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Formation of singularities for a transport
equation with nonlocal velocity

By Antonio Córdoba∗, Diego Córdoba∗∗, and Marco A. Fontelos∗∗*

Abstract

We study a 1D transport equation with nonlocal velocity and show the
formation of singularities in finite time for a generic family of initial data.
By adding a diffusion term the finite time singularity is prevented and the
solutions exist globally in time.

1. Introduction

In this paper we study the nature of the solutions to the following class
of equations

θt − (Hθ) θx = −νΛαθ, x ∈ R(1.1)

where Hθ is the Hilbert transform defined by

Hθ ≡ 1
π

PV

∫
θ(y)
x − y

dy,

ν is a real positive number, 0 ≤ α ≤ 2 and Λαθ ≡ (−∆)
α

2 θ.
This equation represents the simplest case of a transport equation with a

nonlocal velocity and with a viscous term involving powers of the laplacian. It
is well known that the equivalent equation with a local velocity v = θ, known
as Burgers equation, may develop shock-type singularities in finite time when
ν = 0 whereas the solutions remain smooth at all times if ν > 0 and α = 2.
Therefore a natural question to pose is whether the solutions to (1.1) become
singular in finite time or not depending on α and ν. In fact this question has
been previously considered in the literature motivated by the strong analogy
with some important equations appearing in fluid mechanics, such as the 3D
Euler incompressible vorticity equation and the Birkhoff-Rott equation mod-
elling the evolution of a vortex sheet, where a crucial mathematical difficulty
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lies in the nonlocality of the velocity. Since the fundamental problem concern-
ing both 3D Euler and Birkhoff-Rott equations is the formation of singularities
in finite time, the main goal of this paper will be to solve this issue for the
model (1.1).

3D Euler equations, in terms of the vorticity vector are

ωt + v · ∇ω = ωD(ω)(1.2)

where D(ω) is a singular integral operator of ω whose one dimensional analogue
is the Hilbert transform and the velocity is given by the Biot-Savart formula
in terms of ω. In order to construct lower dimensional models containing some
of the main features of (1.2), Constantin, Lax and Majda [3] considered the
scalar equation

ωt + vωx = ωHω;(1.3)

with v = 0 and showed existence of finite time singularities. The effect of
adding a viscous dissipation term has been studied in [13], [16], [17], [15]
and [12]. In order to incorporate the advection term vωx into the model,
De Gregorio, in [6] and [7], proposed a velocity given by an integral operator
of ω. If we take an x derivative of (1.1) and define θx ≡ ω we obtain a vis-
cous version of the equation (1.3) with v = −Hθ which is similar to the one
proposed in [6] and [7].

The analogy of (1.1) with Birkhoff-Rott equations was first established in
[1] and [10]. These are integrodifferential equations modelling the evolution of
vortex sheets with surface tension. The system can be written in the form

∂

∂t
z∗(α, t) =

1
2πi

PV

∫
γ̃(α′)dα′

z(α, t) − z(α′, t)
(1.4)

∂γ̃

∂t
=σκα(1.5)

where z(α, t) = x(α, t) + iy(α, t) represents the two dimensional vortex sheet
parametrized with α, and where κ denotes mean curvature. Following [1] we
substitute, in order to build up the model, the equation (1.4) by its 1D analog

dx(α, t)
dt

= −H(θ)

where we have identified γ(α, t) with θ. In the limit of σ = 0 in (1.5) we
conclude that γ is constant along trajectories and this fact leads, in the 1D
model, to the equation

θt − (Hθ) θx = 0.(1.6)

There is now overwhelming evidence that vortex sheets form curvature
singularities in finite time. This evidence comes back from the classical paper
by Moore [9] where he studied the Fourier spectrum of z(α, t) and, in partic-
ular, its asymptotic behavior when the wave number k goes to infinity. His
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numerical results showed that, up to very high values of k, this asymptotic
behavior is compatible with the formation of a curvature singularity in finite
time. Although there has been a very intense activity in order to provide
a definitive proof of the formation of such a singularity (see discussions and
references in [9], [2] and [1]) the existing results are mostly supported in nu-
merics or formal asymptotics and do not constitute a full mathematical proof.
The same kind of argument was used in [1] in order to show the existence of
singularities for the 1D analog (1.6).

