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An idealised model is presented to study the formation of sorted bed forms generated
by a wind-driven along-shore current. The study employs a linear stability analysis to
describe the time development of perturbations of both bottom composition and bed
elevation, superimposed on a flat bed composed of a sediment mixture homogeneously
distributed in space. The model considers both bed and suspended loads and takes
into account the averaged influence of waves on the flow field and the transport of
sediment. The results show that the positive coupling between waves, along-shore
current and the erodible heterogeneous bed leads to the amplification of two modes,
which exhibit distinct characteristics. A first mode is found to be dominant when
moderate hydrodynamic conditions are considered and is primarily amplified by the
convergence of sediment transport induced by the changes in the bed elevation. This
mode has wavelengths of the order of hundred metres and has coarse (fine) sediments
in its troughs (crests). By increasing the height of the waves and/or the strength of
the steady current, the second mode can become dominant. This mode is characterised
by shorter wavelengths and results from the interaction between the convergence of
sediment transport related to changes in the bottom composition and that induced by
perturbations of the bed elevation. These bed features can have an up-current or a
down-current shift between the centre of the coarse-grained bands and the trough of
the bottom wave. Typical growth times of the amplified features are of the order of
hundreds of days and the migration rates, in the direction of the along-shore current,
range between 0.1 and 10 m per day. A qualitative comparison of the model results
with field observations indicates that the generation of two distinct modes provides a
possible explanation for the broad range of characteristics of the natural bed features.

Key words: sediment transport

1. Introduction

Sorted bed forms (or ripple scour depressions) are intriguing bed features
characterised by alternating bands of coarse and fine grains with wavelengths of
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the order of hundred metres. Typical values of the mean grain size range between
0.1–0.4 mm and 0.6–2.0 mm in the fine and coarse regions, respectively. These bed
forms are ubiquitously observed and exhibit a broad range of characteristics (e.g.
Aubrey, Twichell & Pfirman 1982; Cacchione, Grant & Tate 1984; Goff et al. 2005;
Ferrini & Flood 2005; Bellec et al. 2010). Figure 1 shows a side scan sonar image
of the inner shelf near Wrightsville Beach, North Carolina (USA), which reveals the
presence of sorted bed forms in this area. Light shades indicate relatively coarse sand,
whilst dark shades refer to fine sand.

Commonly, sorted bed forms are reported to be accompanied only by small
variations of the bed elevation. In particular, the amplitude of the bathymetric
undulations is observed to be smaller than or of the order of 1 m, in mean water
depths of ≈10 m (Murray & Thieler 2004). Nevertheless, sorted bed forms with
relatively larger amplitude also occur. For instance, Goff et al. (2005) describe bed
features with heights of 3 m, where the mean water depth is ≈12 m.

Measurements performed along transects parallel to the shoreline indicate that the
bands of coarse grains are typically located in the bathymetric lows, although a
significant phase shift is often reported between the centre of the topographic low and
the centre of the coarse patch. In general, the latter is observed on the down-current
side of the trough (with respect to the direction of the dominant along-shore current;
Schwab et al. 2000; Murray & Thieler 2004). However, Ferrini & Flood (2005) report,
for the bed features along the south shore of Long Island, both down-current and
up-current offsets. Moreover, observations at Martha’s Vineyard Coastal Observatory,
Massachusetts, reveal that the relative position of the coarse patch with respect to the
bottom waviness can change proceeding along a sorted bed form from the shoreline to
the offshore region (Goff et al. 2005).

The bed features often migrate, although their migration speed is found to differ
significantly from site to site. Goff et al. (2005) report that the boundaries of the bed
forms can migrate tens of metres in months, while the bed features observed in the
German Bight, southeastern North Sea, appear essentially stable over a period of 26
years (Diesing et al. 2006).

In the past, sorted bed forms have been associated with locally intensified
cross-shore flows related to coastal downwelling, taking place during storm events
(Cacchione et al. 1984). More recent observations have shown that along-shore
currents rather than cross-shore currents dominate the formation and maintenance of
sorted bed forms (Thieler, Schwab & Cacchione 1998; Thieler et al. 2001; Gutierrez,
Voulgaris & Thieler 2005). Motivated by these observations, Murray & Thieler (2004)
developed an exploratory model, which illustrates that sorted bed forms can originate
as self-organising features due to the interaction of fractional sediment transport,
bottom composition and turbulence. Conceptually, the model of Murray & Thieler
(2004) considers that the bottom roughness is larger at locations where the bed is
coarser. This leads to locally more intense turbulence, which inhibits the settling of
the finer sediment, thereby enhancing the coarse character of the bottom composition.
Coco, Murray & Green (2007a) extended the exploratory model of Murray & Thieler
(2004), replacing some idealised formulations with accepted and empirically based
parametrisations. The results of Coco et al. (2007a) confirm the concept coined by
Murray & Thieler (2004), since with their model too, sorted bed forms are found to
grow from the feedback between roughness-induced turbulence and fractional sediment
transport. Moreover, using the model of Coco et al. (2007a,b) showed that less regular
sorted bed forms, as reported by Ferrini & Flood (2005), can also emerge from the
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FIGURE 1. Side scan sonar map of the inner shelf off Wrightsville Beach, North Carolina
(USA). The data reveal the presence of alternating stripes of coarse sand, resulting in a high
back scatter (light), and fine sand (dark). Bathymetric data (not shown) reveal that these
stripes are associated with (sorted) bed forms, where the coarse sand is found in the troughs
and the fine sand at the crests. From Gutierrez et al. (2005), adapted from Thieler et al.
(2001). Reproduced with permission of Elsevier.

feedback process described above, when complex hydrodynamic forcing scenarios are
considered.

Although the models discussed above are quite successful, several aspects still
remain unsolved. A primary question is related to the role of steady storm-driven
along-shore currents in generating sorted bed forms. Indeed, with the models of
Murray & Thieler (2004) and Coco et al. (2007a), sorted bed forms characterised
by a finite wavelength are only found by considering a symmetric reversing current.
On the other hand, field observations of flow velocities at 1 m above the bed on
the inner shelf of Wrightsville Beach show that storm-driven along-shore currents are
dominant in one direction and control the sea bottom morphology (Gutierrez et al.

2005).
The aim of the present contribution is to investigate the conditions leading to the

formation of sorted bed forms, focusing on the role of a steady wind-driven along-
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shore current. We follow the concept put forward by Murray & Thieler (2004) and
consider sorted bed forms to arise as self-organising features. However, a different
approach is employed and the formation of sorted bed forms is analysed within
the framework of a linear stability analysis. Thus, small-amplitude perturbations of
bottom composition and bed elevation are superimposed on a flat bed with a spatially
homogeneous distributed sediment, and a linear analysis of their time development is
made.

The approach and methods presented here are similar to those employed by
Colombini & Parker (1995) and Seminara, Colombini & Parker (1996) to investigate
the formation of longitudinal streaks in wide erodible channels and bed load sheets in
creeks, respectively. Colombini & Parker (1995) showed that the correction to the flow
field due to spatial variations of the roughness leads to the formation of longitudinal
streaks for any value of the bottom shear stress above the threshold value for the
initiation of sediment motion, while variations in bed elevation induce streak formation
only when high values of the bottom shear stress are considered. Seminara et al.

(1996) showed that perturbations of the bottom composition alone can lead to the
formation of bed load sheets in creeks characterised by large Froude numbers.

On the inner shelf, sediment sorting patterns along shoreface-connected ridges have
been studied by Walgreen, de Swart & Calvete (2003), de Swart et al. (2008) and
Vis-Star, de Swart & Calvete (2009). These bed forms differ from sorted bed forms
both in length and orientation. Indeed, shoreface-connected ridges are elongated bed
forms with crest-to-crest distance of the order of a few kilometres and amplitudes of
a few metres. Moreover, these bed forms are connected to the shoreface and extend
seaward towards the outer shelf, forming an angle of 20◦–30◦ with respect to the
shoreline.

A brief description of the main idea at the basis of the analysis is given in Van
Oyen, de Swart & Blondeaux (2010). The present paper builds upon this work and is
aimed at providing a detailed description of the idealised model and the model output.
Moreover, an interpretation of the results is presented and the theoretical predictions
are compared with field data collected at different locations to explore the ability of
the model to describe the characteristics of the sorted bed forms for different values
of the input parameters. In the following section, the formulation of the hydrodynamic
and morphodynamic problems is described. Next, we consider the time development
and interaction of small periodic perturbations of the bottom composition and the bed
elevation. In § 4, the results obtained are presented and theoretically interpreted. A
discussion of the results is provided in § 5 and concluding remarks are given in the last
section.

2. The model

An idealised model is formulated to describe the linear interaction of a steady
wind-driven along-shore current with small perturbations of the bottom composition
and bed elevation. As is explained below, the idealisation concerns simplifications
made in describing the geometry (e.g. no lateral boundaries), the flow field (e.g. no
tidal currents) and the sediment characteristics (e.g. only two different grain sizes).
Regarding the processes that are included in the model, state-of-the-art formulations
are adopted.

Based on field observations, a recent tentative summary performed by Coco et al.

