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Formula Manipulation in the Bond Graph 

Modelling and Simulation of Zarge 

Mechanical Systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

by A. M. BOS and M. J. L. TIERNEGO 

Department of Electrical Engineering, Twente University of Technology, P.O. Box 

217, 7500 AE Enschede, The Netherlands zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ABSTRACT: A multibond graph element for a general single moving body is derived. A 

multibody system can easily be described as an interconnection of these elements. 3-D mechanical 

systems usually contain dependent inertias having both differential and integral causality. A 

method is described for the transformation of inertias with dt@ erential causality to an integral 

form, using formula manipulation. The program also helps to find experimentally the optimal 

choicefor the generalized coordinates. The resulting explicit dtflerential equation may be solved 

using a standard integration routine or simulation program. 

Nomenclature 

$1 

as.1 

2,’ 
P 

A’.’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x(xk,i) 

F; 

Mj 

m, 

Ji 

Ri 

Ci 

T:; 

column matrix with the displacement of point k relative to 1, in coordinates of 

system i. The subscript 1 is omitted when 1 = 0 

column matrix with the angular velocities of body k, relative to body or 

coordinate system 1, in coordinates of coordinate system i. The subscript 1 is 

omitted when 1 = 0 (the inertial system) 

column matrix with the relative velocity of point p in coordinates of system i, 

measured with respect to the coordinate systemj. When j = 0, j is omitted 

Coordinate transformation matrix from system i to j 

transformation matrix giving the linear velocity of point p due to rotation of 

system i, in coordinates of system i 

force acting on the point p, in cgordinates of base i 

moment acting on body j, in coordinates of base i 

diagonal matrix with the mass of body i 

inertia matrix of body i, relative to the body fixed system i 

dissipator i 

compliance i 

column matrix with velocities, in which “a” stands for : i, I, C, R, S, d. 

matrix relating velocities &, to the independent velocities ii, in which “b” stands 

for : I, C, R, S. 

The underlined characters in the figures are equivalent to the bold face characters, 

representing a matrix. 

I. Introduction 

A systematic approach is necessary in modelling large mechanical systems. In this 

paper a description of the kinematics is given first, which forms the basis for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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junction structure of the mechanical bond graph. A uniform notation of velocities is 

introduced. With the elements attached to this junction structure the dynamics of 

the system is described using the power conserving concept of bond graphs. 

A bond graph model of a system is a basis for the formulation of equations or for 

simulation. Constraints in mechanical systems may lead to implicit differential 

equations. In the second part of the paper it is explained how formula manipulation 

is used to obtain an explicit differential equation which can be solved with a 

standard simulation program. An industrial manipulator is used as an example to 

demonstrate the method. 

II. Modelling Mechanical Systems 

1. Kinematics 

In the description of mechanical systems, displacements and velocities play an 

important role. Describing large systems requires a systematic notation of velocities, 

which will be discussed together with the kinematics. Wittenburg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) gave a good 

description of kinematics and dynamics, while Allen (2) introduced a comprehensive 

notation of velocities. These notations are combined and augmented. 

Velocities have a magnitude and direction, represented by a vector. A vector will 

be described as a linear combination of three orthonormal vectors, called a base 

system, coordinate system or for short a base [Eq. (la)]. The three x, y and z base 

vectors form a righthanded system. Vectors will be denoted with an arrow on top, 

base vectors are additionally identified with the letter e. The scalars in this equation 

are the coordinates of the given vector in base 0. In (lb) these coordinates are 

represented in one column matrix, i.e. 

t, = $x. &OX + ,q. &OY + $2 . 602 
(14 

g = [aox 3OY iOZ]T. 
(lb) 

In mechanical systems more coordinate systems are used simultaneously, which are 

identified by a superscript ; so the superscript in (1) denotes that the vector is 

described in base 0. The subscript denotes which vector is described. The 

coordinates of a vector are dependent on the orientation of the base. The 

coordinates of a’vector described in a certain base i are transformed to basej by a 

coordinate transformation (2). Transformation matrices are denoted by capital A. 