The system (1.4) and (1.5) with σ = 0 has the very interesting property of
being ill-posed for general initial data. A linear analysis of small perturbations
of planar sheets leads to catastrophically growing dispersion relations. Several
attempts at regularization were introduced through the incorporation of effects,
such as surface tension or viscosity (see [2] for a comprehensive review). In
the same spirit we will also study the effects of artificial viscosity terms on the
solutions for our model. More precisely we will prove the existence of blow-up
in finite time for (1.1) with ν = 0 in Section 2 and, conversely, the global
existence of solutions when ν > 0 and 1 < α ≤ 2 in Section 3.

2. Blow-up for ν = 0

The local existence of solutions to (1.1) was established in [1]. In this
section we will show the existence of blowing-up solutions to (1.6) for a generic
class of initial data.

Let us consider a symmetric, positive, and C1+ε(R) initial profile θ = θ0(x)
such that maxxθ0 = θ0(0) = 1. We will also assume

Supp(θ0(x)) ⊂ [−L, L] .

Under these assumptions, it is clear that θ(x, t) will remain positive (given the
transport character of equation (1.1) for ν = 0) and symmetric. Then, Hθ will
be antisymmetric and positive for x ≥ L. This implies the following properties
for θ(x, t):

�Supp(θ(x, t)) ⊂ [−L, L] ,

�maxxθ = θ(0, t) = 1 ,

� ‖θ‖L1(t) ≤ ‖θ‖L1(0) ,

� ‖θ‖L2(t) ≤ ‖θ‖L2(0) .

Theorem 2.1. Under the conditions stated above for θ0, the solutions of
(1.1) with ν = 0 will always be such that ‖θx‖L∞ blows up in finite time.

Proof. Since θt = −(1 − θ)t ≡ −ft, θx = −(1 − θ)x ≡ −fx and Hθ =
−H(1 − θ) ≡ −Hf , we can write, from (1.6),

(1 − θ)t = −H(1 − θ)(1 − θ)x .(2.7)
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We now divide (2.7) by x1+δ with 0 < δ < 1, integrate in [0, L] and obtain
the following identity:

d

dt

(∫ L

0

(1 − θ)
x1+δ

dx

)
= −

∫ L

0

(1 − θ)xH(1 − θ)
x1+δ

dx .(2.8)

Given the fact that θ vanishes outside the interval [−L, L], we can write
the right-hand side of (2.8) in the form

−
∫ L

0

(1 − θ)xH(1 − θ)
x1+δ

dx = −
∫ ∞

0

(1 − θ)xH(1 − θ)
x1+δ

dx .(2.9)

In the next lemma we provide an estimate for the right-hand side of (2.9).

Lemma 2.2. Let f ∈ C∞
c (R+). Then for 0 < δ < 1 there exists a constant

Cδ such that

−
∫ ∞

0

fx(x)(Hf)(x)
x1+δ

dx ≥ Cδ

∫ ∞

0

1
x2+δ

f2(x)dx .(2.10)

Proof. First, we recall the following Parseval identity for Mellin trans-
forms:

−
∫ ∞

0

fx(x)(Hf)(x)
x1+δ

dx = − 1
2π

∫ ∞

−∞
A(λ)B(λ)dλ ≡ I ,

with

A(λ) =
∫ ∞

0
xiλ− 1

2
− δ

2 fx(x)dx ,

B(λ) =
∫ ∞

0
xiλ− 3

2
− δ

2 (Hf)(x)dx .

Integration by parts in A(λ) yields

A(λ) = −(iλ − 1
2
− δ

2
)
∫ ∞

0
xiλ− 3

2
− δ

2 f(x)dx .

With respect to B(λ) we can write

B(λ) =
∫ ∞

0
xiλ− 3

2
− δ

2

[
1
π

P.V.

∫ +∞

−∞

f(ξ)
x − ξ

dξ

]
dx

=
∫ ∞

0
xiλ− 3

2
− δ

2

[
1
π

P.V.

∫ 0

−∞

f(ξ)
x − ξ

dξ +
1
π

P.V.

∫ ∞

0

f(ξ)
x − ξ

dξ

]
dx

=
∫ ∞

0
xiλ− 3

2
− δ

2

[
1
π

∫ ∞

0

f(ξ)
x + ξ

dξ +
1
π

P.V.

∫ ∞

0

f(ξ)
x − ξ

dξ

]
dx

=
∫ ∞

0
xiλ− 3

2
− δ

2

[−x

π

∫ ∞

0

f(ξ)/ξ

x + ξ
dξ +

x

π
P.V.