(2007b) indicates that the bed features can be classified into three types according
to their shape: patchy, V-shaped and linear. The focus of the present study is on the
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FIGURE 2. Side view of the water column in the along-shore direction illustrating the
hydrodynamic and morphodynamic problem.

formation of sorted bed forms of the linear type. Since these bed forms are observed
to have crests that are approximately perpendicular to the shoreline and are elongated
up to a few kilometres from the shoreface into the sea, a simplified model geometry
is used. Following earlier models of sorted bed forms, the effects of the slope of
the inner shelf are neglected and a horizontal bottom is considered. Although this
assumption could appear crude, it allows us to focus on the appearance of sorted
bed forms, filtering out the generation of shoreface-connected sand ridges which, in
general, requires a sloping bed. Furthermore, the hydrodynamic and sedimentologic
interaction between the shoreface and the inner shelf can be assumed to be of minor
importance, such that the model geometry can be considered uniform and unbounded
in the horizontal directions. An orthogonal coordinate system is adopted with x∗- and
z∗-axes pointing in the along-shore and vertical directions, respectively. The vertical
axis points upwards and z∗ = 0 corresponds to the still water level. The x∗-axis is
taken aligned with the direction of the along-shore current. Hereinafter a star denotes a
dimensional quantity. Figure 2 illustrates the model geometry and provides a sketch of
the hydrodynamic and morphodynamic problem discussed below.

2.1. Hydrodynamic problem

The hydrodynamic problem consists of the flow field which is driven by a steady wind,
blowing in the along-shore direction, and is affected by the presence of sea waves. In
the following, all quantities are wave-averaged quantities, since our interest is not in
intra-wave phenomena.

We assume the steady along-shore current to be turbulent and we neglect molecular
viscosity. A Boussinesq-type approach is employed to evaluate the Reynolds stresses
and a scalar kinematic eddy viscosity ν∗

T is introduced. The equations of motion are
written in dimensionless form using the mean water depth h∗

0 as the length scale.
The fluid velocity components u∗ and w∗ in the horizontal and vertical directions,
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respectively, are made dimensionless using the depth-averaged along-shore current
velocity U∗

0 . Furthermore, the dimensionless variable νT = ν∗
T/ν

∗
T0 is introduced, in

which ν∗
T0 and νT(z) denote the scale and vertical profile of the eddy viscosity,

respectively. Finally, for later convenience, we introduce the dynamic pressure p∗,
which is related to the pressure P∗ by p∗ = P∗ + ρ∗g∗z∗, and we make it dimensionless
using ρ∗U∗

0
2 (ρ∗ denotes the sea water density and g∗ represents the gravitational

acceleration).
In dimensionless form, the equations governing the currents read

∂u

∂x
+ ∂w

∂z
= 0, (2.1)

u
∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+ 1

Rt

{

∂

∂x

(

2νT

∂u

∂x

)

+ ∂

∂z

[

νT

(

∂u

∂z
+ ∂w

∂x

)]}

, (2.2)

u
∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ 1

Rt

{

∂

∂x

[

νT

(

∂w

∂x
+ ∂u

∂z

)]

+ ∂

∂z

(

2νT

∂w

∂z

)}

. (2.3)

Here, it is assumed that the flow adapts instantaneously to changes in the bed profile,
exploiting the significant difference between the characteristic time scales of the flow
and the bed evolution. In (2.1)–(2.3), the Reynolds number Rt = h∗

0U∗
0/ν

∗
T0 appears.

Considering typical values of U∗
0 and h∗

0 (∼0.3 m s−1 and 10 m, respectively), the

flow field turns out to be characterised by a small Froude number Fr = U∗
0/
√

g∗h∗
0.

Hence, the rigid-lid approximation can be applied and the effects of the free surface
elevation on the local depth can be neglected. This approximation has no direct
consequences for (2.1)–(2.2), but it has implications for the formulations of the eddy
viscosity νT and for the boundary conditions, to be discussed hereafter.

The influence of sea waves on the steady current is accounted for by adopting a
suitable eddy viscosity profile. As pointed out by Fredsøe & Deigaard (1992, p. 77),
far from the surf region where wave breaking is absent, the turbulence structure is
significantly affected by sea waves only in the region closest to the bed; while in the
upper region of the fluid column, the turbulent mixing of momentum is dominated
by the current. In this study, the eddy viscosity model proposed by Christoffersen &
Jonsson (1985, Model II) is adopted. Hence, νT increases linearly with the distance
from the bed within the wave bottom boundary layer δw(=δ∗

w/h
∗
0) and has the profile

suggested by Dean (1974) in the rest of the fluid column. The latter resembles closely
the standard parabolic profile, except that it achieves a finite non-zero value at the free
surface. As illustrated by Colombini & Stocchino (2005), the use of such a profile is
reasonable when pure wind-driven flows are considered. Therefore, the vertical profile
of the dimensionless kinematic eddy viscosity reads

νT =











(z + h)ufw if z 6 −h + δw,

ξ̂ (1 − ξ̂ )

1 + 2A ξ̂ 2 + 3Bξ̂ 3
hufc if z>−h + δw,

(2.4)

where ξ̂ = (z + h)/h, A = 1.84 and B = −1.56. The scale of the kinematic eddy
viscosity is equal to ν∗

T0 = κh∗
0u∗

fc0. Here, κ represents the von Kármán constant and u∗
fc0

denotes the scale of the local friction velocity exerted by the current, considering the
flow field over a flat bed with a spatially homogeneous distributed bottom composition.
Furthermore, h = h∗/h∗

0 represents the dimensionless local depth and ufw = u∗
fw/u

∗
fc0 is

a dimensionless variable which denotes the maximum of the friction velocity during a
wave period due to the combined action of the current and the near-bed wave orbital
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velocity. Furthermore, the dimensionless current-related friction velocity is denoted by
ufc = u∗

fc/u
∗
fc0. The profile of νT described by (2.4) is discontinuous at z = −h + δw.

However, for numerical convenience, νT(z) is made continuous by introducing a thin
layer where the two profiles are matched.

The current-related friction velocity u∗
fc =

√

τ ∗
c /ρ

∗ is computed by evaluating the
current-related bed shear stress τ ∗

c , which reads

τ ∗
c = ρ∗ν∗

T

[

2nxnz

(

∂u∗

∂x∗ − ∂w∗

∂z∗

)

+
(

n2
z − n2

x

)

(

∂u∗

∂z∗ + ∂w∗

∂x∗

)]

z∗=−h∗+h∗
b

. (2.5)

Here, (nx, nz) denote the components of the unit vector normal to the bed described
by z∗ = −h∗. The bed shear stress is evaluated at a distance h∗

b above the bed. The
meaning of, and an expression for h∗

b will be given further on.
The direction of wave propagation with respect to the shoreline is highly variable

in space and time, but it is commonly found to be approximately perpendicular to
the shore. Therefore, and also to keep the analysis relatively simple, the waves are
assumed to propagate in the direction orthogonal to the along-shore current. In this
case, u∗

fw is given by

u∗
fw =

√

τ ∗
m

ρ∗ with τ ∗
m =

√

(τ ∗
c )

2 + (τ̂ ∗
w)

2 and τ̂ ∗
w = 1

2
ρ∗fw(û

∗
wb)

2. (2.6)

Here, fw is the wave friction factor and û∗
wb denotes the amplitude of the near-bed

wave orbital velocity. The latter is evaluated using the linear wave theory, assuming
the height and wavelength of the sea waves to be known. To evaluate the wave friction
factor, the formulation proposed by Soulsby (1997) is used:

fw = 1.39

(

Ae

zr/χ

)−0.52

, (2.7)

where Ae = A∗
e/h

∗
0, A∗

e = û∗
wb/ω

∗
w is the wave excursion length, ω∗

w is the angular
wave frequency and zr = z∗

r/h
∗
0 is the dimensionless bottom roughness. Finally, the

dimensionless thickness of the wave bottom boundary layer is determined following
Christoffersen & Jonsson (1985):

δw =
0.367κu∗

fw

h∗
0ω

∗
w

. (2.8)

To evaluate the bottom roughness, sea ripples induced by the action of waves are
supposed to be present at the bed. The empirical formula proposed by Soulsby &
Whitehouse (2005) is used to compute the dimensionless bottom roughness due to
wave ripples,

zr = 0.15[1 − exp{−(5000/∆sed)
3.5}]λ, (2.9)

and the dimensionless wavelength λ of the sea ripples (λ= λ∗/h∗
0),

λ= Ae{1 + 1.87 × 10−3∆sed

[

1 − exp(−2.0 × 10−4∆sed)
1.5
]

}−1, (2.10)

where

∆sed = h∗
0

d∗
gm,0

Ae

dgm

. (2.11)
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The variable d∗
gm denotes the local geometric mean grain size of the sediment mixture

and is made dimensionless with d∗
gm,0, which is the geometric mean grain size of the

initial bottom composition, i.e. considering a flat bed without horizontal variations in
the bottom composition.

