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Formation of stable and responsive collective
states in suspensions of active colloids
Tobias Bäuerle1, Robert C. Löffler1 & Clemens Bechinger 1✉

Many animal species organise into disordered swarms, polarised flocks or swirls to protect

from predators or optimise foraging. Previous studies suggest that such collective states are

related to a critical point, which could explain their balance between robustness to noise and

high responsiveness regarding external perturbations. Here we provide experimental evi-

dence for this idea by investigating the stability of swirls formed by light-responsive active

colloids which adjust their individual motion to positions and orientations of neighbours.

Because their behaviour can be precisely tuned, controlled changes between different col-

lective states can be achieved. During the transition between stable swirls and swarms we

observe a maximum of the group’s susceptibility indicating the vicinity of a critical point. Our

results support the idea of system-independent organisation principles of collective states

and provide useful strategies for the realisation of responsive yet stable ensembles in

microrobotic systems.
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L
iving organisms frequently arrange into spatio-temporal
patterns being classified as disordered swarms, polarised
flocks or rotating groups (also termed swirls or vortices)1–5.

Because such states are observed in many animal species,
including fish6,7, birds8, insects9 and down to bacteria10, this
suggests the presence of stable and size-independent overarching
organisation principles. In order to cope with noise and external
perturbations, collective states should keep a balance between
robustness and flexibility regarding changing environmental
conditions. Such conflicting needs may be resolved by collective
states being close to a critical point11,12. Indeed, the analysis of
velocity fluctuations in starling flocks8,13 and swarms of mid-
ges14,15 reveals evidence of critical behaviour, e.g., the existence of
correlation lengths largely exceeding the interaction range
between individuals. Further evidence of a close relation between
collective and critical states is obtained from theoretical studies
of interacting particles that adjust their motion to their neigh-
bours via local interaction rules16–20. For example, such simula-
tions demonstrate a maximum of the responsiveness to
perturbations in groups of fish at the transition from milling to
schooling, which strongly resembles the behaviour at a critical
phase transition16. Opposed to simulations that typically consider
ideal particles with monodisperse properties and simplified
interactions21,22, experimental observations are scarce. In addi-
tion, interaction rules in living systems are frequently only poorly
understood, and it remains unclear, how systematic variations of
their collective behaviour can be achieved. Therefore, despite its
implications, the idea of a possible link between criticality and
collectivity requires further tests under experimental conditions.
Here we study the collective properties of self-propelling, i.e.,
active particles (APs) that have been demonstrated to closely
resemble the behaviour of living microorganisms23–27. Opposed
to the majority of studies dealing with APs whose propulsive
properties are typically controlled at the group level28–36, there
has been recent progress in controlling the AP motility on a
single-particle level in response to neighbours using optical
feedback loops37–39. Here, we go one step further by controlling
not only the magnitude but also the direction of the particle
propulsion, which is central for our work since it allows to add
alignment interactions between APs. The AP interaction rules in
our experiments are inspired by social interactions of living
organisms, which are often described by a combination of
avoidance, alignment or attraction to neighbours21,22,40–43. For
the specific interaction rules applied here, we observe the spon-
taneous formation of swirls, i.e., rotating groups of APs that are
either very robust or highly responsive to fluctuations, depending
on small changes of interaction parameters. In particular, we
observe a continuous transition between swirls and swarms,
which is accompanied by large fluctuations resembling critical
behaviour.

Results
Experimental realisation. APs that respond to positions and
orientations of neighbours are fabricated from silica particles with
diameter σ= 6.3 μm, and coated with a 80-nm carbon cap on one
side. They are suspended in a binary fluid mixture near room
temperature and contained in a thin sample cell. When a laser
spot is directed to an AP, it self-propels with velocity v̂ ¼ vû with
the cap at the back, where û is a unit vector along the particle
orientation37,38 (“Methods”). The magnitude of the velocity
depends on the illuminating intensity, and was kept constant to
yield ν= 0.5 μm s−1. The swimming direction of APs is con-
trolled by a small offset of the illuminating laser spot relative to
the AP centre (otherwise the direction is randomised due to
rotational diffusion). This causes an intensity gradient across the

AP, which leads to its reorientation44,45, with an angular turning
velocity of ≈4° s−1 (“Methods”). Individual particle steering is
achieved by a feedback loop, which controls the orientation of
each particle based on the evaluation of the positions and
orientations of all particles. This information is acquired with a
rate of 5 Hz by optical video microscopy and subsequent image
evaluation. With this information, we are able to compute the
visual perception of each particle in real time, and to adjust its
swimming direction independently (“Methods”). Unless other-
wise stated, experiments were carried out with about 50 APs each.