The orientation of two bases with respect to each other is specified with cardan 

angles, which also defines the transformation matrices 

kj = A’*‘. ki 
P P’ (2) 

Figure 1 shows an arbitrary moving body with a body-fixed coordinate system, a 

centre of gravity and a moving point p. The body is described with respect to the 

inertial base 0. The velocity of point p is in vector notation described with the well 

known Eq. (3). In (4a) the velocity of p is given in the matrix notation. Equivalent to 

the cross product in (3) is the matrix product in (4) using the antisymmetric matrix X 

with the coordinates of the point p in base 1 as argument (4b). In (4) the subscripts 

consist of two numbers. The first indicates at which point the velocity is described, 
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Large Mechanical Systems 

FIG. 1. Arbitrary moving body. 

the second relative to which point this velocity is meant. The last term in (4a) is the 

linear velocity of p due to the rotational velocity ai,, of base 1 with respect to base 0. 

This specific velocity, which appears often in the bond graph, is denoted with an r 

after the superscript (5), that is 

f L 
x, = x1,cl +&?,I +%*J~,,1 (3) 

k; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri’i),o+A O*l ~(~;,I +X(x~,1Px,o) (44 

X(x;,,) = [ ;; 1,, :;] (4b) 

* lr 
Xp,l = X(x;,I)qo. (5) 

The velocity relation in (4) forms the basis for the bond graph description of 

mechanical systems, which is represented by the bond graph junction structure of 

Fig. 2 [see Refs. (3) and (4)]. The three components of the velocities are represented 

by the three components of a multibond. (The expression multibond is preferred over 

the word vectorbond.) The notation used is according to Breedveld (5). The 

multiport transformers represent the matrices in (4), as can be seen on the 

corresponding constitutive matrices. With the described notation only the kine- 

matics of a system can be modelled. Our main interest is in the dynamics. 

2. Dynamics 

To represent the dynamics, the bond graph of Fig. 2 is augmented with inertia 

elements, and the linear velocity of the centre of gravity is described, so one 

FIG. 2. Junction structure representing kinematics of a free moving body. 
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FIG. 3. Dynamics of a moving body. 

O-junction disappears (Fig. 3). At the right side the mass matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is connected as 

an I-element to the l-junction of the translational velocities in the inertial frame, 

together with the gravity force source Se, which acts in the vertical direction only. At 

the left side the diagonal moment of inertia matrix J is connected as an I-element to 

the l-junction of the rotational velocities in the body frame. The gyroscopic forces 

which act between these velocities are represented by the modulated gyrator MGY. 

Because the Euler equations represent these forces, the MGY is referred to as an 

Eulerian junction structure (EJS). Finally, an external moment-source M is 

supposed to act on this l-junction. 

From the bond graph Eq. (6) can be derived. It describes the sum of the efforts 

(moments) at the left l-junction of Fig. 4. The first term represents the moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Body I-I Body I Body I* I 
__-__-__--_---_--__-_ 

I I 

I 
, $.rI MGY: EJS I 

I 

UvlTF: A - 

ll 

,o 
xq 

FIG. 4. Bond graph representing the dynamics of a link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi in a multibody system, with centre of 

gravity q and connection point p. 
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Large Mechanical Systems 

required for the angular accelleration of the inertia of the body. The inertia is 

described in the centre of gravity with the same orientation as the body fixed 

coordinate system. The second term represents the modulated gyrator for the 

coriolis and gyroscopic forces. The last term is the moment required for the 

translational acceleration of the centre of gravity due to the gravitation and possible 

other forces acting on this centre of gravity. The first two terms in (6) are equivalent 

to the Euler equations ; the last term is related to the Huygens-Steiner rule. Left of 

the equal sign in (6) is the external moment source Se, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M: = J:.Ih:+n:XJ:.n:+X(x:,,)T.A1,O.(ml.~ ~ -F,O). (6) 

Using this representation of one moving body, a bond graph of an interconnected 

multibody system can be derived. In Fig. 4 the bond graph of the ith body is given, 

which is based on Fig. 3. In this bond graph the upper l-junction together with the 

upper horizontal bonds represent the angular velocity of this body, in body 

coordinates. The lower horizontal bonds represent the translational velocity of body 

i and of its connection in point p with body i+ 1, also in body coordinates. The 

vertical branches represent the interaction between rotation and translation as 

representated in Fig. 3. Two branches occur : the left one representing the interaction 

with the centre of gravity q, the right one is related to a fixed point p in which the 

translational coupling with a body i + 1 is supposed to take place. If coupling with 

another body in another point exists, a third vertical branch has to be added. 