∫ ∞

0

f(ξ)/ξ

x − ξ
dξ

]
dx

=
∫ ∞

0

[
− 1

π

∫ ∞

0

xiλ− 1
2
− δ

2

x + ξ
dx +

1
π

P.V.

∫ ∞

0

xiλ− 1
2
− δ

2

x − ξ
dx

]
f(ξ)

ξ
dξ
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where we have used Fubini’s theorem in order to exchange the order of inte-
gration in x and ξ. Using elementary complex variable theory one can write

− 1
π

∫ ∞

0

xiλ− 1
2
− δ

2

x + ξ
dx +

1
π

P.V.

∫ ∞

0

xiλ− 1
2
− δ

2

x − ξ
dx

= lim
R→∞
ε→0

[
− 1

π

1

1 − e2πi(iλ− 1
2
− δ

2
)

∫
Γ1

ziλ− 1
2
− δ

2

z + ξ
dz

+
1
π

1

1 − e2πi(iλ− 1
2
− δ

2
)

∫
Γ2\{c1,c2}

ziλ− 1
2
− δ

2

z − ξ
dz

]
≡ I1 + I2

where Γ1 and Γ2 are the paths in the complex plane represented in Fig-
ures 1 and 2 respectively. Standard pole integration for I1 and the fact that∫
Γ2\{c1,c2} = −

∫
{c1,c2} in I2 (cf. Lemmas 2.2 and 2.3 in [8] where these integrals

had to be computed for a completely different purpose, for instance) yield then

I1 + I2 =

[
− 1

sin
(
(−iλ + 1

2 + δ
2)π

) + cot
(

(−iλ +
1
2

+
δ

2
)π

)]
ξiλ− 1

2
− δ

2 .

Hence

B(λ) =
−1 + cos

(
(−iλ + 1

2 + δ
2)π

)
sin

(
(−iλ + 1

2 + δ
2)π

) F (λ)

with

F (λ) ≡
∫ ∞

0
ξiλ− 3

2
− δ

2 f(ξ)dξ

..
−

R

ε

CR

ξ

Figure 1: Integration contour Γ1.
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ε
c1

c2

R

CR

ξ

Figure 2: Integration contour Γ2.

and

I =
1
2π

∫ ∞

−∞

1 − cos
(
(−iλ + 1

2 + δ
2)π

)
sin

(
(−iλ + 1

2 + δ
2)π

) (iλ +
1
2

+
δ

2
) |F (λ)|2 dλ

≡ 1
2π2

∫ ∞

−∞
M(λ) |F (λ)|2 dλ .

In order to analyze M(λ) we define now

z ≡ a + bi , a ≡
(

1
2

+
δ

2

)
π , b ≡ λπ

which implies, after some straightforward but lengthy computations,

M(λ) = z
1 − cos z

sin z
=

a sin a + b sinh b

cosh b + cos a
+

−a sinh b + b sin a

cosh b + cos a
i .(2.11)

Since |F (λ)|2 is symmetric in λ and the imaginary part of M(λ) is antisym-
metric,

I =
1

2π2

∫ ∞

−∞
Re {M(λ)} |F (λ)|2 dλ .

Notice now from (2.11) that
1
C

(1 + |λ|) ≤ Re {M(λ)} ≤ C(1 + |λ|)

so that

I ≥ 1
2πC

∫ ∞

−∞
|F (λ)|2 dλ ≥ Cδ

∫ ∞

0

1
x2+δ

f2(x)dx

where we have used the Plancherel identity for Mellin transforms:∫ ∞

0

1
x2+δ

f2(x)dx =
1
2π

∫ ∞

−∞
|F (λ)|2 dλ .

This completes the proof of the lemma.

Remark 2.3. Inequality (2.10) can be extended by density to the restric-
tion to R+ of any symmetric f ∈ C1+ε(R) vanishing at the origin.
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In order to complete our blow-up argument, we have, from Cauchy’s in-
equality, ∫ L

0

(1 − θ)
x1+δ

dx≤
(∫ L

0

(1 − θ)2

x2+δ
dx

) 1
2
(∫ L

0

1
xδ

dx

) 1
2

≤
(

L1−δ

1 − δ

) 1
2
(∫ ∞

0

(1 − θ)2

x2+δ
dx

) 1
2

so that ∫ ∞

0

(1 − θ)2

x2+δ
dx ≥ CL,δ

(∫ L

0

(1 − θ)
x1+δ

dx

)2

.(2.12)

From (2.8), (2.10) and (2.12) we deduce

d

dt

∫ L

0

(1 − θ)
x1+δ

dx ≥ CL,δ

(∫ L

0

(1 − θ)
x1+δ

dx

)2

which yields a blow-up for

J ≡
∫ L

0

(1 − θ)
x1+δ

dx

at finite time. Since

J ≤
∫ L

0

(1 − θ)
x1+δ

dx ≤ sup
x

1 − θ

x

∫ L

0

dx

xδ
≤ L1−δ

1 − δ
sup

x
|θx|

we conclude that ‖θx‖L∞ must blow up at finite time. This completes the proof
of Theorem 2.1.