In our experiments, APs perform directional changes in
response to their neighbours within their field of vision, the
latter characterised by a viewing angle α and range R. First, each
AP (particle index i) determines the current direction Pi to the
centre of mass of all particles within α and the position detection
range Rp (orange dashed region in Fig. 1a, b). Then it sets its
swimming direction towards Pi, but with a constant angular
deviation Δ to the left (+) or the right (−). From the two possible

swimming directions d̂
±

i (Fig. 1b), the particle chooses the one
that minimises the difference relative to the mean orientation of
close neighbours ûih i, the latter sensed within angle α and the
orientation detection range Ro (blue area in Fig. 1a, c). Contrary
to most zonal models where sensing regions of attraction and
orientation are spatially separated21,40,41,46, here they overlap
(Fig. 1a). Throughout this work, we set Ro= 25 μm ≈ 4σ. To
hinder particle collisions, swimming directions of APs are
reversed (as in ref. 41) when their clearance is below 0.25σ.

Figure 1d shows a snapshot of a swirl of 50 APs (Supplemen-
tary Movie 1). To quantify its rotational motion, we use the

rotational order parameter OR ¼ 1
N

PN
i¼1 r̂i ´ ûið Þ � ez , which

measures the in-plane circular motion of the group (Fig. 1e).
Here, r̂i denotes the unit vector of the AP position relative to the
total centre of the vortex and ez the unit vector perpendicular to
the sample plane. Apart from a sudden change of sign of OR, i.e.,
a change in the sense of rotation, |OR| remains at about ≈0.8,
confirming a high degree of collective circular group motion.

The collective properties strongly depend on the interaction
parameters. This is seen in Fig. 1f where we show the dependence
of ORj jh i on the deviation angle Δ. At low Δ, particles propel
more or less directly towards the group centre where they form a
cohesive disordered swarm lacking angular motion (black line in
Fig. 1e). With increasing Δ, the angular motion of APs becomes
more and more pronounced, which leads to an increase of ORj jh i.
With increasing Δ, however, also the spatial extent of the swirl
increases (Supplementary Fig. 1). This leads to fewer next
neighbours within Ro, eventually leading to a decrease of ORj jh i
above Δ ≈ 70°. For Δ= 90°, cohesion of the group is entirely lost,
and swirls are no longer observed. Swirl formation is also affected
by the choice of the vision angle α and the position detection
range Rp. In general, we obtain stable swirls at large values of α
and Rp (Fig. 1g, “Methods”). Otherwise, the number of sensed
neighbours around each AP becomes too small, which leads to
the loss of cooperative motion resulting in fragmentation of swirls
(Supplementary Movie 2).

To corroborate our experimental observations, we also
performed numerical simulations using a minimal model based
on an overdamped Langevin equation (“Methods”). Even though
such models provide only a crude approximation of the rather
complex interactions in our system, the stability range is in fair
agreement with our experimental data. Because the thermal noise
can be easily varied in simulations, we also investigated the
impact of noise on swirl formation. As expected, ORj jh i decreases
with increasing noise strength (Supplementary Fig. 2). Compar-
ison of our interaction rule with standard zonal models, however,
reveals a much weaker degrading effect of noise on ORj jh i. This
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difference results from the fact that, in standard zonal models, the
velocity direction of each individual is a superposition of the
motion towards the centre-of-mass P and the mean orientation of
the next neighbour ûh i. Because of the fixed deviation angle in
our interaction rule, small variations of ûh i have a smaller
influence on the cooperative behaviour that renders our swirls
rather robust against orientational disorder, sensorial errors or
number fluctuations of neighbouring particles.