During the construction of the bond graph of a large system it is useful to have a 

graph in which only the overall structure of the system is shown, while the bodies are 

not worked out in such detail as in Fig. 4. The word bond graph is suited for this 

purpose. In Fig. 5 the general word bond graph for a part of a multibody system is 

shown. In this, each body is represented by a block interconnected by two rows of 

bonds. The upper relates to the angular velocities, the lower to the linear velocities. 

Each body is described in its body-fixed coordinate system. Therefore, coordinate 

transformations between the body fixed coordinate systems are required and shown 

as MTF’s. At the O-junctions the open bonds of the difference velocities at the 

interconnections can be seen. Drives or constraints can be applied to these bonds. 

After the structure of a system in the form of a word bond graph has been drawn, 

L 

L.1 

==7i ==-7Q7~~~,,=7 L ,;1/ 
_u Q’, $+I A 9 _u @,+I 

2 =70=/MTFj 
-I 5; 

IT 
A:+, p “PI, 

.! 
EA,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 5. Word bond graph of a link in a multibody system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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each part may be separately worked out in detail, if required. The discussed 

modelling method will next be applied to an industrial manipulator. 

3. Modelling an industrial manipulator 

The mechanism, as shown in Fig. 6, consists of three rigid bodies. For bodies 1 and 

2, body-fixed coordinate systems are chosen respectively as base 1 and base 2. Body 

3 is described in the same coordinate system as body 2, which can be done when they 

have the same angular velocity. The actuators in the system are an electric PM 

motor and two hydraulic motors, the electric motor being used for the angular 

displacement of body 1 in the lz direction. The hydraulic motors are used for the 

angular displacement of bodies 2 and 3 in the 2x direction and for the linear 

displacement of body 3 with respect to body 2 in the 2y direction. The compliance of 

the oil in the hydraulic system has been taken into account. The compliances of the 

links are neglected. When a more accurate model is needed they can easily be added. 

A word bond graph is drawn in Fig. 7. Bodies 2 and 3 are described in the same 

block. The difference in angular velocity between body 1 and 2 is given in the upper 

row of bonds at the O-junction with the drive 2 attached to it. In the same way a 

moment for the angular velocity of body 1 at the lz axis is represented with an effort 

source, drive 1. The linear velocity between bodies 2 and 3 is applied within the right 

block, so the point of application of drive 3 is not shown in the word bond graph. 

The velocity ofpoint 35 has to be known and is therefore an explicit l-junction in the 

word bond graph. 

The word bond graph can be worked out in detail to give rise to the bond graph of 

the industrial manipulator, Fig. 8. Because in this particular case the velocities of 

points 10 and 2 are zero the branches in the bond graph belonging to body 1 are 

eliminated. The three remaining branches left belong to bodies 2 and 3. From left to 

right they give the velocity of the centre of gravity of bodies 2 and 3 respectively. The 

last one gives the velocity of the endpoint 35. The difference velocity between bodies 

2 and 3 is added to the relative velocities of points 30 and 35, both in the y-direction, 

Some elements in this bond graph need explanation. The C-elements represent oil 

compressibility. The inertias of bodies 2 and 3 are added to one inertia while both 

bodies have equal angular velocity. The same holds for the corresponding gyrator. 

The bond graph modelling method as explained and applied to an industrial 

manipulator may be used to describe the dynamics of large mechanical systems. In 

X0 XI 

FIG. 6. Industrial manipulator. 
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FIG. 7. Word bond graph of the industrial manipulator 

the third part of this paper simulation will be discussed, because mechanical bond 

graphs have some specific problems, related to the kinematic constraints in these 

systems. 

