
8

FORMS: Unifying Reference Model for Formal Specification
of Distributed Self-Adaptive Systems

DANNY WEYNS, Linnaeus University
SAM MALEK, George Mason University
JESPER ANDERSSON, Linnaeus University

The challenges of pervasive and mobile computing environments, which are highly dynamic and unpre-
dictable, have motivated the development of self-adaptive software systems. Although noteworthy successes
have been achieved on many fronts, the construction of such systems remains significantly more challeng-
ing than traditional systems. We argue this is partially because researchers and practitioners have been
struggling with the lack of a precise vocabulary for describing and reasoning about the key architectural
characteristics of self-adaptive systems. Further exacerbating the situation is the fact that existing frame-
works and guidelines do not provide an encompassing perspective of the different types of concerns in this
setting. In this article, we present a comprehensive reference model, entitled FOrmal Reference Model for
Self-adaptation (FORMS), that targets both issues. FORMS provides rigor in the manner such systems can
be described and reasoned about. It consists of a small number of formally specified modeling elements that
correspond to the key concerns in the design of self-adaptive software systems, and a set of relationships
that guide their composition. We demonstrate FORMS’s ability to precisely describe and reason about the
architectural characteristics of distributed self-adaptive software systems through its application to several
existing systems. FORMS’s expressive power gives it a potential for documenting reusable architectural
solutions (e.g., architectural patterns) to commonly encountered problems in this area.

Categories and Subject Descriptors: D.2.11 [Software]: Software Architectures

General Terms: Design, Theory

Additional Key Words and Phrases: Formal methods, self-adaptation, autonomic computing

ACM Reference Format:

Weyns, D., Malek, S., and Andersson, J. 2012. FORMS: Unifying reference model for formal specification of
distributed self-adaptive systems. ACM Trans. Autonom. Adapt. Syst. 7, 1, Article 8 (April 2012), 61 pages.
DOI = 10.1145/2168260.2168268 http://doi.acm.org/10.1145/2168260.2168268

1. INTRODUCTION

Pervasive, mobile, and embedded computing environments are characterized by a high
degree of unpredictability and dynamism in the execution context. These environments
call for a new class of software systems, known as self-adaptive software system. Self-
adaptability endows a software system with the capability to adapt its behavior at
runtime to changes in its execution conditions and user requirements [Kephart and
Chess 2003; Kramer and Magee 2007].

This research is partially supported by grant FP7-PEOPLE-2011-CIG 303791 from EU, and grants CCF-
0820060 and CCF-1217503 from the National Science Foundation (NSF) and grant N11AP20025 from De-
fense Advanced Research Projects Agency (DARPA).
Authors’ addresses: D. Weyns, Linnaeus University, Sweden; S. Malek, George Mason University, USA; J.
Andersson (corresponding author), Linnaeus University, Sweden; email: jesper.andersson@1nu.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1556-4665/2012/04-ART8 $10.00

DOI 10.1145/2168260.2168268 http://doi.acm.org/10.1145/2168260.2168268

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:2 D. Weyns et al.

The development of self-adaptive software systems has shown to be significantly
more challenging than traditional systems [Cheng et al. 2009]. Over the past decade
numerous solutions for alleviating the situation have been developed. In particu-
lar, researchers and practitioners have proposed several frameworks for construct-
ing such systems. Some have aimed to serve as conceptual guidelines, such as IBM’s
MAPE-K [Kephart and Chess 2003] (Monitor-Analyze-Plan-Execute-Knowledge) that
describes the different stages of self-adaptation, the work of Shaw [1995] that recog-
nizes the feedback-control loop as an essential process within any self-adaptive sys-
tem, and the architectural model of Kramer and Magee [2007] that puts component
control, change management, and goal management in three distinct layers. Others
have adopted an implementation perspective, such as Archstudio [Oreizy et al. 1998],
Rainbow [Garlan et al. 2004], and MUSIC [Geihs et al. 2009], which advocate a soft-
ware architecture-based approach for assessing the adaptation decisions and making
the changes.

All of the aforesaid models and frameworks have been intended to serve merely as
guidelines, and provide significant leeway in how the engineer architects the software
system. For instance, given any one of these frameworks, the same functionality may
be realized using starkly different architectures (e.g., centralized versus decentralized,
flat versus hierarchical). Therefore, while these frameworks have achieved noteworthy
success in many domains, they are neither formal enough to unambiguously describe
and reason about the primary architectural characteristics of self-adaptive systems nor
is that their intended use. At the same time, each framework has targeted a particular
set of concerns, which we informally refer to as perspective. None of the frameworks
provides a rich enough set of elements for describing the different types of perspectives.

The hallmark of any established engineering field is the ability to precisely express
and reason about the architectural choices, a capability that is currently lacking in the
domain of self-adaptive software, as argued by us [Andersson et al. 2009b] as well as
many others [Cheng et al. 2009]. We have begun to address this issue in our previous
work [Andersson et al. 2009a; Weyns et al. 2010a] which led to the development of a pre-
liminary reference model for self-adaptation aimed at bringing the differences among
such systems to the forefront of the design. However, the reference model proposed in
our earlier work [Weyns et al. 2010a] has several limitations; most notably, it is not
sufficiently expressive for describing the variations among a large class of self-adaptive
software systems that are distributed. This is an issue that has been overlooked not
only in our initial reference model, but also by other commonly employed frameworks
and guidelines [Weyns et al. 2010a]. One of the key contributions of this article is the
extension of our initial reference model with additional constructs and relationships
necessary for describing distributed self-adaptive systems. For the first time, we also
provide a comprehensive and detailed description of the reference model, including a
full formal specification. Finally, we demonstrate its ability to precisely describe and
reason about the primary architectural characteristics of several self-adaptive systems
developed in our respective research groups.

The reference model, entitled FORMS, short for FOrmal Reference Model for Self-
adaptation, enables software engineers to rigorously describe and reason about the
architectural characteristics of distributed self-adaptive systems. FORMS builds on ex-
isting frameworks and established principles of self-adaptation, such as computational
reflection [Maes 1987], MAPE-K [Kephart and Chess 2003], and architecture-based
adaptation [Oreizy et al. 1998; Kramer and Magee 2007]. The reference model offers
a vocabulary that consists of a small number of primitives and a set of relationships
among them that delineates the rules of composition. The model is formally specified,
which enables the engineers to precisely define the key characteristics of self-adaptive
software systems, and reason about them.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:3

Through applying FORMS to several existing systems we have confirmed its ability to
illuminate the key characteristics of these systems. However, we do not argue FORMS is
a conclusive reference model. In fact, one of the key contributions of FORMS is its ability
to accommodate future extensions. To ensure extensibility, as well as technology and
implementation independence, the primitives are intentionally high-level (i.e., remain
at the architectural level) and could be specialized for specific application domains.
The primitives refined in this manner enable the engineers to derive and document
a catalog of known solutions (e.g., in the form of architectural patterns) for different
domains.

While FORMS offers a formally founded vocabulary for the key architectural con-
structs comprising self-adaptive systems, it does not provide an implementation frame-
work from which self-adaptive applications can be derived. FORMS supports engineers
with describing the key concerns of their architectures and reason about important
properties, via supporting tools. FORMS can be useful in various scenarios, such as to
understand the key architectural decisions of a self-adaptive system in early design
or in preparation for a system evolution, to document such decisions for developers, to
specialize FORMS for describing and reasoning about specific concerns of self-adaptive
systems in particular domains, to employ FORMS as a unifying vocabulary to study
self-adaptive systems, etc.

The remainder of this article is organized as follows. Section 2 presents an exam-
ple to illustrate the issues and describe the FORMS concepts. Section 3 presents the
integration of three perspectives that form the basis of FORMS and describes the corre-
sponding reference models. Section 4 presents our experiences with using the FORMS
reference model in a case study. The article concludes with an overview of related
work, a discussion on applications and contributions of FORMS, and future avenues
of research in Sections 5, 6, and 7, respectively. The complete formal specification of
FORMS and its applications to two additional case studies is provided in the Appendix
that can be accessed in the ACM Digital Library.

2. ILLUSTRATIVE EXAMPLE

We consider a system from the robotics domain as our illustrative example. The illus-
trative system is motivated by Edwards et al. [2009]. The authors propose a layered
approach for the design and implementation of self-adaptive behavior of a robotic
system. The self-adaptive behavior in this application ensures that the system itself
resolves failures of the control software of the robots. This is a representative example
for a small-scale, distributed, self-adaptive system, that is, it will change its structure
and behavior at runtime in response to changes in the environment or the system itself.

In particular, the adaptive robotic software architecture consists of: (1) a basic bot-
tommost layer with the application components that control the robot, and (2) one
or more metalayers with adaptation logic that implement fault tolerance, dynamic
software updates (component replacement), resource discovery, redeployment, etc. In
the proposed architecture, each layer may adapt the layer beneath. The robot behav-
ior (bottommost layer) provides the robot’s application logic. In a common instance
the system is distributed on two or more robots (nodes), where follower robots trail a
leader robot. On top of that, using metalevel components, there is a distributed failure
manager layer that, based on the collected data, detects and resolves failures in the
application subsystem. The failure manager layer is the subject to a version manager
layer, which replaces the failure collector components on robot follower nodes whenever
new versions are available.

In this system, self-adaptation is a key factor for successful deployment of the system,
which requires the ability to precisely describe the system architecture and reason
about the key design decisions. The challenge is in providing a vocabulary that is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:4 D. Weyns et al.

sufficiently expressive and precise, while still accessible by and useful for developers.
The current practice of expressing the architectural design of self-adaption, and even
more importantly documenting the known solutions (e.g., architectural solutions to
common problems), is often ad hoc. This is precisely the motivation for our work. We
continue this discussion, exemplified with concrete excerpts of the illustrative example,
as we present the details of FORMS next.

3. UNIFYING FORMAL REFERENCE MODEL

The work presented in this article is based on the experience with constructing self-
adaptive systems in our research groups and a careful study of the existing literature,
including Kephart and Chess [2003], Kramer and Magee [2007], Oreizy et al. [1998],
Garlan et al. [2004], Edwards et al. [2009], Dowling and Cahill [2001], and Geihs et al.
[2009]). In Andersson et al. [2009a] we provided a classification of self-adaptive software
systems, which helped us with identifying the prominent concerns in self-adaptation.
Our study indicates that each of the existing commonly employed frameworks targets a
particular set of concerns, referred to as perspective in this article, while ignoring some
others. An exhaustive reference model covering all of the different perspectives found
in the literature is beyond the scope of this article, and perhaps infeasible to achieve.
Instead our intention has been to establish a reference model covering a sufficiently
wide spectrum of perspectives, while remaining extensible for future refinements. To
that end, we found five key requirements for the specification of self-adaptation capa-
bilities in a given system. In particular, the reference model should have the ability to
describe and reason about:

(1) how the system monitors the environment (i.e., context-awareness);
(2) how the system monitors itself (i.e., self-awareness);
(3) how the system adapts itself;
(4) how the system coordinates monitoring and adaptation in a distributed setting.
(5) In addition, the model should have the ability to extend and refine the FORMS

primitives for additional concerns and domain-specific concepts.

These requirements, along with our previous survey of the field, helped us to identify
three commonly employed adaptation perspectives as the basis for FORMS: reflective
computation [Maes 1987; Andersson et al. 2009b], distributed coordination [Malone
and Crowston 1994; Wooldridge and Jennings 1995; Ossowski and Menezes 2006], and
MAPE-K [Kephart and Chess 2003].

While these three perspectives are representatives of radically different concerns, we
do not argue that they are the only plausible ones. However, we have strived to provide
as comprehensive reference model as possible by unifying the three aforementioned
perspectives. We believe a similar approach could be applied to further enrich FORMS
with additional, potentially domain-specific, concerns.

For readability purposes, we describe FORMS using semiformal UML diagrams in
the article. Though intuitive, the visual representation does not give a precise semantic
description of the constructs, which is exactly why a formal representation of FORMS
in Z notation is provided in the Appendix. Z is a standardized formal specification
language (ISO/IEC 13568:2002) that builds on set theory and first-order predicate
logic to precisely specify the primitives without delving into the implementation details.
The formal specification is type checked using Community Z Tools [CZT 2010]. We use
excerpts of the Z specification to illustrate how the model supports reasoning about a
self-healing property of the example in Section 4.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:5

Fig. 1. FORMS primitives that are derived from the computational reflection perspective.

3.1. Reflection Perspective

Computational reflection is an established and well-understood concept in
programming-in-the-small [Maes 1987]. It has traditionally been studied at the level
of programming languages and realized using compiler technologies. However, the
principles of computational reflection are also applicable to programming-in-the-large,
which represents the complex self-adaptive software systems we are interested in
our research [Andersson et al. 2009b]. In fact, numerous previously developed self-
adaptation approaches (e.g., Cazzola et al. [1999], Tisato et al. [2001], and Blair et al.
[2004]) are based on the principles of reflection.

Figure 1 provides an overview of the FORMS’s primitives and their relationships
to the reflection perspective. A Z specification of the perspective is provided in Ap-
pendix A. As shown in Figure 1, a self-adaptive system is situated in an environment,
and comprises one or more base-level and reflective subsystems. The environment con-
sists of attributes and processes. An attribute is a perceivable characteristic of the
environment. A process is an activity that can change the environment attributes. For
instance, attributes for a robot may correspond to the location of an obstacle, while
the movement of a robot is a process that changes the location of that robot. The
environment may correspond to both physical and logical entities. Therefore, the envi-
ronment of a computing system may itself be another computing system. For example,
the environment of a robot includes the physical entities like obstacles on its path and
other robots, as well as an external mountable camera and the corresponding software
drivers.

The reflection perspective is particularly suitable for determining what is part of
the environment and what is part of the self-adaptive system. This distinction is made
based on the extent of control. For instance, in the robotic system, the self-adaptive
system may interface with a mountable camera sensor, but since it does not manage
(adapt) its functionality, the camera is considered to be part of the environment.

A base-level subsystem provides the system’s domain functionality (i.e., application
logic). For instance, in the case of robots, navigation of a robot is performed by a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:6 D. Weyns et al.

base-level subsystem. A base-level subsystem comprises a set of domain models and a
set of base-level computations. Before we describe the meaning of these concepts, note
that, consistent with the reflection perspective, in FORMS we distinguish between
models and computations. Intuitively, a model comprises representations, which de-
scribe something of interest in the physical and/or cyber world, while computation is
an activity in a software system that manages its own states. Precise specifications of
model and computation are provided using Z in Appendix A.

A domain model represents a domain of interest for the application logic (i.e., system’s
main functionality, referred to as base-level subsystem). The domain model in the
robotic system may incorporate a variety of information: a map of the terrain, locations
of obstacles and other robots, etc. A base-level computation perceives the environment,
reasons about and acts upon a domain model, and affects the environment. As an
example, consider a base-level computation of a robot dealing with battery usage.
Given the current location and the remaining energy level of the battery (both are
representations of the domain model), the base-level computation may select a new
route and thus change attributes of the environment.

A reflective subsystem is a part of the computing system that manages another
subsystem, which can be either a base-level or a reflective subsystem. Note that a
reflective subsystem may manage another reflective subsystem. This would be the
case when a self-adaptive system includes multiple reflective levels. For instance,
consider a robot that not only has the ability to adapt its navigation strategy (e.g.,
fastest time, minimize collisions), but also adapt the way such adaptation decisions
are made (e.g., based on remaining energy level of the battery, particular environment
conditions).

