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ABSTRACT

Formula scoring is the systematic study of measurement statistics

expressed as linear combinations of products of item scores. The theory is

currently being used to compute non-parametric estimates of ability

distributions, item response functions, and option response functions. The

theory has been used to design algorithms for estimating itam response

functions from adaptive test data (on-line calibration), monitoring and

correcting drift in observed score distributions for adaptive tests (on-line

equating), computing optimal tests for cheating, and combining

appropriateness measurement information from several subtests. In this

paper a portion of the theory is developed from a few principles.

Applications are considered to the problems of deciding whether abilty has

the same distribution in two demographic groups, to finaing latent class

models that are equivalent to item response models, and to controlling drift

in adaptive testing programs.
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FORMULA SCORING

BASIC THEORY AND APPLICATIONS

Preface

For several years, Bruce Williams and I have been presenting

applications of a new approach to measurement, which we call formula

scoring. Our presentations to the annual ONR Contractor's Conferences have

been punctuated with the phrase, "It can be shown ... ." This technical

report begins a series of papers providing proofs of these claims. An

attempt will be made to derive formula score theory from a few basic

principles.

This version of the report is being used to introduce graduate students

to the work in our laboratory. Very explicit, computational proofs are

provided for some basic results. A shorter version is being prepared for

publication. 0

Tnanks to Bruce Williams and Fritz Drasgow there are many data-based

applications
1 

of formula scoring, which are now starting to appear in

print 
2
. The data-based applications are not suitable for motivating this

paper because Bruce's programs use concepts that are developed in later

papers. Therefore an alternative way to motivate the report had to be

found.

Three examples of results that can be obtained with the theory have

been selected to motivate the theory. I don't think the results would have

been discovered without the theory. Each seems surprising - at least to me

- and somewhat contrary to conventional psychometric wisdom. Each result

can be easily proven with the theory. And each result seems hard to prove

without reproducing the reasoning in the theory.
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Some Examples to Motivate the Theory

Formula score theory can be used to derive some unexpected, hopefully

useful, consequences of the assumptions of item response theory. Three

examples follow.

The examples are valid for parametric and non-parametric item response

models. Except where noted, the results hold for all "continuous, one-

dimensional, probabilistic item response models for bounded abilities."

Thus, item response functions are permitted to have any shape, provided they

are continuous functions of one variable with values strictly between zero

and one. The cumulative distribution of ability also is permitted to have

any shape, provided there is some - possibly very large - interval such

that the distribution is zero or one outside this interval.

Example One: Checking for ability distribution differences

A quick way to recognize ability distribution differences is to check

average tests scores. Thus, if girls on the average have higher test scores

than boys on an unbiased test it is safe to conclude that ability is

distributed differently among girls and boys. The converse obviously is not

true because very different distributions may have same mean.

Using observed scores to check for group ability differences is

believed to be uniquely uncomplicated for the Rasch model. Since the number

right score is a sufficient statistic for estimating ability it might be

expected that it is possible to determine the presence or absence of group

ability differences by comparing distributions of number right score. This

(incorrect) assertion can also be expressed as follows:

There is a set of statistics XO, XI ... Xn such that the group

ability distributions are different if and only if at least one

of the statistics has different expected values among girls and

boys.
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Here n is the number of items on the test, and X. is the statistic which

is one if exactly j items were answered correctly and zero otherwise.

The theory shows that the Rasch model is not unique in having a small

number of diagnostic statistics. The theory also shows what can and cannot

be concluded when corresponding pairs of expectations are equal.

For any item response model, Rasch model or other, there is a set of

statistics X1 , X2 f ... Xj such that if at least one pair of corresponding

expected values differ, then the group ability distributions are different.

But if corresponding expected values are equal, then the distributions still

may oe different. However, it can be shown that no statistical test (using

only the answers to the n items for data) exists that can demonstrate the

difference! In particular, for a test satisfying the Rasch model if boys

and girls have equal expected X.'s , then ability may be distributed

differently in the two populations, but no analysis of test data can be used

to demonstrate the diffe. ence. Details follow the proof of Theorem One.

Recall that for the Rasch model each item response function P.

Pi(t) - Prob(correct answer for item i I ability = t)

"(t-bi) -l

can be written in the form Pi(t) - [l+e ] for some constant b.

To avoid mathematical digressions irrelevant to the main points of this

paper, it will generally be assumed that for iyj , b. b. Thus no two

Rasch model items have exactly the same item response function.

As an example of another model having a small set of diagnostic

stptistics, consider the generalization of the Rasch model having item

response functions given by the following equation

-a(t-b )-l
Pi(t) - c. + (l-ci)[ 1 + e i

As with the Rasch model, it will generally be assumed that different items

have different difficulties. Thus if idj , b. b. . For this model J is
3



Preface and Examples page 4

less than or equal to the number of items, and X. can be taken to be the
3

score that is one if item j is answered correctly and zero otherwise. (If

for some ipj , b.-b. , then a somewhat more complicated set of X. must beJi J

used, but J is still small.)

Incidentally, these results are related to the identifiability of

ability distributions. Since different distributions can give the same

vector of expected X.'s , the ability distribution is not identifiable,
3

even when the item response functions are completely specified.

Example Two: How to turn an item response model for an ability continuum

into an isomorphic latent class model with finitely many classes

Suppose we are given an item response model with continuous item

response functions 7 0,1 and a continuous ability density f . Using the

theoretical results in this paper it can be shown that it is possible to

select abilities t0<t1< ... tj and numbers p(t0 ),p(t I), ... p(tj) such

that for each item response pattern u , the "manifest probability"

Prob(Sampling an examinee with item response patttern u )

which is ordinarily computed by i tegrating the likelihood function,

c lik(u ability = t) f(t) dt

can be computed by evaluating the sum

Z lik(u* ability - tj) p(tj)
j-0

For the item response functions given by the formulas in Example One, J

can by set equal to the number of items.

Since the manifest probabilities sum to one, Z p(t.) = 1 . Thus if

p(tj) t 0 for j J , we have a latent class model with J+l classes that is

isomorphic to the continuous latent trait model.
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I haven't found a simple proof based only on the results in this paper

of the existence t. with p(t.) ! 0 . Hovaver the result also is true and

is proven in next paper in this series. In any event, even when some of the

p(t.) are negative the result seems able to greatly reduce computation
3

times in some applications noted below.

Example Three: On-line equating or Simulation results without simulation

Consider two subtests, say, word knowledge (WK) and arithmetic

reasoning (AR), of a computer administered adaptive test such as the

adaptive version of the Armed Services Vocational Aptitude Battery (ASVAB).

Suppose the item pool for WK has just been changed by introducing some new

items that haven't beer ministered often enough to highly motivated

examinees to have well estimated item response functions. To analyze and

control the effect of the new items on the distribution of an observed score

A

8WK we wish to calculate three functions, usually computed by simulation:

A

FI Expectation ( 0WK 0 = t)
A

F2(t - Variance ( 0WK 0WK - t)

A

P(xlt) = Prob { 0WK : x 0WK = t)

F and F2 show how the first two conditional moments of the observed

score are affected by the new items and can be used to make corrections.

For example, if F2 (-l) is observed to increase very much when the new

items replace easy old items then countermeasures such as adding more easy

items can be tried. P(xlt) provides the remaining moments. It can be used

A

to predic, how the marginal distribution of 0WK will be affected by future

changes in the ability distribution.