HI. Simulation 

Before a system, described by a bond graph, can be simulated the output variable 

ofeach element and junction has to be known. By adding causal strokes to the bonds 

n! 
Sfz-70- MTF - I r R:R, 

1 
c.cz II:J’ 

f 

Se, -%- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7UvlGY-j I --/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
G II 2’1 

R:R, 

Sf3- o - MTF 

1 

ni 

c:c, 

- - 

FIG. 8. Bond graph of the industrial manipulator. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the output variable of each element is shown. Usually in mechanical systems, many 

inertias will have differential causality, indicating their dependence on inertias in 

integral causality. The mathematical equivalent is a set of implicit differential 

equations. This appearance of mixed integral and differential causality for the 

inertias is due to the many kinematic constraints, common in mechanical systems. In 

general, this will result in numerical problems during the simulation on a digital 

computer. 

There are several ways to simulate a mechanical system, described by a bond 

graph, each having its specific disadvantages. First, it is possible to choose integral 

causality for all storage elements, resulting in a non-causal bond graph, which is 

mathematically equivalent to an implicit set of differential equations. Simulation is 

in principle possible using iterative solution methods. A second way is to release the 

mechanical system by adding damped compliances on the desired places in the bond 

graph, see Margolis and Karnopp (6). Usually this results in long simulation times 

due to the introduced stiffnesses. A third way is based on the transformation of the 

differential inertias to the integral inertias. In contrast to the first method, the second 

and the third imply that the implicit differential equation is transformed to an 

explicit form. A disadvantage of the third method is, that it is manually hardly 

possible to execute for other than small systems. Allen (7) proposed to computerize 

the method by using formula manipulation for multiplying and inverting matrices. 

Instead of starting from the bond graph he started however from the displacement 

equations for the computation of the desired matrices. 

In the next section a method is described which starts from the bond graph of a 

mechanical system. The junction structure of the bond graph is equivalent to the 

velocity relations of the system. Formula manipulation is used to construct the 

explicit differential equation from these velocity relations and the element relations. 

A general form of the method will be derived using a small example system. An 

application and some simulation results are shown for an industrial manipulator, 

already modelled in the first part of this paper. 

1. Derivation of the procedure 

The example to be used (Fig. 9) is a massless rod rotating around the y-axis. A 

mass can move along the rod and is attached to the rod by a linear spring. 

The corresponding bond graph, presented in Fig. 10, is composed in the way 

described. The MGY-element, which in general is connected to the upper l-junction 

for the angular velocity of the body together with the inertia, is left out : it will have 

FIG. 9. Example system. 
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I J” 

Fit. 10. Bond graph of the example system. 

no effect as long as there is a rotation in only one direction. Adding the causal strokes 

shows that one of the inertial elements gets differential causality and is dependent on 

the others. Its computation by numerical differentiation causes instability if the 

corresponding loop gain is larger than one (8). In this case, a loop gain smaller than 

one can be obtained, but in general in larger systems, in which the loop gains may 

even be state dependent, this no longer possible. 

A better way to solve the problem is to transform the dependent inertias to the 

others. For small mechanical systems like the one presented this can easily be done 

by hand. For larger systems, however, a manual procedure becomes very difficult. In 

the following it will be shown how such a procedure can be computerized. 

It is preferable to restrict our procedure to that part of the bond graph in which all 

dependencies occur. Allen (2) called such a part with many kinematic constraints a 

“mechanism”. In our example, the complete bond graph has to be treated. 

In the considered (sub)bond graph all inertias will be represented as one multiport 

I-element connected to a junction structure. Afterwards other elements will be 

treated in the same way. 

The junction structure represents all the velocity relations of the system. These 

velocity relations (7), which can immediately be obtained from the original bond 

graph, are a set of linear equations with non-constant coefficients : 

xi=. n;y = $X, upper MTF (Fig. 2) 

in which c6’ = cos (e), sB = sin (e), 6 = R. 
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As in Lagrange’s method a set of independent (generalized) velocities is chosen. In 

this system there are two independent and three dependent velocities (8). It should be 

noted that although in this case the independent velocities are a subset of the inertial 

velocities, other than inertial velocities may also be chosen. The velocities of the 

inertias can be written as a function of the independent velocities by solving (7) for 

the dependent inertial velocities. The resulting relations will be represented by 

T-matrices (9). 