A reflective subsystem consists of two parts: reflection model and reflective compu-
tation. A reflection model reifies the entities (e.g., subsystem elements, environment
attributes) needed for reasoning about adaptation. It is analogous to metalevel informa-
tion in the area of computational reflection [Maes 1987]. In many self-adaptive systems,
the reflection model corresponds to the software system’s architectural models [Oreizy
et al. 1998; Kramer and Magee 2007]. Analogous to a base-level computation, a re-
flective computation reasons about and acts upon reflection models. For instance, a
reflection model for the robot scenario may be a component-and-connector view of the
running software system, which is used at runtime by the robot’s adaptation logic (i.e.,
reflective computation) to add/remove software components. A reflective computation
also monitors the environment to determine when/if adaptations are necessary. For in-
stance, the reflective computation in a robotic system may monitor the maneuverability
complexity of a terrain to determine the best navigation component (algorithm) for exe-
cution. However, note that, unlike the base-level computation, a reflective computation
does not have the ability to effect changes on the environment directly. The rationale
is separation of concerns (disciplined split [Maes 1987]): reflective computations are
concerned with a base-level subsystem, base-level computations are concerned with a
domain.

The portion of FORMS described before is inspired by the concepts from computa-
tional reflection, which as mentioned earlier have historically influenced the design of
a large class of self-adaptive software systems. As demonstrated in Section 4, applying
this model to any self-adaptive system naturally delineates the boundaries between
various key elements of such systems. In particular, the reference model helps to clearly
distinguish between elements that constitute the environment, the base-level (man-
aged) subsystem, and the reflective (adaptation reasoning) subsystem. However, this
perspective does not allow for specification of several other concerns that may arise
in the architectural specification of a self-adaptive system. Next we describe how the
model is extended to incorporate distribution concerns.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:7

Fig. 2. Unification of FORMS primitives derived from the reflection perspective with those from the distri-
bution perspective.

3.2. Unification with Distribution Perspective

The reflection perspective of FORMS provides a modularization of self-adaptive sys-
tems in the form of different layers that deal with different concerns. However, this
perspective says little about the modularization within each layer. The structure within
each layer is particularly important for self-adaptive systems that are distributed, as
they make up the majority of real-world systems.

In a distributed setting, the software systems deployed on different nodes require
dedicated coordination mechanisms [Ossowski and Menezes 2006] to realize goals. In
general, a coordination mechanism allows resolution of coordination problems that
arise from dependencies [Malone and Crowston 1994], such as managing dependencies
between multiple tasks and multiple resources.

The choice for a coordination mechanism depends on the requirements of the system
and the characteristics of its environment. For example, coordination in a client-server
system may be fairly easily achieved by an explicit call-return protocol. However, for
other classes of distributed systems, such as ubiquitous systems [Weiser 1993] and
multiagent systems [Wooldridge and Jennings 1995] that are highly dynamic, more
advanced coordination mechanisms are required, since in such systems there is typi-
cally no central point of control.

Adding self-adaptation to a distributed system similarly requires proper support
for coordination of the reflective computations that deal with the adaptations. Figure 2
shows an overview of the FORMS primitives and their relationships for the distribution
perspective. The Z specification of the model is provided in Appendix B.

A distributed self-adaptive system consists of multiple local self-adaptive systems.
In the robotic case, the software running on a collection of robots forms a distributed
self-adaptive system, while the software deployed on each robot constitutes a local
self-adaptive system. A local self-adaptive system comprises local managed systems

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:8 D. Weyns et al.

and self-adaptive units. A local managed system provides the system’s domain func-
tionality, similar to a base-level subsystem. A local managed system comprises do-
main models and local base-level computations. Local base-level computation extends
base-level computation with a coordination mechanism. In the example case, the local
base-level computations of the robots may have to coordinate for collision avoidance.
Such coordination may be achieved by different types of protocols. For example, in a
hierarchical approach, one master robot may control the allowed movements of the
slave robots. However, in a peer-to-peer approach, the robots may use a distributed
locking mechanism to avoid collisions.

A self-adaptive unit manages another part of the system, which can be either one or
several local managed systems or self-adaptive units, similar to a reflective subsystem.
A self-adaptive unit comprises a set of reflection models and a set of local reflective
computations. A local reflective computation extends a reflective computation with
coordination mechanisms which allow the computation to coordinate with other local
reflective computations in the same layer.

FORMS’s coordination mechanism is a composite consisting of a coordination model,
a coordination protocol, and a coordination channel. This is a commonly accepted struc-
ture for coordination mechanisms; see, for example, Andrade et al. [2000] and Arbab
[2004].

A coordination model contains the data used by a local reflective computation to
coordinate with reflective computations of other self-adaptive units. It represents in-
formation such as the current coordination partners and their roles, status information
about the ongoing interactions, etc. Robots that coordinate to deal with version man-
agement may keep track of the current version of the local software running on its
robot and probably other robots, the location where to download new versions, etc.

The coordination protocol represents the rules that govern the coordination
among the participating computations. Examples of protocols are master-slave in an
organization-based coordination mechanism and an auction in a marked-based coor-
dination mechanism. As an example, robots may use a heartbeat as a coordination
protocol to detect possible failures.

A coordination channel is a semantic connector that acts as the means of commu-
nication between the parties involved in a coordination. A coordination channel can
be an abstraction for direct interactions (regular communication channels for message
exchange) as well as indirect interactions (e.g., shared tuple spaces). Heartbeat for
failure detection in the robotic case may use broadcast as a coordination channel.

The distribution perspective emphasizes the modularization of the self-adaptive sys-
tem within a layer. The perspective capture, among other aspects, the degree of auton-
omy of the self-adaptive units, that is, the degree to which reflective computations of a
self-adaptive unit are able to make local adaptation decisions. To realize the adaptation
goals, the computations of self-adaptive units in a distributed self-adaptive system have
to coordinate. The high-level FORMS primitives that support coordination are based
on established work in the field of coordination. Our experience shows that the distri-
bution perspective supports the specification of a variety of distributed self-adaptive
systems. We give examples in Section 4 and the Appendix.

3.3. Unification with MAPE-K Perspective

One of the most commonly employed frameworks for describing and understanding self-
adaptive systems is IBM’s framework for Autonomic Computing [Kephart and Chess
2003; IBM 2006], which itself is inspired by the use of a feedback-control loop [Shaw
1995] in the design of software systems. The framework is formed around the notion of
an autonomic manager that implements a MAPE-K control loop. MAPE-K’s power is
its intuitive structure of the different computations that are involved in realizing the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:9

Fig. 3. FORMS reference model derived from the unification of reflection and distribution perspectives with
those from the MAPE-K perspective.

feedback-control loop in self-adaptive software systems. On the other hand, MAPE-K is
neither formalized nor does it address some of the other important self-adaptation con-
cerns, such as those described in the previous two sections. Figure 3 shows the relation-
ship among FORMS primitives inspired by MAPE-K with the modeling primitives from
other perspectives. In the process of unifying the MAPE-K perspective with FORMS,
we identified several additional primitives that are not present in MAPE-K, including
a refinement of knowledge. The MAPE-K perspective is detailed in Appendix C.

As mentioned before, in FORMS a self-adaptive unit is a self-contained entity that
adapts the local managed system using several reflective computations, which use a
set of reflection models. The MAPE-K perspective allows us to describe the abstract
notions of reflective computation and reflection model more concretely.

In FORMS, we distinguish between four types of reflection models: subsystem model,
concern model, environment model, and MAPE working model.

A subsystem model represents (parts of) the system that is managed by the self-
adaptive unit. The subsystem can be either a local managed system or a self-adaptive
unit. The latter is applicable to self-adaptive units that deal with higher-level concerns
(i.e., a metametalevel model). In the robotic application, the architectural models rep-
resenting the structure of the managed software system correspond to the subsystem
model.

A concern model represents the objectives or goals of a self-adaptive unit. In the
robotic system, for example, a self-healing concern can be represented as rules of the
form event–condition–action set. Event is a failure of a software component, condition
is a local dependency on the failing component, and action set comprises a set of repair
actions required to recover from the failure.

An environment model reifies the relevant part of the environment at the reflec-
tive level. In the robotic example an environment model may, for instance, represent
the physical environment, robot locations, and any other relevant environmental at-
tributes.

A MAPE working model represents runtime data shared between the reflective com-
putations. These models are typically domain-specific. Examples of working models in
a robotic system are the temporary representations of candidate deployment architec-
tures for adapting the domain logic (i.e., the base-level subsystems).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:10 D. Weyns et al.

Reflective computations are the typical control-loop computations found in self-
adaptive systems: monitor, analyze, plan, and execute. In addition, we introduce update
computations.

An update computation perceives the state in the environment and reflects this in the
environment model. Update computations (in combination with analysis computations
which we describe shortly) provide for context-awareness [Schilit et al. 1994], which is
an important property in almost every self-adaptive system. In the example, a robot
uses an update computation that employs a camera to update the positions of other
robots in its environment model.

A monitor computation monitors the subsystem that is managed by the self-adaptive
unit. The subsystem can be either a local managed system or another lower-level
self-adaptive unit. Monitor uses the observed data to update the subsystem model.
Additionally, it may trigger analyze computations when particular conditions hold.
For example, in the robotic system, the monitor computation collects data from the
managed system to determine failures of the software components, which trigger the
adaptation process.

An analyze computation assesses the collected data to determine the system’s
ability to satisfy its objectives. Monitor and analyze computations provide for self-
awareness [Hinchey and Sterritt 2006], which is a key property of self-adaptive sys-
tems. A plan computation constructs the actions necessary to achieve the system’s
objectives. Analyze computations may trigger plan computations, for example, when
a particular analysis determines a violation of the system’s objectives. In the robotic
system, analysis and planning may determine a failure (based on the data collected
by monitor) and find a solution for mitigating the failure through adaptation (e.g.,
reinstantiating a component).

Finally, triggered by plan, an execute computation carries out changes on the man-
aged system. In the robotic system, this would correspond to applying the repair actions
necessary to bring the managed system to a consistent state.

The MAPE computations are enhanced with support for distribution through the
coordination primitives. The reference model explicitly separates coordination from
computation. Each reflective computation may need to coordinate with one or more
other reflective computations. The level of coordination among reflective computations
determines the level of centralization in the system. In fact, the interplay of reflective
computations using coordination mechanisms gives way to a variety of self-adaptation
patterns.

4. APPLYING THE REFERENCE MODEL

We have applied FORMS to several case studies. To that end, we describe the concepts
and entities found within each case study via FORMS’s high-level primitives. The
purpose of the study is twofold: (1) to demonstrate the expressiveness and extensibility
of the high-level reference model, and (2) to demonstrate the ability to reason about self-
adaptive properties of the modeled systems. This is demonstrated for both the graphical
notation and for the Z specification. In this section, we study a distributed traffic
monitoring application that includes a coordination mechanism to support self-healing.
Appendix E applies two FORMS perspectives to model IBM’s autonomic computing
framework [IBM 2006]. Finally, Appendix F uses FORMS to model a complex sensor
network system called MIDAS [Malek et al. 2007], which utilizes multiple coordination
mechanisms.

Traffic Monitoring System

The traffic monitoring system consists of a set of intelligent cameras which are dis-
tributed evenly along the road. A simple example of a highway from this case study

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:11

(a) Scenario with a failing camera (b) Deployment view of one camera

Fig. 4. Traffic monitoring case study.

is shown in Figure 4(a). Each camera has a limited viewing range and cameras are
placed to get an optimal coverage of the highway with a minimum overlap. The task
of the cameras is to detect and monitor traffic jams on the highway in a decentralized
way, avoiding the bottleneck of a centralized control center. Possible clients of the mon-
itoring system are traffic-light controllers, driver assistance systems such as systems
that inform drivers about expected travel time delays, systems for collecting data for
long-term structural decision making, etc. Our particular focus here is on self-healing
of silent node failures, that is, failures in which a failing camera becomes unrespon-
sive without sending any incorrect data. Such failures may bring the system to an
inconsistent state and disrupt its services.

Figure 4(b) shows the primary components of the software deployed on each camera,
that is, the local camera system. The local traffic monitoring system provides the domain
functionality, that is, the functionality to detect traffic jams and inform clients. The
local traffic monitoring system is conceived as an agent-based system consisting of two
components. The agent is responsible for monitoring the traffic and collaborating with
other agents to report a possible traffic jam to clients. In normal traffic conditions,
each agent belongs to a single member organization. An example at T0 is agent1 of
organization org1. However, when a traffic jam is detected that spans the viewing
range of multiple neighboring cameras, organizations on these cameras will merge in
one organization. To simplify the management of organizations and interactions with
clients, the organizations have a master/slave structure. The master is responsible for
managing the dynamics of that organization by synchronizing with all of the slaves
and masters of neighboring organizations. At T1-2, two agents, agent2 and agent3,
form the organization org23. When the traffic jam resolves, the organization is split
dynamically. The organization middleware offers services for agents to set up and
maintain organizations. To access the hardware and communication facilities on the
camera, the local traffic monitoring system can rely on the services provided by the
distributed communication and host infrastructure.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:12 D. Weyns et al.

To support robustness to node failures, a self-healing subsystem is added to the
system that is responsible for dealing with camera failures, as shown in Figure 4(b). A
self-healing subsystem comprises the following components.

—Dependency model contains a model of the dependencies of the components of the
local traffic monitoring system with other cameras. The Query/Update interface pro-
vides access for inspecting and updating the model. Dependencies include neighbor
relationships, master/slave relationships, etc.

—Repair strategy contains a set of repair actions to bring the main system to a con-
sistent state in case a failure of a camera is detected on which this node depends.
Examples of repair actions are: remove the slave of the failing camera from the list
of slaves, remove the reference to the communication link with the failing camera,
etc.

—Self-Healing manager provides the logic to deal with self-healing. The self-healing
manager monitors the main system using the monitor interface to maintain the
dependency model. It sends ping messages to the cameras with a dependency in
the dependency model. When a failure is detected (i.e., no echo message is received
after a predefined wait time), the self-healing manager executes the repair actions of
the repair strategy using the Repair interface, bringing the local traffic monitoring
system back to a consistent state.

Figure 4(a) shows a failure of camera 2 at T3. The self-healing managers on the
neighboring nodes will detect this after the timeout of the ping messages and then ap-
ply the repair actions. The self-healing manager on camera 1 will change its neighbor
to camera 3 and visa versa, the self-healing manager on camera 3 will also remove
the slave from the organization, etc. At T3’ the system has recovered from the fail-
ure and can continue its correct operation. The decentralized approach for self-healing
described earlier builds upon the MACODO model and middleware platform. The in-
terested reader may refer to Weyns et al. [2010b].

Figure 5 shows the specification of the traffic monitoring case using FORMS. By
extending the FORMS primitives we can precisely define the elements of the traffic
monitoring system.

The traffic environment is refined and includes, besides the attributes and processes
of the traffic domain, also a communication infrastructure. This infrastructure is used
by the local traffic computations to coordinate the agent organizations, and by the
self-healing managers to coordinate for failure management. A self-healing manager
extends a local reflective computation. It uses a peer-to-peer coordination mechanism to
deal with the failure management concern. The protocol used by self-healing managers
is ping-echo which uses traditional message passing as coordination channel. The de-
pendent nodes model maintains the list of nodes on which the local traffic monitoring
system depends.

We now illustrate with excerpts of the Z specification how the FORMS model supports
reasoning about the recovery of a camera in the failure scenario shown in Figure 4(a).
We have kept the specification as simple as possible. Adding parameters to the Z
schemes would increase their reusability, but at the cost of decreased readability. A
complete Z specification of the application with the failure scenario is provided in
Appendix D.

Our focus will be on the self-healing subsystem of camera 1 that detects a failure of
camera 2 and adapts the local traffic monitoring system to deal with the failure.

We define an environment as a nonempty set of attributes and a set of processes that
can modify the attributes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:13

Fig. 5. Specification of traffic monitoring systems via FORMS concepts. White boxes represent traffic mon-
itoring system constructs, gray boxes represent FORMS constructs.

Environment

attributes : P Attribute

processes : P Process

attributes �= ∅

Changes of attributes in the environment are defined as follows.