Since the item response functions for the new items are not known,

simulation is not possible. (When the score 0W1, is a Bayes mode or

maximum likelihood ability estimate, then item parameter estimates derived



Preface and Examples page 6

from small samples of not highly motivated examinees may be used to compute

the score, but such estimates are not suitable for including in a

simulation.) Thus, the following result is of interest.

It is generally possible to use the item response functions for the old

WK items to compute functions c0 (t),cl(t), ... CK(t) and to sort examinees

A

into groups using only an AR score 0AR . According to the theory, the
A

conditional expectation of 0 WK (computed from item scores for both old and

new items) can be calculated with the formula

A

Expectation ( 0WK I OWK~ t

K A

k0 ck(t) Expectation ( 0WK I OAR is in the kch score group)

A

In words, we use 0AR to group examinees and then compute the conditional

A A

expected WK score as a linear combination 0WK group averages. The 0WK

score is computed using item scores for both old WK items and new WK items.

However, only the well estimated old WK item response functions are used to

compute the coefficients of the linear combination. In this way the effect

of introducing new items on an observed score at each ability level can hc

calculated from actual data. Since the method does not use item parameter

estimates for the new items, it is not adversely affected by item parameter

estimation error on the new items.

A similar formula gives the conditional variance since for the same

c. and groups

JA
Expectation ( A2K 1 0 -t

K A A

E c k(t) Expectation( 0WK1 
0AR is score group k )

k-0

Finally, for the random variable defined by
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A
if 0W :5 x

- 0 otherwise

A

the conditional distribution of 8WK is given by

A

Prob( 0WK : x 10WK-t} - Expectation( X 1 0WK-t)

K A

- E ck(t) Expectation( X 10AR is in group k
k-0

The calculation of these three conditional expected values illustrates

a more general result described in the discussion of "quasidensties"

(Section Two, below).

NOTES

1. Formula score theory currently is being used to compute non-
parametric maximum likelihood estimates of ability distributions,
item response functions, and option response functions. The theory
has been used to design algorithms for estimating item response
functions from adaptive test data without interrupting testing (on-
line calibration), to compute optimal tests for cheating, and to
combine appropriateness measurement in:' rmation from several
subtests. The theory yields measures of item bias and test
dimensionality. The theory seems to lead to a tractible, non-
parametric, multidimensional item response theory, which is
currently being developed. The theory is also being applied to what
might be called "online equating," i.e., monitoring and correcting
changes in the distribution of observed scores for an adaptive test
as the test's item pool is replenished.

2. Drasgow, F., Levine, M.V., Williams, B., McLaughlin, M.E., and
Candell, G.L. Modelling incorrect responses with multilinear
formula score theory. Applied Psychological Measurement, In press,
1989; Drasgow, F., Levine, M.V., and McLaughlin, M.E. Multitest
extensions of appropriateness indices. Applied Psychological
Measurement, accepted for publication, 1989.



Section One

Formula Score Theory and Equivalent Distributions

Formula score theory systematically studies measurement statistics

expressed as linear combinations of products of item scores. The theory

begins with an equivalence relation on ability distributions.

We consider a fixed test of n items. A p.ir of distributions F and

G are defined to be equivalent relative to the test if every statistic

computed from the test's item scores has the same distribution under the

hypothesis

H0: Ability has cumulative distribution F

as under the alternative hypothesis

HI: Ability has cumulative distribution G

Notice that there is no way whatsoever to use item responses on the

test being analyzed to distinguish between a pair of equivalent

distributions. For if F is equivalent to C and if the statistic X is

used for hypothesis testing, then decisions based on X will be no more

valid than decisions based on the flip of a coin or other irrelevant random

process.

Notice also that equivalence is defined relative to a fixed test of

specified items. Thus a pair of distributions may be equivalent relative to

the test, but distinguishable if one more item is added to the test. In

fact, if one of the items is replaced by a slightly different item, the

equivalence relation may be changed. This is a significant limitation of

the present algebraic version of the theory. Later papers on applications

use metric concepts to get around this problem.
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The main result of this section is a characterization of equivalent

distributions in terms of the expected values of finitely many statistics.

Comments on implications and applications of this result are at the end of

this section.

Item Response Theory and Formula Score Theory

To make the paper more nearly self-contained and to make explicit just

what assumptions of item response theory are used to prove the new results,

we begin with some definitions from item response theory.

An item response model provides a probability measure for set (a)

which is interpreted as a set of possible or actual examinees. There are

two types of random variables in item response theory: observed item scores

u1 (a), u2 (a), ... un(a) and unobserved abilities 0(a) . Item scores are

either one or zero. "u.(a)=l" is interpreted as "examinee a successfully

answered item i ."

In this paper, the abilities 0(a) are numbers. However, after some

routine changes, all of the results in this paper and their proofs

generalize to multidimensional abilities, i.e., vector-valued 0(a)'s

Item response theory relates item scores to abilities with functions

P. called item response functionsi

P.(t) = Prob( ui=lS0=t

Pi(t) is interpreted as the probability of observing ui(a) - 1 , when

examinee a is sampled from all those with ability t

In this paper, details about the item response functions are generally

left unspecified. Only continuity and a weak condition, 0 < Pi(t) < 1 , are

assumed. These conditions are also implied by the parametric formulas of

most item response models.
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Formula scoring differs from much of item response theory on the domain

of definition of the item response functions. In item response models

Pi() is usually defined for all numbers t , despite the fact that the

models predict essentially the same behavior from examinees with ability 20

and 20,000 and despite the fact that applications of the parametric models

usually proceed as if abilities were bounded.

In this section the domain of definition of the item response functions

can be bounded or unbounded. However, in the following sections P.(t) is

defined only for t in an interval of finite length. Some discussion of

this point is at the end of this section.

The main ass,.mption of item response theory is local independence. It

asserts that item responses are conditionally independent, i.e., for any

sequence of zeros and ones

u, u2 , . un

and any ability t

Prob( ul=U1 & u 2=u 2 u. Un=un 1 0 - t) = Ii Prob{ ui=ui10-t)

In item response theory analyses of data, the item responses are

recorded and inferences are made about 0 . Only the item responses are

observed. Thus if the word "statibtic" is to be reserved for random

variables that are functions of the observables, only functions of the u

are statistics. Since the range of each u. is finite, every function of

the u. is a random variable. Thus X is a statistic if and only if X
1

is a function of item scores.

The set of all statistics for a test is obviously a vector space since

a linear combination of functions of item scores is a function of item

scores. Since the u. take on only finitely many values, every statistic
3.

2
can be written as a polynomial in the item scores. In fact, since u. u.

2. 1.
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every statistic is a linear combination of the following statistics, which

are called elementary formula scores,

1

U1, u2 , ... un

UlU 2 , UlU 3,.. Un~lUn

n
U.

Thus the elementary formula scorcs, or some subset of the these scores, form

a basis for the vector space of all statistics. Since there are finitely

many ( 2 n ) elementary formula scores, the set of all statistics is a finite

dimensional vector space.

The regression function RX(.) or conditional expectation function of

a statistic X

RX(t) - E(XI=t)

expresses the conditional expected value of the statistic as a function of

ability. Since every statistic is a linear combination of the elementary

formula scores, local independence implies that each regression function can

be written in at least one way as a linear combination of the following

functions

1

el(t)' ... P n(t)

el1(t)P 2(t), Pl (t)e 3
(t )

, ... P n-i (t )P n ( t)

n

H P. (t)
i=l '
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The central concept of formula score theory is the canonical space.