The hydrodynamic problem is closed by imposing appropriate boundary conditions.
At the bottom, the fluid velocity is forced to vanish at a distance zr/χ from the bed
level (χ = 29.8). Because of the rigid-lid approximation introduced previously, the
variations in the free surface level on the local depth are neglected. Therefore, the
bottom profile is described by z = −h (h being the local depth) and the dynamic
boundary conditions at the free surface are imposed at z = 0:

νT

Rt

(

∂w

∂x
+ ∂u

∂z

)

= τ ∗
wind

ρ∗(U∗
0)

2
, −p + 2

Rt

νT

∂w

∂z
= 0 at z = 0. (2.12)

Here, τ ∗
wind is the dimensional wind shear stress in the along-shore direction which

drives the steady current. Finally, applying the kinematic boundary condition, we
impose w = 0 at z = 0.

2.2. Morphodynamic problem

2.2.1. Sediment mass balance
A heterogeneous cohesionless sediment mixture composed of N distinct grain size

classes is considered. Each grain size class n is associated with a grain size diameter
d∗

n and has a probability pn of occurrence in the mixture. Although the values of pn

can vary in space and time, they are subject to the constraint

N
∑

n=1

pn = 1. (2.13)

For most sediments, the probabilities pn follow approximately a log-normal distribution
and can be assumed to be adequately described by the first and second moments of
the distribution (see Lanzoni & Tubino 1999, and references therein). Therefore, we
introduce the φ-scale and define

φn = −log2

(

d∗
n

d∗
ref

)

, (2.14)

in which d∗
ref is equal to 1 mm. Furthermore, the sediment mixture is characterised by

its geometric mean grain size

d∗
gm = d∗

ref 2
−φm with φm =

N
∑

n=1

pnφn, (2.15)

and by its standard deviation σ , where

σ 2 =
N

∑

n=1

(φn − φm)
2pn. (2.16)

Considering a sediment mixture, the conservation of sediment mass can be written
in terms of the availability for transport of each grain size class. This involves the
evaluation of the probability pn throughout the entire bed, while observations indicate
that only the top layer of the bed takes part in the local instantaneous sediment
transport process. This top layer (or active layer) scales with the mean grain size when
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the bed is flat, and is of the order of the ripple height when small-scale bed forms
are present. Based on these considerations, Hirano (1971) introduced the active layer
model. This model assumes that ps,n, which is the probability of occurrence of a grain
size class n in the substrate (the entire bed underneath the active layer), is independent
of time but it can have an arbitrary vertical profile. Inside the (active) top layer, the
sediment is well mixed and characterised by a probability of occurrence pa,n which can
depend on t, but does not depend on z.

Applying this model, the sediment continuity equation for each grain size class
reads

−pc,n

∂

∂t∗
(h∗ + L∗

a)+ ∂

∂t∗
(pa,nL∗

a)= − 1

(1 − por)

∂Q∗
n

∂x∗ , (2.17)

where por denotes the sediment porosity. In (2.17), pc,n represents the volume fraction
of grain size class n that is exchanged between the substrate and the active layer. The
active layer thickness is given by L∗

a and is taken to be equal to z∗
r , since ripples are

present. Furthermore, Q∗
n represents the volumetric sediment transport rate per unit

width of the class n and is equal to pa,nq∗
n (q∗

n is the sediment transport rate per unit
volume fraction).

Introducing the dimensionless variables

La = L∗
a

h∗
0

, t = t∗U∗
0

h∗
0

, Qn = Q∗
n

√

(s − 1) g∗(d∗
gm,0)

3
, (2.18)

the sediment continuity equation for each grain size class reads

−pc,n

∂

∂t
(h + La)+ ∂

∂t
(pa,nLa)= −β ∂Qn

∂x
. (2.19)

The dimensionless parameter β, which appears in (2.19), is given by

β =
d∗

gm,0

h∗
0(1 − por)

√
ψm

, (2.20)

while the sediment mobility number ψm is defined as

ψm = (U∗
0)

2

(s − 1)g∗d∗
gm,0

. (2.21)

Finally, s is the ratio between the density of the sediment and that of the water.
Summation over all grain size classes leads to an equation for the time development

of the bed level,

∂h

∂t
= β

N
∑

n=1

∂Qn

∂x
. (2.22)

To close the morphodynamic problem, a description of the transport of sediment
due to the combined action of currents and waves is required. We consider qn as the
sum of the bedload transport, a correction on that transport due to the presence of
bed slopes, and suspended load transport: qn = qb,n + qb

sl,n + qs,n. In this study, the
relationships suggested by Kleinhans & van Rijn (2002), following earlier work by van
Rijn (1991), are adopted to quantify these transport contributions.
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2.2.2. Bed load transport

The bed load transport formulation reads

qb,n =











√

d∗
n

d∗
gm,0

0.25dgm

R0.2
p,gm

√

µcθc,n

(

θcw,n − θ b
cr,n

θ b
cr,gm

)3/2

if θcw,n > θ
b
cr,n,

0 if θcw,n 6 θ b
cr,n,

(2.23)

where Rp,gm denotes the sediment Reynolds number of the bottom material,

Rp,gm =

√

d∗
gm

3(s − 1)g∗

ν∗ , (2.24)

ν∗ is the kinematic sea water viscosity, and τ ∗
w is the wave-related mean bed shear

stress given by

τ ∗
w = 1

4
ρ∗fw(û

∗
wb)

2. (2.25)

In (2.23), θc,n and θcw,n represent the Shields parameters related to the current only and
due to the combined action of currents and waves, respectively. They are defined by

θc,n = τ ∗
c

ρ∗(s − 1)g∗d∗
n

and θcw,n = µcτ
∗
c + µw,nτ

∗
w

ρ∗(s − 1)g∗d∗
n

, (2.26)

where µw,n is a wave efficiency factor,

µw,n = 0.6

R
2/3
p,n

with Rp,n =
√

d∗
n

3(s − 1)g∗

ν∗ , (2.27)

and the parameter µc denotes an efficiency factor, such that the shear stress due to the
current is reduced with the part that is related to the form drag. Specifically,

µc =
(

C̃

Ĉ

)2

, (2.28)

where

C̃ = 5.75log10

(

12h∗

z∗
r

)

, Ĉ = 5.75log10

(

12h∗

3d∗
gm2σ

)

(2.29)

are the conductance coefficients related to the roughness and to the characteristics of
the sediment mixture, respectively (van Rijn 1991).

The final parameter that appears in (2.23) is the critical Shields parameter θ b
cr,n for

each grain size class n. For this, we adopt the formulation of Ashida & Michiue
(1972), which accounts for the hiding of small grains between the large grains.
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Thus, θ b
cr,n = Hnθ

b
cr,gm with

Hn =



















































log10(19)

log10

(

19
d∗

n

d∗
gm

)













2

when
d∗

n

d∗
gm

> 0.4,

0.843
d∗

gm

d∗
n

when
d∗

n

d∗
gm

6 0.4.

(2.30)

Furthermore, θ b
cr,gm denotes the critical Shields parameter of the mean grain size and is

evaluated following Brownlie (1981):

θ b
cr,gm = 0.22R−0.6

p,gm + 0.06 exp(−17.77R−0.6
p,gm). (2.31)

We include hiding, because previous studies on grain-sorting phenomena (Seminara
et al. 1996; Walgreen et al. 2003; Vis-Star et al. 2009; Van Oyen & Blondeaux 2009)
show that it is an important factor controlling the transport of a sediment mixture and
the grain size distribution.

The sediment transport due to bedslope effects is quantified following Kovacs &
Parker (1994),

qb
sl,n =

θ b
cr,n

µ̂

dqb,n

dθc,n

∂h

∂x
, (2.32)

with µ̂ a dynamic friction factor, which is presently assumed equal to 0.57.

2.2.3. Suspended load transport
To calculate the suspended sediment transport rate, it is first necessary to compute

the sediment volume concentration cn of each grain size class n, which is governed by
an advection–diffusion equation

∂

∂x
(ucn)+ ∂

∂z

(

wcn − ws,ncn√
ψn

)

= 1

Rt

{

∂

∂x

(

KT

∂cn

∂x

)

+ ∂

∂z

(

KT

∂cn

∂z

)}

. (2.33)

In (2.33), ws,n(=w∗
s,n/

√

(s − 1)g∗d∗
n) denotes the dimensionless fall velocity of the

grain size fraction n and is calculated following Parker (1978),

log10(ws,n)= −1.181 + 0.966πp,n − 0.1804π2
p,n + 0.003746π3

p,n + 0.0008782π4
p,n,

(2.34)

where πp,n = log10Rp,n. Furthermore, KT = K ∗
T /ν

∗
T0 represents the sediment eddy

diffusivity. Considering the discussion in Fredsøe & Deigaard (1992, pp. 227–234),
in the following, the profile of KT is assumed equal to that of the kinematic eddy
viscosity νT .