Swirl dynamics. To maintain an ideal local order within a swirl,
all group members should travel on concentric orbits with con-
stant angular velocity. Such conditions, however, are not met in
our experiments. In fact, APs rapidly change their
positions relative to their neighbours (Fig. 2a–d). Within about
600 s (approx. one swirl rotation), initial neighbours distribute
across the swirl, some of them even propelling in opposite
directions. The rapid loss of neighbours is also seen in Fig. 2e
where we plot how the distance dij of all APs i to their original
(t= 0) next neighbour j changes over time. These separations
rapidly randomise owing to the combination of thermal noise,
particle collisions and variations in particle velocities. Interest-
ingly, the mean value of hdij tð Þi (where the bracket corresponds

to averaging over all particles i and j) shown as solid black line
rapidly converges to the mean value of all particle distances
(dashed line). This demonstrates that stable swirls can exist even
when nearest neighbours are rapidly lost. We also measured the
time dependence of the probability distributions of the angular
and radial AP displacements P(ΔΦ) (Fig. 2f) and P(Δr) (Fig. 2g),
both values defined relative to the swirl centre. Even though the
distributions are rather broad, the mean value of P(ΔΦ) (solid

line) shows an almost linear increase that suggests an overall
uniform swirl rotation.

Despite random changes in the sense of rotation, swirls remain
remarkably stable. This is shown in Fig. 3a where we compare
rotational (OR) and orientational order during a spontaneous
rotation reversal (Δ= 67.5°). Orientational order (polarisation)
is characterised by the corresponding order parameter OP ¼
1
N

PN
i¼1 ûi

�� ��. Both quantities are strongly anti-correlated, i.e., OP

becomes largest when OR= 0. This indicates that local order is not
entirely lost during a rotation reversal of the group. The colour-
coded probability distribution of the correlation between OP and
OR demonstrates that the group stays most of the time within a
swirling state, and that directional changes of the swirl’s rotation
are accompanied by a metastable flock with high polarisation
(Fig. 3b). To understand how rotational order changes within a
swirl during a rotation reversal, we calculated the spatially resolved
rotational order as a function of time (Fig. 3c–h, “Methods”).
Typically, rotation reversals start from the edges, where particles
have fewer neighbours and are therefore more affected by
fluctuations of their environment (d, blue region). When OR ≈ 0,
the group comprises of two subregions with opposite sense of
rotation (e, f). This metastable intermediate state has a high
polarisation and rapidly decays back into a swirl (g, h). As a side
remark, we mention that stable flocks with high polarisation OP can
be obtained within our interaction model when Ro becomes
sufficiently large (Supplementary Fig. 3).

Critical behaviour. In Fig. 4a, we show how the probability
distribution of |OR| varies upon changing the deviation angle
Δ. For Δ= 67.5°, the distribution exhibits a single peak around
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Fig. 1 Swirl formation of socially interacting active particles. a Illustration of interaction rule leading to circular group motion. An AP (red) senses the

positions and orientations of neighbours within its field of vision with angle α and range Rp (orange dashed region and b) and Ro (blue region and c),

respectively. b After having determined the direction P to the centre of mass of sensed particles within distance Rp, the AP selects one of two possible

swimming directions d̂
þ
or d̂

�
(green arrows) that deviate by the angle Δ to the left or the right relative to P. c The selection of the swimming direction

d̂ depends on which of the two possibilities is closer to the mean orientation ûh i of neighbours being closer than Ro. d Experimental snapshot of a

counterclockwise rotating swirl for α= 360°, Δ= 67.5° and Rp=∞. The solid lines show trajectories of 150 s. Scale bar is 30 μm. e Time evolution of the

rotational order parameter OR for Δ= 67.5° (green) and Δ= 0 (black). f ORj jh i as a function of the deviation angle Δ. Error bars correspond to the

standard deviation of different experiments. g Existence range of cohesive swirls (green) as a function of α and Rp determined from experiments (symbols)

and numerical simulations (coloured areas) for Δ= 67.5°.
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|OR| ≈0.8 and a small probability at |OR|= 0, in agreement with
the above observation of stable swirls with rare rotation reversals
under such conditions (Fig. 1e). Decreasing Δ leads to a con-
tinuous increase of the probability around |OR|= 0 at the expense
of the peak at large |OR|, which becomes smaller but also broader.
For Δ= 22.5° and below, a single broad peak at |OR|= 0 is
observed. When calculating the susceptibility χ of the group
(“Methods”), this leads to a peak around Δ= 33.75° (Fig. 4b).
When comparing these results with χ obtained from numerical
simulations, we find also a maximum, however, with the peak
shifted to much smaller deviation angles (dashed line). This dif-
ference is attributed to the fact that the simulations do not fully
capture all experimental details. For example, collisions between
APs typically affect their orientation, opposed to the ideal colli-
sion process assumed in simulations. To account for this effect,
and to obtain best agreement with the experimental data
in Fig. 4b, we have increased the rotational diffusion constant DR