Independent velocities : Cliy, iy’ ; 

dependent velocities : iyx- iix- ~2;‘. 

41 = T1.i * 4i, 

with : 

tji = independent velocities, 

& = inertial velocities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T,,i = transformation matrix. 

In this case the exact form of the matrices is as follows : 

(8) 

The multiport inertia I [Fig. 11(a)] is a 3 x 3 matrix, containing all the inertial 

elements. It will now be transformed to the independent velocities (10). This is 

equivalent to the transformation of an inertia over an MTF, and results in a virtual 

inertia 1 and a gyristor GR [Allen (2)]. The transformation is demonstrated in the 

partial bond graph of Fig. 1 l(a) to that of Fig. 1 l(b). The l-junction represents the 

independent velocities. 

. 

(b) 

i Kzyn.7 

ll 
4, 

GR 

FIG. 11. (a) Bond graph of the junction structure and inertia field. (b) Bond graph with the 

virtual inertia and gyristor. 
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Virtual inertia zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: P = T~i * 1. T,,i 

I 
Xi= 

2 

JlY+ --_.m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1 

_ -.X;Z.m, 

= 

-g.;z.ml (I+$!~j.ml . 

1 

Gyristor : GR = TKi* I*T1,i 

Both T and GR are modulated multiport elements. 

Finally the R-, C- and S-elements are defined as multiports too. These elements 

will also be related to the chosen independent velocities. For all of them 

transformation matrices T are derived in an equivalent way as for the inertial 

velocities (11). 

4c = Tc,i * 4, k = T,,i * 4, &e = Tse,i * 4i 

In which +, (jR, QSe, T,,i, T,,i, Ts,,i are defined as : 

qc = QR = [a:=], cjse = [a:=], 

(11) 

The above derived equations can be represented in a multibond graph of the system : 

the bond graph of Fig. 11 is augmented in Fig. 12 by adding the multiport R-, C- and 

S-elements and the corresponding transformations (11). A signal vector, drawn with 

a full arrow, is added to represent dependent velocities. They are, together with the 

corresponding displacements, required as signals for the modulated transformers 

and gyristor. Adding causal strokes to this bond graph will now show integral 

causality for the I- and C-elements. The differential equations can be obtained from 

this bond graph in an equivalent manner as for single bond graphs. In Eq. (12) these 

FIG. 12. Multibond graph of the system. 
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differential equations are combined in one matrix relation 

-‘i-‘.E 

in which 

E = T,T,i.R.TR,i+T&.G.T&. (12) 

An equation has been added to obtain the required dependent velocities Qd and 

their corresponding displacements. In the example the angular displacement 8 of the 

rod, is required for the transformations T. 

In the described procedure three main steps from mechanical bond graph to an 

explicit differential equation are required. Firstly, the derivation of the set of linear 

equations from the junction structure of the bond graph. Secondly, the solution of 

these equations to obtain the T-matrices. Thirdly the differential equation is 

constructed using the T-matrices and multiport elements. The method described 

differs from Allen’s method: he derived the T-matrices by differentiating the 

displacement equations obtained from the geometry of the mechanical system. 

2. The use offormula manipulation programs 

A general program for formula manipulation, being an interactive program 

written in Lisp, is Reduce [Hearn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(lo)]. With this program one can manipulate 

equations as well as large matrices, except for solving linear equations. A collection 

of procedures and algorithms called Netform [Smit et al. (ll)] may be attached to 

Reduce. These routines are especially made for circuit analysis, including the 

solution of linear equations. The routines in Netform are very efficient when applied 

to electrical circuits, because they make use of sparse matrices. Although sparsity is 

not always a property of the matrices for mechanical systems, the routines are used 

successfully. 