The canonical space (CS) of a test is the vector space of regression

functions of statistics. Obviously it is the ve-tor space spanned by the

square-free monomials, i.e. the products of item response functions without

repeated factors, listed above. Thus, the canonical spece is a finite

dimensional vector space of continuous, real-valued functions.

An Alternative Characterization of Equivalent Distributions

Using the canonical space it is possible to derive a simpler test for

equivalent distributions. The definition would have us check the

distribution of every statistic. It will be shown that only finitely many

statistics need to be considered and that all that needs to be known about

each statistic is its expected value. First, some notation.

F will be used in all sections of this paper to denote the (generally

unknown) ability distribution. For any statistic X and number x , the

distribution function of X evaluated at x can be written

Prob(X.x) - f Prob(X.xlO=t)dF(t)

If G is F or any other distribution, then the distribution of X

relative to G evaluated at x will be denoted by P(x;X,G) . Thus

P(x;X,G) f f P(X~xlO=t)dG(t)

Similarly, the expected value of X and the expected value of X relative

to distribution G are denoted by

E(X) = E(XIO-t)dF(t)

E(X;G) = f E(Xj0=t)dG(t)

Using this notation the definition of equivalent distributions given

earlier can be succinctly expressed: Two distributions FI and F2 are
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equivalent if for all statistics X and real x

P(x;X,FI) - P(x;X,F2 )

Theorem One is an alternative characterization of equivalent

distributions.

Theorem One: Let J+l be the dimension of the canonical space, Then there

are J statistics X1 , X2, ... X such that F1  is equivalent to F2

if and only if

E(Xj;F I) = E(Xj;F 2) for j=l, ... J

Furthermore, if Y0' Y1 ... Y are any statistics with linearly

independent regression functions, then F1  -s equivalent to F2  if and

only if E(Y;F1) E(Yj ;F 2 ) for j=O, 1, ... J

Proof: Let h0 ... h be a basis for the canonical space. Since the

constant function is in the CS, h0 can be taken to be the constant

function, h0 (t) = 1 . Since the h. are in the CS, there are statistics
J

X. such that h.(t) - E(Xj 10-t) for 0_j J . For any statistic X and

real x , the regression function of the indicator random variable, X

i, if X(Ul, ... Un) < x
x t

0, if X(Ul, ... ) U n) > x

is in the canonical space and consequently can be written

3

E(xIO-t) - Z "jhj(t)j-0 -jn (t

Therefore for i=1,2

P(x;XFi) f Z.a.h.(t)dFi(t)

= Z.a.E(Xj;Fi)

Since E(Xo;FI) - f 1 dFl(t) = 1 - E(Xo;F 2)
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E(Xj;F) = E(X ;F 2 ) for j-l, ... J

implies that FI and F 2 are equivalent. Conversely, each X. can be

written as a sum of products of the binary item scores,

2 
n

X. - 2 a v

where vI, v2  ... v IT 2 is an enumeration of the 2n elementary

formula scores. Since v is either zero or one, for i-l or 2

E(v V;F.) - I-P(O;v ,F.)

Therefore "F is equivalent to F2" implies

E(Xj;F I) - Z a E(xV;F1 )

= Z a [l-P(O;v ,F 1)]
V

- E(X ;F 2 )

Finally, if J+l statistics Y. have linearly independent regression3

functions gj then for some non-singular (J+l)x(J+l) matrix A=(aij)

g.(.)=Z a khk(.) k The remainder of the proof follows routinely from
3 k

E(Yj;F.) - Z ajkE(Xk;Fi) for j=O, 1, ... J and i=1,2

k

Implications and Applications

The theorem has negative implications for distribution estimation. We

have observed that when J is small, two distributions with clearly

different shapes can be equivalent. As noted in Example Two a discrete

distribution on a few points may turn out to be indistinguishable from a

distribution with a continuous density. Thus, even when item response

functions are known, it is not possible to consistently estimate the ability

distribution without additional assumptions.
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Note that for some applications it is valuable to know that ability

distributions are equivalent. Returh~ing to Example One of the Prefa -, if

the ability distributions for boys and girls are equivalent relative to the

test, then any selection procedure based on test results is as likely to

select a boy as a girl.

The theorem shows, as was asserted in Example One, that by checking

finitely many pairs of expected values, a difference between the ability

distributions can be demonstrated. In Section 3 it is shown that J can be

small. For the Rasch model and its generalization, J can be taken equal

to the number of test items and X. can be taken to be the jth item score.

Thus a necessary and sufficient condition for there to be a demonstrable

difference between distributions is that there be at least one item on which

the proportion of boys passing the item is different from the proportion of

girls.

For other models J can be large and the X. may be complicated.
J

Models with large J are discussed in Section 4. The task of computing J

and X. is also discussed in Section 4.
J

Example Two illustrates a second situation in which distribution

equivalence may have practical importance. In Example Two we considered

replacing an ability distribution having a continuous density with a step

function having finitely many s'eps. The goal in doing so was to reduce

integrals to sums. (In Section 3 a procedure for calculating the location

and size of the steps is described.) In optimal appropriateness

measurementI it is necessary to integrate over ability to obtain a

uniformly most powerful test for cheating and other forms of aberrance.

Even for unidimensional tests a great deal of computing is required to

compute the theoretical manifest probabilities in Example Two. For
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multidimensional tests and "multi-unidimensional" test batteries such as

ASVAB considerably more computation is required.

So far we have successfully avoided computing multiple integrals in our

analyses of test batteries in which each subtest measures a different

ability2 by using approximations. .he results in this section indicate an

alternative, more general way3 to calculate probabilities. Since an

integral must be evaluated for each of thousands of examinees and since

multivariate quadrature requires a lot of computation, replacing a

continuous multivariate with an equivalent discrete distribution on a small

number of points is very desirecble.

This section is concluded with comments on the issue of bounded and

unbounded ability continua, which is raised by Theorem One.

Why Bounded Abilities

Sometimes whatever is being measured by a test is intrinsically

bounded. Adding extremely hard items to a test generally changes what is

being measured and may cause a test to fail to be unidimensional. Thus a

calculus item is not a very hard arithmetic item but an item measuring an

ability or achievement other than what is being measured by a grade school

subtraction test. At the other extreme, a child totally ignorant of

subtraction occupies a lower end point on the measurement scale.

Theorem One raises questions about the domain of definition of the P.

and also motivates considering bounded continua. Suppose that on a

particular test no examinee has an ability outside the interval [-5,5]

Then there can be a pair of inequivalent distributions F1 and F2 such

that F1 (t) - F2 (t) for Itl : 5 , even though no empirical study can

distinguish between FI and F 2  This awkward situation can be kept from

occuring by defining the item response functions as functions of abilities
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in [-5,5] . If t',e P. are defined only for Itl s 5 , then the CS1

becomes a set of functions defined on an interval. Distributions that agree

on the interval will then be equivalent in the sense of Theorem One as well

as in the intuitive sense. Thus by treating the P. as functions of a
1

bounded variable the intuitive and technical meanings of "equivalent" can be

brought closer together. Alternatively, attention can be limited to ability

distributions that are zero or one outside this interval. Both options are

developed in the next section.

The assumption of boundedness turns out to be very weak. In any

practical measurement situation, it can be trivially satisfied by

considering a very large interval, an interval so large that the probability

of sampling an examinee outside the interval for all practical purposes is

zero. For theoretical work, boundedness can be imposed on a test model by

transforming abilities without affecting the only assumptions being made

about item response functions: continuity and 0 < P.(t) < I
1

NOTES

1. Levine, M.V. and Drasgow, F., Optimal Appropriateness Measurement.

Psychometrika, 1989.