Change : P Attribute ↔ P Attribute

Events are defined as changes generated by environment processes.

Event : Process ↔ Change

A traffic environment is defined as an environment with traffic attributes and traffic
processes.

TrafficEnvironment

Environment

attributes ⊆ traffic domain attributes

processes ⊆ traffic domain processes

The traffic environment at time T0 in the example (Figure 4(a)) is defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:14 D. Weyns et al.

TrafficEnvironmentT0

TrafficEnvironment

attributes = {camera1, camera2, camera3, freeflow zone1, freeflow zone2,

congested zone3}

processes = traffic domain processes

We consider the following set of events in the traffic environment:

events : P Event

events = {traffic2 �→ ({freeflow zone2} �→ {congested zone2}),
monitor camera2 �→ ({camera2} �→ {})}

A failure of camera 2 changes the traffic environment as follows.

TrafficEnvironmentT3

�TrafficEnvironmentT2

p? : Process

c? : Change

s? : shutdowns

p? = monitor camera2

c? = {camera2} �→ {}

(p?, c?) ∈ events

s? = monitor camera2

attributes′ = attributes \ first(c?) ∪ second(c?)
processes′ = processes \ {s?}

The specification states that after the event, camera 2 is no longer available for traffic
monitoring, and consequently, the traffic monitoring process of camera 2 is shutdown.

The domain logic of the traffic application is realized by a local traffic monitoring
system deployed on each node.

LocalTrafficMonitoringSystem

trafficModel : LocalTrafficModel

computation : LocalTrafficComputation

dom computation.read = {(trafficModel, computation.state)} ∧

dom computation.write = {(computation.state, trafficModel)} ∧

dom computation.send = {computation.state}

A local traffic monitoring system consists of a traffic model that maintains a rep-
resentation of the local traffic context and a computation that interacts with other
computations to provide traffic jam monitoring services. For details we refer the reader
to the Appendix. The predicate states that a local traffic computation is restricted to
act upon the local traffic model, and messages for coordination are produced based on
the current state of the computation.

We now zoom in on the self-healing subsystem. A dependency model is defined as a
mapping of dependencies to names of cameras.

DependencyModel

dependencies : Dependency ↔ Name

The dependency model for camera 1 at T2 is defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:15

DependencyModelOneT2

DependencyModel

dependencies = {neighbor �→ 2, neighbormaster �→ 3, myslave �→ 0, mymaster �→ 0}

Camera 1 has a dependency with camera 2 as neighbor and with camera 3 as neighbor
master of another organization. The number “0” indicates that camera 1 currently has
no dependencies with slaves or a master within its organization.

A repair strategy model is defined as a set of repair actions.

RepairStrategy

repairActions : RepairActions

The repair strategies for the camera 1 at time T2 is defined as the following.

RepairStrategyOneT2

RepairStrategy

repairActions = {neighbor �→ (2, 3), neighbormaster �→ (3, 2)}

The predicate states that if camera 2 fails the new neighbor of camera 1 will be cam-
era 3, and if camera 3 fails, camera 2 will be the master its neighbor organization.

The coordination mechanism for fault detection is defined as follows.

PeerToPeer

CoordinationMechanism[PingEcho, DependentNodes, MessagePassing]
pingTime : Name ↔ Time

waitTime : Time

dom pingTime = model.nodes ∧ ∀ n : model.nodes • ∃ l : channel.links • first(l) = n

Ping time maintains the points in time when the last ping messages were sent to each
of the cameras with a dependency. Wait time is a constant that indicates when an
echo message should arrive after a ping message has been sent. The last part of the
predicate states that there are communication links available to each camera in the
dependency model.

The concrete instance of the coordination mechanism for camera 1 at T2 is defined
next.

PeerToPeerOneT2

PeerToPeer

model.nodes = {2, 3}

channel.links = traffic communication channel \ {1 �→ cam1}

pingTime = {2 �→ 4430, 3 �→ 4440}

waitTime = 40

The predicate states that camera 1 has dependencies with camera 2 (its neighbor) and
camera 3 (the master of its neighbor organization). The coordination mechanism has
communication channels available to all the other cameras in the system. The last ping
message was sent to camera 2 at time 4430 and to camera 3 at time 4440. Finally, the
wait time for echo messages is 40 time units.

A self-healing manager is defined.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:16 D. Weyns et al.

SelfHealingManager

Computation

coordinationMechanism : PeerToPeer

read...

sense : LocalTrafficMonitoringSystem × P State → P State

adapt : LocalTrafficMonitoringSystem × P State → LocalTrafficMonitoringSystem

send : P State → Message

receive : Message → P State

A self-healing manager is a computation extended with a peer-to-peer coordination
mechanism. The self-healing manager can read and write a dependency model and
repair actions (omitted). It can sense a local traffic monitoring system and adapt it
when a failure of a dependent camera is detected. Coordination with other self-healing
managers is done using the exchange of messages.

The self-healing manager of camera 1 at time T2 is defined.

SelfHealingManagerOneT2

SelfHealingManager

PeerToPeerOneT2

A self-healing subsystem is than defined as follows.

SelfHealingSubsystem

dependencyModel : DependencyModel

repairStrategy : RepairStrategy

selfHealingManager : SelfHealingManager

...

A self-healing subsystem comprises a dependency model, a repair strategy, and a self-
healing manager. The omitted predicate defines the scope of the allowed actions of the
self-healing manager.

The concrete self-healing subsystem for camera 1 at T2 is defined next.

SelfHealingSubsystemOneT2

SelfHealingSubsystem

DependencyModelOneT2

RepairStrategyOneT2

SelfHealingManagerOneT2

A timeout of a self-healing manager is defined as follows.

Timeout

�SelfHealingManager

Tick

n! : Name

∃ n! : Name; t : Time • (n!, t) ∈ coordinationMechanism.pingTime ∧

t + coordinationMechanism.waitTime > time′

The schema tells us that a timeout does not change its state. A timeout happens when
the clock makes a tick. The predicate states that a timeout for a particular camera is
reached when the time after the tick exceeds the last ping time for that camera plus
the wait time.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:17

We now explain how self-healing is realized for one of the cameras. The timeout for
self-healing manager 1 after the crash of camera 2 is defined as follows.

Timeout1

Timeout

�SelfHealingManagerOneT2

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping
message to camera 2 was sent at time “4430” and the waiting time is 40 time units).
The timeout applies for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as follows.

CameraOneRecoversFromFailureCameraTwo

�TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1

lcs1?, lcs1! : SituatedLocalCameraSystem

camera : Attribute

cam : EnvironmentRepresentation

n : Name

{camera} = first(c?) ∧

traffic communication channel = traffic communication channel \ {n �→ cam} ∧

...

lcs1?.myName = 1 ∧

lcs1!.context = lcs1?.context \ {camera} ∧

lcs1!.selfHealingSubsystem = updateSelfHealingSubsystem(lcs1?, camera, cam, n) ∧

lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam, n) ∧

localCamaraSystems′ = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies the adaptations of the local camera system
after the failure of the camera. The first part of the predicate selects the failing camera
using the camera failure event. Next, the communication channels are updated. Then,
some minor aspects are omitted. Subsequently, the recovering local camera system
is selected (with myName = 1) and the failing camera is removed from its context.
Finally, the adaptation is specified, consisting of two parts: an update of the state of
the self-healing subsystem and the actual adaptation of the local traffic monitoring
system (using two helper functions that are omitted here). From an operational point
of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.

5. RELATED WORK

We adopt a broad perspective in the review of the related literature. We consider re-
search from the pervasive and ubiquitous computing area as well as the research from
the self-adaptive and autonomic computing area. This is reasonable given that these
systems are highly related, and the ability to deal with the dynamic and unpredictable
nature of ubiquitous and pervasive systems is generally considered as one of the pri-
mary motivations for autonomic computing [Sterritt 2005] and self-adaptive systems.

The main influences on the work presented herein are computational reflection,
feedback-control loop pattern, and distributed coordination. We already discussed these

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:18 D. Weyns et al.

influences, and the contribution from frameworks and reference implementations in
detail in Section 3, mainly with examples from the self-adaptive and autonomic sys-
tems area. The contribution of FORMS, with respect to these frameworks and refer-
ence applications, is the integrated view aimed at encompassing different points of
view represented by these and relating elements from different perspectives to one
another.

We have also found support for our modeling perspectives from works within the
ubiquitous and pervasive computing community. For instance, Capra et al. [2001] ad-
vocate the use of reflection and metadata in middleware to support the construction of
context-aware applications. Nahrstedt et al. [2001] describe how a control loop may be
used to engineer QoS-based adaptations in ubiquitous environments. Sometimes the
nature of pervasive computing systems requires that the control loop to be “opened”,
involving humans-in-the-loop [Erickson 2002]. Adding to the problems in the distribu-
tion perspective is the fact that in a ubiquitous system the distributed processes may
run on mobile devices [Fok et al. 2004] and in some instances the processes themselves
are mobile [Carzaniga et al. 1997]. This calls for dedicated techniques, in particular to
enable coordination [Braione and Picco 2004; Murphy et al. 2006]. A problem is the lack
of a coherent, unifying model, with support for all three perspectives and formal under-
pinnings that provide for the required precision and expressibility in industrial-scale
software development projects.

Several formal approaches targeting specific aspects of self-adaptation exist. For
instance, Zhang and Cheng [2006] present an approach to formally model the be-
havior of adaptive programs, automatically analyze them, and generate an imple-
mentation of the system. Wermelinger and Fiadeiro [1999] present an algebra for
formally specifying runtime reconfigurations of a system’s software architecture.
Several formal approaches also target pervasive and context-aware computing sys-
tems, for example, process calculus approaches such as mobile ambients [Cardelli
and Gordon 2000]. ASSL [Vassev and Hinchey 2011] provides support for a complete
development methodology of self-adaptive embedded systems, including specification
and verification of self-adaption. These and other works demonstrate the usefulness
of applying formal modeling to this field. In comparison, FORMS provides an en-
compassing formally founded vocabulary for describing and reasoning about different
concerns of self-adaptive software architectures, which is a different, complementary
focus.

Another challenge for these systems is to model key system aspects, for instance, the
environment and how it is perceived. In the pervasive and context-aware domain, an
important focus has been on specifying, interpreting, recognizing, and storing contex-
tual information [Ranganathan and Campbell 2003; Dey 2000; Henricksen et al. 2002;
Román et al. 2002] using formal or semiformal models. Schmidt et al. [1999] propose
a layered architecture with formal underpinnings for sensor-based context recogni-
tion. Brewington and Cybenko [2000] discuss how to manage context monitoring when
context information is transient. They provide a formal reasoning framework for de-
ciding when to update context information via the system’s sensors. This is an example
of extended semantic description of the monitor concept in the FORMS MAPE-K per-
spective. The semantic Web has influenced several ontology-based approaches [Román
et al. 2002; Ye et al. 2007], not just for modeling context, but also other critical system
aspects such as trust [Haque and Ahamed 2007] and even coordination of application
invocation [Román et al. 2002].

6. DISCUSSION

The application of FORMS to the traffic monitoring system demonstrates the expressive
power and extensibility of the FORMS primitives. It also shows how the specification

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:19

allows reasoning about a self-healing property of the system at architectural level. The
step-wise analysis and refinement of the specification starting with the event of the
failing camera up to the recovery of the camera highlights the key design elements
of this self-healing scenario. Describing such reasoning steps can be a useful way to
get better insight in the self-adaptive property, to detect problems at early stages of
system construction, or it can serve as documentation for detailed design and system
implementation. Beyond specification and reasoning about the high-level architectural
design of a selfÂ·-adaptive system, the formalism affords numerous capabilities. For in-
stance, existing tools could be used for: (1) type checking (e.g., CZT’s type checker [CZT
2010]) to automatically obtain certain guarantees on the validity of the specification
of a self-adaptive system, such as conformance of architecture descriptions that are
refined iteratively, (2) executing and animating the schemas (e.g., CZT’s ZLive anima-
tor [CZT 2010]) to visually obtain a better understanding of the system’s properties,
and (3) testing (e.g., CZT’s ModelJUnit [CZT 2010]) to automatically generate test
cases.

In light of the preceding discussion, the contributions of FORMS can be summarized
as follows. First, FORMS establishes a shared vocabulary of primitives in this area
that, while simple and concise, can be used to precisely describe the essential aspects
of complex self-adaptive systems. Second, FORMS enables engineers to specialize the
primitives for their specific domain and concerns of interest. Third, it enables engineers
to reason about their early design decisions, which are known to be the most difficult to
make but have the most impact on system construction and evolution. Finally, FORMS
lays a foundation for a systematic method of developing a pattern catalog of known
solutions (i.e., architectural patterns).

However, the formal reference model is not without limitations. First, the primitives
of FORMS are coarse-grained. While the abstractions cover a wide variety of domains,
from our experiences we learned that in most cases the primitives need to be refined
to be really useful for an engineer. Second, reasoning about the description of a self-
adaptive system is most appropriate with a specification in Z. However, this implies
that the engineer is familiar with Z in general and the specification of the FORMS
perspectives in particular. Moreover, such specifications tend to be lengthy. Third,
while excellent tools are available for the specification of a system in Z, less support
is available for reasoning about the system and automatic verification of properties.
Finally, currently, FORMS does not support consistency and traceability between a
specification and an implementation. While such support would be attractive from a
practical point of view, it was clearly not in the scope of the research presented in this
article.

7. CONCLUSIONS AND FUTURE WORK

The emergence of pervasive and ubiquitous computing environments, which are often
highly dynamic and unpredictable, have motivated the development of self-adaptive
software systems. However, building self-adaptive software systems has been shown to
be significantly more challenging than traditional software systems. There are numer-
ous technical culprits, but we believe the one that hinders progress the most is the lack
of a precise vocabulary for describing and reasoning about the primary architectural
characteristics of self-adaptive systems.

This is exactly the challenge we have undertaken in this article. We have presented
FORMS, a formal reference model for specifying self-adaptive software systems. Un-
like existing guidelines and frameworks proposed previously, FORMS aims to incor-
porate various points of view into a unifying reference model. We presented unifi-
cation of three perspectives that have historically influenced the majority of existing

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:20 D. Weyns et al.

Fig. 6. FORMS: reflection perspective.

approaches employed in the construction of self-adaptive systems: computational reflec-
tion, distributed coordination, and MAPE-K. We distilled the self-adaptation primitives
from these three perspectives and related them to one another, and provided a formal
definition of them using Z notation. We have demonstrated FORMS precision, expres-
siveness, and extensibility by applying it to several case studies.

While our experiences with FORMS have been very positive, several avenues of fu-
ture work remain. We intend to investigate new concerns in self-adaptation to further
assess, and potentially extend, FORMS’s perspectives. The formally defined reference
model primitives form the basis for a design language, a language we plan to use for
documenting architectural patterns in this setting. In turn, by studying the relation-
ships between patterns and their quality attributes, we intend to develop a catalog of
reusable strategies and tactics for building systems in this area.

APPENDIXES

In these appendixes, we first give a complete formal definition of FORMS in the Z
language. Subsequently, we present the reflection perspective (in Section A), the uni-
fication with the distribution perspective (in Section B), and the unification with the
MAPE-K perspective (in Section C). For each part of the formal model, we give a
graphical overview of the specified elements and relations, followed by the formal spec-
ification. Next, we give a complete formal specification of a traffic monitoring example
(in Section D). In the last part of the appendix, we discuss two additional case studies:
IBM’s autonomic computing framework [IBM 2006] (in Section E), and a complex sen-
sor network system called MIDAS [Malek et al. 2007] (in Section F). The complete Z
specification is type checked using CZT tools [CZT 2010].

A. REFLECTION PERSPECTIVE

Figure 6 shows a graphical overview of the FORMS elements and relations from the
reflection perspective.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:21

A.1 Environment

To define environment, we first introduce attributes and processes. An attribute is a
perceivable characteristic of the environment. The set of attributes is defined.

