DITS FILE COPY

FORMULA SCORING

BASIC THEORY AND APPLICATIONS

Michael V. Levine

Model Based Measurement Laboratory
University of Illinois 210 Education Building Champaign, IL 61820

December 1989

Prepared under contract No. NOOO14-83K-0397, NR 150-518 and No NOOO14-86K-0482, NR 4421546.

Sponsored by the Cognitive Science Program Office of Naval Research.

Approved for public release: distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

18. continued ...
\rightarrow ability distributions, identifiability. $(5 \mid y)$

FORMULA SCORING

BASIC THEORY AND APPLICATIONS

Michael V. Levine

Model Based Measurement Laboratory University of Illinois 210 Education Building Champaign, IL 61820

December 1989

Prepared under Contract No. NOOO14-83K-0397, NR 150-518 and No. NOOO14-86K-0482, NR 4421546.

Sponsored by the Cognitive Science Program Office of Naval Research.

Approved for public release: distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

ABSTRACT

Formula scoring is the systematic study of measurement statistics expressed as linear combinations of products of item scores. The theory is currently being used to compute non-parametric estimates of ability distributions, item response functions, and option response functions. The theory has been used to design algorithins for estimating item response functions from adaptive test data (on-line calibration), monitoring and correcting drift in observed score distributions for adaptive tests (on-line equating), computing optimal tests for cheating, and combining appropriateness measurement information from several subtests. In this paper a portion of the theory is developed from a few principles. Applications are considered to the problems of deciding whether ability has the same distribution in two demographic groups, to finding latent class models that are equivalent to item response models, and to controlling drift in adaptive testing programs.

Preface

For several years, Bruce Williams and I have been presenting applications of a new approach to measurement, which we call formula scoring. Our presentations to the annual ONR Contractor's Conferences have been punctuated with the phrase, "It can be shown" This technical report begins a series of papers providing proofs of these claims. An attempt will be made to derive formula score theory from a few basic principles.

This version of the report is being used to introduce graduate students to the work in our laboratory. Very explicit, computational proofs are provided for some basic results. A shorter version is being prepared for publication.

Tnanks to Bruce Williams and Fritz Drasgow there are many data-based applications ${ }^{1}$ of formula scoring, which are now starting to appear in print ${ }^{2}$. The data-based applications are not suitable for motivating this paper because Bruce's programs use concepts that are developed in later papers. Therefore an alternative way to motivate the report had to be found.

Three examples of results that can be obtained with the theory have been selected to motivate the theory. I don't think the results would have been discovered without the theory. Each seems surprising - at least to me - and somewhat contrary to conventional psychometric wisdom. Each result can be easily proven with the theory. And each result seems hard to prove without reproducing the reasoning in the theory.

Some Examples to Motivate the Theory

Formula score theory can be used to derive some unexpected, hopefully useful, consequences of the assumptions of item response theory. Three examples follow.

The examples are valid for parametric and non-parametric item response models. Except where noted, the results hold for all "continuous, onedimensional, probabilistic item response models for bounded abilities." Thus, item response functions are permitted to have any shape, provided they are continuous functions of one variable with values strictly between zero and one. The cumulative distribution of ability also is permitted to have any shape, provided there is some - possibly very large - interval such that the distribution is zero or one outside this interval.

Example One: Checking for ability distribution differences
A quick. way to recognize ability distribution différences is to check average tests scores. Thus, if girls on the average have higher test scores than boys on an unbiased test it is safe to conclude that ability is distributed differently among girls and boys. The converse obviously is not true because very different distributions may have same mean.

Using observed scores to check for group ability differences is believed to be uniquely uncomplicated for the Rasch model. Since the number right score is a sufficient statistic for estimating ability it might be expected that it is possible to determine the presence or absence of group ability differences by comparing distributions of number right score. This (incorrect) assertion can also be expressed as follows:

There is a set of statistics $X_{0}, X_{1}, \ldots X_{n}$ such that the group ability distributions are different if and only if at least one of the stetistics has different expected values among girls and boys.

Here n is the number of items on the test, and X_{j} is the statistic which is one if exactly j items were answered correctly and zero otherwi;e. The theory shows that the Rasch model is not unique in having a small number of diagnostic statistics. The theory also shows what can and cannot be concluded when corresponding pairs of expectations are equal.

For any item response model, Rasch model or other, thare is a set of statistics $X_{1}, X_{2}, \ldots X_{J}$ such that if at least one pair of corresponding expected values differ, then the group ability distributions are different. But if corresponding expected values are equal, then the distributions still may se different. However, it can be shown that no statistical test (using only the answers to the n items for data) exists that can demonstrate the difference! In particular, for a test satisfying the Rasch model if boys and girls have equal expected X_{j} 's, then ability may be distributed differently in the two populations, but no analysis of test data can be used to demonstrate the diffe ence. Details follow the proof of Theorem One.

Recall that for the Rasch model each item response function P_{i} $P_{i}(t)=\operatorname{Prob}($ correct answer for item $i \mid$ ability $=t)$ can be written in the form $p_{i}(t)=\left[1+e^{-\left(t-b_{i}\right)}\right]^{-1}$ for some constant b_{i}. To avoid mathematical digressions irrelevant to the main points of this paper, it will generally be assumed that for $i \neq j, b_{i} \not x b j$. Thus no two Rasch model items have exactly the same item response function.

As an example of another model having a small set of diagnostic staristics, consider the generalization of the Rasch model having item response functions given by the following equation

$$
P_{i}(t)=c_{i}+\left(1-c_{i}\right)\left[1+e^{-a\left(t-b_{i}\right)}\right]^{-1} .
$$

As with the Rasch model, it will generally be assumed that different items have different difficulties. Thus if $i \nless j, b_{i} \not b_{j}$. For this model J is
less than or equal to the number of items, and X_{j} can be taken to be the score that is one if item j is answered correctly and zero otherwise. (If for some $i \neq j, b_{i}=b_{j}$, then a somewhat more complicated set of X_{j} must be used, but J is still small.)

Incidentally, these results are related to the identifiability of ability distributions. Since different distributions can give the same vector of expected X_{j} 's , the ability distribution is not identifiable, even when the item response functions are completely specified.

Example Two: How to turn an item response model for an ability continum into an isomorphic latent class model with finitely many clusses

Suppose we are given an item response model with continuous item response functions $\neq 0,1$ and a continuous abilıty density f. Using the theoretical results in this paper it can be shown that it is possible to select abilities $t_{0}<t_{1}<\ldots t_{J}$ and numbers $p\left(t_{0}\right), p\left(t_{1}\right), \ldots p\left(t_{J}\right)$ such that for each item response pattern u^{*}, the "manifest probability"

Prob(Sampling an examinee with item response patttern u^{*}),
which is ordinarily computed by i tegrating the likelihood function,

$$
\int_{c}^{1} \operatorname{lik}\left(u^{*} \mid \text { ability }=t\right) f(t) d t
$$

can be computed by evaluating the sum

$$
\sum_{j=0}^{J} \operatorname{lik}\left(u^{*} \mid \text { ability }=t_{j}\right) p\left(t_{j}\right)
$$

For the item response functions given by the formulas in Example One, J can by set equal to the number of items.