2. Drasgow, F., Levine, M.V., and McLaughlin, M.E. Multitest extensions of
appropriateness indices. Auplied Psychological Measurement, accepted
for publication, 1989.

3. The method can be thought of as a quadrature technique developed for
evaluating the integrals that occur in psychometric applications. The
selection of the quadrature points and weights is discussed in Section
3. Each quadrature formula is exact for some set of integrands. The

new method is exact for integrating functions in the CS.



Section Two

An Inner Product and Quasidensities

When abilities are bounded, the CS has an inner product with a simple

statistical interpretation. And each distribution function can be treated

as if it had a continuous derivative. This "derivative," the quasidensity,

is the subject of this section.

In the remainder of this paper it will be assumed that there are

numbers c<d such that Prob (c : 0 d) - 1 . Item response functions

will be treated as functions defined on [c,d] , and the canonical space

will be a set of functions defined on [c,d] . After these changes are made

the function <.,.> defined on pairs of functions f,g in the CS by

<f,g> - f f(t)g(t)dt

becomes an inner product.

Note that when the ability distribution has a density and this density

is in the CS, then the inner product has a statistical interpretation. For

if R(t) - E(XIO-t) is the regression function of a statistic X and if

the ability distribution has a density f also in the CS, then <R,f> is

the expectation of X . The major result of this section is to generalize

this property to situations in which the ability density is not in the CS

and to situations in which the ability distribution is not differentiable.

It will be shown that there is a unique continuous function g in the CS

such that for all statistics X

E(X) = fd E(XIO=t) dF(t)

- fd E(XIO-t) g(t)dt

= <Rx,g>

Theorem Two: If P(c:O:d) = I , then there is a unique continuous function
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g in the CS such that for every statistic X

E(X) - fd E(XIO-t) g(t)dt

Proof: Let ho p h i .... h be an orthonormal basis for the CS relative to

its inner product <.,.> . Thus <hi,h.> 1 1 or zero according to whether

i -, j . For each j-<J a statistic X. can be fourid such that E(Xj 10=t)

- h. (t) because every function in the CS is the regression function of at

least one statistic. Let X be any statistic and RX is .egression

function. Since the h. form a basis for the CS, Rx can be written

RX(.) = Z. b.h.(.)
J 33J

for some constants b. . Since the h. are orthonormal <Rx,h.> - b. and

Rx(.) - Z.i <RX,h.>h.()

Consequently

E(X) _ jd RX(t) dF(t)

d

- fd Zj <RXhj>hj(t) dF(t)

- Z. <Rx,h > fd h(~Ft

- Z. <Rx,h>E(Xj )

= Z. f d Rx(t)h (t)dt E(Xj)

= 1 d RX(t) Z. E(X)hj(t)dt

= fd E(XIO=t)g(t)dt

for g - Z E(X.)h.(.) in the CS.

To prove uniqueness, suppose that for some h in the CS

E(X) _ fd Rx(t)h(t)dt

for all statistics X . Since the hj form a basis, h(-) = a c.h.(.) for
3 33J
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some constants a. Since the h. are orthonormal, for X - X.

m(xj) _ fd RX (t)h(t)dt

d

- fd h.(t) E a h (t)dt
c j k k k

- Z ak<h h >
k k k

- C.
J

Thus h-g , as was to be proven.

If G=F or any other distribution function, then G will be called a

distribution on [c,d] if for t<c , G(d) - G(t) - 1 . If G is F or

any other distribution on [c,dJ then a function g in the canonical space

is called the quasidensityI for G if for all statistics X

E(X;G) - jd E(XIO-t) g(t)dt

Note that Theorem Two implies that every distribution on [c,d] has a

unique quasidensity. Furthermore the proof shows that the quasidensity for

G can be written as

J

g(.) - Z E(Xj;G)hj=O ;Ohj.

3

where (h. J is any orthonormal basis for the CS and each X. satisfies
1 -0 1

RX h. Since the quasidensity is unique, the choice of the orthonormal
.3 .

basis and statistics X. used in the formula is inconsequential.

At the end of this section some facts about quasidensity densities are

listed and proven. The quasidensity for the unit step at -1 is shown to

have the simple form g(t) - Z h.(-l)h.(t) where (hj-0  is any

j<j 

0

orthonormal basis for the CS. This formula was used to compute an

approximation to the quasidensity for the unit step at -1 . The first 19
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h.'s for 100 three parameter logistic items by the methods in Section 4.J

Figure One shows the graph of q(t) = Z h (-l)h.(t) . If q(t) is

j518

multiplied times any of the 100 logistic functions and integrated, the

result should be very close to P.(-l) I i(-l) f6 Pi(t)q(t) dt was

found to be generally small, as shown in Table One.

For shorter tests, the quasidensity of the unit step function can be

computed without approximation. The graph shown in Figure One is typical.

The precision of the approximation shown in Table One serves to

illustrate a point developed in Section Four: For some purposes, high

dimensional canonical spaces can be approximated by much lower dimensional

spaces.
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Figure One: Cumulative distribution function for the unit step function at

0 = -l and its quasidensity
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Table One: Pi(-I) and an Approximation

item P.(-l) fPiq diff item Pi(-l) fPiq diff

1. .1223 .1223 .0000 2. .0601 .0601 .0000
3. .0852 .0852 .0000 4. .1639 .1639 .0000
5. .1449 .1449 .0000 6. .1878 .1878 .0000
7. .2958 .2958 .0000 8. .2058 .2058 .0000
9. .2601 .2601 .0000 10. .3345 .3345 .0000

11. .2380 .2380 .0000 12. .2093 .2093 .0000
13. .3024 .3023 .0001 14. .2965 .2965 .0000
15. .3385 .3385 .0000 16. .4869 .4869 .0000
17. .2798 .2795 .0003 18. .7576 .7575 .0001
19. .4482 .4483 .0000 20. .8665 .8665 .0000
21. .7634 .7634 .0000 22. .9014 .9012 .0002
23. .7804 .7804 .0000 24. .9054 .9054 .0000
25. .8695 .8696 .0000 26. .1391 .1391 .0000
27. .2832 .2832 .0000 28. .2334 .2334 .0000
29. .1463 .1463 .0000 30. .1504 .1504 .0000
31. .1396 .1396 .0000 32. .1374 .1374 .0000
33. .2578 .2578 .0000 34. .2314 .2313 .0001
35. .2262 .2262 .0000 36. .1881 .1880 .0000
37. .2521 .2521 .0000 38. .2788 .2788 .0001
39. .3256 .3256 .0000 40. .2676 .2673 .0003
41. .3734 .3734 .0000 42. .5322 .5322 .0000
43. .6150 .6149 .0001 44. .6617 .6614 .0003
45. .7948 .7948 .0001 46. .7852 .7851 .0001
47. .7835 .7835 .0000 48. .8159 .8159 .0000
49. .8228 .8227 .0001 50. .9064 .9062 .0001
51. .1133 .1133 .0000 52. .0662 .0662 .0000
53. .0605 .0605 .0000 54. .2013 .2013 .0000
55. .2024 .2024 .0000 56. .2697 .2697 .0000
57. .3809 .3809 .0000 58. .1809 .1809 .0000
59. .3495 .3495 .0000 60. .3370 .3370 .0000
61. .1521 .1521 .0000 62. .2812 .2812 .0000
63. .2931 .2931 .0000 64. .2673 .2673 .0000
65. .2569 .2569 .0000 66. .3876 .3876 .0000
67. .4459 .4459 .0000 68. .6903 .6903 .0000