Remark 2.4. In fact, numerical simulation by Morlet (see [11]) and ad-
ditional numerical experiments performed by ourselves (see Figures 3 and 4)
indicate that blow-up occurs at the maximum of θ and is such that a cusp
develops at this point in finite time.

The figures below represent the profiles θx(x, t) and θ(x, t) with initial
data

θ0(x) =

{
(1 − x2)2, if − 1 ≤ x ≤ 1
0, otherwise

at nine consecutive times.

3. The effect of viscosity.

Below we study the effect of viscosity (ν > 0) on the solutions of (1.1)
with positive initial datum. First
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Figure 3: θ(x, t)

±4

±2

0

2

4

±1 ±0.8 ±0.6 ±0.4 ±0.2 0.2 0.4 0.6 0.8 1
x

Figure 4: θx(x, t)

Lemma 3.1. Let θ be a C1 solution of (1.1) in 0 ≤ t ≤ T , with a nonneg-
ative initial datum θ0 ∈ H2(R). Then,

1) 0 ≤ θ(x, t) ≤ ‖θ0‖L∞ ,(3.13)

2) ‖θ‖L1(t) ≤ ‖θ0‖L1 ,(3.14)

3) ‖θ‖L2(t) ≤ ‖θ0‖L2 and
∫ T

0
‖Λα

2 θ‖2
L2dt ≤ ‖θ0‖2

L2

2ν
.(3.15)

Proof. Since

d

dt

∫
|∆θ|2dx =

∫
∆θ∆(H(θ)θx)dx ≤ C‖∆θ‖3

L2

we have local solvability up to a time T = T (‖θ0‖H2(R)) > 0 (without any
restriction upon the sign of θ0). Let us also observe that the same result is
true for the periodic version of (1.1): −π ≤ x ≤ π,

Hf(x) = P.V.
1
2π

∫ π

−π

f(x − y)
tany

2

dy.

We shall prove (3.13) first in the periodic case: Let us define M(t) ≡
maxxθ(x, t), m(t) ≡ minxθ(x, t). It follows from the H. Rademacher theorem
that the continuous Lipschitz functions M(t), m(t), admit ordinary derivatives
at almost every point t. Then we may argue as in references [4] and [5] to
conclude that, at each point of differentiability, M ′(t) ≤ 0 and m′(t) ≥ 0,
implying (3.13).

Let φ ∈ C∞
0 (R) be such that φ ≥ 0, φ(x) ≡ 1 in |x| ≤ 1 and φ(x) ≡ 0 when

|x| ≥ 2. With R > 0 let us consider θR
0 (x) = φ( x

R)θ0(x) and let θR(x, t) be the
solution of the periodic problem (1.1) with initial data θR

0 in −πR ≤ x ≤ πR,
0 ≤ t ≤ T = T (θ0).

We have that 0 ≤ θR(x, t) ≤ ‖θ0‖L∞ with uniform estimates for ∇xθR,
∂
∂tθ

R. By compactness, we obtain a sequence θRj , Rj → ∞, converging uni-
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formly on compact sets to θ, the solution of (1.1) with initial data θ0. Then
estimate (3.13) follows.

To obtain inequality (3.14) we proceed as follows:

d

dt

∫
θdx =

∫
Hθθxdx = −

∫
θΛθdx = −‖Λ 1

2 θ‖2
L2 ,

because
∫

Λαθdx = 0.
Next, observe that

1
2

d

dt

∫
θ2dx =

∫
θθxHθdx − ν

∫
θΛαθdx

=−1
2

∫
θ2Λθdx − ν

∫
|Λα

2 θ|2dx.

On the other hand∫
θ2Λθdx =

∫ ∫
[θ(x) + θ(y)]

2
(θ(x) − θ(y))2

(x − y)2
dxdy ≥ 0

and the proof of the third part of the lemma follows.