Since the manifest probabilities sum to one, $\Sigma p\left(t_{j}\right)=1$. Thus if $p\left(t_{j}\right) \geq 0$ for $j \leq J$, we have a latent class model with $J+1$ classes that is isomorphic to the continuous latent trait model.

I haven't found a simple proof based only on the results in this paper of the existence t_{j} with $p\left(t_{j}\right) \geq 0$. Horaver the result also is true and is proven in next paper in this series. In any event, even when some of the $p\left(t_{j}\right)$ are negative the result seems able to greatly reduce computation times in some applications noted below.

Example Three: On-line equating or Simulation results without simulation
Consider two subtests, say, word knowledge (WK) and arithmetic reasoning (AR), of a computer administered adaptive test such as the adaptive version of the Armed Services Vocational Aptitude Battery (ASVAB). Suppose the item pool for $W K$ has just been changed by introducing some new items that haven't been ministered often enough to highly motivated examinees to have weli estimated item response functions. To analyze and control the effect of the new items on the distribution of an observed score $\hat{\theta}_{\mathrm{WK}}$ we wish to calculate three functions, usually computed by simulation:

$$
\begin{aligned}
& F_{1}^{\prime} \quad \text { expectation }\left\{\hat{\theta}_{W K} \mid \theta_{W K}=t\right\} \\
& F_{2}\left(\tau=\operatorname{Variance}\left\{\hat{\theta}_{W K} \mid \theta_{W K}=t\right\}\right. \\
& P(x \mid t)=\operatorname{Prob}\left\{\hat{\theta}_{W K} \leq x \mid \theta_{W K}=t\right) .
\end{aligned}
$$

F_{1} and F_{2} show how the first two conditional moments of the observed score are affected by the new items and can be used to make corrections. For example, if $\mathrm{F}_{2}(-1)$ is observed to increase very much when the new items replace easy old items then countermeasures such as adding more easy items can be tried. $P(x \mid t)$ provides the remaining moments. It can be used to predic. how the marginal distribution of $\hat{\theta}_{\mathrm{WK}}$ will be affected by future changes in the ability distribution.

Since the item response functions for the new items are not known, simulation is not possible. (When the score $\hat{\theta}_{W}$, is a Bayes mode or maximum likelihood ability estimate, then item parameter estimates derived
from small samples of not highly motivated examinees may be used to compute the score, but such estimates are not suitable for including in a simulation.) Thus, the following result is of interest.

It is generally possible to use the item response functions for the old WK items to compute functions $c_{0}(t), c_{1}(t), \ldots c_{K}(t)$ and to sort examinees into groups using only an AR score $\hat{\theta}_{A R}$. According to the theory, the conditional expectation of $\hat{\theta}_{W K}$ (computed from item scores for both old and new items) can be calculated with the formula

Expectation $\left\{\hat{\theta}_{W K} \mid \theta_{W K}=t\right\}=$

$$
\sum_{k=0}^{K} c_{k}(t) \text { Expectation }\left\{\hat{\theta}_{W K} \mid \hat{\theta}_{A R} \text { is in the } k t h \text { score group }\right\} \text {. }
$$

In words, we use $\hat{\theta}_{A R}$ to group examinees and then compute the conditional expected WK score as a linear combination $\hat{\theta}_{W K}$ group averages. The $\hat{\theta}_{W K}$ score is computed using item scores for both old WK items and new WK items. However, only the well estimated old $W K$ item response functions are used to compute the coefficients of the linear combination. In this way the effect of introducing new items on an observed score at each ability level can be calculated from accual data. Since the method does not use item parameter estimates for the new items, it is not adversely affected by item parameter estimation error on the new items.

A similar formula gives the conditional variance since for the same c_{j} and groups

Expectation $\left\{\hat{\theta}_{W K}^{2} \mid \theta_{W K}=t\right.$)
$=\sum_{k=0}^{K} c_{k}(t)$ Expectation $\hat{\theta}_{W K}^{2} l \hat{\theta}_{A R}$ is score group k).
Finally, for the random variable defined by

$$
X=\left\{\begin{array}{l}
1 \text { if } \hat{\theta}_{W K} \leq x \\
0 \text { otherwise }
\end{array}\right.
$$

the conditional distribution of $\hat{\theta}_{W K}$ is given by

$$
\begin{aligned}
\operatorname{Prob}\left\{\hat{\theta}_{W K} \leq x \mid \theta_{W K}=t\right\} & =\operatorname{Expectation}\left\{X \mid \theta_{W K}=t\right\} \\
& =\sum_{k=0}^{K} c_{k}(t) \text { Expectation }\left(X \mid \hat{\theta}_{A R} \text { is in group } k\right) .
\end{aligned}
$$

The calcul.ation of these three conditional expected values illustrates a more general result described in the discussion of "quasidens: ties" (Section Two, below).

NOTES

1. Formula score theory currently is being used to compute nonparametric maximum likelihood estimates of ability distributions, item response functions, and option response functions. The theory has been used to design algorithms for estimating item response functions from adaptive test data without interrupting testing (online calibration), to compute optimal tests for cheating, and to combine appropriateness measurement in: remation from several subtests. The theory yields measures of item bias and test dimensionality. The theory seems to lead to a tractible, nonparametric, multidimensional item response theory, which is currently being developed. The theory is also being applied to what might be called "online equating," i.e., monitoring and correcting changes in the distribution of observed scores for an adaptive test as the test's item pool is replenished.
2. Drasgow, F., Levine, M.V., Williams, B., McLaughlin, M.E., and Candell, G.L. Modelling incorrect responses with multilinear formula score theory. Applied Psychological Measurement, In press, 1989; Drasgow, F., Levine, M.V., and McLaughlin, M.E. Multitest extensions of appropriateness indices. Applied Psychological Measurement, accepted for publication, 1989.

Section One

Formula Score Theory and Equivalent Distributions

Formula score theory systematically studies measurement statistics expressed as linear combinations of products of item scores. The theory begins with an equivalence relation on ability distributions.

We consider a fixed test of n items. A pair of distributions F and G are defined to be equivalent relative to the test if every statistic computed from the test's item scores has the same distribution under the hypothesis

H_{0} : Ability has cumulative distribution F

as under the alternative hypothesis
H_{1} : Ability has cumulative distribution G.
Notice that there is no way whatsoever to use item responses on the test being analyzed to distinguish between a pair of equivalent distributions. For if F is equivalent to G and if the statistic X is used for hypothesis testing, then decisions based on X will be no more valid than decisions based on the flip of a coin or other irrelevant random process.