69. .6179 .6179 .0000 70. .8457 .8454 .0003
71. .7718 .7718 .0000 72. .7427 .7427 .0000
73. .8167 .8167 .0000 74. .8800 .8800 .0000
75. .8775 .8774 .0000 76. .1406 .1406 .0000
77. .2074 .2074 .0000 78. .2022 .2022 .0000
79. .0660 .0660 .0000 80. .2454 .2454 .0000
81. .2858 .2858 .0000 82. .0996 .0996 .0000
83. .1365 .1365 .0000 84. .1368 .1368 .0001
85. .2095 .2095 .0000 86. .1741 .1740 .0000
87. .2888 .2888 .0000 88. .2685 .2684 .0001
89. .3565 .3565 .0000 90. .4457 .4457 .0000
91. .3742 .3742 .0000 92. .3632 .3632 .0000
93. .7894 .7894 .0000 94. .4970 .4970 .0000
95. .7856 .7856 .0000 96. .7681 .7681 .0000
97. .8536 .8532 .0004 98. .7984 .7984 .0000
99. .8159 .8159 .0000 100. .9671 .9674 .0003

Averages: .414162 .414137 .000025
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An Application of Quasidensities

2
As an illustrative application , we return to Example Three of the

A

Preface. Let X be a statistic such as 0WK for which we desire

E(XIO=t) . Let MI,M 2 , ... MK be binary random variables indicating group

membership. For example in Example Three, K numbers xk in the range of

A

UAR can be used to define variables of the form

A

Mk = I if 1AR- XkI < .5 , else zero

dividing examinees into K not necessarily disjoint groups. Let

ql' ... qK be the quasidensities for the (conditional) distributions

Fk(t) = Prob ( 0 : t I Mk = I )

Suppose K is large enough and the Fk different enough so that some

subset of the qk forms a basis for the CS. Let q(.;s) be the

quasidensity of the unit step at s in fc,d] . Then there must be numbers

Ck=ck (s) such that

q(t;s) = F ck(s)qk(t) , c:5tsd

k K

From the definition of q(.;s) we have

E(XIO=s) = jd E(XIO=t)q(s;s) dt

Thus

E(XIO=s) = fd E(XIO=t) Z ck(s)qk(t) dt

k K

= k ck(S) E(XIMk=I)

k K
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Thus the regression function on the left - expressing a conditioning on an

unobserved ability - equals a linear combination expected values of observed

scores for tLie objectively defined groups.

To apply this result K is taken to be large, q(.;s) is computed with

the identity (derived at the end of this section)

q(.;s) - Z h.(s)h.(t)

i

The qk are estimated by maximum likelihood. The ck(.) are computed

for each s by minimizing a quadratic objective function such as

Q(cI  c ... cK) = fd [qs(t) - Z ck(s)q(t)] 2dt

In this way a conditional expected value of a statistic given ability can be

computed when simulation is not possible or practical.

In addition to the three examples in Example Three, there is the

interesting special case of X-un+l , the item score for a new item, and

E(XIO=t) P n+l(t) I

its item response function. Thus the formula at the bottom of page 24

expresses an unknown item response function as a linear combination of the

expected values of statistics.
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Summary of Properties of Quasidensities

J

Throughout this summary, let (hiJ= be an orthonormal basis for the

i 
i 0=

CS and (X.) be statistics satisfying E(XjIO=t) = h.(t) for

cj tJ=d .

Properties One, Two, and Three are useful for guessing the shape of the

quasidensity when F has a density in the CS or is closely approximated by

a distribution on [c,d] with a density in the CS. Property Four can be

used even if no close approximation of F has a densty in the CS.

Property Five underscores the identifiability of the quasidensity by

exhibiting a strongly consistent (albeit, inefficient) estimate for the

quasidensity.

Defining Property of Quasidensities: A function g in the CS is the

quasidensity for G if for all statistics X

f4 E(XIO-t) dG(t) - 4 E(XIO-t)g(t) d

Formula for Quasidensities: g(t) = Z. E[X.;G]hW(t)

Quasidensity for Step Functions: Let G be the unit step at s and

q(.;s) its quasidensity. Then

q(t;s) = Z h.(s)h.(t)

Proof: E[X.;G] - fd h.(t) dG (t) = h.(s)
3 5 3

Property One: If G has a continuous density G' and G' is in the

canonical space then G' is the quasidensity of G

Proof: <Rx,G'> = E(X;G) for all statistics X .

Property Two: If G has a (not necessarily continuous) density G' then

the quasidensity of G is the projection of G' into the canonical

space in the sense that the quasidensity g iq the unirue minimizer in
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the CS of

d [GI(t) 2g(t)]2dt

C

Proof: The general function in the CS can be written h(t,d) =

Z [E(Xj;G) - d.I]hi(t) for some vector of constants d . Since E(X.;G) =

fd h.(t)G'(t)dt and since the h. are linearly independent it suffices to

c 21

show that h(t,0) is a minimizer. This follows from the identity

f [G'(t) - h(t,d)] 2dt - fd G'2 - Z E(Xo;G)2 + Z d

c c 21 2 *

Property Three: If distributions are close, then their qunsidensities are

close in the following sense:

If F1 and F2 be distributions on [c,d] with quasidensities q,

and q and f [F1 (t) - F2 (t)] 2dt S e , then fd [ql(t) - q2(t)]
2ct

Proof: For i=1,2 F. can be written Fi = qi + (Fi qi) - qi + ri For

any orthonormal basis (h.) , <ri,h.> - 0 for each j . Thus frr any h

in the CS, <ri,h> - 0 . Consequently

f dtF(t)]F(12 dt 
-f

[Fl(t) F2( t= c [ql(t) - q c2( t) ] d t

+0

+ f [rl(t ) - r2(0)]2 dt

+ 1d 2

: c rql( t) 
- q r2 dt t

c ~2(t

Property Four- The gunsidensity of thp limit nf n nnvergpnt sequence of

distributions on (c,d] is the limit of the corresponding sequence of

quasidensities. More precisely,

If ( n) is a sequence of distribution functions on [c,d] weakly

convergent to a distribution G on (c,d], then the sequence of
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quasidensities of the G converges uniformly to the quasidensity ofn

G .

Proof: Let X be any statistic. Since the regression function for X is

continuous, by Helly's second theorem lim E(XGn) - lim jfb E(XIO-t) dGn(t)

- E(X;G) . uniformity follows from the continuity of quasidensities.

The ability distribution clearly isn't determined by item response

data. This is obvious from Theorem One. When J is small, markedly

different distributions can be equivalent. The quasidensity, on the other

hand, can be recovered from item response data. The formula for the

quasidensity shows that all one needs to estimate the quasidensity from data

is the expected values of finitely many statistics.

Property Five: The quasidensity is determined by item response data in the

sense that there is a strongly consistent quasidensity estimation

procedure.

Proof: The variance of each X. must be finite because there are onlyJ

finitely many possible values for X. , one for each of 2n possibleJ

response patterns. Consequently X j,N , the sample average for N

randomly sampled examinees, tends to E(Xj) with probability one as sample

size is increased. In fact, the multivariate strong law of large numbers

implies that the vector of sample means <Xo,N' '' X j,N> almost surely

converges to the vector of expected values <E(X0 ), ... , E(Xj)> . Since the

quasidensity g for the ability distribution F satisfies

g(t) = E E(X.)hj(t)

j-O 3

the random function defined by
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J

gN(t)- E X. h.(t) , c5t5d
j-0 JN

almost surely converges to the quasidensity. Furthermore, the convergence

must be uniform in t because the h. are continuous on [c,d]
J

NOTES

1. The term seems apt because the prefix "quasi" means "to some

degree, in some manner." Although g(t) may be negative,

4d h(t) dG(t) _ fd h(t)g(t) dt
at least for every function h in the CS.