In order to solve the advection–diffusion equation (2.33), appropriate boundary
conditions are required. At the free surface, the sediment flux in the normal direction
vanishes,

ws,n√
ψn

cn + KT

Rt

∂cn

∂z
= 0 at z = 0, (2.35)
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while at the reference level z = −h + a, we prescribe

−KT

Rt

∂cn

∂z
= ws,n√

ψn

cref ,n. (2.36)

Following van Rijn (1984, 1991), the reference level is considered to be 1 % of the
local depth above the seabed (a = 0.01h), and the expression for cref ,n reads

cref ,n =
d∗

gm,0

h∗
0

0.015dgm

aR0.2
p,gm

(

θcw,n − θ b
cr,n

θ b
cr,gm

)3/2

. (2.37)

The reference concentration cref ,n is set to zero when the Shields parameter θn is
smaller than the critical Shields parameter for suspension θ s

cr,n, which is given by

θ s
cr,n =











(

4ws,n

R
2/3
p,n

)2

if Rp,n 6 31.6227,

(0.4ws,n)
2 if Rp,n > 31.6227,

(2.38)

as is proposed by van Rijn (1993).
Once the vertical concentration profile is obtained, the suspended sediment transport

rate is evaluated, neglecting the horizontal diffusion and integrating the product of the
velocity and the sediment concentration over the water depth,

qs,n =
√

ψm

h∗
0

d∗
mean,0

∫ 0

−h+a

u(z)cn(z) dz. (2.39)

Finally, note that, following the analysis of Colombini (2004), we evaluate the
current-related friction velocity, the near-bed wave orbital velocity and ufw at the top of
the bed load layer h∗

b. The value of h∗
b is computed as the maximum of h∗

b,n:

h∗
b,n = z∗

r



1 + 1.3

(

θcw,n − θ b
cr,n

θ b
cr,gm

)0.55


 . (2.40)

3. Linear stability analysis and solutions

The aim of the present analysis is to investigate the linear time development
of small periodic perturbations of both bottom composition and bed elevation,
superimposed on our basic state: a flat bed with a spatially homogeneous distributed
sediment composition. A linear analysis is performed such that the spatial components
of the perturbations of the local depth and bottom composition evolve independently
of each other and the problem is solved for the generic spatial component

pa,n = pa0,n + ǫpa1,n(t) exp[iαxx] + c.c. + O(ǫ2), (3.1)

h = 1 − ǫh1(t) exp[iαxx] + c.c. + O(ǫ2). (3.2)

In (3.2), ǫpa1,n(t) and ǫh1(t) are the amplitudes of the generic component of the
perturbation of the bottom composition and the local depth, respectively. The variable
αx represents the wavenumber of the perturbation, and ǫ ≪ 1.

The small value of ǫ allows us to expand the hydrodynamic variables in terms of ǫ:

(u,w, p, ufc, ufw, νT)= (u0,w0, p0, ufc0, ufw0, νT0)

+ ǫ(û1, ŵ1, p̂1, ûfc1, ûfw1, ν̂T1) exp[iαxx] + c.c. + O(ǫ2). (3.3)
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Furthermore, the changes in the bottom composition lead to perturbations in the mean
grain size and in the standard deviation of the sediment mixture, which can be written
as

(φm, dgm, σ )= (φm0, 1, σ0)+ ǫ(φm1, dgm1, σ1) exp[iαxx] + c.c. + O(ǫ2). (3.4)

The relation between the perturbation of the geometric mean grain size and φm1 reads

dgm1 = −ln2φm1. (3.5)

Although the problem is formulated for an arbitrary number of distinct grain size
classes and no problem exists to deal with three or more grain size classes, in the
following, to simplify the algebra and the discussion of the results, the sediment
mixture is assumed to consist of two grain sizes only. Then, considering the constraint
on the volume fractions (p1 + p2 = 1), it follows that pa1,1 + pa1,2 = 0 such that φm1 is
given by

φm1(t)= (φ1 − φ2)pa1,1(t), (3.6)

while the contribution at order ǫ to the standard deviation reads

σ1 = 1

2σ0

(φ2
1 − φ2

2 − 2φm0(φ1 − φ2))pa1,1. (3.7)

Furthermore, expanding the empirical relations for fw, λ and zr in terms of ǫ,

(fw, λ, zr)= (fw0, λ0, zr0)+ ǫ(f̂w1, λ̂1, ẑr1) exp[iαxx] + c.c. + O(ǫ2), (3.8)

the first-order contributions f̂w1, λ̂1 and ẑr1 turn out to be proportional to pa1,1, such that
we can write

(f̂w1, λ̂1, ẑr1)= (fw1, λ1, zr1)pa1,1. (3.9)

Equation (3.9) illustrates that the variations in the bottom composition affect the ripple
geometry (height and wavelength), such that changes in the bottom composition are
equivalent to variations in the bottom roughness. In particular, the variables zr1 and λ1

turn out to be real and positive, which means that over the coarser-grained regions, the
ripple height and wavelength are larger than in the fine-grained regions.

Finally, we also expand the sediment transport rates for each grain size class:

(qb,n, qs,n, qb
sl,n)= (qb0,n, qs0,n, qb

sl0,n)+ ǫ(q̂b1,n, q̂s1,n, q̂b
sl1,n) exp[iαxx] + c.c. + O(ǫ2).

(3.10)

Substitution of (3.2)–(3.10) into the equations previously described leads to
hydrodynamic and morphodynamic problems to orders ǫ0 and ǫ1.

3.1. Basic state

To the leading order of approximation, the hydrodynamic problem consists of the
evaluation of a steady wind-driven along-shore current over a flat bed with a
homogeneous bottom composition. Combining the hydrodynamic boundary conditions
with momentum and continuity (2.1)–(2.3) yields

w0 = 0, p0 = 0,
νT0(z)

Rt

du0

dz
= τ ∗

wind

ρ∗(U∗
0)

2
. (3.11)
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By integrating the horizontal momentum balance over depth, it follows that the bottom
shear stress τ ∗

c0 = ρ∗(u∗
fc0)

2 equals the wind stress, hence

u∗
fc0 =

√

τ ∗
wind

ρ∗ . (3.12)

Next, the vertical profile of u0 is evaluated by numerically integrating (3.11) with
a finite difference approach, i.e. a second-order Runge–Kutta method. Note that the
numerical integration of (3.11) requires the knowledge of both U∗

0 and τ ∗
wind, which

are coupled. Therefore, an iterative procedure is adopted. In particular, we fix the
depth-averaged mean current velocity and iterate on τ ∗

wind until the correct value of U∗
0

is obtained.

3.2. Perturbed state

To order ǫ, a linear set of equations governing the perturbed flow field is obtained:

∂ŵ1

∂z
= −iαxû1, (3.13)

iαxu0û1 + ŵ1

du0

dz
= −iαxp̂1 + 1

Rt

{

−2νT0α
2
x û1 + ∂

∂z

(

νT0

∂ û1

∂z

)

+ ∂

∂z

(

ν̂T1

du0

dz

)

+ iαxŵ1

dνT0

dz
+ iαxνT0

∂ŵ1

∂z

}

, (3.14)

−iαxu0ŵ1 = −∂ p̂1

∂z
+ 1

Rt

{

−νT0α
2
x ŵ1

+ νT0iαx

∂ û1

∂z
+ iαxν̂T1

du0

dz
+ 2

∂

∂z

(

νT0

∂ŵ1

∂z

)}

.

(3.15)

The linearised boundary conditions at the free surface z = 0 are given by

ŵ1 = 0, νT0

∂ û1

∂z
+ ν̂T1

du0

dz
= 0, 2

νT0

Rt

∂ŵ1

∂z
= p̂1, (3.16)

while the bottom boundary conditions read

û1 = −
(

du0

dz

)

zr1

χ
pa1,1 −

(

du0

dz

)

h1, ŵ1 = 0 at z = −1 + zr0/χ. (3.17)

The first bottom boundary condition explicitly shows that the perturbed flow is linearly
related to the perturbations of the bed elevation and of the bottom composition,
denoted by subscripts h and p, respectively. Hence, it is possible to decompose the
solution into

(û1, ŵ1, p̂1, ûfc1, ûfw1, ν̂T1)= (u1,h,w1,h, p1,h, ufc1,h, ufw1,h, νT1,h)h1(t)

+ (u1,p,w1,p, p1,p, ufc1,p, ufw1,p, νT1,p)pa1,1(t). (3.18)

Substituting (3.18) into (3.13)–(3.16), two independent problems are obtained, one for
the terms proportional to pa1,1(t) and the other for the terms proportional to h1(t).
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When the flow over a periodic perturbation of the bottom composition is considered,
the bottom boundary conditions read

u1,p = −
(

du0

dz

)

zr1

χ
, w1,p = 0 at z = −1 + zr0/χ. (3.19)

These conditions illustrate that the flow field due to the perturbation in the bottom
composition is entirely induced by the bottom roughness changes, which, in turn,
follow from the variations in pa1,1 (see (3.9)). On the other hand, the boundary
conditions at the bottom for the flow induced by periodic variations in the bed
elevation require

u1,h = −
(

du0

dz

)

, w1,h = 0 at z = −1 + zr0/χ. (3.20)

Both problems are solved by numerically integrating the ordinary differential
equations obtained by substitution of (3.18) into (3.13)–(3.16), in the z-direction, from
the bottom up to the free surface. A second-order Runge–Kutta method is used, and
the solution which satisfies both the boundary conditions at the free surface and at the
bottom is obtained using a shooting procedure.