[Attribute]

A process is an activity in the environment that can change attributes. The set of
processes is defined as follows.

[Process]

An environment comprises a nonempty set of attributes and a set of processes that
can modify the attributes. Environment is defined.

Environment

attributes : P Attribute

processes : P Process

attributes �= ∅

We define context as a set of accessible attributes of the environment.

Context == P Attribute

Changes in the environment are defined as follows.

Change : P Attribute ↔ P Attribute

Events are defined as changes generated by processes.

Event : Process ↔ Change

A.2 Base-Level Subsystem

A base-level subsystem provides the system’s domain functionality, that is, application
logic. To define a base-level subsystem, we first introduce models. A model comprises
representations that describe something of interest in the physical world and/or cyber
world. Models are defined.

Model [Representation]
representations : P Representation

representations �= ∅

Representation is defined as a parameter to allow concrete models having different
types of representations.

An environment representation is a representation of attributes in the environment.
The set of environment representations is defined next.

[EnvironmentRepresentation]

A domain model describes a domain of interest for one or more stakeholders. Domain
model is defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:22 D. Weyns et al.

DomainModel

Environment

Model[EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

dom mapping ⊆ {attrs : P Attribute | attrs ⊆ attributes}

ran mapping = {r : EnvironmentRepresentation |

r ∈ representations}

A domain model maps representations to attribute sets.
To define computations, we introduce the type state. State represents the current

status of a computation and is defined as follows.

[State]

A computation is an activity in a software system that manages its own state. Com-
putations are defined.

Computation

state : P State

compute : P State → P State

dom compute = {s : P State | s ⊆ state}

The computation operation is defined as follows.

ComputationOp

�Computation

s?, s! : P State

s! = compute(s?) ∧

state′ = state \ s? ∪ s!

A base-level computation can act upon a set of domain models and can perceive a
context in the environment and affect this context.

BaseLevelComputation

Computation

read : P DomainModel × P State → P State

write : P State × P DomainModel → P DomainModel

perceive : P State × Context → P State

effect : P State × Context → Context

A base-level subsystem is a software system that provides some functionality for a
stakeholder or set of stakeholders. Base-level subsystem is defined.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:23

BaseLevelSubsystem

models : P DomainModel

computations : P BaseLevelComputation

∀ c : computations •

dom c.read = {mdls : P DomainModel | mdls ⊆ models •

(mdls, c.state)} ∧

dom c.write = {mdls : P DomainModel | mdls ⊆ models •

(c.state, mdls)}

A base-level subsystem comprises a set of domain models and a set of base-level
computations. The computations can act upon the domain models.

The read operation defines how a base-level subsystem computation reads a set of
domain models and updates its state.

ReadOp

�BaseLevelSubsystem

c?, c! : BaseLevelComputation

ms? : P DomainModel

c? ∈ computations ∧

ms? ⊆ models ∧

c!.state = c?.read(ms?, c?.state) ∧

c!.compute = c?.compute ∧

models′ = models ∧

computations′ = computations \ {c?} ∪ {c!}

The compute operation defines how a base-level subsystem computation performs a
computation on its state.

ComputeOp

�BaseLevelSubsystem

c?, c! : BaseLevelComputation

s! : P State

c? ∈ computations ∧

s! = c?.compute(c?.state)
c!.state = s! ∧

c!.compute = c?.compute ∧

models′ = models ∧

computations′ = computations \ {c?} ∪ {c!}

The write operation defines how a base-level computation acts upon a set of domain
models.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:24 D. Weyns et al.

WriteOp

�BaseLevelSubsystem

c? : BaseLevelComputation

ms? : P DomainModel

ms! : P DomainModel

c? ∈ computations ∧

ms? ⊆ models ∧

ms! = c?.write(c?.state, ms?) ∧

models′ = models \ ms? ∪ ms! ∧

computations′ = computations

A.3 Reflective Subsystem

A reflective subsystem is a part of the computing system that manages another part
of it, which can be either a base-level or a reflective subsystem. Note that a reflective
subsystem may manage another reflective subsystem. This would be the case when a
self-adaptive system includes multiple reflective levels. To define a reflective subsys-
tem, we first introduce reflection models and reflective computations.

A reflection model representation reifies the entities (e.g., subsystem constructs,
environment attributes) needed for reasoning about adaptation. It is analogous to
metalevel information from the domain of computational reflection [Maes 1987]. A
self-adaptive system has a set of reflection model representations.

[ReflectionModelRepresentation]

A reflection model comprises reflection model representations.

ReflectionModel

Model[ReflectionModelRepresentation]

Reflection models are used by reflective computations.
A reflective computation is defined.

ReflectiveComputation [Subsystem]
Computation

read : P ReflectionModel × P State → P State

write : P State × P ReflectionModel → P ReflectionModel

perceive : Context × P State → P State

sense : P Subsystem × P State → P State

adapt : P Subsystem × P State → P Subsystem

trigger : P State × P ReflectiveComputation[Subsystem] →

P ReflectiveComputation[Subsystem]

A reflective computation reasons and acts upon a subset of reflection models by
reading from and writing to the models. It also perceives certain environmental context.
However, note that, unlike a base-level computation, a reflective computation does not
effect changes in the environment. Moreover, reflective computation not only senses
(monitors) and adapts the subsystem, but also triggers other reflective computations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:25

A reflective subsystem is composed of reflection models and reflective computations.
This is formally specified as follows.

ReflectiveSubsystem [Subsystem]
models : P ReflectionModel

computations : P ReflectiveComputation[Subsystem]

∀ c : computations •

dom c.read = {mdls : P ReflectionModel | mdls ⊆ models • (mdls, c.state)} ∧

dom c.write = {mdls : P ReflectionModel | mdls ⊆ models • (c.state, mdls)} ∧

dom c.trigger = {ct : P ReflectiveComputation[Subsystem] |

ct ⊆ computations \ {c} • (c.state, ct)}

A.4 Self-Adaptive System

The definition of self-adaptive system in the reflection perspective naturally delineates
the boundaries between various key elements of such systems. In particular, the specifi-
cation clearly distinguishes between elements that constitute the base-level (managed)
subsystem, the reflective (adaptation reasoning) subsystem, and the environment in
which the self-adaptive is situated (external to the self-adaptive system).

A self-adaptive system comprises a set of base-level and reflective subsystems. As
an example, we consider a self-adaptive system with two reflective levels. We model
a metalevel subsystem (i.e., a reflective system on top of a base-level subsystem) as
follows.

MetaLevelSubsystem == ReflectiveSubsystem[BaseLevelSubsystem]

Similarly, a metametalevel subsystem can be defined.

MetaMetaLevelSubsystem == ReflectiveSubsystem[MetaLevelSubsystem]

We can now model the self-adaptive system as follows.

SelfAdaptiveSystem

baseLevelSubsystems : P BaseLevelSubsystem

metaLevelSubsystems : P MetaLevelSubsystem

metaMetaLevelSubsystems : P MetaMetaLevelSubsystem

#baseLevelSubsystems ≥ 1
#metaLevelSubsystems ≥ 1
#metaMetaLevelSubsystems ≥ 1
∀ mls : metaLevelSubsystems; cm, ce : ReflectiveComputation •

cm ∈ mls.computations ∧ ce ∈ mls.computations ∧

dom cm.sense = {bls : P BaseLevelSubsystem |

bls ⊆ baseLevelSubsystems • (bls, cm.state)} ∧

dom ce.adapt = {bls : P BaseLevelSubsystem |

bls ⊆ baseLevelSubsystems • (bls, cm.state)}
∀ mmls : metaMetaLevelSubsystems;
cm, ce : ReflectiveComputation •

cm ∈ mmls.computations ∧ ce ∈ mmls.computations ∧

dom cm.sense = {mls : P MetaLevelSubsystem |

mls ⊆ metaLevelSubsystems • (mls, cm.state)} ∧

dom ce.adapt = {mls : P MetaLevelSubsystem |

mls ⊆ metaLevelSubsystems • (mls, ce.state)}

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:26 D. Weyns et al.

The specification states that metalevel subsystems can sense and adapt base-level
subsystems, while metametalevel subsystems can sense and adapt metalevel subsys-
tems.

A self-adaptive system situated in an environment is specified.

SituatedSelfAdaptiveSystem

Environment

SelfAdaptiveSystem

context : Context

context ⊆ attributes

∀ bls : baseLevelSubsystems; c : BaseLevelComputation •

c ∈ bls.computations ∧

dom c.perceive = {attrs : Context |

attrs ⊆ context • (c.state, attrs)} ∧

dom c.effect = {attrs : Context |

attrs ⊆ context • (c.state, attrs)}
∀ mls : metaLevelSubsystems; cu : ReflectiveComputation •

cu ∈ mls.computations ∧

dom cu.perceive = {attrs : Context |

attrs ⊆ context • (attrs, cu.state)}
∀ mmls : metaMetaLevelSubsystems;
cu : ReflectiveComputation •

cu ∈ mmls.computations ∧

dom cu.perceive = {attrs : Context |

attrs ⊆ context • (attrs, cu.state)}

The specification states that base-level subsystems can perceive and affect the con-
text in which the self-adaptive system is situated, while reflective subsystems can only
perceive the context.

Finally, we can now formally specify how a metalevel subsystem adapts a base-level
subsystem:

MetaLevelAdaptationOp

�SituatedSelfAdaptiveSystem

�Environment

rc? : ReflectiveComputation[BaseLevelSubsystem]
bls?, bls! : BaseLevelSubsystem

mls?, mls! : MetaLevelSubsystem

bls? ∈ baseLevelSubsystems ∧

mls? ∈ metaLevelSubsystems ∧

rc? ∈ mls?.computations ∧

{bls!} = rc?.adapt({bls?}, rc?.state) ∧

baseLevelSubsystems′ = baseLevelSubsystems \ {bls?} ∪ {bls!}
metaLevelSubsystems′ = metaLevelSubsystems

metaMetaLevelSubsystems′ = metaMetaLevelSubsystems

The specification states that self-adaptation changes the self-adaptive system, but
does not affect the environment. The adaptation is performed by one of the metalevel
reflective computations (rc?) which adapts one or more base-level subsystems.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:27

Fig. 7. FORMS: unification with distribution perspective.

B. UNIFICATION WITH DISTRIBUTION PERSPECTIVE

Figure 7 shows a graphical overview of the FORMS elements and relations for the
unification of the reflection and the distribution perspective.

B.1 Coordination Mechanism

We define a coordination mechanism as follows.

CoordinationMechanism [Protocol, Model, Channel]
protocol : Protocol

model : Model

channel : Channel

A coordination mechanism comprises a coordination protocol, a coordination model,
and a coordination channel.

B.2 Local Managed System

Local base-level computation extends base-level computation with a coordination mech-
anism, enabling it to exchange messages with other base-level computations.

LocalBaseLevelComputation [Protocol, Model, Channel]
BaseLevelComputation

coordinationMechanism : CoordinationMechanism[Protocol, Model, Channel]

A local managed system is defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:28 D. Weyns et al.

LocalManagedSystem [Protocol, Model, Channel]
models : P DomainModel

computations :
P LocalBaseLevelComputation[Protocol, Model, Channel]

∀ c : computations •

dom c.read = {mdls : P DomainModel | mdls ⊆ models •

(mdls, c.state)} ∧

dom c.write = {mdls : P DomainModel | mdls ⊆ models •

(c.state, mdls)}

A local managed system is a base-level subsystem comprising a set of domain models
and a set of local base-level computations.

B.3 Self-Adaptive Unit

A local reflective computation is a reflective computation that comprises a coordination
mechanism.

LocalReflectiveComputation [Subsystem, Protocol, Model, Channel]
Computation

coordinationMechanism :
CoordinationMechanism[Protocol, Model, Channel]

read : P ReflectionModel × P State → P State

write : P State × P ReflectionModel → P ReflectionModel

perceive : Context × P State → P State

sense : P Subsystem × P State → P State

adapt : P Subsystem × P State → P Subsystem

trigger : P State × P LocalReflectiveComputation[
Subsystem, Protocol, Model, Channel] →

P LocalReflectiveComputation[Subsystem, Protocol, Model, Channel]

The self-adaptive unit is defined as follows.

SelfAdaptiveUnit [Subsystem, Protocol, Model, Channel]
models : P ReflectionModel

computations : P LocalReflectiveComputation[
Subsystem, Protocol, Model, Channel]

∀ c : computations •

dom c.read = {mdls : P ReflectionModel | mdls ⊆ models •

(mdls, c.state)} ∧

dom c.write = {mdls : P ReflectionModel | mdls ⊆ models •

(c.state, mdls)} ∧

dom c.trigger = {ct : P LocalReflectiveComputation[
Subsystem, Protocol, Model, Channel] |

ct ⊆ computations \ {c} • (c.state, ct)}

A self-adaptive unit is a reflective subsystem comprising reflection models and local
reflective computations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:29

B.4 Distributed Self-Adaptive System

A local self-adaptive system comprises a set of local managed systems and a set of
self-adaptive units. As an example, we consider a local self-adaptive system with one
reflective layer in which all base-level computations use a particular coordination mech-
anism and all reflective computations use a particular coordination protocol.

LocalSelfAdaptiveSystem [BCP, BCM, BCC, ACP, ACM, ACC]
localManagedSystems : P LocalManagedSystem[BCP, BCM, BCC]
selfAdaptiveUnits :

P SelfAdaptiveUnit[LocalManagedSystem, ACP, ACM, ACC]

∀ sau : selfAdaptiveUnits; lrcs, lrca : LocalReflectiveComputation •

lrcs ∈ sau.computations ∧ lrca ∈ sau.computations ∧

dom lrcs.sense = {lms : P LocalManagedSystem |

lms ⊆ localManagedSystems • (lms, lrcs.state)} ∧

dom lrca.adapt = {lms : P LocalManagedSystem |

lms ⊆ localManagedSystems • (lms, lrca.state)}

The abbreviations BCP, BCM, and BCC refer respectively to the coordination proto-
col, coordination model, and coordination channel for the base-level system. ACP, ACM,
and ACC are similar abbreviations for the coordination elements of the self-adaptive
unit.

The specification states that self-adaptive units can sense and adapt the local man-
aged systems of the local self-adaptive system.

A situated local self-adaptive system is a local self-adaptive system situated in some
context of the environment.

SitutatedLocalSelfAdaptiveSystem [BCP, BCM, BCC, ACP, ACM, ACC]
Environment

LocalSelfAdaptiveSystem[BCP, BCM, BCC, ACP, ACM, ACC]
context : Context

context ⊆ attributes

∀ lms : localManagedSystems; c : LocalBaseLevelComputation •

c ∈ lms.computations ∧

dom c.perceive =

{attrs : Context | attrs ⊆ context • (c.state, attrs)} ∧

dom c.effect =

{attrs : Context | attrs ⊆ context • (c.state, attrs)}
∀ sau : selfAdaptiveUnits; lrc : LocalReflectiveComputation •

lrc ∈ sau.computations ∧

dom lrc.perceive =

{attrs : Context | attrs ⊆ context • (attrs, lrc.state)}

A distributed self-adaptive system comprises a set of local self-adaptive systems.

DistributedSelfAdaptiveSystem [BCP, BCM, BCC, ACP, ACM, ACC]
localSelfAdaptiveSystems :

P LocalSelfAdaptiveSystem[BCP, BCM, BCC, ACP, ACM, ACC]

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:30 D. Weyns et al.

Fig. 8. FORMS: unification with MAPE perspective.

C. UNIFICATION WITH MAPE-K PERSPECTIVE

Figure 8 shows a graphical overview of FORMS elements and relations integrated with
the MAPE perspective.

C.1 Reflection Models

We distinguish between four types of reflection models: environment model, concern
model, mape working model, and subsystem model. To describe reflection models, we
first introduce a number of additional types of representations.