2. There is a technical problem beyond the scope of this paper that
arises in applications of this type. When the CS has been computed

from only a subset of the test items then RX(t) - E(XIO-t ] may not

be in the CS. In this case the analysis yields an estimate of the

projection of RX into a subspace of the CS computed from all the

test items. We have observed that when only a small number of items

have not been included the projection and Rx(t) agree to several

decimals, provided the not included items are not extremely easy,

extremely hard or otherwise atypical.
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The Canonical Space

Logistic Models and the Examples

This section contains proofs and additional details for assertions made

earlier about the examples. We begin the study of computing the

dimensionality of the CS and selecting basis functions h. and statistics
J

X. for some simple models.
J

The Rasch Model and its Generalization

In Examples One and Two it was asserted that the generalization of the

Rasch Model has J less than or equal to the number of items and that the

item response functions or some subset of them form a basis.

If Pi(t) - c i + (l-ci)[ 1 + e ia(t-bi )- then we can solve for ea t

and obtain

ab.

eat .e Pi(t)-c.

I-P. (t)

Thus for i dj

ab. ab.

e l-PJ(t) ][ ei(t)-ci I - e J  ( l-Pi(t) ][ e (t)-c ]

If b.#b. , then this equation can be simplified to obtain an expression of

form

Pi(t)Pj(t) = a + bPi(t) + cPj(t)

where a, b, and c are independent of t . Thus any product of two item

response functions can be rewritten as a linear combination of the item

response functions plus a constant. Using this fact it's easy to prove the

assertions concerning these models in Example One.
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If item response functions satisfy the formula for the Rasch model ol: its

generalization with b. b. for iYj , then

I. The dimensionality of the canonical space is less than or equal to

one plus-the number of items

2. The constant function and the item response functions or some

subset of these functions form a basis for the CS

3. The item scores satisfy the condition on the X. in Theorem One

and Example One.

Proof: Since the square-free monomials span the canonical space, it is

sufficient to show that every square-free monomial can be expressed as a

linear combination of the Pi plus the constant function h0 (t)-l . Any

square-free monomial containing two or more of the item response functions

can be written in form RP.P. for isj for R equal to a square-free

monomial not divisible by P. or P. . Thus RP.P. = aR + bRP. + cRP. can
j ]. 2 .

be rewritten as the linear combination of three square-free monomials, each

of which has fewer factors than the original monomial. By iterating this

process one eventually obtains a linear combination of square-free monomials

depending on one of the P. or none of the P. (i.e. ho). Thus h0 and

the P. span the CS, which proves 1. and 2. The remaining assertion

follows from E(uiO1=t) Pi(t)
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Selecting Points for Example Two

In Example Two we considered changing integrals to sums. It was

asserted that there were numbers t0 , tI  ... tj and p(t0 ),P(tl), ... p(tj)

*

such that for any vector of zeros and ones u , the manifest or pattern

probability

f lik(u*It) dF(t)

could be written

Zk lik(u Itk)p(tk)

This is an example of a more general result, proven in this subsection: For

any statistic X (including the statistic that is one if the observed item

response pattern equals u and zero otherwise)

f E[XIO-t] dF(t) - Zk E[XIO-tk]p(tk)

The choice of the tk and computation of the p(tk) is also discussed. We

use the notation q(.;tk) for the quasidensity of the unit step function at

tk and the fact that q(.;t k) - zj h.(tk)h.(.) for any orthonormal basis

for the CS.

The result need only be proven for bounded ability continua since any

item response model with continuous P. Ol can be transformed by an

invertible transformation to a bounded model. The proof is split into two

parts: The existence of a basis consisting of quasidensities and

interpretation of the p(tk)

The results indicate the following procedure for selecting points and

computing p's for a model with CS having basis (h )J

3 j=O

1. Choose tO,t I .... tj such that the matrix
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h 0(t 0 )  hi1(t 0 ) . hji(t 0 )

ho0(t l )  hl1(t ) 1 . h j(t l1)

ho0(tj) hlI(t J) ... hji(t J)

is nonsingular

2. Compute p(t0),P(tl), ... p(tj by solving the linear equations

g(t ) - Zk P(tk)q(t ;tk) for j-0,l, ... J where g is She

quasidensity of F .

For the generalization of the Rasch model, the procedure can be simplified;

the p(tk) can be found by solving the system of linear equations

E(ui) - Zk P(tk)Pi(tk) i=l, ... n

- k P(tk)

Generalizationj and proofs follow.

If a test has continuous item response functions #0,1 defined on an interval

[c,d] then the CS has a basis consisting of quasidensities of unit steR

distributions.

Proof: Let (h )j 0  be an orthonormal basis for the CS and let h(t)

denote the column vector

T

Since the h. are linearly independent there must be J+l values of t

such that the vectors h(t0 ),h(tl) ... h(tj) are linearly independent. It

follows that the partitioned matrix [h(t 0 ),h(t 1 ), ... h(t )) has an

inverse, say A=(aij) . Consequently, using Kronecker's delta notation each

h. can be written as a linear combination of the quasidensities q(.;t i)J 3

hj(t) - Zk hk(t) 6kj

Ek hk(t) (mhk(tm)amj)

Z mj Zkhk(t)hk(tM)
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- m a mj q(t;t M)

Thus the quasidensities form a basis for the CS.

As a corollary, we have

The quasidensities of unit step distributions at totl, tj span the CS

if and only if [h(t 0 ),h(t 1 ), ... h(t J is non-singular.

In practice on this type of problem we compute the tk recursively.

After having chosen tOptl, ... tk we choose t k+ such that h(t k+l)

makes a relatively large angle with its projection into the linear space

spanned by h(t0 ),h(tl) ... h(tk)

After the tk are selected the calculation of the p(tk) is straight

forward. Since the quasidensities for the tk form a basis for the CS, the

ability distribution's quasidensity is a linear combination of the

q(.;tk) and the coefficients of the combination are unique. The p(tk)

are simply the coefficients of the linear combination.

J
Let fq(.;tk))k 0  be a basis for the CS and the quasidensity for the

ability distribution be Zk P(tk)q(.;tk) . Then for any statistic X

E(X) - Z k E(XOtk)P(tk . In particular for any vector of zeros and ones

u , Prob(u-u - Zk Prob(uu *10=tk)p(tk)

Proof: Let X be any statistic. Then from the defining property of

quasidensities

E(X) _ - E(XIO-t) Zk P(tk)q(t;tk) dt

= k P(tk) d E(XIO=t)q(t;tk) dt

- k  P(tk) E(XIO=tk)

In particular for any vector of zeros and ones u if X is the random

variable that is one if u-u and zero otherwise, Prob(u=u ) = E(X)
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- Ek Prob(u-u 10-tk)p(tk)

Models with Very Large J

If J is small, as is the case with the Rasch model and its

generalization, then standard techniques can be used for computing an

orthonormal basis. dever, if the dimensionality of the CS is as large as

the number of square-free monomials ( 2n ) then computing an orthonormal

basis is problematical. To conclude this section it is shown that for the

most commonly used item response models, the three parameter logistic

models, J+l typically is equal to its upper bound.