3.1. Global existence with α > 1.

Theorem 3.2. Let 0 ≤ θ0 ∈ H2(R), ν > 0 and α > 1. Then there exists
a constant C, depending only on θ0 and ν, such that for t ≥ 0:

1) ‖Λ 1
2 θ‖L2(t) ≤ C ,(3.16)

2) ‖Λθ‖L2(t) ≤ C(1 + t) ,(3.17)

3) ‖∆θ‖L2(t) ≤ CeCt3 .(3.18)

Proof. Integration by parts and the formula for the Hilbert transform

2H(fH(f)) = (H(f))2 − f2

yield

(3.19)
1
2

d

dt

∫
|Λ 1

2 θ|2dx =
∫

ΛθθxHθdx − ν

∫
|Λ 1

2
+ α

2 θ|2dx

=−
∫

θH(θxHθx)dx − ν

∫
|Λ 1

2
+ α

2 θ|2dx

=−1
2

∫
θ(Hθx)2dx +

1
2

∫
θ(θx)2dx − ν

∫
|Λ 1

2
+ α

2 θ|2dx

≤‖θ0‖L∞‖Λθ‖2
L2 − ν

∫
|Λ 1

2
+ α

2 θ|2dx.

Since
‖Λθ‖2

L2 ≤ R2−α‖Λα

2 θ‖2
L2 + R1−α‖Λ 1

2
+ α

2 θ‖2
L2 ,
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by taking R sufficiently large and applying inequality (3.15), we obtain the
desired inequality (3.16).

Applying Λ operator to both sides of equation (1.1), multiplying by Λθ

and integrating in x, we obtain

1
2

d

dt

∫
|Λθ|2dx =

∫
ΛθΛ(θxHθ)dx − ν‖Λ1+ α

2 θ‖2
L2(3.20)

=−1
2

∫
(θx)2Λθdx − ν‖Λ1+ α

2 θ‖2
L2

≤C

∫
|Λθ|3dx − ν‖Λ1+ α

2 θ‖2
L2 ,

where we have used the isometry of Hilbert transform in L2, integration by
parts and finally Cauchy’s inequality together with the boundedness of Hilbert
transform in L3.

In order to estimate ‖Λθ‖L3 we make use of Hausdorff-Young’s inequality

‖Λθ‖L3 ≤ ‖Λ̂θ‖
L

3
2

=
(∫

|ξ| 32 |θ̂(ξ)| 32 dξ

) 2
3

.(3.21)

Picking now ᾱ ∈ (1, α) and using Cauchy’s inequality we obtain(∫
|ξ| 32 |θ̂(ξ)| 32 dξ

) 2
3

≤
(∫

|ξ|2+ᾱ|θ̂(ξ)|2dξ

) 1
3
(∫

|ξ|1−ᾱ|θ̂(ξ)|dξ

) 1
3

≡ I
1
3
1 · I

1
3
2 .

For I1 we get

I1 =
∫
|ξ|≤R

|ξ|2+ᾱ|θ̂(ξ)|2dξ +
∫
|ξ|≥R

|ξ|2+ᾱ|θ̂(ξ)|2dξ(3.22)

≤R2+ᾱ‖θ‖2
L2 +

1
Rα−ᾱ

∫
|ξ|≥R

|ξ|2+α|θ̂(ξ)|2dξ

≤R2+ᾱ‖θ‖2
L2 +

1
Rα−ᾱ

‖Λ1+ α

2 θ‖2
L2 .

With respect to I2 one can estimate

I2 =
∫
|ξ|≤1

|ξ|1−ᾱ|θ̂(ξ)|dξ +
∫
|ξ|≥1

|ξ|1−ᾱ|θ̂(ξ)|dξ(3.23)

≤
∫
|ξ|≤1

|θ̂(ξ)|dξ +
∫
|ξ|≥1

|ξ| 12 |θ̂(ξ)||ξ| 12−ᾱdξ

≤
∫
|ξ|≤1

‖θ‖L1dξ +

(∫
|ξ|≥1

|ξ|1−2ᾱdξ

) 1
2
(∫

|ξ|≥1
|ξ||θ̂(ξ)|2dξ

) 1
2

≤‖θ‖L1 + cα‖Λ
1
2 θ‖L2 .
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From (3.23), (3.14) and (3.16) it follows that

I2 ≤ C.(3.24)

Hence by (3.21), (3.22) and (3.24) we get

‖Λθ‖L3 ≤ C
1
3 (R

2+ᾱ

3 ‖θ‖
2
3
L2 +

1

R
α−ᾱ

3

‖Λ1+ α

2 θ‖
2
3
L2) .(3.25)