[ConcernRepresentation, MapeRepresentation]

A concern representation is a representation of a particular concern of interest. Mape
representations are used to describe working models used by reflective computations.

A subsystem representation is a representation of (a part of) a subsystem which can
be either a base-level subsystem or a reflective subsystem. Subsystem representations
are defined.

SubsystemRepresentation [Subsystem]

An environment model comprises representations of attributes in the environment
relevant for a particular concern of interest. Environment models are defined next.

EnvironmentModel

Environment

Model[EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

dom mapping ⊆ {attrs : P Attribute | attrs ⊆ attributes}

ran mapping = {r : EnvironmentRepresentation | r ∈ representations}

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:31

A concern model models a particular concern of interest. Concern models are defined.

ConcernModel

Model[ConcernRepresentation]

A mape working model is a model used by reflective computations to deal with a
concern of interest. Mape working models are defined.

MapeWorkingModel

Model[MapeRepresentation]

To define a subsystem model we first introduce the concept of feature. Features
describe perceivable characteristics of software systems.

[Feature]

We define a function reify that returns the features for a given subsystem.

[Subsystem]
reify : Subsystem → P Feature

A subsystem model is a model of a subsystem (either a base-level system or a reflec-
tive subsystem). Subsystem models are defined as follows.

SubsystemModel [Subsystem]
subsystem : Subsystem

Model[SubsystemRepresentation[Subsystem]]
mapping : P Feature ↔ SubsystemRepresentation[Subsystem]

dom mapping ⊆ {features : P Feature | features ⊆ reify(subsystem)}
ran mapping = {r : SubsystemRepresentation[Subsystem] |

r ∈ representations}

A base-level subsystem model is defined.

BaseLevelSubsystemModel

SubsystemModel[BaseLevelSubsystem]

We introduce reflection models which group the sets of models used by a set of
reflective computations.

ReflectionModels [Subsystem]
environmentModels : P EnvironmentModel

concernModels : P ConcernModel

mapeWorkingModels : P MapeWorkingModel

subsystemModels : P SubsystemModel[Subsystem]

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:32 D. Weyns et al.

C.2 Reflective Computations

We define five types of reflective computations for self-adaptive system: update, moni-
tor, analyse, plan, and execute.

Update

Computation

read : P EnvironmentModel × P State → P State

write : P State × P EnvironmentModel → P EnvironmentModel

perceive : Context × P State → P State

Update computations perceive the environment and update the environment models
accordingly.

Monitor [Subsystem]
Computation

read : P MapeWorkingModel × P SubsystemModel[Subsystem] × P State

→ P State

write : P State × P MapeWorkingModel × P SubsystemModel[Subsystem]
→ P MapeWorkingModel × P SubsystemModel[Subsystem]

sense : P Subsystem × P State → P State

trigger : P State × P Analyse[Subsystem] → P Analyse[Subsystem]

Monitor computations monitor the underlying subsystem and maintain the sub-
system models and possibly mape working models. Monitor computations can trigger
analyse computations in particular states.

Analyse [Subsystem]
Computation

read : P EnvironmentModel × P ConcernModel × P MapeWorkingModel×

P SubsystemModel[Subsystem] × P State → P State

write : P State × P MapeWorkingModel → P MapeWorkingModel

trigger : P State × P Plan[Subsystem] → P Plan[Subsystem]

Plan [Subsystem]
Computation

read : P EnvironmentModel × P ConcernModel × P MapeWorkingModel×

P SubsystemModel[Subsystem] × P State → P State

write : P State × P ConcernModel × P MapeWorkingModel

→ P ConcernModel × P MapeWorkingModel

trigger : P State × P Execute[Subsystem] → P Execute[Subsystem]

Analyse and plan computations reason about and act upon the reflection models in
order to deal with the concerns of the self-adaptive system. Analyse computations can
trigger plan computations in particular states, while plan computations can trigger
execute computations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:33

Execute [Subsystem]
Computation

read : P EnvironmentModel × P MapeWorkingModel×

P SubsystemModel[Subsystem] × P State → P State

write : P State × P MapeWorkingModel × P SubsystemModel[Subsystem]
→ P MapeWorkingModel × P SubsystemModel[Subsystem]

adapt : P Subsystem × P State → P Subsystem

Execute computations use environment models and mape working models to adapt
the underlying subsystem.

We define the sets of computations of a reflective subsystem for each type of reflective
computation.

Updating [Subsystem]
updates : P Update

ReflectionModels[Subsystem]

∀ u : updates •

dom u.read = {eModels : P EnvironmentModel |

eModels ⊆ environmentModels • (eModels, u.state)} ∧

dom u.write = {eModels : P EnvironmentModel |

eModels ⊆ environmentModels • (u.state, eModels)}

Update computations act upon (a subset of) the environment models.

Monitoring [Subsystem]
monitors : P Monitor

ReflectionModels[Subsystem]

∀ m : monitors •

dom m.read = {mModels : P MapeWorkingModel;
sModels : P SubsystemModel[Subsystem] |

mModels ⊆ mapeWorkingModels ∧

sModels ⊆ subsystemModels •

(mModels, sModels, m.state)} ∧

dom m.write = {mModels : P MapeWorkingModel;
sModels : P SubsystemModel[Subsystem] |

mModels ⊆ mapeWorkingModels ∧

sModels ⊆ subsystemModels •

(m.state, mModels, sModels)}

Monitor computations act upon subsystem models and mape working models.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:34 D. Weyns et al.

Analyzing [Subsystem]
analyses : P Analyse

ReflectionModels[Subsystem]

∀ a : analyses •

dom a.read = {eModels : P EnvironmentModel;
cModels : P ConcernModel;
mModels : P MapeWorkingModel;
sModels : P SubsystemModel[Subsystem] |

eModels ⊆ environmentModels ∧

cModels ⊆ concernModels ∧

mModels ⊆ mapeWorkingModels ∧

sModels ⊆ subsystemModels •

(eModels, cModels, mModels, sModels, a.state)} ∧

dom a.write = {mModels : P MapeWorkingModel |

mModels ⊆ mapeWorkingModels • (a.state, mModels)}

Analyse computations read the different kinds of reflection models and write their
analysis results to the mape working models.

Planning [Subsystem]
plans : P Plan

ReflectionModels[Subsystem]

∀ p : plans •

dom p.read = {eModels : P EnvironmentModel;
cModels : P ConcernModel;
mModels : P MapeWorkingModel;
sModels : P SubsystemModel[Subsystem] |

eModels ⊆ environmentModels ∧

cModels ⊆ concernModels ∧

mModels ⊆ mapeWorkingModels ∧

sModels ⊆ subsystemModels •

(eModels, cModels, mModels, sModels, p.state)} ∧

dom p.write = {cModels : P ConcernModel;
mModels : P MapeWorkingModel |

cModels ⊆ concernModels ∧

mModels ⊆ mapeWorkingModels •

(p.state, cModels, mModels)}

Plan computations use the different reflection models to update the concern models
and mape working models.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:35

Executing [Subsystem]
executes : P Execute

ReflectionModels[Subsystem]

∀ e : executes •

dom e.read = {eModels : P EnvironmentModel;
mModels : P MapeWorkingModel;
sModels : P SubsystemModel[Subsystem] |

eModels ⊆ environmentModels ∧

mModels ⊆ mapeWorkingModels ∧

sModels ⊆ subsystemModels •

(eModels, mModels, sModels, e.state)} ∧

dom e.write = {mModels : P MapeWorkingModel;
sModels : P SubsystemModel[Subsystem] |

mModels ⊆ mapeWorkingModels ∧

sModels ⊆ subsystemModels •

(e.state, mModels, sModels)}

To perform adaptations, execute computations use the information of the different
reflection models. An execute computation can maintain a subsystem model while
performing adaptations of the corresponding subsystem.

The reflective computations schema groups the computations of a reflective
subsystem.

ReflectiveComputations [Subsystem]
Updating[Subsystem]
Monitoring[Subsystem]
Analyzing[Subsystem]
Planning[Subsystem]
Executing[Subsystem]

∀ m : monitors •

dom m.trigger = {as : P Analyse | as ⊆ analyses • (m.state, as)}
∀ a : analyses •

dom a.trigger = {ps : P Plan | ps ⊆ plans • (a.state, ps)}
∀ p : plans •

dom p.trigger = {es : P Execute | es ⊆ executes • (p.state, es)}

Triggers are restricted to (the subsets of) the respective computations of a reflective
subsystem.

C.3 IBM’s Autonomic Manager Framework

To conclude the MAPE perspective, we formally describe an example of a hierarchical
self-adaptive autonomic system.

The base-level subsystem in an autonomic self-adaptive system is a managed re-
source and is defined as follows.

ManagedResource

BaseLevelSubsystem

Knowledge is defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:36 D. Weyns et al.

Knowledge

ReflectionModel

An autonomic manager is abstractly defined as follows.

AutonomicManager

knowledge : Knowledge

Autonomic manager computation manages a managed element (i.e., either a man-
aged resource or an autonomic manager) and is defined as, follows.

AutonomicManagerComputation [ManagedElement]
ReflectiveComputation[ManagedElement]

We distinguish between two types of autonomic managers: orchestrating autonomic
manager and resource manager, defined as follows.

OrchestratingAutonomicManager

AutonomicManager

mapeComputations :
P AutonomicManagerComputation[AutonomicManager]

ResourseAutonomicManager

AutonomicManager

mapeComputations :
P AutonomicManagerComputation[ManagedResource]

manage : Knowledge × P ManagedResource → P ManagedResource

IBM’s autonomic manager framework considers four different types of resource
managers that deal with different types of concerns: self-healing, self-optimizing, self-
configuring, and self-protecting. These managers are defined as follows.

SelfConfiguringAutonomicManager

ResourseAutonomicManager

SelfOptimizingAutonomicManager

ResourseAutonomicManager

SelfHealingAutonomicManager

ResourseAutonomicManager

SelfProtectingAutonomicManager

ResourseAutonomicManager

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:37

For the example, we define a concrete type of orchestrating autonomic managers that
manage a resource autonomic manager for a single concern.

SingleConcernAutonomicManager

OrchestratingAutonomicManager

manage : Knowledge × P ResourseAutonomicManager

→ P ResourseAutonomicManager

Finally, we can specify a concrete self-adaptive autonomic system.

SelfAdaptiveAutonomicSystem

Environment

context : Context

resources : P ManagedResource

endpointManagers : P ResourseAutonomicManager

systemManager : P SingleConcernAutonomicManager

server, client1, client2, network : ManagedResource

serverOptimizer, networkOptimizer : ResourseAutonomicManager

systemOptimizer : SingleConcernAutonomicManager

resources = {server, client1, client2, network}

endpointManagers = {serverOptimizer, networkOptimizer}

systemManager = {systemOptimizer}

dom serverOptimizer.manage = {(serverOptimizer.knowledge, {server})}
ran serverOptimizer.manage = {{server}}

dom networkOptimizer.manage = {(networkOptimizer.knowledge, {network})}
ran networkOptimizer.manage = {{network}}

dom systemOptimizer.manage =

{(systemOptimizer.knowledge, {serverOptimizer, networkOptimizer})}
ran systemOptimizer.manage = {{serverOptimizer, networkOptimizer}}

In this example, one resource manager is managing a server, another one is managing
a network. In addition, there is the system manager who serves as an orchestrating
autonomic manager, managing the two resource managers. The specification describes
a hierarchy of autonomic managers and specifies the scope of adaptations of the execute
computations (i.e., manage) of the autonomic managers in the self-adaptive autonomic
system.

D. TRAFFIC MONITORING CASE STUDY

Figure 9 shows the FORMS model of the traffic monitoring case study. By extending
the FORMS abstractions, we can precisely define the elements required to support
self-healing.

Subsequently, we specify the elements of the traffic environment, the local traf-
fic monitoring system that instantiates a local base-level subsystem, the self-healing
manager that instantiates a local reflective computation, and the integrated traffic
monitoring system. Then we declaratively specify how one of the cameras is healed
after the failure of a neighboring camera.

For brevity, we limit the specification to the essence of what is needed to specify the
self-healing scenario. For a complete specification of the FORMS model of the traffic

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:38 D. Weyns et al.

Fig. 9. FORMS model of the traffic monitoring case.

monitoring system and the scenario, we refer the interested reader to Weyns et al.
[2010b].

D.1 Traffic Environment

We define the following attributes of the traffic environment.

camera1 , camera2 , camera3 , freeflow zone1 , congested zone1, freeflow zone2 ,

congested zone2 , freeflow zone3 , congested zone3 , congested zone4 ,

ping message12 , echo message21 : Attribute

For brevity, we only define the attributes that we use further in the document. We
introduce a name to group the attributes.

traffic domain attributes == {camera1 , camera2 , camera3 , freeflow zone1 ,

congested zone1 , freeflow zone2 , congested zone2 , freeflow zone3 , congested zone3}

We consider the following traffic processes.

traffic1 , traffic2 , traffic3 , monitor camera1 , monitor camera2 , monitor camera3 ,

transmit : Process

traffic domain processes == {traffic1 , traffic2 , traffic3 , monitor camera1 ,

monitor camera2 , monitor camera3 , transmit}

Traffic processes represent the ongoing traffic in different monitored zones of the high-
way. A monitor camera process allows the observation of the traffic conditions in the
viewing range of a camera. The transmit process provides the distributed commu-
nication service to transmit messages between cameras. This process is used by the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:39

local traffic monitoring systems to coordinate the agent organizations, and by the self-
healing managers to coordinate for failure management.

A traffic environment is defined as an environment with traffic attributes and traffic
processes.

TrafficEnvironment

Environment

attributes ⊆ traffic domain attributes

processes ⊆ traffic domain processes

The traffic environment at T0 in the example is defined as follows.

TrafficEnvironmentT0

TrafficEnvironment

attributes = {camera1 , camera2 , camera3 , freeflow zone1 , freeflow zone2 ,

congested zone3}

processes = traffic domain processes

We introduce the type shutdown to model terminations of processes in the traffic
environment.

Shutdown : P Process

Similarly, we introduce the type startup to model the initiation of new processes in the
environment.

Startup : P Process

We consider one shutdown event in the traffic environment.

shutdowns : P Shutdown

shutdowns = {monitor camera2}

We consider the following set of events in the traffic environment.

events : P Event

events = {traffic2 �→ ({freeflow zone2} �→ {congested zone2}) ,

monitor camera2 �→ ({camera2} �→ {})}

The change of the traffic state in zone 2 at T1 is defined as follows.

TrafficEnvironmentT1

�TrafficEnvironmentT0

p? : Process

c? : Change

p? = traffic2

c? = {freeflow zone2} �→ {congested zone2}

(p?, c?) ∈ events

attributes′ = attributes \ first(c?) ∪ second(c?)
processes′ = processes

The specification states that the traffic state is changed from free-flow to congested by
the traffic process in zone 2 (i.e., the zone monitored by camera 2).

From T1 to T2, the traffic environment does not change.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:40 D. Weyns et al.

TrafficEnvironmentT2

�TrafficEnvironmentT1

A failure of camera 2 changes the traffic environment as follows.

TrafficEnvironmentT3

�TrafficEnvironmentT2

p? : Process

c? : Change

s? : shutdowns

p? = monitor camera2

c? = {camera2} �→ {}

(p?, c?) ∈ events

s? = monitor camera2

attributes′ = attributes \ first(c?) ∪ second(c?)
processes′ = processes \ {s?}

The specification states that after the event, camera 2 is no longer available for traffic
monitoring, and consequently, the traffic monitoring process of camera 2 is shutdown.