Item response functions are three parameter logistic (3PL) if

P(t) - c. + (i-c )[1 + e ai(tb i]_l

for some item parameters a.>0 , bi, and c. in [0,1) . It is natural to

consider the item parameters random variables because in most applications

they are estimated from data. Suppose the sampling distribution of the

estimated parameters has a continuous density. Then the following result is

of interest.

If the joint distribution of the n item parameter vectors <ai,bi,c i> has

a continuous density, then with probability one the CS of the 3PL item

response model defined with sampled item parameterq will have dimension 2n

Thus, for example, if one begins with the any published set of estimated

item parameters for an application of the 3PL model and adds an independent

normally distributed "error" with zero mean and very small variance, say

100 , to each of the 3n parameters, then with probability one either one of

the a's or c's will be moved outside its allowed range or a 3PL model with

J as large as it possible can be will be obtained.
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Proof: With probability one, the functions

aIt a2t ant

e ,e , ... e

will be algebraicly independent over the reals, i.e. will not satisfy any

nontrivial polynomial with real coefficients. But if J+1<2n  then one of

the square-free monomials can be expressed as a linear combination of the

remaining monomials. On multiplying both sides of the equation giving one

a.t a.b.

monomial as a linear combination of the others by positive II. [e + e
1

a.t
one obtains a polynomial in the e and a contradiction to the hypothesis

n
J+1<2



Section Four

Large Canonical Spaces

Consider Example Three for a test with large CS for an application cur-

rently in progress. In a large scale simulation we are attempting to

monitor and control the changes in a Bayes modal ability estimate as new

items are introduced into a 100 item adaptive test item pool. The item

response function estimates for the new items are not expected to be very

accurate because of motivation, test format, and ability distribution dif-

ferences between the item response function estimation sample and the

examinees in the application. The methods to be reviewed in this section.

permit us to compute as many as we need of the roughly 2100 orthornormal

h. for the test consisting of old items.
3

The trick is to compute the h. one-at-a-time in such a way that the
3

h. needed to complete the application are computed first. TI's the CS is
3

treated as the union of nested vector spaces CSK

CSK - Span(h0 ,hI ... hK )

where functions in only a dozen or so spaces can be and need be accurately

computed. Some details follow.

A A

We wish to approximate E(OWKIO-t) - R(t) , where OWK is the Bayes

mode adaptive test score. It turns out that although J is very large, the

A

projectic1 R of R into the twelfth space

A

R(t) = Z I2 <R,hj>hj(t)

is very close to R(t) . Now if q(.;s) - Z 12. hj(s)h.(t) is the projec-

A A

tion q(.;s) into the twelfth space then f d E ( 0 It)q(t;s) dt -

A A

R(t) . Thus if we can write q(.;s) as

A

q(.;s) - K Ck (S)q k(.)
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a linear combination of quasidensities for the K AR score groups qk(')

then

A A A

R(t) = Zk K ck(s) E[ WKIOAR is in Mk]

The point is that if an application can be completed using hoh I .... hK

only then it may be possible to proceed as if J=12

This section describes a general technique used by our laboratory for

calculating the h. one-at-a-time in such a way that functions that areJ

likely to be needed for an application are well approximated by a function

in CSK  for small K .

The General Method

The first step of our approach to large spaces is to select a set of

functions {f N  that span the CS and are such that the function of two

variables Z f V(s)f V(t) can be easily evaluated. For example if fl f2

... fv .... f n  is any enumeration of the square-free monomials then the

f span the CS. Furthermore for any s and t
V

2n n

Z fV(s)fI(t) - H [1 + Pi(s)Pi(t)]

U-i I

can be evaluated with 2n-1 multiplications and n additions. (This iden-

tity can be verified by induction on test length n .) Other examples of

tractible spanning sets and additional criteria for spanning sets are dis-

cussed below.

There are two important points to be emphasized here. Although there

are generally billions of f to enter into the sum H(s,t) - Z f (s)f V(t)

the multiplicative formula for H(s,t) requires only n additions and 2n-i

multiplications. Second, the ordering of the f is inconsequential.

Whereas the outcome of a Gram-Schmidt orthogonalization applied to the
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square-free monomials or any other large set of functions f would be very

order dependent, the calculation of H is not.

The next step in computing the h. can be carried out with commercial

software or can be converted to a eigenvalue/eigenvector problem: Compute

positive numbers A and functions h not identically equal to zero such

that each h is in the CS and satisfies

Ah(.) _ jd H(.,t)h(t) dt

where H(s,t) - Z f V(s)fV(t) . There will be only finitely many different

values of A such that there is some hdO in the CS satisfying the equa-

tion. Since the h's are in the CS there can be only finitely many

linearly independent solutions h for any A . Thus any maximal set of

linearly independent solutions can be subscripted and arranged in order of

their subscript so that AOAl ... ZAK>0 for some K<J and A.h.(.)
JJ

fd H(.,t)h (t) dt

Without loss of generality we can set <h.,h.>=l since h.(t) is a
.J J J

solution for Aj if and only if h.(.)/<hj,h.> is. Since the set of all

h's corresponding to any A form a vector space, they can be selected to

be orthonormal. Since it can be shown h's with different A's are or-

thogonal, the h. will form an orthonormal set of vectors In fact it is
J

easy to show that when the f span the CS, K=J and the h. computed inV J

this way form an orthonormal basis for the CS. If an application suggests a

set of f that don't span the CS, then K<J and the h. will be a basis

for whatever subspace the f span.

Note that except in the unusual case that more than one h correpsonds

to one A , the h's are fully ordered by their A's . Even if for some

j , A j-Aj+ , the h's corresponding to different A's will be ordered and

we can still speak of h. occuring early or late in the sequence of h's
3
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The ordering is important because for various reasons (cumulative numerical

errors and the fact that A. is very close to zero for large j ) the h.

that occur early in the sequence are relatively easy to compute (although

the remaining h. can be very hard to compute).

There are two related advantages in arranging tne computation of basis

functions as described above. The h. with large A. , which are easy to
.3 .3

compute, can be computed without computing the h. with swall A , which.3

can be very hard to compute. This is important because A. generally

measures the relative importance h. in representing functions in several

senses. For example, if f is approximated by its projection into
V

A

CSK-span(h0 , ... hK) , which turns out to be f (.) = Z <f ,h.>h. for

K<J , then the total error

7 f [f V(t) _ f(t)]2 
dt

is simply Z A. (This sum can be evaluated even if J is very large

j>K 3

because

fd H(tt) dt - Z A. Z A..)

C j K J j>K J

As a bonus, the method also delivers a set of statistics X. needed

for Example One and Theorem One (i.e., statistics such that h.(t)
.3

E[X I0-t] for all t in [c,d] ). Details are given in the final

subsection.

Some Examples of Spanning Sets

In addition to the square-free monomials we use the 2n  likelihood

functions for short tests. Here
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n u. (1-u. )
f V(t) =H P i(t) ",[1-Pi(t)]

i=l

where ... u, ... u is any enumeration of the 2 item response

patterns. For these functions

H(s,t) - EV f (s)f
V
(t)

n
- 1 (P (s)Pi(t)+[l-Pi(s)][l-Pi(t)],

.

which can be easily evaluated. (This also can be proven by induction on

test length n after noting that each likelihood function can be written as

n

f(t) = i (u. P.(t) + (1-u. )[l-Pi(t)]) .) These functions certainly
V i=l 3,V .

span the CS because any square-free monomial can be written as a linear com-

bination of likelihood functions. (To prove this, simply write the general

monomial 11 P. as the sum of the likelihoods for patterns u with

j5r j

u. -u. ... u. =1 .)
I 12 

ur

For adaptive tests and long tests satisfying (exactly or approximately)

an algebraic property described below, we use likelihood functions for

selected subtests. For example to study a fixed length adaptive test of 15

rlo01 2100
items with a 100 item pool it is natural to consider the 

15 < < 21

likelihood functions with fifteen factors since every statistic computed

from an examinee's score depends on only 15 item scores.

