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Abstract  Chaotic dynamical systems are used to model various natural phenomena. Bhalekar-Gejji chaotic dynamical 
system is a system of three ordinary  differential equations containing only two nonlinear terms. Th is system shows two-scroll 
butterfly-shaped attractor for certain  values of parameters . In this article we show that the two-scroll attractor in  this system is 
formed from two one-scroll attractors. We have used a control parameter in the third equation of the system to study the 
forming procedure of the attractor. 

Keywords  Chaos, Attractor, Limit Cycle, Synchronization  

 

1. Introduction 

Chaos is a phenomena observed in certain  nonlinear 
dynamical systems. It is observed in a wide variety of 
systems such as Chua's circuit [1] in electronics, 
Belousov-Zhabotinsky reaction[2, 3] in  chemistry, 
economics and finance[4-6], Ray leigh-Benard convection[7] 
in fluid dynamics, population dynamics[8], physiology[9, 
10], pharmacodynamics[11] and meteorology[12].  

E. N. Lorenz was the first to observe chaos in nonlinear 
system of differential equations. Lorenz system[12] 
represents convective motion of fluid which is cooled from 
above and warmed from below[13]. Few important examples 
of chaotic systems include Rossler system[14], Chen 
system[15], Liu system[16] and Lu system[17]. 

Chaotic trajectories are very sensitive to initial conditions 
i.e. the trajectories starting nearby could have comp letely 
different future. Though there is unpredictability, it  is 
possible to make the behaviour of two (or many) nearby 
starting trajectories identical after some t ime period. This 
process is done by applying a suitable control and is termed 
as a synchronization. Examples of synchronization are 
abundant in nature. For the detailed discussion on this topic, 
readers are referred to[18-20]. Synchronization of chaotic 
systems have applications in secure communicat ion[21]. 
Due to unpredictability, the crypto-systems based on chaotic 
synchronization are difficult to decode. The review on this 
topic is available in [22]. 

In this art icle we show that the two-scro ll att ractor in  
Bhalekar-Gejji system is  fo rmed  from two one -scro ll  
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attractors. We have used a control parameter in third 
equation of the proposed system to study the forming 
procedure of the attractor. 

2. Bhalekar-Gejji System 

A new chaotic system[23] proposed by Bhalekar and 
Daftardar-Gejji is g iven by the system of three ord inary 
differential equations. 𝑥 = 𝜔𝑥 − 𝑦2 ,  𝑦 = 𝜇(𝑧 − 𝑦),   𝑧 = a y − b z +  x y,               (2.1) 
where 𝜔 , 𝜇 , a, b are constant parameters. System (2.1) 
shows a chaotic behaviour for 𝜔 =-2.667, 𝜇 =10, a=27.3, 
b=1 as shown in Fig. 1.  

 

Figure 1.  Chaotic phase portrait  of (2.1) 

Equilibrium points of the system (2.1) are given by the 
solutions of 𝜔𝑥 −𝑦2 = 0,  
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𝜇 𝑧 − 𝑦 = 0,  
a y − b z +  x y = 0,               (2.2) 

In Table 1, equilib rium points and corresponding 
eigenvalues of the Jacobian matrix 𝐽 𝑥, 𝑦,𝑧 =  𝜔 2𝑦 0

0 −𝜇 𝜇−𝑦 𝑎− 𝑥 −𝑏  

are listed for the parameter values 𝜔  =-2.667, 𝜇  =10, 
a=27.3, b=1.  

Table 1.  Equilibrium points and corresponding eigenvalues 

Equilibrium point Eigenvalues Nature 

O(0,0,0) -22.6245, 11.6245, -2.667 

Saddle 

point 
of index 1 

E1(26.3,-8.3751,-8.3751) -16.8614, 1.5972±8.9804 𝑖 Saddle 

point 
of index 2 

E2(26.3,8.3751, .3751) -16.8614, 1.5972± 8.9804 𝑖 Saddle 

point 
of index 2 

An equilibrium point 𝑝  of the system (2.1) is called a 

saddle point if the Jacobian matrix at 𝑝  has at least one 
eigenvalue with negative real part (stable) and one 
eigenvalue with non-negative real part (unstable). A saddle 
point is said to have index one (/two) if there is exact ly one 
(/two) unstable eigenvalue/s. It is established in the 
literature[24-27] that, scrolls are generated only around the 
saddle points of index two. Saddle points of index one are 
responsible only for connecting scrolls. 

3. Forming Mechanism of Attractor 

In order to study the compound structure of the new 
attractor, we add a constant gain to the third equation. 𝑥 = 𝜔𝑥 − 𝑦2 ,  𝑦 = 𝜇(𝑧 − 𝑦),  𝑧 = a y − b z +  x y + m,            (3.1) 

 

Figure 2(a).  Left attractor m=18.5 

We get one-scroll right-attractor for m=18.5 (cf. Fig. 2(a)) 
whereas m=-18.5 g ives the mirror image of the 

right-attractor i.e. the left-attractor as shown in Fig. 2(b). 
Thus, the new attractor is a compound structure obtained by 
merging together two simple one-scroll attractors. 

 

Figure 2(b).  Right attractor m=-18.5 

Now we study the behavior of the controlled system (3.1) 
for different values of parameter m. 
 |m|<3.2 

The system is chaotic and shows double-scroll complete 

attractor. 

 |m|<4.8 

The system shows limit cycles for this range. In Fig. 3(a), the 

limit cycle is shown for m=3.2. 

 

Figure 3(a).  Limit cycle for m=3.2 

 |m|<11 

The system again shows complete attractor. 

 11.1≤|m|<11.4 

The periodic window is observed in this range.  

 11.4≤|m|<18.5 

A partial attractor (cf. Fig. 3(b), m=14) is observed for these 

parameter values.  

 18.5≤|m|<18.7 

Now, the system shows one-scroll (left or right) attractors. 
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 18.7≤|m|<19.5 
Period ic limit cycles are observed in this range of 

parameter. 
 19.5≤|m|<22.1 
One-scroll attractors are observed in this range. 

 

Figure 3(b).  Partial attractor m=14 

4. Conclusions  

In this article, the forming mechanis m of Bhalekar-Gejji 
chaotic system is discussed. It is observed that the two-scroll 
attractor in the Bhalekar-Gejji system is formed from two 
one-scroll attractors. For this study, we have introduced a 
control parameter m in the third equation of the system. The 
complete double-scroll attractor observed for |m|<3.2 is 
transformed to a partial attractor in the range 11.4≤|m|<18.5. 
Limit-cycles are also observed for certain values of 
parameter m. 
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