D.2 Local Traffic Monitoring System

We consider the following traffic environment representations.

cam1 , cam2 , cam3 , fflow zone1 , congst zone1 , fflow zone2, congst zone2 ,

fflow zone3 , congst zone3 , ping12 , echo21 : EnvironmentRepresentation

traffic environment representations == {cam1 , cam2 , cam3 , fflow zone1 , congst zone1 ,

fflow zone2 , congst zone2 , fflow zone3 , congst zone3 , ping12 , echo21}

Attribute sets and environment representations in the traffic monitoring case are
mapped as follows.

traffic attribute representation mapping ==
{{camera1} �→ cam1 , {camera2} �→ cam2 , {camera3} �→ cam3 ,

{freeflow zone1} �→ fflow zone1 , {congested zone1} �→ congst zone1 ,

{freeflow zone2} �→ fflow zone2 , {congested zone2} �→ congst zone2 ,

{freeflow zone3} �→ fflow zone3 , {congested zone3} �→ congst zone3}

A local traffic model is defined as follows.

LocalTrafficModel

TrafficEnvironment

Model[EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

representations ⊆ traffic environment representations

dom mapping ⊆ {attrs : P Attribute | attrs ⊆ attributes}

ran mapping = {r : EnvironmentRepresentation | r ∈ representations}

A local traffic model represents attributes of the traffic environment and maps the
attributes to traffic environment representations.

The local traffic model of camera 1 at time T2 is defined.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:41

LocalTrafficModelOneT2

TrafficEnvironmentT2

Model[EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

representations = {fflow zone1 , cam2, cam3} ∧

mapping = {{freeflow zone1} �→ fflow zone1 ,

{camera2} �→ cam2, {camera3} �→ cam3}

The local traffic model for camera 2 at time T1 is defined.

LocalTrafficModelTwoT2

TrafficEnvironmentT2

Model[EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

representations = {congst zone2 , cam1 , cam3} ∧

mapping = {{congested zone2} �→ congst zone2 ,

{camera1} �→ cam1 , {camera3} �→ cam3}

And for camera 3 as follows.

LocalTrafficModelThreeT2

TrafficEnvironmentT2

Model[EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

representations = {congst zone2 , congst zone3 , cam1 , cam2} ∧

mapping = {{congested zone2} �→ congst zone2 ,

{congested zone3} �→ congst zone3 , {camera1} �→ cam1 ,

{camera2} �→ cam2}

To define local traffic computations, we first introduce abstract types for the coor-
dinating elements used by the computations. Local traffic computations can play two
types of roles.

Role ::= master | slave
The protocol used for coordination by the local traffic computations is defined next.

MasterSlave

role : Role

To define the coordination model, we introduce a simple type of names.

Name == N

As we will define next, the names are associated with local camera systems. For brevity
in the explanation, sometimes we associate names with cameras.

The model used for coordination by the local traffic computations is defined.

OrganizationPartners

partners : P Name

neighborOrganizations : P Name

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:42 D. Weyns et al.

Partners are the names of members in the organization in which a camera currently is
involved. A slave has only one partner, that is, its master. The partners of a master are
its slaves. Neighbor organizations are the names of the masters of the organizations at
neighboring nodes. Only masters maintain references to their neighbor organizations.
For slaves, the set of neighbor organizations is empty.

The coordination channel used for coordination by the local traffic computations is
defined.

MessagePassing

links : Name ↔ EnvironmentRepresentation

A communication link maps a name of a camera to its representation. In the example,
we consider three concrete communication channels.

traffic communication channel == {1 �→ cam1 , 2 �→ cam2 , 3 �→ cam3}

To define messages, we first introduce an abstract type to represent the content of
messages.

[Content]

Messages are defined as follows.

Message

from : Name

to : P Name

content : Content

A message contains the name of the sender, the names of the addressees, and a content.
With the preceding specified types we can define the coordination mechanism that is

used by local traffic computations.

DynamicAgentOrganizations

orgProtocol : MasterSlave

orgModel : OrganizationPartners

channel : MessagePassing

∀ p : orgModel.partners • ∃ l : channel.links • first(l) = p ∧

∀ norg : orgModel.neighborOrganizations • ∃ l : channel.links • first(l) = norg

The predicate states that there is a communication link with every partner in the
organization, and for the masters, with the masters of neighbor organizations.

The organization of camera 1 at T2 is defined.

DynamicAgentOrganizationOneT2

DynamicAgentOrganizations

orgProtocol.role = master

orgModel.partners = ∅

orgModel.neighborOrganizations = {3}

channel.links = traffic communication channel \ {1 �→ cam1}

At T2, camera 1 is the master of a single member organization. The master of the
neighbor organization is camera 3. Camera 1 has communication channels with the
two other cameras in the traffic monitoring system.

The other organizations are defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:43

DynamicAgentOrganizationTwoT2
DynamicAgentOrganizations

orgProtocol.role = slave
orgModel.partners = {3}
orgModel.neighborOrganizations = ∅

channel.links = traffic communication channel \ {2 �→ cam2}

DynamicAgentOrganizationThreeT2
DynamicAgentOrganizations

orgProtocol.role = master
orgModel.partners = {2}
orgModel.neighborOrganizations = {1}
channel.links = traffic communication channel \ {3 �→ cam3}

Finally, a local traffic computation is defined as follows.

LocalTrafficComputation

Computation

read : LocalTrafficModel × P State → P State

write : P State × LocalTrafficModel → LocalTrafficModel

perceive : P State × Context → P State

effect : P State × Context → Context

trafficCoordinationMechanism : DynamicAgentOrganizations

send : P State → Message

receive : Message → P State

A local traffic computation can act upon a local traffic model. It can perceive and affect
the context in which the camera is situated. Local traffic computations use dynamic
agent organizations as a coordination mechanism to detect traffic jams in continuously
monitored zones. Coordination is done by means of exchanging messages.

The local traffic computation of camera 1 at T2 is defined.

LocalTrafficComputationOneT2

LocalTrafficComputation

DynamicAgentOrganizationOneT2

For the other cameras, we have the following.

LocalTrafficComputationTwoT2
LocalTrafficComputation
DynamicAgentOrganizationTwoT2

LocalTrafficComputationThreeT2
LocalTrafficComputation
DynamicAgentOrganizationThreeT2

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:44 D. Weyns et al.

Using a local traffic model and local traffic computations, we can now define the local
traffic monitoring system.

LocalTrafficMonitoringSystem

trafficModel : LocalTrafficModel

computation : LocalTrafficComputation

dom computation.read = {(trafficModel, computation.state)} ∧

dom computation.write = {(computation.state, trafficModel)} ∧

dom computation.send = {computation.state}

The predicate states that a local traffic computation is restricted to act upon the local
traffic model, and messages for coordination are produced based on the current state
of the computation.

The local traffic monitoring systems at T2 are as follows.

LocalTrafficMonitoringSystemOneT2

LocalTrafficMonitoringSystem

LocalTrafficModelOneT2

LocalTrafficComputationOneT2

LocalTrafficMonitoringSystemTwoT2

LocalTrafficMonitoringSystem

LocalTrafficModelTwoT2

LocalTrafficComputationTwoT2

LocalTrafficMonitoringSystemThreeT2

LocalTrafficMonitoringSystem

LocalTrafficModelThreeT2

LocalTrafficComputationThreeT2

D.3 Self-Healing Subsystem

We define two types of reflection models in the traffic monitoring case: dependency
model and repair strategy.

To define a dependency model, we introduce the dependency type.

Dependency ::= neighbor | neighbormaster | mymaster | myslave

For the example, we limit the dependencies to neighboring nodes, masters of neighbor-
ing organizations (only for masters), and master-slave dependencies.

A dependency model maps dependencies to names of cameras and is defined next.

DependencyModel

dependencies : Dependency ↔ Name

The dependency model for camera 1 at T2 is defined.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:45

DependencyModelOneT2

DependencyModel

dependencies = {neighbor �→ 2, neighbormaster �→ 3,

myslave �→ 0, mymaster �→ 0}

Camera 2 has a dependency with camera 2 as neighbor and with camera 3 as neighbor
master of another organization. We use “0” to indicate that camera 2 currently has no
dependencies with slaves or a master.

The dependency models for the other cameras are defined as follows.

DependencyModelTwoT2
DependencyModel

dependencies = {neighbor �→ 1, neighbor �→ 3,

myslave �→ 0, mymaster �→ 3}

DependencyModelThreeT2
DependencyModel

dependencies = {neighbor �→ 2, myslave �→ 2, mymaster �→ 0}

To model a repair strategy in the traffic monitoring application, we introduce a simple
type of repair actions.

RepairActions == Dependency ↔ (Name × Name)

Repair actions map dependencies to tuples of names. The first name in a tuple refers
to the camera in the dependency, and the second name indicates the new dependency
in case the camera in the dependency fails.

A repair strategy model is defined as a set of repair actions.

RepairStrategy

repairActions : RepairActions

The repair strategies for the traffic case are defined as follows.

RepairStrategyOneT2

RepairStrategy

repairActions = {neighbor �→ (2, 3), neighbormaster �→ (3, 2)}

The predicate states that if camera 2 fails, the new neighbor of camera 1 will be camera
3, and if camera 3 fails, camera 2 will be the master its neighbor organization.

RepairStrategyTwoT2

RepairStrategy

repairActions = {neighbor �→ (1, 0), neighbor �→ (3, 0),
mymaster �→ (3, 0)}

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:46 D. Weyns et al.

RepairStrategyThreeT2

RepairStrategy

repairActions = {neighbor �→ (2, 1), neighbor �→ (1, 0),
myslave �→ (2, 0)}

The coordination model used for fault detection in the traffic monitoring application
is defined as given next.

DependentNodes

nodes : P Name

To define the coordination protocol used for fault detection, we introduce a simple type
to represent time.

Time == N

The coordination protocol for fault detection is defined as follows.

PingEcho

The previous definitions enable us to define the coordination mechanism for fault
detection.

PeerToPeer

CoordinationMechanism[PingEcho, DependentNodes, MessagePassing]
pingTime : Name ↔ Time

waitTime : Time

dom pingTime = model.nodes ∧

∀ n : model.nodes • ∃ l : channel.links • first(l) = n

Ping time maps names to times. The domain of ping time are the nodes (cameras)
in the dependency model. Ping time maintains the points in time when the last ping
messages were sent to each of the cameras with a dependency. Wait time is a constant
that indicates when an echo message should arrive after a ping message has been sent.
The last line of the predicate states that there are communication links available to
each camera in the dependency model.

The concrete instance of the coordination mechanism for camera 1 at T2 is defined.

PeerToPeerOneT2

PeerToPeer

model.nodes = {2, 3}

channel.links = traffic communication channel \ {1 �→ cam1}

pingTime = {2 �→ 4430, 3 �→ 4440}

waitTime = 40

The predicate states that camera 1 has dependencies with camera 2 (its neighbor) and
camera 3 (the master of its neighbor organization). The coordination mechanism has
communication channels available to all the other cameras in the system. The last ping
message was sent to camera 2 at time 4430 and to camera 3 at time 4440. Finally, the
wait time for echo messages is 40 time units.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:47

The instances of the coordination mechanisms for the other cameras at T2 are defined
next.

PeerToPeerTwoT2

PeerToPeer

model.nodes = {1, 3}

channel.links = traffic communication channel \ {2 �→ cam2}

pingTime = {1 �→ 4432, 3 �→ 4434}

waitTime = 40

PeerToPeerThreeT2

PeerToPeer

model.nodes = {1, 2}

channel.links = traffic communication channel \ {3 �→ cam3}

pingTime = {1 �→ 4436, 3 �→ 4440}

waitTime = 40

We can now define the self-healing manager.

SelfHealingManager

Computation

coordinationMechanism : PeerToPeer

readDM : DependencyModel × P State → P State

writeDM : P State × DependencyModel → DependencyModel

readRS : RepairStrategy × P State → P State

writeRS : P State × RepairStrategy → RepairStrategy

sense : LocalTrafficMonitoringSystem × P State → P State

adapt : LocalTrafficMonitoringSystem × P State

→ LocalTrafficMonitoringSystem

send : P State → Message

receive : Message → P State

A self-healing manager is a computation extended with a peer-to-peer coordination
mechanism. A self-healing manager can act upon a dependency model and repair
actions. It can sense a local traffic monitoring system and adapt it when a failure of a
dependent camera is detected. Coordination with other self-healing managers is done
using the exchange of messages.

The self-healing managers at T2 are defined.

SelfHealingManagerOneT2

SelfHealingManager

PeerToPeerOneT2

SelfHealingManagerTwoT2

SelfHealingManager

PeerToPeerTwoT2

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:48 D. Weyns et al.

SelfHealingManagerThreeT2

SelfHealingManager

PeerToPeerThreeT2

A self-healing subsystem is defined as follows.

SelfHealingSubsystem

dependencyModel : DependencyModel

repairStrategy : RepairStrategy

selfHealingManager : SelfHealingManager

dom selfHealingManager.readDM =

{(dependencyModel, selfHealingManager.state)} ∧

dom selfHealingManager.writeDM =

{(selfHealingManager.state, dependencyModel)} ∧

dom selfHealingManager.readRS =

{(repairStrategy, selfHealingManager.state)} ∧

dom selfHealingManager.writeRS =

{(selfHealingManager.state, repairStrategy)} ∧

dom selfHealingManager.send = {selfHealingManager.state} ∧

∀ dependency : dependencyModel.dependencies • ∃ l :
selfHealingManager.coordinationMechanism.channel.links;

d : Dependency; n : Name • dependency = (d, n) ∧ first(l) = n ∧

∀ repairAction : repairStrategy.repairActions • ∃ ol, nl :
selfHealingManager.coordinationMechanism.channel.links;

d : Dependency; on, nn : Name •

repairAction = (d, (on, nn)) ∧ first(ol) = on ∧ first(nl) = nn

The predicate states that a self-healing manager can only act upon the local depen-
dency model and repair strategy. Messages for coordination are produced based on the
current local state of the computation. Furthermore, the predicate states that there is
a communication link with every camera with a dependency and with every camera in
any of the repair actions.

The concrete self-healing subsystem for camera 1 at T2 is defined.

SelfHealingSubsystemOneT2

SelfHealingSubsystem

DependencyModelOneT2

RepairStrategyOneT2

SelfHealingManagerOneT2

The self-healing sybsystems for the other cameras at T2 are defined.

SelfHealingSubsystemTwoT2

SelfHealingSubsystem

DependencyModelTwoT2

RepairStrategyTwoT2

SelfHealingManagerTwoT2

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:49

SelfHealingSubsystemThreeT2

SelfHealingSubsystem

DependencyModelThreeT2

RepairStrategyThreeT2

SelfHealingManagerThreeT2

Finally, we model a timeout of a ping message. First, we introduce a simple clock.

Clock

time : Time

The clock at T2 is defined next.

ClockT3

Clock

time = 4444

Time passes by as follows.

Tick

�Clock

time′ = time + 1

A timeout is defined as follows.

Timeout

�SelfHealingManager

Tick

n! : Name

∃ n! : Name; t : Time •

(n!, t) ∈ coordinationMechanism.pingTime ∧

t + coordinationMechanism.waitTime > time′

The schema tells us that a timeout of a self-healing manager does not change its state.
A timeout happens when the clock makes a tick. The predicate states that a timeout
for a particular camera is reached when the time after the tick exceeds the last ping
time for that camera plus the wait time.

The timeout for self-healing manager 1 after the crash of camera 2 is defined as
follows.

Timeout1

Timeout

�SelfHealingManagerOneT2

Tick

n! : Name

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping
message to camera 2 was sent at time “4430” and the waiting time is 40 time units).
The timeout applies for camera 2.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:50 D. Weyns et al.

D.4 Traffic Jam Monitoring System

To define a traffic jam monitoring system, we first define a local camera system.