Notice also that equivalence is defined relative to a fixed test of specified items. Thus a pair of distributions may be equivalent relative to the test, but distinguishable if one more item is added to the test. In fact, if one of the items is replaced by a slightly different item, the equivalence relation may be changed. This is a significant limitation of the present algebraic version of the theory. Later papers on applications use metric concepts to get around this problem.

The main result of this section is a characterization of equivalent distributions in terms of the expected values of finitely many statistics. Comments on implications and applications of this result are at the end of this section.

Item Response Theory and Formula Score Theory

To make the paper more nearly self-contained and to make explicit just what assumptions of item response theory are used to prove the new results, we begin with some definitions from item response theory.

An item response model provides a probability measure for set $\{\mathrm{a}\}$, which is interpreted as a set of possible or actual examinees. There are two types of random variables in item response theory: observed item scores $u_{1}(a), u_{2}(a), \ldots u_{n}(a)$ and unobserved abilities $\theta(a)$. Item scores are either one or zero. $\quad u_{i}(a)=1 "$ is interpreted as "examinee a successfully answered item i ."

In this paper, the abilities $\theta(a)$ are numbers. However, after some routine changes, all of the results in this paper and their proofs generalize to multidimensional abilities, i.e., vector-valued $\theta(a)$'s .

Item response theory relates item scores to abilities with functions P_{i} called item response functions

$$
P_{i}(t)=\operatorname{Prob}\left\{u_{i}=1 \mid \theta=t\right) .
$$

$P_{i}(t)$ is interpreted as the probakility of observing $u_{i}(a)=1$, when examinee a is sampled from all those with ability t.

In this paper, details about the item response functions are generally left unspecified. Only continuity and a weak condition, $0<\mathrm{P}_{\mathrm{i}}(\mathrm{t})<1$, are assumed. These conditions are also implied by the parametric formulas of most item response models.

Formula scoring differs from much of item response theory on the domain of definition of the item response functions. In item response models $P_{i}(i)$ is usually defined for all numbers t, despite the fact that the models predict essentially the same behavior from examinees with ability 20 and 20,000 and despite the fact that applications of the parametric models usually proceed as if abilities were bounded.

In this section the domain of definition of the item response functions can be bounded or unbounded. However, in the following sections $P_{i}(t)$ is defined only for t in an interval of finite length. Some discussion of this point is at the end of this section.

The main assimption of item response theory is local independence. It asserts that item responses are conditionally independent, i.e., for any sequence of zeros and ones

$$
u_{1}^{*}, u_{2}^{*}, \ldots u_{n}^{*}
$$

and any ability t

$$
\operatorname{Prob}\left\{u_{1}=u_{1}^{*} \& u_{2}=u_{2}^{*} \ldots u_{n}=u_{n}^{*} \mid \theta=t\right\}=\Pi_{i} \operatorname{Prob}\left\{u_{i}=u_{i}^{*} \mid \theta=t\right\}
$$

In item response theory analyses of data, the item responses are recorded and inferences are made about θ. Only the item responses are observed. Thus if the word "statistic" is to be reserved for random variables that are functions of the observables, only functions of the u_{i} are statistics. Since the range of each u_{i} is finite, every function of the u_{i} is a random variable. Thus X is a statistic if and only if X is a function of item scores.

The set of all statistics for a test is obviously a vector space since a linear combination of functions of item scores is a function of item scores. Since the u_{i} take on only finitely many values, every statistic can be written as a polynomial in the item scores. In fact, since $u_{i}^{2}=u_{i}$
every statistic is a linear combination of the following statistics, which are called elementary formula scores,

$$
\begin{aligned}
& 1 \\
& u_{1}, u_{2}, \ldots u_{n} \\
& u_{1} u_{2}, u_{1} u_{3}, \ldots u_{n-1} u_{n} \\
& \cdots \cdot \\
& n \\
& \prod_{i=1}^{n} u_{i} \cdot
\end{aligned}
$$

Thus the elementary formula scores, or some subset of the these scores, form a basis for the vector space of all statistics. Since there are finitely many (2^{n}) elementary formula scores, the set of all statistics is a finite dimensional vector space.

The regression function $R_{X}(\cdot)$ or conditional expectation function of a statistic X

$$
R_{X}(t)=E(X \mid \theta=t)
$$

expresses the conditional expected value of the statistic as a function of ability. Since every statistic is a linear combination of the elementary formula scores, local independence implies that each regression function can be written in at least one way as a linear combination of the following functions

1

$$
\begin{aligned}
& P_{1}(t), \ldots P_{n}(t) \\
& P_{1}(t) P_{2}(t), P_{1}(t) P_{3}(t), \ldots P_{n-1}(t) P_{n}(t)
\end{aligned}
$$

n
$\prod_{i=1} P_{i}(t)$.

The central concept of formula score theory is the canonical space. The canonical space (CS) of a test is the vector space of regression functions of statistics. Obviously it is the vertor space spanned by the square-free monomials, i.e. the products of i.tem response functions without repeated factors, listed above. Thus, the canonical space is a finite dimensional vector space of continuous, real-valued functions.

An Alternative Characterization of Equivalent Distributions

Using the canonical space it is possible to derive a simpler test for equivalent distributions. The definition would have us check the distribution of every statistic. It will be shown that only finitely many statistics need to be considered and that all that needs to be known about each statistic is its expected value. First, some notation.

F will be used in all sections of this paper to denote the (generally unknown) ability distribution. For any statistic X and number x, the distribution function of X evaluated at x can be written

$$
\operatorname{Prob}(X \leq x)=\int \operatorname{Prob}(X \leq x \mid \theta=t) d F(t) .
$$

If G is F or any other distribution, then the distribution of X relative to G evaluated at x will be denoted by $P(x ; X, G)$. Thus

$$
P(x ; X, G)=\int P(X \leq x \mid \theta=t) d G(t) .
$$

Similarly, the expected value of X and the expected value of X relative to distribution G are denoted by

$$
\begin{aligned}
E(X) & =\int E(X \mid \theta=t) d F(t) \\
E(X ; G) & =\int E(X \mid \theta=t) d G(t) .
\end{aligned}
$$

Using this notation the definition of equivalent distributions given earlier can be succinctly expressed: Two distributions F_{1} and F_{2} are
equivalent if for all statistics X and real x

$$
P\left(x ; X, F_{1}\right)=P\left(x ; x, F_{2}\right) .
$$

Theorem One is an alternative characterization of equivalent distributions.

Theorem One: Let $\mathrm{J}+1$ be the dimension of the canonical space. Then there are J statistics $X_{1}, X_{2}, \ldots X_{J}$ such that F_{1} is equivalent to F_{2} if and only if.

$$
E\left(X_{j} ; F_{1}\right)=E\left(X_{j} ; F_{2}\right) \quad \text { for } j=1, \ldots, J
$$

Furthermore, if $Y_{0}, Y_{1}, \ldots Y_{J}$ are any statistics with linearly independent regression functions, then F_{1} is equivalent to F_{2} if and only if $E\left(Y_{j} ; F_{1}\right)=E\left(Y_{j} ; F_{2}\right)$ for $j=0,3, \ldots J$.

