), the increment/decrement kI is
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FIG. 3. Left top: Dependence of the phase cph (the green solid line) and group cgr (the blue solid line) speeds on the wave period, for the

temperature of 1.06 MK. Left bottom: Normalised difference between the group and standard sound speed (cgr − cS)/cS as a function of the

wave period and temperature T . The orange/blue colour scheme indicates the regions where cgr is greater/lower than cS, respectively. Top

right: Dependence of the spatial increment kI (the green solid line) and the increment normalised to the wavelength λ (the blue solid line), for

the temperature of 1.06 MK. For higher temperatures (& 1.6 MK) kI changes its sign to negative, while its qualitative behaviour with

the wave period remains similar. Bottom right: Variation of the normalised increment kIλ with the wave period and plasma temperature.

The orange/blue colours indicate the regions of the wave amplification and damping, respectively. The purple lines in all panels show the

oscillation period PM.

frequency-dependent, indicating that different wave harmon-

ics are amplified/attenuated differently. In the low-frequency

limit, it reduces to the quadratic dependence upon the wave

frequency ω, see Eq. (16). In the high-frequency limit, it

reaches a constant maximum value kI∞ = (γ − γQ)/2γcSτ2

(cf. Ref. 6).

Figure 3 (right-hand panels) illustrates dependence of the

wave increment kI and its value normalised to the wavelength

λ = 2π/kR (which is effectively equivalent to an inverse spatial

quality factor of the wave) upon the wave period and plasma

temperature. It allows for a clear localisation of the discussed

effect in the parametric space, revealing the regions of the

wave damping and amplification. The most efficient ampli-

fication/attenuation coincides with the maximum of the dis-

persion effect and occurs at the frequency ωM (20). Likewise,

similarly to the effect of the dispersion, kIλ tends to zero in

the low- and high-frequency limits, indicating a low-efficiency

damping/amplification of slow waves in those limits.

Equation (21) also implies that the sign of kI is fully de-

termined by the sign of the effective viscosity coefficient ξ,

caused by the thermal misbalance. Thus, the slow wave is

amplified in the case of a negative ξ, and damped in the oppo-

site case. Therefore, the condition of the wave amplification

is

τ2

(

γ − γQ

)

< 0, (22)

which is identical to the isentropic instability condition ob-

tained in Ref. 39.

FIG. 4. Evolution of the plasma density in a slow magnetoacoustic

pulse of an initially Gaussian shape at two different elapsed times

after the excitation; for w = 0.2, τ1/PM = 0.188, τ2/PM = 0.135

(providing γQ ≈ 1.2, bottom); and w = 1, τ1/PM = 0.119, τ2/PM =

0.214 (providing γQ ≈ 3, top). The amplitude is measured in the units

of the initial amplitude. The time is normalised to PM = 2πω−1
M

. The

horizontal axis shows the distance from the wave excitation point,

and is normalised to L = PM

√
kBT0/m.

V. THERMAL OVER-STABILITY

Figure 4 shows results of the numerical solution of equa-

tion (8), illustrating the dispersive and damping/amplification
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effects on the evolution of a broadband pulse. The initial shape

of the pulse is Gaussian, ρ1 = A0 exp(−z2/w2), where A0 and

w are initial amplitude and width, respectively. The deriva-

tives Q[P]T and Q[ρ]T of the heating/cooling function are taken

to be positive, which allows us to exclude effects of the iso-

baric and isochoric instabilities, see Ref. 39 for details, and

thus focus on the effects associated with the wave evolution.

The top panel of Fig. 4 shows the case of the wave am-

plification and negative dispersion, i.e. with γQ > γ. The

discussed regime implies that longer-wavelength harmonics

travel faster (see Eqs. (18)–(19) and the left-hand panels of

Fig. 3), and the most efficient gain of the energy from the

medium occurs in the vicinity of ωM (see Eqs. (20)–(21) and

the right-hand panels of Fig. 3). At the initial stage of the wave

evolution, this leads to the development of a quasi-periodic

wave train, in which longer-wavelength spectral components

travel faster and hence overtake the shorter wavelengths. The

combination of this effect with amplification results in the

occurrence of a quasi-monochromatic amplitude-modulated

signal with the dominant period PM = 2πω−1
M

. Its ampli-

tude is substantially higher than that of the initial perturba-

tion, which could be negligibly small. In the example shown

in Fig. 4, the apparent dominant periodicity of the wave train

is about 1.24PM or 469 s for PM ≈ 378 s at the temperature

of 1.0 MK, for which the wavelength and the phase speed are

about 84 Mm and 179 km s−1 (corresponding to the effective

adiabatic index of about 2.3, determined as the real part of

Eq. (12)), respectively. The effective adiabatic index γeff be-

comes frequency and temperature dependent too. It may ex-

plain its observational estimations recently made in Ref. 40

(see also Ref. 41).