LocalCameraSystem

localTrafficMonitoringSystem : LocalTrafficMonitoringSystem

selfHealingSubsystem : SelfHealingSubsystem

myName : Name

dom selfHealingSubsystem.selfHealingManager.sense =

{(localTrafficMonitoringSystem, selfHealingSubsystem.selfHealingManager.state)} ∧

dom selfHealingSubsystem.selfHealingManager.adapt =

{(localTrafficMonitoringSystem, selfHealingSubsystem.selfHealingManager.state)}

A local camera system consists of a local traffic monitoring system that deals with traffic
jam monitoring, and a self-healing subsystem that deals with failure management. A
local camera system has a unique name that is used for communication.

The concrete local camera systems at T2 are defined.

LocalCameraSystemOneT2

LocalCameraSystem

LocalTrafficMonitoringSystemOneT2

SelfHealingSubsystemOneT2

myName = 1

LocalCameraSystemTwoT2
LocalCameraSystem
LocalTrafficMonitoringSystemTwoT2
SelfHealingSubsystemTwoT2

myName = 2

LocalCameraSystemThreeT2
LocalCameraSystem
LocalTrafficMonitoringSystemThreeT2
SelfHealingSubsystemThreeT2

myName = 3

A situated local camera system is defined as follows.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:51

SituatedLocalCameraSystem

TrafficEnvironment

LocalCameraSystem

context : Context

context ⊆ attributes ∧

dom(localTrafficMonitoringSystem.computation.perceive) =

{attrs : Context | attrs ⊆ context •

(localTrafficMonitoringSystem.computation.state, attrs)} ∧

dom (localTrafficMonitoringSystem.computation.effect) =

{attrs : Context | attrs ⊆ context •

(localTrafficMonitoringSystem.computation.state, attrs)}

A situated local camera system is a local camera system that is situated in a traffic
environment. A situated local camera system’s access to the environment is restricted
to the context in which the camera is situated.

The concrete situated local camera 1 in the example is defined at T2 as follows.

SituatedLocalCameraSystemOneT2

TrafficEnvironmentT2

LocalCameraSystemOneT2

context : Context

context = {camera2 , camera3 , freeflow zone1}

The context of camera 1 consists of the two other cameras in the system and the traffic
in its viewing range.

The other concrete situated local cameras are defined.

SituatedLocalCameraSystemTwoT2
TrafficEnvironmentT2
LocalCameraSystemTwoT2
context : Context

context = {camera1 , camera3 , congested zone2}

SituatedLocalCameraSystemThreeT2
TrafficEnvironmentT2
LocalCameraSystemThreeT2
context : Context

context = {camera1 , camera2 , congested zone3}

We can now define a traffic jam monitoring system.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:52 D. Weyns et al.

TrafficJamMonitoringSystem

localCamaraSystems : P SituatedLocalCameraSystem

∀ lcs : localCamaraSystems; msgs : P Message; addressees : P Name •

msgs = ran (lcs.localTrafficMonitoringSystem.computation.send) ∧

addressees = {n : Name; msg : msgs | n = msg.from • n} ∧

addressees = dom (lcs.localTrafficMonitoringSystem.computation.

trafficCoordinationMechanism.channel.links) ∧

∀ lcs : localCamaraSystems; d : Dependency; n : Name •

(d, n) ∈ lcs.selfHealingSubsystem.dependencyModel.dependencies ∧

n �= lcs.myName ∧

∀ lcs : localCamaraSystems; shmsgs : P Message; shaddressees : P Name •

shmsgs = ran (lcs.selfHealingSubsystem.selfHealingManager.send) ∧

shaddressees = {n : Name; msg : msgs | n = msg.from • n} ∧

shaddressees = dom (lcs.selfHealingSubsystem.selfHealingManager.

coordinationMechanism.channel.links)

A traffic monitoring system consists of a set of situated local camera systems. The first
part of the predicate defines the scope of communication of the base-level subsystems.
The second part defines the dependencies in the system and states that a local camera
system cannot depend on itself. The third part of the predicate defines the scope of
communication of the self-healing subsystems.

At T2 the state of the traffic jam monitoring system is the following.

TrafficJamMonitoringSystemT2

TrafficJamMonitoringSystem

SituatedLocalCameraSystemOneT2

SituatedLocalCameraSystemTwoT2

SituatedLocalCameraSystemThreeT2

Note that we have not provided the specification of the situated local camera system
of cameras 2 and 3 in this document. For the omitted part of the specification, we refer
the interested reader to Weyns et al. [2010b].

At T3 when camera 2 fails, the state of the traffic camera system is changed as
follows.

TrafficJamMonitoringSystemT3

�TrafficJamMonitoringSystemT2

lcs2? : SituatedLocalCameraSystem

lcs2? ∈ localCamaraSystems ∧

lcs2?.myName = 2 ∧

localCamaraSystems′ = localCamaraSystems \ {lcs2?}

To conclude, we formalize how camera 1 recovers from the failure of camera 2 that
happens after the timeout of the ping message. First we define two helper functions to
update the different parts of the camera system.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:53

adaptLocalTrafficMonitoringSystem : SituatedLocalCameraSystem × Attribute×

EnvironmentRepresentation × Name → LocalTrafficMonitoringSystem

∀ slcs : SituatedLocalCameraSystem; ultms : LocalTrafficMonitoringSystem;
camera : Attribute; cam : EnvironmentRepresentation; n : Name •

ultms.trafficModel.representations =

slcs.localTrafficMonitoringSystem.trafficModel.representations \ {cam} ∧

ultms.trafficModel.mapping =

slcs.localTrafficMonitoringSystem.trafficModel.mapping \ {{camera} �→ cam} ∧

ultms.computation.trafficCoordinationMechanism.orgProtocol.role =

slcs.localTrafficMonitoringSystem.computation.

trafficCoordinationMechanism.orgProtocol.role ∧

ultms.computation.trafficCoordinationMechanism.orgModel.partners =

slcs.localTrafficMonitoringSystem.computation.

trafficCoordinationMechanism.orgModel.partners \ {n} ∧

ultms.computation.trafficCoordinationMechanism.orgModel.neighborOrganizations =

slcs.localTrafficMonitoringSystem.computation.

trafficCoordinationMechanism.orgModel.neighborOrganizations ∧

ultms.computation.trafficCoordinationMechanism.channel.links =

slcs.localTrafficMonitoringSystem.computation.

trafficCoordinationMechanism.channel.links \ {n �→ cam} ∧

adaptLocalTrafficMonitoringSystem(slcs, camera, cam, n) = ultms

The first helper function takes a situated local camera system and the data of a camera
that fails and returns the adapted local traffic monitoring system of the camera system.
The function is applicable for situations in which a neighboring camera fails that plays
the role of slave. The adaptation includes:

—the representation of the camera is removed from the set of representations;
—the mapping of the representation to the real camera is removed;
—the role of the traffic monitoring system is not changed;
—the failing camera is removed from the list of partners;
—the neighbor organizations are not changed (the failing camera is a slave of a neighbor

organization);
—the communication link to the failing camera is removed.

updateSelfHealingSubsystem : SituatedLocalCameraSystem × Attribute×

EnvironmentRepresentation × Name → SelfHealingSubsystem

∀ slcs : SituatedLocalCameraSystem; ushs : SelfHealingSubsystem;
camera : Attribute; cam : EnvironmentRepresentation; n : Name •

∃ newneighbor : Name • slcs.selfHealingSubsystem.repairStrategy.

repairActions ⊲ {(n, newneighbor)} = {neighbor �→ (n, newneighbor)} ∧

ushs.dependencyModel.dependencies =

slcs.selfHealingSubsystem.dependencyModel.dependencies

⊕{neighbor �→ newneighbor} ∧

ushs.repairStrategy.repairActions =

slcs.selfHealingSubsystem.repairStrategy.repairActions\

{neighbor �→ (n, newneighbor)} ∧

ushs.selfHealingManager.state =

slcs.selfHealingSubsystem.selfHealingManager.state ∧

ushs.selfHealingManager.coordinationMechanism.protocol =

slcs.selfHealingSubsystem.selfHealingManager.coordinationMechanism.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:54 D. Weyns et al.

protocol ∧

ushs.selfHealingManager.coordinationMechanism.model.nodes =

slcs.selfHealingSubsystem.selfHealingManager.coordinationMechanism.

model.nodes \ {n} ∧

ushs.selfHealingManager.coordinationMechanism.channel.links =

slcs.selfHealingSubsystem.selfHealingManager.coordinationMechanism.

channel.links \ {n �→ cam} ∧

∃ pt : Time • {n} ⊳ slcs.selfHealingSubsystem.selfHealingManager.

coordinationMechanism.pingTime = {(n �→ pt)} ∧

ushs.selfHealingManager.coordinationMechanism.pingTime =

slcs.selfHealingSubsystem.selfHealingManager.coordinationMechanism.

pingTime \ {n �→ pt} ∧

ushs.selfHealingManager.coordinationMechanism.waitTime =

slcs.selfHealingSubsystem.selfHealingManager.coordinationMechanism.

waitTime ∧

updateSelfHealingSubsystem(slcs, camera, cam, n) = ushs

The second helper function updates the self-healing system after a camera fails. This
function is applicable for the same type of situations as the first helper function. The
update includes:

—the dependencies are updated with the new neighbor;
—the repair actions related to the crashed camera are removed;
—the computation state of the self-healing manager is not changed;
—the coordination protocol is not changed;
—the node of the failing camera is removed from the coordination model;
—the communication link to the failing camera is removed;
—the ping time to the failing camera is removed;
—the wait time for ping messages is not changed.

Finally, the recovery is defined as follows.

CameraOneRecoversFromFailureCameraTwo

�TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1

lcs1?, lcs1! : SituatedLocalCameraSystem

camera : Attribute

cam : EnvironmentRepresentation

n : Name

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:55

{camera} = first(c?) ∧

traffic attribute representation mapping =

traffic attribute representation mapping \ {{camera} �→ cam} ∧

traffic communication channel =

traffic communication channel \ {n �→ cam} ∧

lcs1? ∈ localCamaraSystems ∧

lcs1?.myName = 1 ∧

lcs1!.myName = lcs1?.myName ∧

lcs1!.context = lcs1?.context \ {camera} ∧

lcs1!.selfHealingSubsystem =

updateSelfHealingSubsystem(lcs1?, camera, cam, n) ∧

lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam, n) ∧

localCamaraSystems′ = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies what state of the local camera system is
adapted after the failure of the camera. The first part of the predicate assigns the
attribute, representation, and name of the failing camera to the variables camera, cam,
and n, using the camera failure event. Next, the attribute representation mappings and
communication channels are updated; the recovering local camera system is selected
(with myName = 1) and the failing camera is removed from its context. Then adaptation
is specified, consisting of two parts: an update of the state of the self-healing subsystem
and the actual adaptation of the local traffic monitoring system (using the helper
functions defined earlier). From an operational point of view, the self-healing manager
will update its state and apply the adaptation of the local traffic monitoring system
using various read and write operations. An analogous specification can be defined for
the recovery of camera 3 in the scenario.

E. IBM AUTONOMIC MANAGER FRAMEWORK

In this section, we study the model for IBM’s autonomic manager framework [IBM
2006], which advocates a hierarchical composition of autonomic managers. This case
illustrates modeling with the primitives from FORMS’s reflection and MAPE-K per-
spectives. The basic building block is the autonomic manager that implements a control
loop (MAPE-K). The autonomic control loop consists of four basic activities: monitor, an-
alyze, plan, and execute. The activities share knowledge that typically includes a model
of the managed element(s) and a description of goals [Huebscher and McCann 2008].
An autonomic manager provides sensors and effectors for other autonomic managers
to use. As further detailed shortly, this enables hierarchical composition of autonomic
managers.

Figure 10 describes the autonomic manager using the basic FORMS’s primitives. The
autonomic manager corresponds to a self-adaptive unit from FORMS. An autonomic
manager comprises four types of autonomic manager computations, which instantiate
four concrete types of reflective computation from FORMS: monitor, analyze, plan, and
execute. Autonomic manager components can reason about and act upon the shared
knowledge, which instantiates reflection model from FORMS. Monitor requires a sen-
sor to monitor the managed element, which can be either a managed resource (corre-
sponding to FORMS’s base-level subsystem) or an autonomic manager (corresponding
to FORMS’s self-adaptive unit). In the former case, the sensor is provided by the man-
ageability endpoint of the managed resource. Execute requires an effector to adapt the
managed element according to the plans constructed by the plan component.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:56 D. Weyns et al.

Fig. 10. MAPE-K’s computations and knowledge in relation to FORMS primitives. White boxes represent
IBM’s autonomic manager constructs, gray boxes represent FORMS constructs.

Self -

Configuring

Self -

ConfigureOptimize

Self - Self -

Heal

Self -

Protect

Self -
Configuring

R

Servers

R

Network

R

Storage

R

Application

Managed Resources

Resource Autonomic Managers

Orchestrating Autonomic Managers

Single Concern Multiple Concerns

Self -
Healing

Self -
Optimizing

Self -
Protecting

(a) Hierarchy of Autonomic Managers (b) Hierarchy using FORMS primitives

Fig. 11. Autonomic manager hierarchies in FORMS. White boxes represent autonomic manager constructs,
gray boxes represent FORMS constructs.

While there is a shared understanding on the different types of computations in a
MAPE-K autonomic manager, the role of knowledge is less clear. According to Kephart
and Chess [2003], knowledge refers to the data collected from managed resources,
models for analysis such as queueing network models, policy information, and action
plans. Miller [2005] groups the different forms of knowledge in three distinct types:
topology knowledge, policy knowledge, and problem determination knowledge.

We now briefly explain how hierarchies of autonomic systems are constructed using
autonomic managers and modeled in FORMS. Figure 11(a) shows some different types
of autonomic managers [Kephart and Chess 2003], arranged in a hierarchy.

Figure 11(b) depicts how FORMS primitives are used to model the hierarchy in Fig-
ure 11(a). A resource autonomic manager manages a managed resource. Four concrete
types are distinguished: managers for self-configuring, self-healing, self-optimizing,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:57

and self-protecting. Orchestrating autonomic managers, on the other hand, manage
groups of resource autonomic managers. In particular, a single-concern orchestrating
autonomic manager manages a group of resource autonomic managers of the same type,
while a multiple-concern orchestrating autonomic manager manages a group of resource
autonomic managers of different type. Orchestrating autonomic managers themselves
can be managed by higher-level autonomic managers, just like a self-adaptive unit in
FORMS that can be reflected upon by another self-adaptive unit from the level above. A
hierarchy of autonomic managers thus corresponds to the reflective levels in FORMS.
In a hierarchy of autonomic managers, data can be obtained and shared via knowl-
edge sources. According to Miller [2005], a knowledge source is an implementation of
a registry, dictionary, database, or other repository that provides access to knowledge
that needs to be shared among autonomic managers. Appendix C provides a formal
specification of the elements shown in Figure 11(b) and uses them to describe a simple
example of a self-adaptive autonomic system.

F. SENSOR NETWORK SYSTEM

The final self-adaptive software system that we study in light of FORMS is MI-
DAS [Malek et al. 2007], which is an application family developed in collaboration
between one of the authors and Bosch engineers. MIDAS is a security monitoring
distributed application composed of a large number of wirelessly connected sensors,
gateways, hubs, and PDAs. The sensors are used to monitor the environment around
them, and communicate their status to one another and to the gateways. The gate-
way nodes are responsible for managing and coordinating the sensors. Furthermore,
the gateways translate, aggregate, and fuse the data received from the sensors, and
propagate the appropriate data (e.g., events) to the hubs. Hubs, in turn, are used to
evaluate and visualize the sensor data for human users, as well as to provide an inter-
face through which a user can send control commands to various sensors and gateways
in the system. Hubs may also be configured to propagate the appropriate sensor data
to PDAs, which are used by the mobile users of the systems.