in the simulations to three times the experimental value of an

isolated AP (solid line). In combination with the continuous
change of the order parameter distribution (Fig. 4a), a maximum
of the susceptibility as a function of an external control parameter
suggests the occurrence of a critical phase transition. To further
strengthen this assumption, we have performed a finite-size
scaling that predicts the general size dependence of critical phe-
nomena (see e.g. ref. 47). Therefore, we have varied the particle
number N in our simulations. The corresponding susceptibility is
shown in Fig. 4c for 50 ≤N ≤ 500. Clearly, the position and the
width of the peak vary with N. After application of a finite-size
scaling, the data (in particular those for N > 50) collapse on a
single curve (Fig. 4d, “Methods”). When adding our experimental
data for N= 50 and N= 120 (without any adjustable parameter),
they show good agreement with the predicted behaviour. A
similar finite-size scaling is applied to the orientational order
parameter ORj jh i that also leads to a data collapse (Fig. 4e, f,
“Methods”). The applicability of the finite-size scaling method to
our data gives further evidence that the transition between swirls
and swarm is indeed a critical phase transition.

Response to perturbations. To test the stability of swirls
regarding individual variations of the interaction rules within the
group, we investigated the influence of a subset of misbehaving
particles, i.e., APs having a modified response to their neigh-
bours48: opposed to above, where the swimming direction of each
AP can deviate either to the left or the right relative to P
(depending on the orientation of nearest neighbours); APs with
modified response misalign their motion only to the left, inde-
pendent of the orientation of neighbours. As a result, these APs
have a strong bias towards a clockwise circular motion. In our
experiments, we first waited until the swirl’s rotation was coun-
terclockwise (OR > 0). Then we suddenly applied the modified
response rule to a number of Nmod active particles. Figure 5a–f
shows that the temporal change in the local rotational order
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parameter, after five (out of 50) APs with modified behaviour are
initialised in the central region of the swirl (open circles). It
should be noted that the experiments were performed at para-
meters where stable swirls are observed (α= 360°, Δ= 67.5°,
Rp=∞). Opposed to a spontaneous rotation reversal that usually
exhibits strong fluctuations in OR (Fig. 3b), here a qualitatively
different behaviour is observed: the modified APs act as nuclea-
tion centres and firmly impose their sense of rotation (OR < 0)
first to their immediate surroundings but later to the entire swirl.
Figure 5g shows how the rotational order within the swirl changes
when 1 ≤Nmod ≤ 10 APs have been activated at t= 0 s. Already,
Nmod= 2 (out of N= 50) APs are sufficient to—at least tem-
porarily—reverse the rotation sense of the swirl. For Nmod ≥ 5, a
persistent clockwise rotation is achieved. With increasing Nmod,
the time required to reverse the sense of rotation decreases
(Fig. 5h). Interestingly, in all cases, swirls remain intact. This is
not self-evident since APs with modified response enhance local
collisions, which in general lead to swirl destabilisation.

We also investigated how swirls respond to an obstacle, which
is a realistic scenario in living but also microrobotic systems
(“Methods”). Figure 5i shows how the radial density distribution
of a group of APs changes in the presence of a static spherical
obstacle in the centre of the swirl. As a result, a hole forms in the

middle of the swirl. When the obstacle is translated along a
circular path, we observe an asymmetric deformation of the
swirling APs with an accumulation (depletion) at the front (rear) of
the obstacle (“Methods”). Notably, the swirl remains stable and
follows the motion of the obstacle (Fig. 5j; Supplementary Movie 3).
This opens an effective method to control the centre-of-mass
motion of an entire group of milling particles by inserting and
translating a single obstacle inside the swirl.