Proof: Let $h_{0}, \ldots h_{J}$ be a basis for the canonical space. Since the constant function is in the $C S, h_{0}$ can be taken to be the constant function, $h_{0}(t)=1$. Since the h_{j} are in the $C S$, there are statistics X_{j} such that $h_{j}(t)=E\left(X_{j} \mid \theta=t\right)$ for $0 \leq j \leq J$. For any statistic X and real x, the regression function of the indicator random variable, χ

$$
x= \begin{cases}1, & \text { if } x\left(u_{1}, \ldots, u_{n}\right) \leq x \\ 0, & \text { if } x\left(u_{1}, \ldots, u_{n}\right)>x\end{cases}
$$

is in the canonical space and consequently can be written

$$
E(x \mid \theta=t)=\sum_{j=0}^{J} \alpha_{j} i_{j}(t)
$$

Therefore for $\mathrm{i}=1,2$

$$
\begin{aligned}
P\left(x ; X, F_{i}\right) & =\int \Sigma_{j} \alpha_{j} h_{j}(t) d F_{i}(t) \\
& =\Sigma_{j} \alpha_{j} E\left(X_{j} ; F_{i}\right) .
\end{aligned}
$$

Since $E\left(X_{0} ; F_{1}\right)=\int 1 d F_{1}(t)=1=E\left(X_{0} ; F_{2}\right)$,

$$
E\left(X_{j} ; F_{1}\right)=E\left(X_{j} ; F_{2}\right) \text { for } j=1, \ldots, J
$$

implies that F_{1} and F_{2} are equivalent. Conversely, each X_{j} can be written as a sum of products of the binary item scores,

$$
X_{i}=\sum_{\nu=1}^{2^{n}} a_{\nu} v_{\nu}
$$

where $v_{1}, v_{2}, \ldots v_{\nu}, \ldots v_{2}$ is an enumeration of the 2^{n} elementary formula scores. Since v_{ν} is either zero or one, for $i=1$ or 2

$$
E\left(v_{\nu} ; F_{i}\right)=1-P\left(0 ; v_{\nu}, F_{i}\right)
$$

Therefore " F_{1} is equivalent to F_{2} " implies

$$
\begin{aligned}
E\left(X_{j} ; F_{1}\right) & =\sum_{\nu} a_{\nu} E\left(X_{\nu} ; F_{1}\right) \\
& =\sum a_{\nu}\left[1-P\left(0 ; v_{\nu}, F_{1}\right)\right] \\
& =E\left(X_{j} ; F_{2}\right)
\end{aligned}
$$

Finally, if $J+1$ statistics Y_{j} have linearly independent regression functions g_{j} then for some non-singular $(J+1) \times(J+1)$ matrix $A=\left(a_{i j}\right)$, $g_{j}(\cdot)=\sum_{k} a_{j k} h_{k}(\cdot)$. The remainder of the proof follows routinely from $E\left(Y_{j} ; F_{i}\right)=\sum_{k} a_{j k} E\left(X_{k} ; F_{i}\right)$ for $j=0,1, \ldots J$ and $i=1,2$.

Implications and Applications

The theorem has negative implications for distribution estimation. We have observed that when J is small, two distributions with clearly different shapes can be equivalent. As noted in Example Two a discrete distribution on a few points may turn out to be indistinguishable from a distribution with a continuous density. Thus, even when item response functions are known, it is not possible to coasistently estimate the ability distribution without additional assumptions.

Note that for some applications it is valuable to know that ability distributions are equivalent. Returıing to Example One of the Prefa -, if the ability distributions for boys and girls are equivalent relative to the test, then any selection procedure based on test results is as likely to select a boy as a girl.

The theorem shows, as was asserted in Example One, that by checking finitely many pairs of expected values, a difference between the ability distributions can be demonstrated. In Section 3 it is shown that J can be small. For the Rasch model and its generalization, J can be taken equal to the number of test items and X_{j} can be taken to be the j th item score. Thus a necessary and sufficient condition for there to be a demonstrable difference between distributions is that there be at least one item on which the proportion of boys passing the item is different from the proportion of girls.

For other models J can be large and the X_{j} may be complicated. Models with large J are discussed in Section 4 . The task of computing J and X_{j} is also discussed in Section 4.

Example Two illustrates a second situation in which distribution equivalence may have practical importance. In Example Two we considered replacing an ability distribution having a continuous density with a step function having finitely many steps. The goal in doing so was to reduce integrals to sums. (In Section 3 a procedure for calculating the location and size of the steps is described.) In optimal appropriateness measurement ${ }^{1}$ it is necessary to integrate over ability to obtain a uniformly most powerful test for cheating and other forms of aberrance. Even for unidimensional tests a great deal of computing is required to compute the theoretical manifest probabilities in Example Two. For
multidimensional tests and "multi-unidimensional" test batteries such as ASVAB considerably more computation is required.

So far we have successfully avoided computing multiple integrals in our analyses of test batteries in which each subtest measures a different ability ${ }^{2}$ by using approximations. she results in this section indicate an alternative, more general way ${ }^{3}$ to calculate probabilities. Since an integral must be evaluated for each of thousands of examinees and since multivariate quadrature requires a lot of computation, replacing a continuous multivariate with an equivalent discrete distribution on a small number of points is very desireable.

This section is concluded with comments on the issue of bounded and unbounded ability continua, which is raised by Theorem One.

Why Bounded Abilities

Sometimes whatever is being measured by a test is intrinsically bounded. Adding extremely hard items to a test generally changes what is being measured and may cause a test to fail to be unidimensional. Thus a calculus item is not a very hard arithmetic item but an item measuring an ability or achievement other than what is being measured by a grade school subtraction test. At the other extreme, a child totally ignorant of subtraction occupies a lower end point on the measurement scale.

Theorem One raises questions about the domain of definition of the P_{i} and also motivates considering bounded continua. Suppose that on a particular test no examinee has an ability outside the interval $[-5,5]$. Then there can be a pair of inequivalent distributions F_{1} and F_{2} such that $F_{1}(t)=F_{2}(t)$ for $|t| \leq 5$, even though no empirical study can distinguish between F_{1} and F_{2}. This awkward situation can be kept from occuring by defining the item response functions as functions of abilities
in $[-5,5]$. If t 'e P_{i} are defined only for $|t| \leq 5$, then the $C S$ becomes a set of functions defined on an interval. Distributions that agree on the interval will then be equivalent in the sense of Theorem One as well as in the intuitive sense. Thus by treating the P_{i} as functions of a bounded variable the intuitive and technical meanings of "equivalent" can be brought closer together. Alternatively, attention can be limited to ability distributions that are zero or one outside this interval. Both options are developed in the next section.

The assumption of boundedness turns out to be very weak. In any practical measurement situation, it can be trivially satisfied by considering a very large interval, an interval so large that the probability of sampling an examinee outside the interval for all practical purposes is zero. For theoretical work, boundedness can be imposed on a test model by transforming abilities without affecting the only assumptions being made about item response functions: continuity and $0<\mathrm{P}_{\mathrm{i}}(\mathrm{t})<1$.