To finish let us take R sufficiently large together with (3.20), (3.25) and (3.15)
to conclude that

1
2

d

dt

∫
|Λθ|2dx ≤ C‖θ0‖2

L2

from which (3.17) follows.
Finally let us consider

1
2

d

dt
‖∆θ‖2

L2 =
∫

∆θ∆(θxHθ)dx − ν‖Λ2+ α

2 θ‖2
L2(3.26)

≤C‖∆θ‖L∞‖∆θ‖L2‖Λθ‖L2 − ν‖Λ2+ α

2 θ‖2
L2

and let us observe that

‖∆θ‖2
L∞ ≤ C(‖Λ2+ α

2 θ‖2
L2 + ‖θ‖2

L2).(3.27)

Therefore, by Holder’s inequality,

‖∆θ‖L∞‖∆θ‖L2‖Λθ‖L2 ≤ δ

2
‖∆θ‖2

L∞ +
1
2δ

‖∆θ‖2
L2‖Λθ‖2

L2 ,

and inequality (3.27) we estimate the first term at the right-hand side of (3.26),
and conclude that choosing δ small enough,

d

dt
‖∆θ‖2

L2 ≤ C(‖Λθ‖2
L2‖∆θ‖2

L2 + ‖θ‖2
L2)

which implies the estimate

‖∆θ‖2
L2 ≤‖∆θ0‖2

L2eC
∫ t

0 ‖Λθ‖2
L2ds + C

∫ t

0
‖θ‖2

L2e
∫ t

s
‖Λθ‖2

L2dσds.

By (3.15) and (3.17), (3.18) then follows for some large enough C.

3.2. Small data results for α = 1. In the critical case α = 1 we have the
following global existence result for small data.

Theorem 3.3. Let ν > 0, α = 1, 0 ≤ θ0 ∈ H1 and assume that the initial
data satisfy ‖θ0‖L∞ < ν. Then there exists a unique solution to (1.1) which
belongs to H1 for all time t > 0.
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Proof. From the previous inequality (3.19) we have for α = 1

1
2

d

dt

∫
|Λ 1

2 θ|2dx≤‖θ0‖L∞‖Λθ‖2
L2 − ν

∫
|Λθ|2dx(3.28)

= (‖θ0‖L∞ − ν)‖Λθ‖2
L2 ,

which implies that if ‖θ0‖L∞ < ν, then

‖Λ 1
2 θ‖L2(t) ≤ ‖Λ 1

2 θ0‖L2 and

∫ t

0
‖Λθ‖2

L2ds ≤ C‖Λ 1
2 θ0‖2

L2 .(3.29)

From (3.20) we get

1
2

d

dt

∫
|Λθ|2dx≤ 1

2

∫
|Λθ|3dx − ν‖Λ 3

2 θ‖2
L2 .(3.30)

Since

‖Λθ‖3
L3 ≤ ‖Λθ‖2

L2 · ‖Λθ‖BMO

and

‖Λθ‖BMO ≤C‖Λ 3
2 θ‖L2

(we refer to [14] for the corresponding definitions and properties of the functions
of bounded mean oscillation (BMO)), we obtain

1
2

d

dt

∫
|Λθ|2dx≤C‖Λθ‖2

L2‖Λ
3
2 θ‖L2 − ν‖Λ 3

2 θ‖2
L2

≤ C2

4ν
‖Λθ‖4

L2 .

Together with inequalities (3.29) this allows us to complete the proof of the
theorem.

Universidad Autónoma de Madrid, Madrid, Spain
E-mail address: antonio.cordoba@uam.es

Consejo Superior de Investigaciones Cient́ificas, Madrid, Spain
E-mail address: dcg@imaff.cfmac.csic.es

Universidad Rey Juan Carlos, Madrid, Spain
E-mail address: mafontel@escet.urjc.es

References

[1] G. R. Baker, X. Li, and A. C. Morlet, Analytic structure of 1D-transport equations
with nonlocal fluxes, Physica D 91 (1996), 349–375.

[2] A. L. Bertozzi and A. J. Majda, Vorticity and the Mathematical Theory of Incompresible
Fluid Flow , Cambridge University Press, Cambridge, 2002.

[3] P. Constantin, P. Lax, and A. Majda, A simple one-dimensional model for the three
dimensional vorticity, Comm. Pure Appl. Math. 38 (1985), 715–724.



FORMATION OF SINGULARITIES FOR A TRANSPORT EQUATION 13
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