Discussion
Experiments with freely programmable active particles, as
demonstrated here, provide an effective approach to understand
the behaviour of collective states in the absence of centralised
control. Opposed to numerical simulations that typically consider
minimalistic models and idealised interactions, particle properties
under real conditions are typically more complex. Hydrodynamic
coupling49–51, positional and orientational detection errors or
manufacturing-related variations of particle properties and even
malfunctioning are just a few effects that are difficult to imple-
ment in simulations, but are relevant in experimental systems.
Therefore, active systems with enhanced motion control will
reduce the gap between theoretically conceived and reliably
working algorithms leading to stable collective behaviour52–54.
Apart from providing insights, how general physical concepts can
be helpful to tackle the complexity of collective behaviour in
biological systems, our experimental approach provides a strategy
on how to achieve similar collective phenomena in fully auton-
omous AP systems. In fact, the particle response used in our
interaction rule can in principle also be implemented, e.g., in
catalytically driven APs where (i) short-ranged repulsive inter-
actions arise due to steric interactions, (ii) long-ranged attraction
towards the centre of mass can be accomplished by positive
chemotaxis55 and (iii) alignment interactions can be realised by
either hydrodynamic51,56 or diffusiophoretic57,58 interactions.
When the weights of these contributions are properly adjusted by
a suitable design of the shape, thickness and material of the
catalytic cap, swirls or flocks as observed here can also be
expected in fully autonomous systems.

Methods
Experimental system. As APs, we use silica spheres with diameter σ= 6.3 μm
being coated with a 80-nm carbon cap on one hemisphere. Particles are suspended
in a critical water–lutidine mixture that is kept at T= 28 °C being several degrees
below the critical temperature of TC ≈ 34.15 °C. The entire suspension is confined in
a 200-μm-thick sample cell, where translational and rotational motion is restricted
to two dimensions due to gravity and hydrodynamic effects59. The translational
and rotational diffusion constants are determined to DT= 0.014 μm2 s−1 and
DR= 0.0028 s−1. Under uniform light illumination of an AP with a laser spot, the
strong absorption at the carbon coating heats this hemisphere above the critical
temperature, which leads to local demixing of the solvent and thus self-propulsion.
For the experimental conditions of this work, particles propel opposite to the
orientation of the capped hemisphere and perform a persistent random walk60.
When the position of the illuminating laser spot is shifted relative to the AP centre,
the corresponding light and temperature gradient across the particle leads to an
inhomogeneous demixing profile, causing a reorientation of the particle opposite to
the light gradient ∇I45.

Experimental control of the particle alignment. To control the alignment of APs
independently, we take images of the particle configuration at a frequency of
5 Hz. The particle positions and orientations (defined as the vector from the
capped side to the uncapped one) are obtained by real-time image analysis on a
computer. This information is employed to direct a 532-nm laser beam to the
particles with an acousto-optical deflector. Each particle is illuminated with a laser
spot (beam waist w= 5 μm) for 8 μs every 2 ms. Because the remixing timescale of
the water–lutidine mixture is about 100 ms, such a protocol ensures steady self-
propulsion conditions. Throughout this work, the (time-averaged) intensity of
the laser beam is I0= 0.38Wmm−2, which leads to a propulsion velocity of ν=
0.5 μm s−1. The controlled reorientation of the APs towards the target direction

d̂ is achieved by offsetting the laser spot 1.8 μm away from the particle centre
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opposite to the target direction d̂ (Fig. 6a) This results in a torque Γmax ≈ 25 kBT,
which corresponds to a rotation rate ωmax ≈ 4° s−1 (see also below).

Characterisation of the orientational steering of APs. Under homogeneous
particle illumination, APs self-propel with constant velocity and random changes

of their swimming direction due to rotational diffusion. When subjected to a local
light gradient ∇I, however, the AP’s mean orientation (i.e., swimming direction)
becomes aligned opposite to ∇I45. This is due to the inhomogeneous heating of the
carbon cap, which leads to an asymmetry of the fluid’s flow field around the AP
relative to its orientation û. This results in a torque Γ / ∇I ´ û on the AP, which
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0 until the order parameter reaches zero for the first time. Error bars

correspond to the standard deviation of different experiments. i Radial profile of the area fraction Φ for a swirl without obstacle (green) and with virtual

obstacles of 15-μm (blue) and 30-μm (red) radius. Inset: the corresponding particle trajectories with obstacles as orange discs. j Snapshots of APs milling

around an obstacle (orange disc) with 15-μm radius and moving along a circular trajectory (arrow) with 30-μm radius and a velocity of 0.025 μm s−1. All

data are obtained for α= 360°, Δ= 67.5°, Rp=∞. Scale bars are 30 μm.
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symbol) is displaced by 0.3 σ opposite to the steering direction (green arrow). This causes a torque on the particle, leading to alignment of the current

particle orientation (red arrow) with the steering direction. b Measured particle trajectories (green) when APs are steered along a straight path to the right