NOTES

1. Levine, M.V. and Drasgow, F., Optimal Appropriateness Measurement. Psychometrika, 1989.
2. Drasgow, F., Levine, M.V., and McLaughlin, M.E. Multitest extensions of appropriateness indices. Applied Psychological Measurement, accepted for publication, 1989.
3. The method can be thought of as a quadrature technique developed for evaluating the integrals that occur in psychometric applications. The selection of the quadrature points and weights is discussed in Section 3. Each quadrature formula is exact for some set of integrands. The new method is exact for integrating functions in the CS.

Section Two

An Inner Product and Quasidensities

When abilities are bounded, the CS has an inner product with a simple statistical interpretation. And each distribution function can be treated as if it had a continuous derivative. This "derivative," the quasidensity, is the subject of this section.

In the remainder of this paper it will be assumed that there are numbers $c<d$ such that $\operatorname{Prob}(c \leq \theta \leq d)=1$. Item response functions will be treated as functions defined on $[c, d]$, and the canonical space will be a set of functions defined on $[c, d]$. After these changes are made the function $\langle\cdot, \cdot\rangle$ defined on pairs of functions f, g in the $C S$ by

$$
\langle f, g\rangle=\int_{c}^{d} f(t) g(t) d t
$$

becomes an inner product.
Note that when the ability distribution has a density and this density is in the CS, then the inner product has a statistical interpretation. For if $R(t)=E(X \mid \theta=0)$ is the regression function of a statistic X and if the ability distribution has a density f also in the $C S$, then $\langle R, f\rangle$ is the expectation of X. The major result of this section is to generalize this property to situations in which the ability density is not in the CS and to situations in which the ability distribution is not differentiable. It will be shown that there is a unique continuous function g in the CS such that for all statistics X

$$
\begin{aligned}
E(X) & =\int_{c}^{d} E(X \mid \theta=t) d F(t) \\
& =\int_{c}^{d} E(X \mid \theta=t) g(t) d t \\
& =\left\langle R_{X}, g\right\rangle .
\end{aligned}
$$

Theorem Two: If $P(c \leq \theta \leq d)=1$, then there is a unique continuous function

g in the CS such that for every statistic X

$$
E(X)=\int_{c}^{d} E(X \mid \theta=t) g(t) d t
$$

Proof: Let $h_{0}, h_{1}, \ldots h_{J}$ be an orthonormal basis for the CS relative to its inner product $\langle\bullet, \cdot\rangle$. Thus $\left\langle h_{i}, h_{j}\right\rangle=1$ or zero according to whether $i=, \neq j$. For each $j \leq J$ a statistic X_{j} can be found such that $E\left(X_{j} \mid \theta=t\right)$
$=h_{j}(t)$ because every function in the $C S$ is the regression function of at least one statistic. Let X be any statistic and R_{X} ics =egression function. Since the h_{j} form a basis for the $C S, R_{X}$ can be written

$$
R_{X}(\cdot)=\Sigma_{j} b_{j} h_{j}(\cdot)
$$

for some constants b_{j}. Since the h_{j} are orthonormal $\left\langle R_{X}, h_{j}\right\rangle=b_{j}$ and

$$
R_{X}(\cdot)=\Sigma_{j}<R_{X}, h_{j}>h_{j}(\cdot)
$$

Consequently

$$
\begin{aligned}
E(X) & =\int_{c}^{d} R_{X}(t) d F(t) \\
& =\int_{c}^{d} \Sigma_{j}\left\langle R_{X}, h_{j}>h_{j}(t) d F(t)\right. \\
& =\Sigma_{j}\left\langle R_{X}, h_{j}\right\rangle \int_{c}^{d} h_{j}(t) d F(t) \\
& =\Sigma_{j}\left\langle R_{X}, h_{j}>E\left(X_{j}\right)\right. \\
& =\Sigma_{j} \int_{c}^{d} R_{X}(t) h_{j}(t) d t E\left(X_{j}\right) \\
& =\int_{c}^{d} R_{X}(t) \Sigma_{j} E\left(X_{j}\right) h_{j}(t) d t \\
& =\int_{c}^{d} E(X \mid \theta=t) g(t) d t
\end{aligned}
$$

for $g=\Sigma E\left(X_{j}\right) h_{j}(\cdot)$ in the $C S$.
To prove uniqueness, suppose that for some h in the CS

$$
E(X)=\int_{c}^{d} R_{X}(t) h(t) d t
$$

for all statistics X. Since the h_{j} form a basis, $h(\cdot)=\Sigma \alpha_{j} h_{j}(\cdot)$ for
some constants α_{j}. Since the h_{j} are orthonormal, for $X=X_{j}$

$$
\begin{aligned}
E\left(X_{j}\right) & =\int_{c}^{d} R_{X_{j}}(t) h(t) d t \\
& =\int_{c}^{d} h_{j}(t) \sum_{k} \alpha_{k} h_{k}(t) d t \\
& =\sum_{k} \alpha_{k}<h_{j}, h_{k}> \\
& =\alpha_{j} .
\end{aligned}
$$

Thus hag , as was to be proven.

If $G=F$ or any other distribution function, then G will be called a distribution on $[c, d]$ if for $t<c, G(d)-G(t)=1$. If G is F or any other distribution on [$c, d]$ then a function g in the canonical space is called the quasidensity ${ }^{1}$ for G if for all statistics X

$$
E(X ; G)=\int_{c}^{d} E(X \mid \theta=t) g(t) d t .
$$

Note that Theorem Two implies that every distribution on $[c, d]$ has a unique quasidensity. Furthermore the proof shows that the quasidensity for G can be written as

$$
g(\cdot)=\sum_{j=0}^{J} E\left(X_{j} ; G\right) h_{j}(\cdot)
$$

where $\left\{h_{j}\right\}_{j=0}^{J}$ is any orthonormal basis for the CS and each X_{j} satisfies $R_{X_{j}}=h_{j}$. Since the quasidensity is unique, the choice of the orthonormal basis and statistics X_{j} used in the formula is inconsequential.

At the end of this section some facts about quasidensity densities are listed and proven. The quasidensity for the unit step at -1 is shown to have the simple form $g(t)=\sum_{j \leq J} h_{j}(-1) h_{j}(t)$ where $\left\{h_{j}\right\}_{j=0}^{J}$ is any orthonormal basis for the CS. This formula was used to compute an approximation to the quasidensity for the unit step at -1. The first 19
h_{j} 's for 100 three parameter logistic items by the methods in Section 4. Figure One shows the graph of $q(t)=\sum_{j \leq 18} h_{j}(-1) h_{j}(t)$. If $q(t)$ is multiplied times any of the 100 logistic functions and integrated, the result should be very close to $P_{i}(-1),\left|P_{i}(-1)-\int_{c}^{d} P_{i}(t) q(t) d t\right|$ was found to be generally small, as shown in Table One.