The discussion of the Rasch model introduces a second rationale for

forming the f from the likelihood functions for short subtests. Recall
V

that for the Rasch model every polynomial in the CS could be rewritten as a

"polynomial" in the CS, no monomial of which contained 2 or more factors.

This property is remarkably general. For the 3PL model (and most of its

generalizations) every polynomial in the CS can be rewritten as a linear
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combination of monomials with five or fewer factors, at least to a surpris-

ingly high degree of approximation.

When every function in the CS can be expressed as a linear combination

of square-free monomials with five or fewer factors, then the CS is spanned

by the likelihood functions from subtests with five factors. There are

still an enormous number of likelihood functions f that can be formed

from from all five item subtests. Nonetheless H(s,t) = Z f V(s)fI(t) can

be computed efficiently for these functions as follows:

Let Fi(s,t) abbreviate Pi(s)Pi(t) + [l-Pi(s)J[l-Pi(t) ]

Let H.(s,t) denote the sum of the likelihood functions for all i

item subtests formed from the first m items.

To initialize set

H 1(st) - F (s,t)

11

H.(s,t) - 0 for i=2,3 .... 5

To update, compute

Hm+l F m
H. m+F H for i=2,...5

hl m+l I

.m+l

1 m. 1~

If in the update step H 5  is computed first, followed by H +  etc.,

m+l m
then H. can be written over H. and the amount of storage required by

the algorithm can be kept small.

Most of our current applications to one dimensional ability tests use

this algorithm. Although some of the CS may be left out, the algorithm in

practice works very well. It is the only algorithm that has consistently

produced useful results with long tests.
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Reduction of Proofs to Matrix Algebra

A number of assertions were made without proof concerning the solutions

for the functional equation

0(h) - A

where ik(h)(.) = fd H(.,t)h(t) dt for H(s,t) = Z f (s)f (t)

By taking advantage of the finite dimensionality of the CS these proofs can

be obtained with matrix algebra. In this section the reduction to matrix

algebra is indicated after a few of the assertions are proven directly.

First 0 is a transformation of the CS to itself because the f are

in the CS and O(h) - Z <f ,h>f is a linear combination of the f .

is thus a linear mapping of a finite dimensional vector space into itself.

To show that the eigenfunctions of 0 span the CS it is neccesary to

show that 4 maps the CS onto the CS. Equivalently, since the CS is finite

dimensional, one may show 0(h)-O implies h=0 . To show this one can

J 
J

write f (.) = Z a,.g.(.) for some orthonormal basis (gjijO . The
j=0 V 3

matrix A=(a V) must have rank J+l since the f span the CS. If

T T
0(h)=O , then 0 = <gj ,O(h)> = e.A A<g,h> , j=0,...J where e. is the jth

unit vector and <g,h> is the column vector of <gj,h>'s . Thus

A TA<g,h>-O . Since A TA has rank J+l , <g,h>=0 , i.e., h is orthogonal

to each gj Thus h-0

The existence of eigenfunctions in the CS and the fact that the eigen-

functions span the CS can be shown with matrix algebra. To introduce matrix

notation, for each t in [c,d] let f(t) be the column vector with vth

coordinate f V(t) . Then H(s,t) is the scalar product of f(s) and

f(t) . Let Q denote the matrix of definite integrals
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Q - 5 f(t)fT(t) dt , i.e. Q is the matrix with typical entry q , -

<f ,f V>

Q must be positive definite or positive semidefinite since for any

vector a, aTQa = 1d [a.f(t)]
2 dt > 0 Therefore for some K , Q can be

0 K T 0 1 K
written Q - [a ,a , ... a ] D[a , a a... ] for K+1 orthonormal vectors

aj  and a diagonal matrix D having positive diagonal entries d.>0 . For
J

05j5K let h. be defined by
J

h.(t) = d-1 / 2 
aJ.f(t)

J j

Since each h. is a linear combination of functions in the CS, each must be
J

in the CS. The h. are orthonormal since
J

-hh2 = d -12dk/2 jT fd f(t)fT(t) dt ak
<hj' k> j dk a c

Sd/2 1/2 jT kQa

_{ , if jok

1 if j-k

In fact the h. must be eigenfunctions of i because
J

(h)= fd fT(t)f(.)d-i/ 2 aj.f(t) dt
Tc dt

d. 1/2 ajT fd f(t)fT(t) dt f(.)
j c

d. a JTQf(.)

d d1/2 a Jf(.)

=d.h.

j i

K must equal J because otherwise 4 would not map the CS onto the CS.

Thus the eigenfunctions form an orthonormal basis for the CS.
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The Statistics X

In Example One and Theorem One statistics with regression functions

equal to h. were needed. Of course such statistics exist because every3

function in the CS, by definition, is the regression function of at least

one statistic. Finding a statistic matching a function fortunately turns

out to be easy for bases formed from eigenfunctions.

When the h. are obtained as eigenfunctions, these statistics are cal-
3

culated in two steps. First, the examinee's data is transformed into a

continuous function X(t) . Then a statistic is obtained by computing

<Xh >/\ *

For concreteness consider the second example of the general method in

which each f is a likelihood function. The general technique applied to
V

this example gives X(t) equal to the familiar likelihood function as the

random function

n
X(t) - [uie i(t) + (l-ui)Qi(t)]

i=l

and X. - f X(t)h.(t) dt/A.
3 C 3 .1 ,

To verify that the regression function for this statistic is h. , we
3

compute as follows. The regression function for X. evaluated at 0-s is
3

E[X.I0=s] A. j E( fX(t)h.(t) dtlO=s]

n
\- iH [Pi(s)P1(t) + Qi(s)Qi(t)]h.(t) dt

. f H(s,t)h.(t) dt

_ h (s)

The general rule for obtaining a random function X(t) for arbitrary

f is to make the replacements

P1 (s) - u
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P2 (s) u 2

P n(s) un

in f (s) to obtain a random variable Y (u) from f (s) A random

function X is defined by

X(t) = Z Y (u)f/(t)

Finally, a random variable having regression function equal to the jth basis

function is obtained as fd X(t)h.(t) dt/A. To summarize

Let H(s,t) - S f (s)fV (t) for functions in the CS f not necessarily

spanning the CS. Let h satisfy jd H(.,t)h(t) dt - Ah(.) for positive

A. For each t in [c,d] Let X(t) be the random variable obtained by

replacing each Pi(s) by ui in the formula defining H(s,t) . If X.

<X,h.>/\j , then E[XjI1-t] - h.(t) for c:t5d

Note, the transformation f V(s) -* YV generally cannot be defined on the CS

because if two items have the same item response function, then we can have

f (.) - fV ( ') as functions in the CS but YVY V, * The problem can be

avoided by regarding f V(s) as a polynomial with real coefficients in

algebraicly independent variables Pl(s),P 2 (s), ... Pn(S)

Proof: E[X(t)10=s] - H(s,t)

NOTES

1. Levine, M. and Williams, B. Latent trait theory as fundamental

measurement, Paper presented at Society for Mathematical Psychology

Annual Conference, Irvine, California, 1989.
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