The functions νT1,h and νT1,p introduced in (3.18) depend on ufc1,h and ufc1,p,
respectively. In turn, ufc1,h and ufc1,p are related to the order ǫ contributions to the
eddy viscosity:

ufc1,p = 1

2Rt

(

U∗
0

u∗
fc0

)2 {

νT1,p

du0

dz
+ νT0

[

∂u1,p

∂z
+ iαxw1,p

]}

, (3.21)

ufc1,h = 1

2Rt

(

U∗
0

u∗
fc0

)2 {

νT1,h

du0

dz
+ νT0

[

∂u1,h

∂z
+ iαxw1,h

]}

, (3.22)

evaluated at z = −1 + hb. Therefore, the hydrodynamic problems at order ǫ are also
solved using an iterative procedure.

Once the flow field at order ǫ is known, the perturbations of the Shields parameters
are evaluated,

(θc,n, θcw,n)= (θc0,n, θcw0,n)+ (θ̂c1,n, θ̂cw1,n) exp[iαxx] + c.c. + O(ǫ2). (3.23)

Like the flow field, the first-order corrections of θc,n and θcw,n can also be split into two
parts,

(θ̂c1,n, θ̂cw1,n)= (θc1,h,n, θcw1,h,n)h1 + (θc1,p,n, θcw1,p,n)pa1,1. (3.24)

Next, taking into account (3.10), it follows that

(q̂b1,n, q̂s1,n)= (qb1,h,n, qs1,h,n)h1 + (qb1,p,n, qs1,p,n)pa1,1, (3.25)

q̂b
sl1,n = qb

sl1,h,nh1. (3.26)

Physically, (3.25) and (3.26) show that the spatial variations of both the bed elevation
and the bottom composition lead to changes in the sediment transport rate. These
changes are induced ‘directly’ and ‘indirectly’. In other words, the sediment transport
rate alters since the flow field near the bed is affected by changes in the local depth
and by changes in the bottom roughness (composition). Indirectly, the mixing of
momentum is also affected by the variations in h1 and pa1,1 (see (3.18)). Hence, since
the present model considers the profile of the diffusion of sediment concentration to



16 T. Van Oyen, H. de Swart and P. Blondeaux

be the same as that of the mixing of momentum, the sediment diffusivity also differs
over the coarser-grained regions in comparison with the finer-grained regions, and in
the troughs with respect to the crests.

Next, we analyse the sediment continuity equations at order ǫ,

pa0,n

dh1

dt
+ La0

dpa1,n

dt
= −βiαx(q1,p,npa1,1 + q0,npa1,n + q1,h,nh1), (3.27)

in which the bed composition of the basic state is assumed to be homogeneous, hence
pc0,n = pa0,n. Moreover,

q1,p,n = pa0,nqb1,p,n + pa0,nqs1,p,n, q1,h,n = pa0,n(qb1,h,n + qs1,h,n + qb
sl1,h,n), (3.28)

q0,n = qb0,n + qs0,n. (3.29)

Summation over both grain sizes leads to an equation which describes the time
development of the changes in the bed elevation:

dh1

dt
= −βiαx[Sppa1,1(t)+ Shh1(t)]. (3.30)

The expressions of Sp and Sh are given in the Appendix. Back-substitution of (3.30)
into (3.27) yields a system of two equations for pa1,1(t) and h1(t):

dpa1,1

dt
= −iαx

β

La0

{(q1,p,1 + q0,1 − pa0,1Sp)pa1,1 + (q1,h,1 − pa0,1Sh)h1}, (3.31)

dh1

dt
= −iαxβ(Sppa1,1 + Shh1). (3.32)

The solution to (3.32) is obtained by writing

pa1,1(t)= p̃eγ t, h1(t)= h̃eγ t, (3.33)

such that the system of equations can be written as a linear eigenvalue problem:

[

Lp1 Lh1

Lp2 Lh2

][

p̃

h̃

]

= γ

[

p̃

h̃

]

. (3.34)

In the Appendix the expressions of Lp1, Lp2, Lh1 and Lh2 are provided.
The complex values of γ are obtained considering the non-trivial solutions of the

eigenvalue problem described by (3.34). The two eigenvalues γ1 and γ2 are found from
the characteristic equation and read

γ1 = G +
√

G 2 − 4D

2
and γ2 = G −

√
G 2 − 4D

2
. (3.35)

The expressions of G and D are specified in the Appendix.
From (3.33), it follows that the real part of the eigenvalues controls the growth

of the perturbations in the bottom composition and the bed elevation, while the
imaginary part is the frequency. Moreover, each eigenvalue γ1 and γ2 corresponds to
an eigenvector v1 and v2, respectively:

v1 = (p̃1, h̃1) and v2 = (p̃2, h̃2). (3.36)
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From the eigenvalue problem (3.34), the ratio between h̃ and p̃ can be determined and
it is given by

h̃1

p̃1

= Lp2

γ1 − Lh2

= R1 and
h̃2

p̃2

= Lp2

γ2 − Lh2

= R2. (3.37)

Hence, for each eigenvector, the relative amplitude of the bed level perturbation
with respect to the amplitude of the perturbation of the bottom composition can be

evaluated by computing |R1| and |R2|. Furthermore, the ratio Rk between h̃k and p̃k

(k = 1, 2) also describes the phase difference Ψk,ang between their maxima, i.e.

Ψk,ang = arctan

(

Rk,r

Rk,i

)

− π
2

+
{

0 if −(Rk,i)> 0

π if −(Rk,i) < 0
(k = 1, 2), (3.38)

where the under scripts r and i denote the real and imaginary parts of a complex
quantity, respectively. Assuming the coarse grains of the bimodal grain size mixture to
be represented by the grain size class 1, the region of coarse grains is found upstream
(downstream) of the trough with respect to the direction of the along-shore current
when Ψang is between 0 and π (π and 2π).

4. Model applications to field cases, interpretation of the modes and

sensitivity experiments

In this section, we analyse the initial free response of the morphodynamic system
to the imposed perturbations, and investigate whether these perturbations amplify in
time and lead to the generation of sorted bed forms. As pointed out by Murray
et al. (2005) and Coco et al. (2007a), model results can depend significantly on the
parametrisations adopted (even if well-established relationships are used) when the
level of detail of the model formulation is high. Therefore, instead of providing a
full quantitative description of the results as functions of the input parameters, first
we investigate the model outputs, taking into account input values representative of
three locations at which sorted bed forms are observed. The theoretical findings are
discussed in detail in the second part of this section, after which the free response
of the morphodynamic system is determined considering different hydrodynamic
conditions.

4.1. The field cases

First, the bed features observed at Wrightsville Beach, North Carolina, are considered
(Thieler et al. 2001; Murray & Thieler 2004; Gutierrez et al. 2005; see also figure 1).
At this site, sorted bed forms, which are observed from depths of 3–4 m to depths
of ∼15 m, have crests which are almost orthogonal to the coastline and have a
wavelength ranging between 40 and 200 m. The bands of coarser grains are observed
in the bathymetric lows, with the centre of the coarse patch shifted downstream to the
centre of the trough (with respect to the direction of the main along-shore current).
Inside the regions of coarse grains, the mean grain size is approximately 1.1 mm,
while outside these regions the mean grain size is around 0.2 mm.

Gutierrez et al. (2005) describe measurements of the near-bed current at two sites
on the inner shelf, near Wrightsville Beach. At both locations, the current velocity and
pressure data were measured at 1 m above the bed during a 45-day period in the late
winter/early spring of 1996. During the entire measurement campaign, Gutierrez et al.

(2005) report six storm events during which the sediment is assumed to be set into
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FIGURE 3. Vertical profile of the wind-driven current velocity for depth-averaged current
speed U∗

0 = 0.25 m s−1, depth h∗
0 = 10 m, wave height H∗

w = 1.0 m and wavelength λ∗
w =

60 m. The bottom roughness z∗
r0 is approximately 5.5 cm and the grain size of the coarse and

fine fraction is 1.15 mm and 0.2 mm, respectively.

motion. During such events, the amplitude of the current velocity at one metre above
the bed ranges between 0.1 m s−1 and 0.2 m s−1 while the near-bed wave orbital
velocity is between 0.25 m s−1 and 0.4 m s−1. Finally, wave periods range from 6 to
7 s.

Therefore, as model inputs, we consider a mean water depth of 10 m and a bimodal
mixture characterised by d∗

1 and d∗
2 equal to 1.15 mm and 0.2 mm, respectively.

Hereinafter, in the basic state, the bottom composition is assumed to be composed
of an equal amount of fine and coarse grains, such that pa0,1 = pa0,2 = 0.5. To
model the hydrodynamic conditions, a depth-averaged along-shore current velocity
U∗

0 = 0.25 m s−1 is considered and the sea waves are supposed to be characterised
by a waveheight H∗

w = 1 m and a wavelength λ∗
w = 60 m, respectively. These input

values lead to a near-bed wave orbital velocity of 0.35 m s−1 and a wave period of
7 s. Furthermore, as illustrated in figure 3, a current velocity of 0.17 m s−1 is obtained
at 1 m above the bed. To obtain a value of U∗

0 equal to 0.25 m s−1, the applied
wind shear stress at the free surface turns out to be equal to 0.2 N m−2. Such a
value, considering the friction factor proposed by Van Dorn (1953), corresponds to
a wind speed of 9.4 m s−1 at 10 m above the free surface. This value agrees well
with measurements of the wind speed near Wrightsville Beach during the storm events
(Gutierrez et al. 2005).