For shorter tests, the quasidensity of the unit step function can be computed without approximation. The graph shown in Figure One is typical.

The precision of the approximation shown in Table One serves to illustrate a point developed in Section Four: For some purposes, high dimensional sanonical spaces can be approximated by much lower dimensional spaces.

Figure One: Cumulative distribution function for the unit step function at $\theta=-1$ and its quasidensity

Table One: $\quad P_{i}(-1)$ and an Approximation

item	$\mathrm{P}_{\mathrm{i}}(-1)$	$\int \mathrm{P}_{\mathrm{i}} \mathrm{q}$	diff	item	$\mathrm{P}_{\mathrm{i}}(-1)$	$\int \mathrm{P}_{\mathrm{i}} \mathrm{q}$	diff
1.	. 1223	. 1223	. 0000	2.	. 0601	. 0601	. 0000
3.	. 0852	. 0852	. 0000	4.	. 1639	. 1639	. 0000
5.	. 1449	. 1449	. 0000	6.	. 1878	. 1.878	. 0000
7.	. 2958	. 2958	. 0000	8.	. 2058	. 2058	. 0000
9.	. 2601	. 2601	. 0000	10.	. 3345	. 3345	. 0000
11.	. 2380	. 2380	. 0000	12.	. 2093	. 2093	. 0000
13.	. 3024	. 3023	. 0001	14.	. 2965	. 2965	. 0000
15.	. 3385	. 3385	. 0000	16.	. 4869	. 4869	. 0000
17.	. 2798	. 2795	. 0003	18.	. 7576	. 7575	. 0001
19.	. 4482	. 4483	. 0000	20.	. 8665	. 8665	. 0000
21.	. 7634	. 7634	. 0000	22.	. 9014	. 9012	. 0002
23.	. 7804	. 7804	. 0000	24.	. 9054	. 9054	. 0000
25.	. 8695	. 8696	. 0000	26.	. 1391	. 1391	. 0000
27.	. 2832	. 2832	. 0000	28.	. 2334	. 2334	. 0000
29.	. 1463	. 1463	. 0000	30.	. 1504	. 1504	. 0000
31.	. 1396	. 1396	. 0000	32.	. 1374	. 1374	. 0000
33.	. 2578	. 2578	. 0000	34.	. 2314	. 2313	. 0001
35.	. 2262	. 2262	. 0000	36.	. 1881	. 1880	. 0000
37.	. 2521	. 2521	. 0000	38.	. 2788	. 2788	. 0001
39.	. 3256	. 3256	. 0000	40.	. 2676	. 2673	. 0003
41.	. 3734	. 3734	. 0000	42.	. 5322	. 5322	. 0000
43.	. 6150	. 6149	. 0001	44.	. 6617	. 6614	. 0003
45.	. 7948	. 7948	. 0001	46.	. 7852	. 7851	. 0001
47.	. 7835	. 7835	. 0000	48.	. 8159	. 8159	. 0000
49.	. 8228	. 8227	. 0001	50.	. 9064	. 9062	. 0001
51.	. 1133	. 1133	. 0000	52.	. 0662	. 0662	. 0000
53.	. 0605	. 0605	. 0000	54.	. 2013	. 2013	. 0000
55.	. 2024	. 2024	. 0000	56.	. 2697	. 2697	. 0000
57.	. 3809	. 3809	. 0000	58.	. 1809	. 1809	. 0000
59.	. 3495	. 3495	. 0000	60.	. 3370	. 3370	. 0000
61.	. 1521	. 1521	. 0000	62.	. 2812	. 2812	. 0000
63.	. 2931	. 2931	. 0000	64.	. 2673	. 2673	. 0000
65.	. 2569	. 2569	. 0000	66.	. 3876	. 3876	. 0000
67.	. 4459	. 4459	. 0000	68.	. 6903	. 6903	. 0000
69.	. 6179	. 6179	. 0000	70.	. 8457	. 8454	. 0003
71.	. 7718	. 7718	. 0000	72.	. 7427	. 7427	. 0000
73.	. 8167	. 8167	. 0000	74.	. 8800	. 8800	. 0000
75.	. 8775	. 8774	. 0000	76.	. 1406	. 1406	. 0000
77.	. 2074	. 2074	. 0000	78.	. 2022	. 2022	. 0000
79.	. 0660	. 0660	. 0000	80.	. 2454	. 2454	. 0000
81.	. 2858	. 2858	. 0000	82.	. 0996	. 0996	. 0000
83.	. 1365	. 1365	. 0000	84.	. 1368	. 1368	. 0001
85.	. 2095	. 2095	. 0000	86.	1741	. 1740	. 0000
87.	. 2888	. 2888	. 0000	88.	. 2685	. 2684	. 0001
89.	. 3565	. 3565	. 0000	90.	. 4457	. 4457	. 0000
91.	. 3742	. 3742	. 0000	92.	. 3632	. 3632	. 0000
93.	. 7894	. 7894	. 0000	94.	. 4970	. 4970	. 0000
95.	. 7856	. 7856	. 0000	96.	. 7681	. 7681	. 0000
97.	. 8536	. 8532	. 0004	98.	. 7984	. 7984	. 0000
99.	. 8159	. 8159	. 0000	100.	. 9671	. 9674	. 0003

An Application of Quasidensities

As an illustrative application ${ }^{2}$, we return to Example Three of the Preface. Let X be a statistic such as $\hat{\theta}_{W K}$ for which we desire $E(X \mid \theta=t)$. Let $M_{1}, M_{2}, \ldots M_{K}$ be binary random variables indicating group membership. For example in Example Three, K numbers x_{k} in the range of $\hat{\theta}_{A R}$ can be used to define variables of the form

$$
M_{k}=1 \text { if }\left|\hat{\theta}_{A R}-x_{k}\right| \leq .5 \text {, else zero }
$$

dividing examinees into K not necessarily disjoint groups. Let $q_{1}, \ldots q_{K}$ be the quasidensities for the (conditional) distributions

$$
\mathrm{F}_{\mathrm{k}}(\mathrm{t})=\operatorname{Prob}\left(\theta \leq t \mid M_{k}=1\right)
$$

Suppose K is large enough and the F_{k} different enough so that some subset of the q_{k} forms a basis for the CS. Let $q(\cdot ; s)$ be the quasidensity of the unit step at s in $[c, d]$. Then there must be numbers $c_{k}=c_{k}(s)$ such that

$$
q(t ; s)=\sum_{k \leq K} c_{k}(s) q_{k}(t), c \leq t \leq d
$$

From the definition of $q(\cdot ; s)$ we have

$$
E(X \mid \theta=s)=\int_{c}^{d} E(X \mid \theta=t) q(s ; s) d t
$$

Thus

$$
\begin{aligned}
E(X \mid \theta=s) & =\int_{c}^{d} E(X \mid \theta=t) \sum_{k \leq K} c_{k}(s) q_{k}(t) d t \\
& =\sum_{k \leq K} c_{k}(s) \int_{c}^{d} E(X \mid \theta=t) q_{k}(t) d t \\
& =\sum_{k \leq K} c_{k}(s) E\left(X \mid M_{k}=1\right) .
\end{aligned}
$$

Thus the regression function on the left - expressing a conditioning on an unobserved ability - equals a linear combination expected values of observed scores for the objectively defined groups.