In our application the use of Reduce and Netform is as follows. The velocity 

relations (7) are given to the program (with the function EQU), as well as a list of 

unknown variables denoted to the program with the function VAR, see Eq. (13). The 

variable names in (13) have a one to one relation to those used in Eq. (7). The 

independent velocities and the sines and cosines are non-constant coefficients. To 

obtain the matrix relating the inertial velocities to the independent velocities, the 

inertial velocities are solved. From this the corresponding T-matrix is known. The 

same technique may be used to obtain all the T-matrices. After the multiport 

elements have been given to the program, the differential equation is obtained in 

formula form and can be written as a file in Fortran format. The differential equation 

may be integrated with a standard simulation program, which allows input in 

equation form. Being familiar with the very user friendly commands in TUTSIM 

[Meerman (12)], a program was written with mainly the same commands, but a 

model description in formula form. This program, called MBGSIM, has been used 
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to simulate the industrial manipulator [Bos (13)]. 

EQU-xlz2*omegalyl -vlxl, 

cos(teta)*vlxl -sin(teta)*ulzl -vOxl, 

sin(teta)*vlxl +cos(teta)*vlzl-00~1 ; 

VARvlxl,vlzl,vOx1; 

in which: 

viap = $, a = x, y, 2. (13) 

Due to the use of the formula manipulation programs it is easy to experiment with 

the equations. So it was found that a relation exists between the choice of the 

generalized velocities and the complexity (in the number of algebraic operations) of 

the differential equation. 

The best results were found when the generalized velocities are angular velocities 

of bodies in body coordinates and linear velocities of masses in inertial coordinates. 

A bad choice results in very large T-matrices; a good choice in simple matrices in 

which it is possible to check the equations by comparing the elements in the 

T-matrices with the junction structure of the bond graph or with the original system. 

As described, the formula manipulation program has been used to solve 

equations, to obtain the T-matrices. This solution, however, requires an excessive 

amount of core (roughly 0.25-l Mbyte for a system like the industrial manipulator). 

A good choice of the independent velocities decreases the core demand considerably. 

To make quantitative statements more study is required. 

3. Simulation of a robot 

The above described method is used to model and simulate an industrial 

manipulator of which the model has already been described. The three steps to 

obtain the differential equation will not be shown in detail but will be discussed 

briefly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

” i 
w 2.1 

xc2 
cjc = . ) cji = np 

xc3 
.2Y,2 

x30 

1. &=[!J +[$]. +I]. 

(14) 

The velocity relations (7) are derived from the junction structure of the bond 

graph. By choosing the independent velocities and denoting the velocities of the 

elements (14), the calculation of the T-matrices can be done. After adding the 

element fields the differential equation may be constructed in a Fortran subroutine. 

Some simulation results are shown in Fig. 13. This figure shows the high 

frequencies, due to oil compressibility. 
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FIG. 13. Response to a positive pulse of the electric motor on the vertical axis of body 1, 

followed by an equal negative pulse. Curve 1 represents the angle, between the y-axes of the 

bodies 2 and 3 with the line which has an angle of 0.25 rad with the horizontal (the starting 

position); curve 2 represents the displacement in the y2 direction of body 3 with respect to 

body 2 ; curve 3 is the angular displacement of the robot on the vertical axes ; curve 4 is the 

vertical angular velocity. 

Z V. Summary 

The presented method of modelling 3-D mechanical systems with bond graphs 

has been formalized by : 

(9 
(ii) 

(iii) 

the introduction of an elaborate notation of velocities, 

the introduction of a general bond graph describing a body in a multibody 

system, 

a word bond graph in relation with the description of multibody systems, in 

which each block represents a link in a multibody system. Each block (link) can 

be worked out in detail in a standard way. 

A method is described to solve the causality problem related to the existence of 

both integral and differential causality in a mechanical bond graph. This method 

transforms the mechanical bond graph to a multibond graph with integral causality 

only. This multiport bond graph is equivalent to an explicit differential equation 
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which can be solved by a simulation program. Programs for formula manipulation 

are used to transform the mechanical bond graph to the multibond graph. Due to 

this formula manipulation it became possible to experiment with the choice of 

independent (generalized) velocities and obtain efficient results. The core demand of 

the formula manipulation is excessively large and will be investigated in the near 

future. 
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