The bottom panel of Fig. 4 shows an alternative scenario,

with the damping and positive dispersion, corresponding to

γQ < γ. The initially Gaussian pulse becomes asymmetric,

broadens, and decreases in its amplitude with time. In this

analysis, the asymmetric shape of the perturbation is a purely

linear effect caused by both the dispersion of the wave speed,

due to which the higher harmonics propagate faster, and by

the fact that the initial perturbation also excites the entropy

mode (in addition to two slow magnetoacoustic ones), which

breaks the symmetry in the distribution of the initial energy

across harmonics. On the other hand, those faster propagating

higher-frequency components decay with a higher decrement

which results into an additional apparent broadening of the

pulse and an overall decrease of its amplitude. In this case,

the wave decays faster than the oscillatory wake forms.

VI. CONCLUSIONS

We demonstrated that the presence of characteristic times

determined by the thermal misbalance leads to occurrence of

quasi-periodic slow magnetoacoustic wave patterns in a uni-

form plasma. The thermal misbalance is associated with dif-

ferent dependences of the radiative cooling and an unspeci-

fied heating functions on the quantities perturbed by the wave

in the vicinity of the equilibrium. Due to the effective slow

wave magnification, the amplitude of the initial perturbation

rapidly grows, implying that any low-amplitude fluctuation of

thermodynamical parameters would be sufficient for the de-

velopment of those quasi-periodic structures. The periodic-

ity is created by the competition of the wave dispersion and

amplification, both caused by the thermal misbalance. The

characteristic period is determined by the dependence of the

heating/cooling function on the plasma parameters, and is not

connected with other characteristic times, e.g. the transverse

travel time across a waveguiding plasma non-uniformity.

In this study, we considered the linear perturbations of a

dense and warm plasma, with the wavelengths long enough

to make the wavelength-dependent non-adiabatic effects, such

as thermal conduction and viscosity, negligible. This allowed

us to isolate and investigate the role of the effect of the ther-

mal misbalance in the dynamics of slow magnetoacoustic

waves. This approach allowed us to identify a new mechanism

for formation of quasi-periodicity in a slow magnetoacoustic

wave excited by a broadband, impulsive driver. A further de-

velopment of the presented theory would require addressing

specific physical problems in specific plasma environments,

and accounting for appropriate additional non-adiabatic ef-

fects and also nonlinearity. This would bring additional time

scales, e.g. connected with the thermal conduction and vis-

cosity times23, which would lead to a more effective decay

of the shorter-wavelength spectral components and could al-

low for a stabilisation of the wave amplitude. In this case,

the characteristic period of the slow wave train could be used

as a promising seismological tool for the diagnostics of the

parameters of the plasma heating function, and hence stim-

ulating the search for this effect in observations. For exam-

ple, the detected quasi-periodic behaviour may be responsi-

ble for the quasi-periodic pulsations observed in impulsive en-

ergy releases and often associated with the evolution of a slow

magnetoacoustic mode42. It is also worth noting here that

the apparent variation of the instantaneous frequency in the

detected quasi-periodic wave train, occurring as an effect of

the discussed dispersion, can readily cause the observed non-

stationarity of those quasi-periodic pulsations (see Ref. 43 for

the most recent comprehensive review of this topic). Another

interesting development of the proposed theory could be

accounting for the effect of the plasma inhomogeneity on

the discussed slow magnetoacoustic wave trains. In partic-

ular, slow waves were shown to be a subject to an effective

phase mixing due to the transverse non-uniformity of the

plasma temperature44. Likewise, the parallel inhomogene-

ity with the spatial scale comparable to the wavelength

may result in additional wave amplification or damping

(see e.g. Refs. 45 and 46, where similar dispersion relation

was derived for inhomogeneous flows of a non-equilibrium

gas).
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