To apply this result K is taken to be large, $q(\cdot ; s)$ is computed with the identity (derived at the end of this section)

$$
q(\cdot ; s)=\sum_{j} h_{j}(s) h_{j}(t)
$$

The q_{k} are estimated by maximum likelihood. The $c_{k}(\cdot)$ are computed for each s by minimizing a quadratic objective function such as

$$
Q\left(c_{1}, \ldots c_{K}\right)=\int_{c}^{d}\left[q_{s}(t)-\Sigma c_{k}(s) q_{k}(t)\right]^{2} d t
$$

In this way a conditional expected value of a statistic given ability can be computed when simulation is not possible or practical.

In addition to the three examples in Example Three, there is the interesting special case of $X_{n+1} u_{n+1}$, the item score for a new item, and

$$
E(X \mid \theta=t)=P_{n+1}(t),
$$

its item response function. Thus the formula at the bottom of page 24 expresses an unknown item response function as a linear combination of the expected values of statistics.

Throughout this summary, let $\left\langle h_{j}\right\}_{j=0}^{J}$ be an orthonormal basis for the CS and $\left\{X_{j}\right\}_{j=0}^{J}$ be statistics satisfying $E\left(X_{j} \mid \theta=t\right)=h_{j}(t)$ for $c \leq t \leq d$.

Properties One, Two, and Three are useful for guessing the shape of the quasidensity when F has a density in the $C S$ or is closely approximated by a distribution on $[c, d]$ with a density in the CS. Property Four can be used even if no close approximation of F has a dens ty in the CS. Property Five underscores the identifiability of the quasidensity by exhibiting a strongly consistent (albeit, inefficient) estimate for the quasidensity.

Defining Property of Quasidensities: A function g in the $C S$ is the quasidensity for G if for all statistics X

$$
\int_{c}^{d} E(X \mid \theta=t) d G(t)=\int_{c}^{d} E(X \mid \theta=t) g(t) d t
$$

Formula for Quasidensities: $g(t)=\Sigma_{j} E\left[X_{j} ; G\right] h_{j}(t)$
Quasidensity for Step Functions: Let G be the unit step at s and $q(\cdot ; s)$ its quasidensity. Then

$$
q(t ; s)=\Sigma_{j} h_{j}(s) h_{j}(t)
$$

Proof: $E\left[X_{j} ; G_{s}\right]=\int_{c}^{d} h_{j}(t) d G_{s}(t)=h_{j}(s)$
Property One: If G has a continuous density G^{\prime} and G^{\prime} is in the canonical space then G^{\prime} is the quasidensity of G.

Proof: $\left\langle R_{X}, G^{\prime}\right\rangle=E(X ; G)$ for all statistics X.

Property Two: If G has a (not necessaxily continuous) density G^{\prime} then the quasidensity of G is the projection of G^{\prime} into the canonical space in the sense that the quasidensity g is the unique minimizer in
the CS of

$$
\int_{c}^{d}\left[G^{\prime}(t)-g(t)\right]^{2} d t .
$$

Proof: The general function in the CS can be written $h(t, d)=$ $\Sigma_{j}\left(E\left(X_{j} ; G\right)-d_{j}\right] h_{j}(t)$ for some vector of constants d. Since $E\left(X_{j} ; G\right)=$ $\int_{c}^{d} h_{j}(t) G^{\prime}(t) d t$ and since the h_{j} are linearly independent it suffices to show that $h(t, 0)$ is a minimizer. This follows from the identity

$$
\int_{c}^{d}\left[G^{\prime}(t)-h(t, d)\right]^{2} d t=\int_{c}^{d} G^{\prime}{ }^{2}-\Sigma E\left(X_{j} ; G\right)^{2}+\Sigma d_{j}^{2} .
$$

Property Three: If distributions are clnse, then their quasidensities are close in the following sense:

If F_{1} and F_{2} be distributions on $[c, d]$ with quasidensities q_{1} and q_{2} and $\int_{c}^{d}\left[F_{1}(t)-F_{2}(t)\right]^{2} d t \leq \epsilon$, then $\int_{c}^{d}\left[q_{1}(t)-q_{2}(t)\right]^{2} d t$ $\leq \epsilon$

Proof: For $i=1,2 \quad F_{i}$ can be written $F_{i}=q_{i}+\left(F_{i}-q_{i}\right)=q_{i}+r_{i}$. For any orthonormal basis $\left(h_{j}\right),\left\langle r_{i}, h_{j}\right\rangle=0$ for each j. Thus for any h in the $C S,\left\langle r_{i}, h\right\rangle=0$. Consequently

$$
\begin{aligned}
\int_{c}^{d}\left[F_{1}(t)-F_{2}(t)\right]^{2} d t= & \int_{c}^{d}\left[q_{1}(t)-q_{2}(t)\right]^{2} d t \\
& +0 \\
& +\int_{c}^{d}\left[r_{1}(t)-r_{2}(t)\right]^{2} d t \\
\geq & \int_{c}^{d}\left[q_{1}(t)-q_{2}(t)\right]^{2} d t .
\end{aligned}
$$

Property Four. The quasidensity of the limit of a convergent sequence of distributions on $[c, d]$ is the limit of the corresponding sequence of quasidensities. More precisely, If $\left\{G_{n}\right\}$ is a sequence of distribution functions on $[c, d]$ weakly convergent to a distribution G on $[c, d]$, then the sequence of
quasidensities of the G_{n} converges uniformly to the quasidensity of G .

Proof: Let X be any statistic. Since the regression function for X is continuous, by Helly's second theorem $\lim E\left(X, G_{n}\right)=\lim \int_{a}^{b} E(X \mid \theta=t) d G_{n}(t)$ $=E(X ; G)$. Uniformity follows from the continuity of quasidensities.

The ability distribution clearly isn't determined by item response data. This is obvious from Theorem One. When J is small, markedly different distributions can be equivalent. The quasidensity, on the other hand, can be recovered from item response data. The formula for the quasidensity shows that all one needs to estimate the quasidensity from data is the expected values of finitely many statistics.

Property Five: The quasidensity is determined by item response data in the sense that there is a strongly consistent quasidensity estimation procedure.