In figure 4, the maximum γmax,r of the real parts of the two eigenvalues
(γmax,r = max[γ1,r, γ2,r]) is plotted versus the dimensionless wavenumber αx. The
growth rate is positive for values of αx between 0 and 1.53 such that, in this range
of wavenumbers, the initial perturbations are amplified in time. For larger values of
αx, γmax,r vanishes, which corresponds to marginally stable perturbations. As will be
discussed more thoroughly later on, the latter result follows from the vanishing value
of the real part of one of the two eigenvalues for all wavenumbers.

Within the range of amplified wavenumbers, γmax,r attains a maximum when the
dimensionless wavenumber is equal to 0.77. The perturbation with this wavenumber
αx,max is the fastest-growing mode. Thus, starting from random perturbations (all
wavenumbers present), it is this mode that will dominate the solution after some
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FIGURE 4. Maximum growth rate γmax,r plotted versus the dimensionless wavenumber αx.
Parameter values are representative of the conditions at Wrightsville Beach.

time. The value of the most amplified wavenumber αx,max corresponds to a dimensional
wavelength λ∗

max of 82 m, which is comparable with the wavelength of the observed
bed features.

To analyse the relative position of the centre of the coarse patch and the trough of
the bottom waviness, the value of Ψang is evaluated. For the most amplified mode, Ψang

is equal to π, which means that the coarse grains are found in the bathymetric lows.
Finally, we determine the migration speed c∗

mig and the dimensional e-folding time
scale T∗

γ of the fastest-growing mode, which are given by

c∗
mig = −γmax,i

αmax

U∗
0 , T∗

γ = h∗
0

U∗
0γmax,r

. (4.1)

Here, γmax,i is the imaginary part of the eigenvalue with the largest real part. Taking
into account that the storm events only occur during a time fraction of approximately
0.05, the bed features are found to migrate 1.0 m per day in the downstream direction
and T∗

γ turns out to be ∼210 days. The obtained values of c∗
mig and T∗

γ agree
with those found by Coco et al. (2007a), where the bed features attain a relative
equilibrium after ∼40 days and migrate approximately 5 m in one day (G. Coco,
personal communication).

Next, a comparison of the model findings with field observations of sorted bed
forms at Martha’s Vineyard Coastal Observatory, Massachusetts, is performed (Goff
et al. 2005). At this site, the bed features are observed in depths from 8 to 18 m. They
emerge shore-normal from the shoreface into the inner shelf and have wavelengths
ranging from 100 to 500 m. The bottom sediment at this site is bimodal and is
composed of a fine fraction with a grain size approximately equal to 0.25 mm and
a coarse fraction with grain sizes between 0.5 mm and 2.0 mm. Furthermore, the
boundaries of the bands of coarse grains are observed to migrate about tens of metres
per year.

The bed features are reported to be asymmetric with respect to the shore-normal
direction. The patches of coarse grains are characterised by one well-defined edge
and one that is ragged, and the centre of the band of coarse grains is shifted with
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FIGURE 5. Maximum growth rate γmax,r plotted versus the dimensionless wavenumber αx.
Parameter values are representative of Martha’s Vineyard Coastal Observatory, Massachusetts.

respect to the bathymetric low. Remarkably, within the survey area, the asymmetry is
not the same for all the bed features, e.g. it changes from deep water towards shallow
water. The bed features also exhibit a broad spectrum of bathymetric reliefs, i.e. the
amplitude of the bottom waviness is of the order of 10 cm in the western part and it
goes up to 3 m in the eastern region (Goff et al. 2005).

Model runs are performed with h∗
0 = 14 m and a grain size mixture characterised by

d∗
1 = 0.75 mm and d∗

2 = 0.25 mm. Since the hydrodynamic conditions, to the authors’
present knowledge, have not yet been analysed in detail, we follow Coco et al. (2007b)
and suppose the wave conditions to be moderate: H∗

w = 1.5 m, λ∗
w = 75 m. Finally, the

depth-averaged current velocity is considered to be 0.3 m s−1.
Figure 5 shows the value of γmax,r plotted versus αx, using the input values

representative of the conditions at Martha’s Vineyard. Similar behaviour to that of
figure 4 is obtained. The growth rate γmax,r is positive for wavenumbers ranging
between 0 and 1.9, after which the growth rate becomes zero. The most amplified
mode is found for αx equal to 0.96, such that the fastest-growing bed features have
a wavelength of 92 m. The e-folding time scale turns out to be ∼280 days and c∗

mig

is approximately 0.8 m per day. Furthermore, Ψang equals π for the fastest-growing
mode. Hence, the centre of the coarse grain fraction is entirely out of phase with the
undulation of the bottom elevation.

Lastly, we compare the model results with data of the sorted bed forms observed
by Aubrey et al. (1982) off Nauset Inlet, Cape Cod, Massachusetts. They have a
wavelength of the order of hundreds of metres, with a 1–3 m relief when the depth
is between 8 and 18 m. More shoreward, the bed forms have a much smaller channel
size and are related with more gentle changes of the bed elevation. The bottom
composition in the troughs of the bathymetric undulations is composed of coarse
grains, while the adjacent bed contains fine grains. In the region shoreward of the 8 m
contour, the mean grain size in the coarse patch is 0.68 mm and in the surrounding
area the mean grain size is 0.35 mm (Coco et al. 2007b). Aubrey et al. (1982) report
that the area is subject to a moderate wave climate and describe that current velocities
measured at 0.6 m above the bed (in depths of 10 m) are ∼0.2 m s−1.
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In our model, we consider a mean water depth of 7 m and a depth-averaged velocity
of 0.25 m s−1. The bottom composition is assumed to consist of coarse grains with
a diameter equal to 0.65 mm and fine grains with a diameter equal to 0.35 mm.
Finally, waves are considered with a height and a wavelength equal to 1.5 m and 65 m,
respectively.

In figure 6(a), the maximum growth rate is plotted versus αx for the conditions
off Nauset Inlet. Different behaviour with respect to the previous two cases is
found. Indeed, in this case the real parts of both eigenvalues are characterised by
non-vanishing values. In figure 6(b), the values of γ1,r, γ2,r and γmax,r are plotted,
concentrating on the behaviour of the growth rate related to the second eigenvalue.
The value of γ2,r is positive for small wavenumbers up to bed forms characterised by
a wavenumber equal to ∼0.6. Next, for large values of αx, γ2,r attains a negative value.
Moreover, the value of γ2,r has a maximum for αx equal to 0.3 such that preferred bed
features with a wavelength of approximately 145 m are predicted by the analysis for
the second mode.

Nevertheless, figure 6 shows that the value of γ1,r is always larger than that of
γ2,r when the growth rate related to the first eigenvalue is positive. Hence, the
fastest-growing mode is related to the maximum value of γ1,r and is attained for
bed forms with a wavelength equal to 115 m. Furthermore, the value of Ψang is slightly
larger than π (Ψang = 1.005π) such that the centre of the coarse patch is predicted
in the bathymetric low slightly shifted in the down-current direction. The dimensional
e-folding time scale is 670 days and the migration speed is equal to 0.5 m per day.

Hence, considering hydrodynamic conditions which represent storm events at each
site, the obtained theoretical results agree fairly well with the field observations.
However, in each comparison, the spatial phase shift between the centre of the coarse
grains and the topographic low displayed in the observations appears to be not (or only
marginally) represented by the theoretical model.

4.2. Interpretation of the modes

First, we analyse the results obtained considering the parameter values representative
of Wrightsville Beach and Martha’s Vineyard (figures 4 and 5, respectively). These
results are qualitatively similar, since in both cases γmax,r is positive until a certain
wavenumber and then vanishes. Moreover, for both simulations, Ψang is equal to π.

The obtained results can be understood by taking into account that in both cases
only the fine grain size fraction is set into motion. Indeed, for the conditions
considered, the shear stress due to the combined action of the current and the waves is
smaller than the critical Shields parameter θ b

cr,coarse for the coarse grains.
Then, if the contributions to the sediment transport of the coarse grain size fraction

in the expression of D (see the Appendix) are set equal to zero, it turns out that D

vanishes. Thus, from (3.35), it follows that γ2 vanishes for all wavenumbers such that
γmax,r is zero after a certain wavenumber (when γ1,r becomes negative). Moreover, it is
found that γ1 is equal to G , the real part of which can be written as

Gr = αx

{

β(q1,h,2)i −
β

2La0

(

q1,p,2

)

i

}

. (4.2)

Hence, the growth rate in figures 4 and 5 is given by the linear summation of the
imaginary part of the correction to the sediment transport due to perturbations in the
bed (q1,h,2) and that caused by the spatial changes in the bottom roughness (q1,p,2).
For simplicity, in the following, the former is denoted by γbed,r while the latter is
represented by γrough,r.
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FIGURE 6. (a) Maximum growth rate γmax,r plotted versus the dimensionless wavenumber
αx for the conditions off Nauset Inlet, Cape Cod, Massachusetts. (b) The growth rate plotted
together with the value of γ1,r and γ2,r. To show the behaviour of γ2,r, the vertical and
horizontal axes have been set smaller, such that the real part of γmax and γ2 is only partly
displayed.