(dashed line). Scale bar is 10 μm. cMeasured probability distribution of γ (coloured bars). In principle, γ can be measured by the optical contrast due to the

light-absorbing carbon cap. This, however, leads to relatively large errors in γ. Therefore, γ has been obtained from the swimming direction averaged over

20 s. The solid line corresponds to a fit to P(γ) = a exp (b⋅cos(γ)). d Fit parameter b as obtained from simulated trajectories according to the same protocol

as shown in a. To compare the experimental P(γ) with that obtained from numerical simulations, we first computed AP trajectories for different maximal

torques Γmax. Following the identical evaluation procedure of γ as for the experimental data, this yields the parameter b which is shown here (symbols).

Best agreement of the b-value of the experimental data (red line) is obtained for Γmax = 25 kBT. The coloured band corresponds to the standard deviation of

6 independent experiments.
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can be employed for steering APs towards a desired target direction d̂. To achieve

temporal changes in d̂, the illumination gradient must be dynamically and inde-
pendently adjusted for each particle. This is experimentally realised by the con-
trolled displacement of the laser spot by 1.8 μm ≈ 0.3 σ away from the geometrical

AP centre. To steer a particle along d̂ the displacement of the laser spot is chosen

exactly opposite to d̂ (Fig. 6a). Then a local intensity gradient ∇I / �d̂ is created
as confirmed by integration of a Gaussian laser spot. This leads to a realigning

torque Γ(γ)=−Γmaxsin(γ), with γ the angle between d̂ and û and Γmax the max-

imum torque (d̂?û). In analogy to an optical laser trap where the restoring forces
vanish in the intensity maximum, the restoring torque acting on an AP becomes

zero when d̂ and û coincide, i.e., when the particle propels along the desired
direction (orientational particle trapping). Due to rotational diffusion, however,
deviations from perfect straight swimming occur. To quantify restoring torques, we
measured the trajectory of APs with constant target direction to the right (Fig. 6b)
over more than 200 μm, and determined the probability distribution P(γ) (Fig. 6c).

Using the Boltzmann distribution, this can be written as P γð Þ / exp � V γð Þ
kBT

� �
with

the effective aligning potential V γð Þ ¼ �
R
Γ γð Þdγ ¼ �Γmax cos γð Þ. Fitting the

above expression to our data yields best agreement for Γmax ≈ 25 kBT (Fig. 6d).
Using the rotational mobility μ= ω/Γ and the Einstein relation, the largest reor-

ientation rate is determined to ωmax ¼ Γmax

kBT
DR � 4� s�1 .

Quantification of swirl stability. To quantify stable (cohesive) swirls in the
context of Fig. 1g, we have confirmed that the radius of gyration of the rotating
group was changing by less than 10 μm.

Calculation of local rotational order parameter. The spatially dependent order

parameter in Figs. 3 and 5 is calculated according to OR x; yð Þ ¼
P

i
OR;i exp � rij j2

2σ2

� �

P
i
exp � rij j2

2σ2

� �

with the particle diameter σ= 6.3 μm and |ri| the distance between particle i and
the position (x, y).

Calculation of susceptibility. The susceptibility χ of a system is generally defined

as χ ¼ ∂ Oh i
∂h jh¼0

, where Oh i is the time- averaged mean of an order parameter O and

h a weak external field. According to the fluctuation–dissipation theorem, χ is also
related to the fluctuations of O in the stationary state, which leads to

χ / N � Oh i2� Oh i2
� �

, where N is the number of particles and angular brackets
correspond to time-averaged quantities16,61. Because the rotational order para-
meter OR changes between positive and negative values when the swirl changes its
sense of rotation, its mean ORh i is zero, which leads to χ / N � O2

R

� �
. This

quantity, however, does not yield a maximum at the critical point, but increases
with increasing rotational order, where OR becomes the largest. This problem is
well known also in the context of the magnetisation order parameter within the
Ising model that is—in the absence of a magnetic field—also zero when averaged
over different initial conditions. In such situations, the absolute value of the order
parameter is used when calculating χ (see ref. 61). Accordingly, we use |OR|, rather
than OR, when measuring the susceptibility.