MIDAS has several QoS requirements that need to be satisfied in tandem, in par-
ticular response time and energy consumption. The engineers found the deployment
of software components to hardware devices (i.e., deployment architecture) to have a
significant impact on these two QoS requirements. For instance, the availability of
local communication on a sensor platform reduces the response time, but would poten-
tially increase the rate at which the sensor’s battery power is drained. As a result, a
self-adaptation framework was developed that in response to changes in system prop-
erties (e.g., changes in remaining battery, fluctuations in network bandwidth) looks for
the near-optimal deployment architecture at runtime and improves the system’s QoS
through redeployment of its software components.

Figure 12 shows the framework’s distributed instantiation. Each host runs an in-
stance of the framework that consists of the following components: Deployment An-
alyzer—maintains a representation of the system’s deployment architecture, such as
the hardware hosts, software components, component dependencies, various system
parameters of interest (e.g., network bandwidth, frequency of interactions), and uses
this model to assess the system’s current QoS attributes. QoS Planner—searches for
a deployment architecture that improves the QoS attributes and performs a trade-off
analysis to ensure that the cost of redeployment (e.g., resource overhead and temporary
unavailability of components) does not exceed the benefits (e.g., improvements in QoS)
of it. Monitor—collects data on changes in system parameters and identifies patterns
of change to initiate adaptation. Effector—adapts the system through migration of its
component. User Input—used by the system’s user to input their QoS preferences in
the form of a utility function, as well as the information about system parameters that

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:58 D. Weyns et al.

Fig. 12. Deployment self-optimization approach in MIDAS case study.

Reflective
Computation

QoS Planner

Reflection
Model

Energey
Cons. Model

Self-Adaptive
Unit

1
reasons about and acts upon

> 2

monitors and repairs
>

Distributed
Self-Adaptive

System

1..*

Local
Managed
System

Coordination
Model

Coordination
Mechanism

Local
Self-Adaptive

System

MIDAS
Environment

perceives and effects
<

*

Coordination
Protocol

1

Each MIDAS
Platform

Deployment
Self-Optimization

Framework

Bid
Collection

Auction

Deployment
Model

Market
Based

MIDAS
Application Logic

MIDAS

1

Environment

1

11

1

1

1

1

1

1

Communication
Infrastructure

Security Domain

send/receive messages
<

1

1

1

1

s
e

n
d

/re
c
e

iv
e

 b
id

s

>

*

*

Coordination
Model

Coordination
Mechanism

Coordination
Protocol

1

Group
Membership

Multicast

Peer-to-Peer
1

1

1

Deployment
Analyzer

*

s
e

n
d

/re
c
e

iv
e

c
h

a
n

g
e

s
 to

 m
o

d
e

l
>

1

Coordination
Channel

Message
Passing

Local Reflective
Computation

Response
Time Model

System
Model

Concern
Model

1

Coordination
Channel

Message
Passing

Domain Model
Local Base-Level

Computation

Intrusion
Monitoring

Computation

Building Model
within the Sensor

Vicinity

perceives and
acts upon

>1 1

11

Analyzer Planner

KEY

Generalization

Association

Containment

Application

FORMS

Fig. 13. Precise specification of MIDAS through FORMS constructs. White boxes represent MIDAS con-
structs, gray boxes represent FORMS constructs.

may not be easily monitored (e.g., security of a network link). The framework described
before has been realized using an integration of several tools; the interested reader
may find more details at Malek et al. [2007].

Figure 13 shows the specification of MIDAS using FORMS. Similar to the previous
two case studies we are able to precisely define the elements of MIDAS by extending the
FORMS constructs. Unlike the traffic monitoring case study that has a single concern,
in MIDAS we have two QoS objectives (concerns), energy consumption and response
time, which extend FORMS’s concern model. MIDAS’s deployment model, which repre-
sents the allocation of software components to hardware platforms, extends FORMS’s
system model. The deployment model is used by MIDAS’s reflective computations for
making adaptation decisions.

Another important difference in this case study is the existence of two different types
of reflective computations, QoS planner and deployment analyzer, which are accompa-
nied by two types of coordination mechanism, market-based and peer-to-peer. As shown

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:59

in Figure 12, QoS planner runs on every MIDAS platform and coordinates with other
QoS planners via an auction protocol, which, as specified in Figure 13, corresponds to
FORMS’s coordination protocol. In this protocol, each planner periodically initiates an
auction for one of its locally deployed components, which allows other planner compo-
nents to participate by placing bids. Each bid contains a utility value that corresponds
to the improvements in system’s overall QoS as a result of redeploying the auctioned
component to the bidding device. Bid collection represents the coordination model and
consists of tuples of form (bidder id, utility value) maintained by each QoS planner.
The format of tuples maintained may change depending on the type of auction (e.g.,
Vickrey, Dutch, English).

Deployment analyzer is another type of reflective computation that, just like QoS
planner, exists on every MIDAS platform. In order to quantitatively estimate the cur-
rent QoS obtained for the system’s deployment, each deployment analyzer needs to
first augment its local model with the information available from the neighboring de-
ployment analyzers. For this purpose, each deployment analyzer uses a peer-to-peer
coordination mechanism in which each peer multicasts (FORMS’s coordination proto-
col) changes in its local model to the peers within its group membership (FORMS’s
coordination model).

As depicted in Figure 13 we were able to use FORMS to precisely specify other
architectural facets of MIDAS (e.g., separation of reflective subsystem from managed
subsystem) that for brevity are not discussed further here.

REFERENCES

ANDERSSON, J., DE LEMOS, R., MALEK, S., AND WEYNS, D. 2009a. Modeling dimensions of self-adaptive software
systems. In Hot Topics on Software Engineering for Self-Adaptive Systems, B. H. C. Cheng et al., Eds.,
Lecture Notes in Computer Science, vol. 5525, Springer.

ANDERSSON, J., DE LEMOS, R., MALEK, S., AND WEYNS, D. 2009b. Reflecting on self-adaptive software systems. In
Proceedings of the Workshop on Software Engineering for Adaptive and Self-Managing Systems.

ANDRADE, L. F., FIADEIRO, J. L., GOUVEIA, J., LOPES, A., AND WERMELINGER, M. 2000. Patterns for coordination.
In Proceedings of the International Conference on Coordination Languages and Models. Lecture Notes
in Computer Science, vol. 1906, Springer, 317–322.

ARBAB, F. 2004. Reo: A channel-based coordination model for component composition. Math. Struct. Comput.
Sci. 14, 3, 329–366.

BLAIR, G., COULSON, G., AND GRACE, P. 2004. Research directions in reflective middleware: The Lancaster
experience. In Proceedings of the 3rd Workshop on Adaptive and Reflective Middleware (ARM’04). ACM
Press, New York.

BRAIONE, P. AND PICCO, G. P. 2004. On calculi for context-aware coordination. In Proceedings of the Interna-
tional Conference on Coordination Models and Languages. Lecture Notes in Computer Science, vol. 2949,
Springer, 38–54.

BREWINGTON, B. AND CYBENKO, G. 2000. Keeping up the changing Web. Comput. 33, 5, 52–58.
CAPRA, L., EMMERICH, W., AND MASCOLO, C. 2001. Reflective middleware solutions for context-aware appli-

cations. In Proceedings of the International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns. 126–133.

CARDELLI, L. AND GORDON, A. D. 2000. Mobile ambients. Theor. Comput. Sci. 240, 1, 177–213.
CARZANIGA, A., PICCO, G. P., AND VIGNA, G. 1997. Designing distributed applications with mobile code

paradigms. In Proceedings of the International Conference on Software Engineering. ACM Press, New
York, 22–32.

CAZZOLA, W., SAVIGNI, A., SOSIO, A., AND TISATO, F. 1999. Rule-Based strategic reflection: Observing and mod-
ifying behavior at the architectural level. In Proceedings of the International Conference on Automated
Software Engineering.

CHENG, B., DE LEMOS, R., GIESE, H., INVERARDI, P., AND MAFEE, J., ET AL. 2009. Software engineering for self-
adaptive systems: A research road map. In Hot Topics on Software Engineering for Self-Adaptive Systems,
B. H. C. Cheng et al., Eds., Lecture Notes in Computer Science, vol. 5525, Springer.

CZT. 2010. http://czt.sourceforge.net/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

8:60 D. Weyns et al.

DEY, A. 2000. Providing architectural support for building context-aware applications. Ph.D. thesis, Atlanta,
USA.

DOWLING, J. AND CAHILL, V. 2001. The k-component architecture meta-model for self-adaptive software. In
Proceedings of the International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns.

EDWARDS, G., GARCIA, J., TAJALLI, H., POPESCU, D., MEDVIDOVIC, N., SUKHATME, G., AND PETRUS, B. 2009.
Architecture-Driven self-adaptation and self-management in robotics systems. In Proceedings of the
International Workshop on Software Engineering for Adaptive and Self-Managing Systems.

ERICKSON, T. 2002. Some problems wit the notion of context-aware computing. Comm. ACM 45, 2, 102–104.
FOK, C.-L., ROMAN, G.-C., AND HACKMANN, G. 2004. A lightweight coordination middleware for mobile comput-

ing. In Proceedings of the COORDINATION Conference. R. D. Nicola, G. L. Ferrari, and G. Meredith,
Eds., Lecture Notes in Computer Science, vol. 2949, Springer, 135–151.

GARLAN, D., CHENG, S.-W., HUANG, A.-C., SCHMERL, B., AND STEENKISTE, P. 2004. Rainbow: Architecture-Based
self-adaptation with reusable infrastructure. IEEE Comput. 37, 46–54.

GEIHS, K., ET AL. 2009. Software Engineering for Self-Adaptive Systems. Springer. Chapter Modeling of
context-aware self-adaptive applications in ubiquitous and service-oriented environments.

HAQUE, M. AND AHAMED, S. 2007. An omnipresent formal trust model (ftm) for pervasive computing envi-
ronment. In Proceedings of the International Computer Software and Applications Conference. IEEE
Computer Society, Los Alamitos, CA, 49–56.

HENRICKSEN, K., INDULSKA, J., AND RAKOTONIRAINY, A. 2002. Modeling context information in pervasive com-
puting systems. In Pervasive, F. Mattern and M. Naghshineh, Eds., Lecture Notes in Computer Science,
vol. 2414, Springer, 167–180.

HINCHEY, M. G. AND STERRITT, R. 2006. Self-Managing software. Comput. 39, 107-.
HUEBSCHER, M. C. AND MCCANN, J. A. 2008. A survey of autonomic computing- Degrees, models, and applica-

tions. ACM Comput. Surv. 40, 3.
IBM. 2006. An architectural blueprint for autonomic computing. Tech. rep., IBM.
KEPHART, J. O. AND CHESS, D. M. 2003. The vision of autonomic computing. IEEE Comput. 36, 1, 41–50.
KRAMER, J. AND MAGEE, J. 2007. Self-Managed systems: An architectural challenge. In Proceedings of the

International Conference on Software Engineering.

MAES, P. 1987. Concepts and experiments in computational reflection. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’87).

MALEK, S., SEO, C., RAVULA, S., PETRUS, B., AND MEDVIDOVIC, N. 2007. Reconceptualizing a family of het-
erogeneous embedded systems via explicit architectural support. In Proceedings of the International
Conference on Software Engineering. 591–601.

MALONE, T. AND CROWSTON, K. 1994. Toward an interdisciplinary theory of coordination. ACM Comput. Surv.
26, 1, 87–119.

MILLER, B. 2005. The autonomic computing edge: The role of knowledge in autonomic systems. Tech. rep.,
IBM.

MURPHY, A., PICCO, G. P., AND ROMAN, G.-C. 2006. Lime: A coordination model and middleware supporting
mobility of hosts and agents. ACM Trans. Softw. Engin. Methodol. 15, 3, 279–328.

NAHRSTEDT, K., XU, D., WICHADAKUL, D., AND LI, B. 2001. QOS-Aware middleware for ubiquitous and hetero-
geneous environments. IEEE Comm. Mag. 39, 11, 140–148.

OREIZY, P., MEDVIDOVIC, N., AND TAYLOR, R. N. 1998. Architecture-Based runtime software evolution. In Pro-
ceedings of the International Conference on Software Engineering.

OSSOWSKI, S. AND MENEZES, R. 2006. On coordination and its significance to distributed and multi-agent
systems: Research articles. Concurr. Comput. Pract. Exper. 18, 4, 359–370.

RANGANATHAN, A. AND CAMPBELL, R. H. 2003. An infrastructure for context-awareness based on first order
logic. Person. Ubiq. Comput. 7, 6, 353–364.

ROMÁN, M., HESS, C., CERQUEIRA, R., RANGANATHAN, A., CAMPBELL, R. H., AND NAHRSTEDT, K. 2002. A middleware
infrastructure for active spaces. IEEE Pervas. Comput. 1, 4, 74–83.

SCHILIT, B., ADAMS, N., AND WANT, R. 1999. Context-Aware computing applications. In Proceedings of the 1st

Workshop on Mobile Computing Systems and Applications. IEEE Computer Society, Los Alamitos, CA,
85–90.

SCHMIDT, A., AIDOO, K. A., TAKALUOMA, A., TUOMELA, U., VAN LAERHOVEN, K., AND VAN DE VELDE, W. 1999.
Advanced interaction in context. Lecture Notes in Computer Science, vol. 1707, Springer, 89–101.

SHAW, M. 1995. Beyond objects: A software design paradigm based on process control. ACM SIGSOFT Softw.
Engin. Notes 20, 1, 27–38.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

FORMS: Unifying Reference Model for Formal Specification of Distributed Systems 8:61

STERRITT, R. 2005. Autonomic computing. Innov. Syst. Softw. Engin. 1, 1, 79–88.
TISATO, F., SAVIGNI, A., CAZZOLA, W., AND SOSIO, A. 2001. Architectural reflection: Realising software architec-

tures via reflective activities. In Proceedings of the International Workshop on Engineering Distributed
Objects. Springer.

VASSEV, E. AND HINCHEY, M. 2011. The assl approach to specifying self-managing embedded systems. Concurr.
Comput. Pract. Exper. doi: 10.1002/cpe.1758.

WEISER, M. 1993. Ubiquitous computing. Comput. 26, 71–72.
WERMELINGER, M. AND FIADEIRO, J. L. 1999. Algebraic software architecture reconfiguration. In Proceedings

of the European Software Engineering Conference and International Symposium on Foundations of
Software Engineering.

WEYNS, D., MALEK, S., AND ANDERSSON, J. 2010a. On decentralized self-adaptation: Lessons from the trenches
and challenges for the future. In Proceedings of the International Workshop on Software Engineering for
Adaptive and Self-Managing Systems.

WEYNS, D., HAESEVOETS, R., HELLEBOOGH, A., HOLVOET, T., AND JOOSEN, W. 2010b. The MACODO middleware
for context-driven dynamic agent organizations. ACM Trans. Auton. Adapt. Syst. 5, 1.

WEYNS, D., MALEK, S., AND ANDERSSON, J. 2010c. FORMS: A formal reference model for self-adaptation. In
Proceedings of the International Conference on Autonomic Computing and Communications.

WEYNS, D., MALEK, S., AND ANDERSSON, J. 2010d. Z specifications of FORMS. Tech. rep. CW 579, K.U. Leuven.
www.cs.kuleuven.be/publicaties/rapporten/cw/CW579.abs.html.

WOOLDRIDGE, M. AND JENNINGS, N. 1995. Intelligent agents: Theory and practice. Knowl. Engin. Rev. 10, 2,
115–152.

YE, J., COYLE, L., DOBSON, S., AND NIXON, P. 2007. Ontology-Based models in pervasive computing systems.
Knowl. Engin. Rev. 22, 4, 315–347.

ZHANG, J. AND CHENG, B. H. C. 2006. Model-Based development of dynamically adaptive software. In Proceed-
ings of the International Conference on Software Engineering.

Received May 2010; revised June 2011; accepted August 2011

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 8, Publication date: April 2012.