In figure 7, the contributions of γbed,r and γrough,r to the real part of the first
eigenvalue are plotted for the input values representative of the sorted bed forms
near Wrightsville Beach. The largest contribution to the growth rate is due to
the convergence of the sediment transport induced by the perturbations in the bed
elevation. Furthermore, figure 7 shows that the perturbations in the bottom roughness,
represented by γrough,r, tend to destabilise the homogeneously distributed flat bed for
bed features characterised by small wavelengths. Figure 7 reveals that, for large
values of αx, the stabilising character of γbed,r dominates and γ1,r eventually becomes
negative.

To analyse the results shown in figure 6, it is illustrative to compare the results with
two extreme theoretical cases. In the first case, the effect of the changes in the bottom
composition on the perturbed sediment transport rate is neglected. In the other case,
the influence of the perturbation of the bottom elevation on the sediment transport
rate is not taken into account. In the former case, from (3.32) it follows that the
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(in)stability of the morphodynamic system is controlled by the value of the real part
Γbed,r, of Γbed:

Γbed = −iαxβSh. (4.3)

If the perturbations of the bed elevation on the sediment transport rate are neglected,
the growth rate is determined by the real part of

Γrough = −iαx

β

La0

(q1,p,1 + q0,1 − pa0,1Sp). (4.4)

In figure 8(a), the value of Γbed,r is plotted together with γ1,r against the dimensionless
wavenumber αx, considering the conditions representative of the sorted bed forms
described by Aubrey et al. (1982). The growth rate related to the first eigenvalue
is found to be mainly determined by the value of Γbed,r. The output of a similar
simulation is shown in figure 8(b) where the values of Γrough,r and γ2,r are given versus
αx. Here, the values of Γrough,r and γ2,r clearly display different behaviour.

Thus, figure 7 illustrates that the first eigenvalue is almost entirely controlled by the
growth of the perturbation of the bottom elevation. In contrast, the second eigenvalue
appears to result from a combination of sediment convergence due to perturbations
of the bed and the growth of the spatial inhomogeneous bottom composition due
to fractional sediment transport related to the perturbations in the bottom roughness.
Motivated by these results, we denote the mode corresponding to the first eigenvalue
as the ‘topography-driven’ mode. The second mode will be referred to as the
‘roughness-driven’ mode. In the following, results of simulations will be shown where
Γrough,r and γ2,r agree fairly well such that the term ‘roughness-driven mode’ for the
perturbation associated to the second eigenvalue is more justified.

4.3. Sensitivity experiments

The results presented so far have been obtained for hydrodynamic conditions which
represent moderate storm conditions at each site. In the following, we investigate
what happens if more extreme storm conditions occur, i.e. we consider the effects of
increasing the strength of the depth-averaged current or the waveheight.
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FIGURE 8. (a) Comparison of the real part of the first eigenvalue γ1,r with Γbed,r, while
in (b) the real part of the second eigenvalue γ2,r is compared with Γrough,r. In both figures,
the parameter values are representative of the conditions off Nauset Inlet, Cape Cod,
Massachusetts.

In figure 9 the growth rate is plotted against αx for different values of U∗
0

for the sorted bed forms off Nauset Inlet. It is found that, when U∗
0 increases,

the wavelength of the fastest-growing mode (the topography-driven mode) increases
(figure 9a). Moreover, for larger values of U∗

0 , the roughness-driven mode reveals an
instability for bed forms with large wavenumbers. As is illustrated in figure 9(b), the
value of γ2,r becomes even larger than the value of γ1,r for very large values of U∗

0 .
In this case, bed features characterised by small wavelengths are generated by the
wind-driven current. For example, λ∗

max is equal to 210 m for U∗
0 = 0.5 m s−1 and it

turns out to be 12 m for U∗
0 equal to 0.6 m s−1. Furthermore, the phase shift between

the centre of the coarse patches and the bathymetric lows also changes considerably
when U∗

0 increases, i.e. when the dominant mode changes. The angle Ψang equals
π for U∗

0 = 0.5 m s−1 and becomes π/3 when the depth-averaged mean current is
equal to 0.6 m s−1. Hence, in the latter simulation, the centre of the coarse region
is predicted on the up-current side of the bathymetric low. Note that the migration
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FIGURE 9. (a) Growth rate γmax,r plotted versus the dimensionless wavenumber αx

considering the conditions off Nauset Inlet, Cape Cod, Massachusetts and changing the value
of U∗

0 . (b) The growth rate plotted together with the value of γ1,r and γ2,r taking the value of
U∗

0 equal to 0.6 m s−1; the other input values are representative of the conditions off Nauset
Inlet.

speed also differs considerably for the two modes. When the topography-driven mode
is dominant (U∗

0 = 0.5 m s−1) c∗
mig is equal to 5.7 m per day, while for U∗

0 = 0.6 m s−1

the migration speed of the fastest-growing mode turns out to be approximately 0.75 m

per day. Finally, the amplitude of the ratio between h̃ and p̃ is considered for the
topography and roughness-driven modes. For the topography-driven mode, |R| is of
order 10−2, while for the roughness-driven mode the value of |R| turns out to be
of order 10−4. Hence, it appears that the bed features related to the roughness-driven
mode have an amplitude of the bathymetric undulations, which is much smaller than
that of the topography-driven mode.

Finally, considering the conditions off Nauset Inlet with U∗
0 = 0.6 m s−1, the value

of γ1,r is compared with Γbed,r and the value of γ2,r is compared with Γrough,r in
figures 10(a) and 10(b), respectively. As in figure 8(a), the value of γ1,r agrees well
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(b) comparison of the real part of the second eigenvalue γ2,r with Γrough,r. The field conditions
off Nauset Inlet with U∗

0 equal to 0.6 m s−1 are considered in both figures.

with Γbed,r. For this simulation, the behaviour of γ2,r qualitatively resembles Γrough,r for
small and intermediate values of αx, but it differs for large wavenumbers.

Similar results are obtained if we consider the conditions at Wrightsville Beach and
analyse the influence of different values of the waveheight (see figure 11). Increasing
the wave height, first, bed features with larger wavelengths are obtained and the
growth rate is dominated by the topography-driven mode. A further increase of H∗

w

leads to the amplification of the roughness-driven mode and to the appearance of
bed features with small wavelengths. As in the previous simulation, the migration
speed of the fastest-growing mode decreases significantly when the roughness-driven
mode becomes dominant. In particular, c∗

mig turns out to be ∼1 m in three months,
considering H∗

w = 3 m, and it is found to be of order 1 m per day when the
topography-driven mode is dominant.

In contrast to the results presented in figure 9(b), for the simulations with H∗
w = 3 m,

the value of Ψang turns out to be approximately 1.2π, yielding a shift of the centre of
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FIGURE 11. The value of γmax,r against αx considering input values representative of the
inner shelf near Wrightsville Beach. Different values of the waveheight are considered.

the coarse grains down-current of the bathymetric low. Moreover, for these simulations,

the amplitude of the ratio between h̃ and p̃ is of order 10−2.

5. Discussion

The results previously presented show that the inherent feedback between wind-
driven currents, waves, and a bottom consisting of a heterogeneous sediment, on a
shelf with a constant depth, can lead to the amplification of two distinct modes. The
first mode is almost entirely controlled by the correction of the sediment transport
due to changes of the bed elevation. The second mode emerges as the result of the
interaction between the convergence of sediment induced by the perturbations of the
bed elevation and by the inhomogeneous sediment transport related to changes in the
bottom composition. The former (topography-driven) mode leads to the amplification
of bed forms with relatively large wavelengths (order of a hundred metres) in which
the centre of the coarse patch occurs in the troughs of the bottom waviness. The
ratio between the amplitude of the perturbation of the bed elevation and that of the
bottom composition is O(10−2) and the migration speed ranges between 1 and 10 m
per day. The topography-driven mode appears to be dominant when the wave climate
is moderate and intermediate values of the steady depth-averaged current velocity are
considered. Moreover, this mode also emerges when the hydrodynamic conditions are
such that only the fine sediment is set into motion.

Increasing the waveheight and/or considering large values of U∗
0 , bed features,

related to the roughness-driven mode, with smaller wavelengths (order of tens of
metres) tend to amplify and eventually dominate over the topography-driven mode.
This finding is similar to the results described by Seminara et al. (1996) for fluvial
environments where, for increasing values of the Froude number, a bedsheet mode
appears, which eventually becomes dominant over the dune mode. Taking into account
different values of the input parameters, the roughness-driven mode can display both
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an up-current and a down-current shift of the centre of the coarse grain size region
with respect to the bathymetric low. Furthermore, the value of |R| ranges from values
much smaller than those resulting from the topography-driven mode up to values
which are comparable. Finally, the migration speed of the roughness-driven mode
ranges between 0.1 and 1 m per day.