For large Δ, there is a possibility for the group to enter a metastable, i.e.,
polarised state. When this happens (less than 20% of measurements), the
measurement is interrupted as the group directly swims to the edge of our field of
view, and therefore these measurements are neglected.

Finite-size scaling. The correlation length in a critical system diverges when the
system’s control parameter is changed towards the critical point. In simulations
and our experiments, however, the system size is not infinite and thus limits the
correlation length. This affects the relevant properties of the system, such as the
order parameter and the susceptibility. Using the critical exponents of the system
and the critical value of the control parameter, data for systems with different size
can be rescaled to collapse onto one single curve47.

For the transition between swirls and swarms, we use the deviation angle Δ as
the control parameter and measure susceptibility χ and rotational order ORj jh i of
the group. The finite-size scaling is then given by ~Δ ¼ Δ�Δc

Δc
� N1=ν , ~χ ¼ χ � N�γ=ν ,

gORj jh i ¼ ORj jh i � Nβ=ν , with the critical deviation angle Δc and the critical
exponents ν, γ, β of correlation length, susceptibility and order parameter,
respectively.

The values of Δc, ν and γ are determined by fitting all three parameters
simultaneously using χ vs. Δ curves obtained from simulations with N= [100, 150,
250, 500]. The best data collapse is achieved for ν= 3.87, γ= 2.24 and Δc= 56.15°.
β= 0.66 is fitted independently using the corresponding ORj jh i vs. Δ curves, and
keeping the previously determined values of ν and Δc fixed. We want to mention
that the simulation data for N= 50 particles in Fig. 4c–f were not considered for
the fitting procedure because at such small system sizes, only partial data collapse
can be achieved.

Realisation of virtual obstacles. In our experiments, we introduce virtual
obstacles by defining a zone of enhanced angular deviation. This is realised by
making the deviation angle Δi now depending on the distance between the
position ri of particle i and the centre of the obstacle robs. Δi is given by

Δi ri � robsj jð Þ ¼ Δ0 þ Δobs
1
2 � 1

π arctan
ri � robsj j �Robs

wobs

� �� �
, where Δ0 is the

deviation angle without an obstacle, Δobs the amplitude of the additional deviation,
Robs the radius and wobs the width of the obstacle edge, respectively (Fig. 7). To
avoid spontaneous rotation reversals during the measurements, the sign of the
deviation angle was fixed to allow only counterclockwise motion. Translation
of the obstacle can be achieved by defining a time-dependent position of the
obstacle robs(t). In Fig. 5j, robs(t) moves with a constant velocity on a circular
trajectory.

Numerical simulations. To simulate AP trajectories, we numerically integrated the
overdamped coupled two-dimensional equations of motion for the position r and
orientation û of each particle (note that r and û are complex values corresponding

to the x and y components) r t þ τð Þ ¼ r tð Þ þ τvûþ ζT � ffiffiffi
τ

p
and û t þ τð Þ ¼

û tð Þ � exp i τ Γmax

kBT
DRsin γ tð Þð Þ þ ζR � ffiffiffi

τ
p� �� �

with γ(t) the angle between orientation

and steering direction (Fig. 6a). ζT and ζR correspond to random forces with

zero mean and variance ζ
i
T tð ÞζjT t0ð Þ

D E
¼ 2DTδijδ t � t0ð Þ and ζR tð ÞζR t0ð Þh i ¼

2DRδ t � t0ð Þ, respectively. The parameters are set, except otherwise stated, to the
experimental values: velocity ν= 0.5 μm s−1, torque Γmax= 25 kBT and transla-
tional and rotational diffusion constants DT= 0.014 μm2 s−1 and DR= 0.0028 s−1.
For the simulation time step, we choose τ= 0.2 s as a further reduction does not
lead to changes in the simulation results.

To model hard sphere-like interactions between APs, after each integration step,
we check for overlapping particles, i.e., distances < σ. These overlaps are recursively
treated by shifting overlapping pairs of particles away from their common centre of
mass until overlaps vanish.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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