Since the results are obtained within the framework of a linear stability analysis,
conclusions founded on the model findings regarding the profile and characteristics
of the bed features in the field should be treated with care, especially taking
into account that previous numerical models suggest that the resulting wavelength
is considerably affected by nonlinear interactions (Murray & Thieler 2004; Coco
et al. 2007a). Nevertheless, the study provides information on the free response
of the morphodynamic system, which can be an indicator of the observed features
(Dodd et al. 2003). In this respect, the analysis suggests that the broad range of
characteristics observed in the field, even within one study area, could be the result of
a competition between the two modes, in which slight changes of the hydrodynamic,
bathymetric or sedimentologic conditions might lead to a shift in the dominant mode
and therefore also to changes of the characteristics of the observed bed features.
For instance, this interpretation could explain the observations of sorted bed forms
at Martha’s Vineyard, reported by Goff et al. (2005), where the bed features in the
western part of the study area are characterised by an amplitude which is of the order
of 10 cm, and display a different asymmetry from the bed forms on the eastern side,
which are characterised by amplitudes up to 3 m.

Although the analysis is only valid for small, infinitesimal perturbations and
therefore cannot capture the nonlinear competition between the modes, to illustrate the
above idea it is interesting to consider the input values representative of the conditions
off Nauset Inlet, together with U∗

0 = 0.6 m s−1 and different water depths (figure 12).
In this case, the amplification rate of bed features with small wavelengths decreases
with respect to the topography-driven mode and eventually vanishes entirely when h∗

0

is increased. For h∗
0 = 18 m, the fastest-growing mode turns out to have a wavelength

equal to ∼85 m, which is 5 times larger than the wavelength of the most amplified
mode when h∗

0 is equal to 7 m. When water depths larger than 8 m are considered, the
value of |R| is much larger (order 10) than the value obtained for h∗

0 = 7 m. Hence,
the shift from a dominant roughness-driven mode to a dominant topography-driven
mode could explain the observation that, offshore of the 8 m contour, the sorted bed
forms have much larger wavelengths and are related to bathymetric undulations with
larger amplitudes than the bed features observed in shallower waters.

In spite of the results obtained, some aspects of the model results are subject to
further study. First, the roughness-driven mode is found to be dominant only for very
high values of U∗

0 and H∗
w, which probably rarely occur. Moreover, the growth rate

related to the topography-driven mode is found to attain the largest maximum for
conditions representative of storm events at each site, while observations of sorted bed
forms in the field reveal that the bed features exhibit characteristics of the roughness-
driven mode (e.g. asymmetry) over a broad range of conditions.

Another issue to discuss is that figure 12 (for h∗
0 = 10 m, 14 m) reveals that there

are conditions for which the roughness-driven mode does not attain a maximum
and the value of γ2,r keeps on increasing for smaller and smaller wavelengths. In
these cases, the analysis does not provide a fastest-growing wavelength and thus fails.
To quantify the conditions in which the second eigenvalue does not attain a maximum,
in figure 13 a contour plot of the value of λ∗

max is shown considering different values
of U∗

0 and H∗
w and the sedimentologic and bathymetric input values representative
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The input values representative of Nauset Inlet with U∗
0 = 0.6 m s−1 are taken into account.
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FIGURE 13. Contour plot of the value of λ∗
max (m) in dependence of U∗

0 and H∗
w on

the horizontal and vertical axes, respectively. Bathymetric and sedimentologic input values
representative of Wrightsville Beach are considered. The white region with � symbols
denotes conditions where the roughness mode is dominant but no maximum is attained.
The region with ⋆ indicates that the fastest-growing mode is related to the real part of the
roughness-driven mode. No growth of bed features is predicted for the white area with ⋄ and
only one grain size fraction is set into motion in the region indicated by ▽. The region with
+ symbols indicates conditions in which the topography-driven mode is dominant and the
second eigenvalue attains a maximum, while in the area with • the roughness-driven mode
does not attain a maximum but the topography-driven mode is dominant for all wavenumbers.

of Wrightsville Beach. A similar contour plot, in which values representative of
Nauset inlet are taken into account, is given in Van Oyen (2010). Several regions
are indicated in the contour plot, which correspond to different qualitative situations.
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FIGURE 14. The value of γmax,r plotted versus αx considering the input values representative
for Wrightsville Beach with H∗

w = 2.0 m and different strengths of the steady current.

In the white region with diamonds (⋄), the sediment is not set into motion and no
bed features are amplified. The white region with squares (�) denotes conditions in
which the roughness-driven mode is dominant over the topography-driven mode, but
the growth rate does not attain a maximum in the investigated range of wavenumbers
(wavelengths). In these conditions, no most amplified mode can be chosen on the basis
of the present analysis. In the coloured region, the value of λ∗

max is represented in the
colour bar next to the contour plot. The region with stars (⋆) indicates the conditions
which lead to the roughness-driven mode. In the area with + symbols the topography-
driven mode is dominant and both eigenvalues attain a maximum. The region indicated
by triangles (▽) represents conditions where there is only one grain size fraction set
into motion and the analysis predicts the appearance of the topography-driven mode.
Finally, the region with dots (•) represents the situation in which the roughness-driven
mode does not attain a maximum, but the maximum of the amplification rate due to
the first eigenvalue remains larger than the real part of γ2,r for all the wavenumbers
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FIGURE 15. (a) Contour plot of the phase shift between the centre of the coarse patch and
the trough of the bathymetric undulation. Values of Ψang smaller (larger) than one correspond
to a phase shift up-current (down-current). The red lines denote transition over values of
1.05π and 0.95π. (b) Contour plot of the amplitude of R. In both figures, the input values are
representative for Wrightsville Beach. An explanation for the notation of the different regions
is provided in the text and in the caption of figure 14.

for which a convergent solution is found. In this case, the value of λ∗
max shown in

the contour plot is related to the wavenumber for which the topography-driven mode
attains a maximum.

To illustrate more clearly the behaviour of the growth rate for each region, in
figure 14, the value of γmax,r is plotted versus αx considering the input values
representative of Wrightsville Beach together with H∗

w = 2.0 m and different values
of U∗

0 ; i.e. we follow the broken line shown in figure 13.
Finally, in figure 15 the changes in the value of Ψang and in the amplitude of

R for different hydrodynamic conditions are illustrated considering the input values
representative of Wrightsville Beach. The value of Ψang is illustrated in figure 15(a)
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by plotting the amount with which π should be multiplied to obtain the value of
Ψang. Hence, values smaller (larger) than one correspond to a phase shift up-current
(down-current). For the regions where the roughness-driven mode is dominant and it
does not attain a maximum, the values of Ψang and |R| are evaluated for αx equal
to 4. The choice to represent these results for αx equal to 4 is, of course, arbitrary.
However, when the roughness-driven mode is dominant, the phase shift between the
bathymetric low and the coarse patch, and the amplitude of R is found only to differ
slightly in the range of wavenumbers under consideration (not shown). We refer to
Van Oyen (2010) for similar contour plots considering values of the input parameters
representative for Nauset Inlet.

We also performed additional simulations, in which we excluded hiding effects in
the sediment transport formulation. The results (not shown) indicate that ignoring
hiding leads to smaller growth rates of the topographically induced modes, whilst the
growth rate of the roughness-induced mode (when present) increases.

6. Conclusions

In conclusion, the model appears to be able to explain the appearance of sorted bed
forms in the coastal region. Indeed, the analysis reveals that the positive coupling
between waves, a steady along-shore current, and an erodible heterogeneous bed
leads to the amplification of two modes. One mode (topography-driven mode) is
almost entirely related to the convergence of the sediment transport rate due to the
perturbation of the bed elevation. A second mode (roughness-driven mode) is found
to be generated by a combination of the correction of the sediment transport due to
the bottom perturbation and that related to the perturbation of the bottom composition.
In particular, the model suggests that the broad range of characteristics displayed by
sorted bed forms in the field could be the result of a competition between these
two modes. On the other hand, for a significant range of hydrodynamic conditions,
the model does not provide a fastest-growing mode. Moreover, the roughness-driven
mode is dominant only for high values of the waveheight H∗

w and for strong along-
shore currents U∗

0 . Therefore, it appears that the present model cannot be considered
conclusive, although it provides basic insight into the physical mechanisms controlling
the growth and migration of sorted bed forms and explains many aspects of features
observed in the field.

This research has been supported by the Ministero dell’Università e della Ricerca.
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Appendix

The expressions of Sp and Sh appearing in (3.30) are given by

Sp = pa0,1(qb1,p,1 + qs1,p,1)+ pa0,2(qb1,p,2 + qs1,p,2)+ qb0,1 + qs0,1 − qb0,2 − qs0,2

(A 1a)

Sh = pa0,1(qb1,h,1 + qs1,h,1 + qb
sl1,h,1)+ pa0,2(qb1,h,2 + qs1,h,2 + qb

sl1,h,2). (A 1b)

The components of the 2 × 2 matrix appearing in (3.34) read

Lp1 = −iαx

β

La0

(q1,p,1 + q0,1 − pa0,1Sp), Lp2 = −iαxβSp, (A 2a)



Sorted bed forms: an idealised model 33

Lh1 = −iαx

β

La0

(q1,h,1 − pa0,1Sh) and Lh2 = −iαxβSh. (A 2b)

The expressions of G and D appearing in (3.35) can be written as

G = Lh2 + Lp1, D = Lp1Lh2 − Lp2Lh1. (A 3)
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