Proof: The variance of each X_{j} must be finite because there are only finitely many possible values for X_{j}, one for each of 2^{n} possible response patterns. Consequently $X_{j, N}$, the sample average for N randomly sampled examinees, tends to $E\left(X_{j}\right)$ with probability one as sample size is increased. In fact, the multivariate strong law of large numbers implies that the vector of sample means $\left\langle X_{0, N}, \ldots X_{J, N}>\right.$ almost surely converges to the vector of expected values $\left\langle E\left(X_{0}\right), \ldots, E\left(X_{J}\right)\right\rangle$. Since the quasidensity g for the ability distribution F satisfies

$$
g(t)=\sum_{j=0}^{J} E\left(X_{j}\right) h_{j}(t)
$$

the random function defined by

$$
g_{N}(t)=\sum_{j=0}^{J} X_{j, N} h_{j}(t), \quad c \leq t \leq d
$$

almost surely converges to the quasidensity. Furthernore, the convergence must be uniform in t because the h_{j} are continuous on $[c, d]$.

NOTES

1. The term seems apt because the prefix "quasi" means "to some degree, in some manner." Although $g(t)$ may be negative, $\int_{c}^{d} h(t) d G(t)=\int_{c}^{d} h(t) g(t) d t$ at least for every function h in the CS.
2. There is a technical problem beyond the scope of this paper that arises in applications of this type. When the CS has been computed from only a subset of the test items then $R_{X}(t)=E[X \mid \theta=t]$ may not be in the CS. In this case the analysis yields an estimate of the projection of R_{X} into a subspace of the CS computed from all the test items. We have observed that when only a small number of items have not been included the projection and $R_{X}(t)$ agree to several decimals, provided the not included items are not extremely easy, extremely hard or otherwise atypical.

Section Three

The Canonical Space
Logistic Models and the Examples

This section contains proofs and additional details for assertions made earlier about the examples. We begin the study of computing the dimensionality of the $C S$ and selecting basis functions h_{j} and statistics X_{j} for some simple models.

The Rasch Model and its Generalization

In Examples One and Two it was asserted that the generalization of the Rasch Model has J less than or equal to the number of items and that the item response functions or some subset of them form a basis.

$$
\text { If } P_{i}(t)=c_{i}+\left(1-c_{i}\right)\left[1+e^{-a\left(t-b_{i}\right)}\right]^{-1} \text { then we can solve for } e^{a t}
$$ and obtain

$$
e^{a t}=e^{a b_{i}} \frac{P_{i}(t)-c_{i}}{1-P_{i}(t)}
$$

Thus for $i \neq j$

If $b_{i} \neq b_{j}$, then this equation can be simplified to obtain an expression of form

$$
P_{i}(t) P_{j}(t)=a+b P_{i}(t)+c P_{j}(t)
$$

where a, b, and c are independent of t. Thus any product of two item response functions can be rewritten as a linear combination of the item response functions plus a constant. Using this fact it's easy to prove the assertions concerning these models in Example One.

If item response functions satisfy the formula for the Rasch model oi its generalization with $b_{i} \not b_{j}$ foi $i \neq j$, then

1. The dimensionality of the canonical space is less than or equal to one plus the number of items
2. The constant function and the item response functions or some subset of these functions form a basis for the $C S$
3. The item scores satisfy the condition on the X_{i} in Theorem One and Example One.

Proof: Since the square-free monomials span the canonical space, it is sufficient to show that every square-free monomial can be expressed as a linear combination of the P_{i} plus the constant function $h_{0}(t)=1$. Any square-free monomial containing two or more of the item response functions can be written in form $R P_{i} P_{j}$ for $i \neq j$ for R equal to a square-free monomial not divisible by P_{i} or P_{j}. Thus $R P_{i} P_{j}=a R+b R P_{i}+c R P_{j}$ can be rewritten as the linear combination of three square-free monomials, each of which has fewer factors than the original monomial. By iterating this process one eventually obtains a linear combination of square-free monomials depending on one of the P_{i} or none of the $P_{i}\left(i . e . h_{0}\right.$). Thus h_{0} and the P_{i} span the $C S$, which proves 1 . and 2 . The remaining assertion follows from $E\left(u_{i} \mid \theta=t\right)=P_{i}(t)$.

Selecting Points for Example Two

In Example Two we considered changing integrals to sums. It was asserted that there were numbers $t_{0}, t_{1}, \ldots t_{J}$ and $p\left(t_{0}\right), p\left(t_{1}\right), \ldots p\left(t_{J}\right)$ such that for any vector of zeros and ones u^{*}, the manifest or pattern probability

$$
\int \operatorname{lik}\left(u^{*} \mid t\right) d F(t)
$$

could be written

$$
\Sigma_{k} \operatorname{lik}\left(u^{*} \mid t_{k}\right) p\left(t_{k}\right)
$$

This is an example of a more general result, proven in this subsection: For any statistic \ddot{i} (including the statistic that is one if the observed item response pattern equals u^{*} and zero otherwise)

$$
\int E[X \mid \theta=t] d F(t)=\Sigma_{k} E\left[X \mid \theta=t_{k}\right] p\left(t_{k}\right) .
$$

The choice of the t_{k} and computation of the $p\left(t_{k}\right)$ is also discussed. We use the notation $q\left(\cdot ; t_{k}\right)$ for the quasidensity of the unit step function at t_{k} and the fact that $q\left(\cdot ; t_{k}\right)=\Sigma_{j} h_{j}\left(t_{k}\right) h_{j}(\cdot)$ for any orthonormal basis for the CS.

The result need only be proven for bounded ability continua since any item response model with continuous $P_{i} \neq 0,1$ can be transformed by an invertible transformation to a bounded model. The proof is split into two parts: The existence of a basis consisting of quasidensities and interpretation of the $p\left(t_{k}\right)$.

The results indicate the following procedure for selecting points and computing $p^{\prime} s$ for a model with $C S$ having basis $\left\{h_{j}\right\}_{j=0}^{J}$:

1. Choose $t_{0}, t_{1}, \ldots t_{J}$ such that the matrix

$$
\left[\begin{array}{cccc}
h_{0}\left(t_{0}\right) & h_{1}\left(t_{0}\right) & \ldots & h_{J}\left(t_{0}\right) \\
h_{0}\left(t_{1}\right) & h_{1}\left(t_{1}\right) & \ldots & h_{J}\left(t_{1}\right) \\
\vdots & \vdots & & \vdots \\
h_{0}\left(t_{J}\right) & h_{1}\left(t_{J}\right) & \ldots & h_{J}\left(t_{J}\right)
\end{array}\right]
$$

is nonsingular
2. Compute $p\left(t_{0}\right), p\left(t_{1}\right), \ldots p\left(t_{J}\right)$ by solving the linear equations $g\left(t_{j}\right)=\Sigma_{k} p\left(t_{k}\right) q\left(t_{j} ; t_{k}\right)$ for $j=0,1, \ldots J$ where g is the quasidensity of F.

For the generalization of the Rasch model, the procerlure can be simplified; the $p\left(t_{k}\right)$ can be found by solving the system of linear equations

$$
\begin{aligned}
E\left(u_{i}\right) & =\Sigma_{k} p\left(t_{k}\right) P_{i}\left(t_{k}\right) \quad i=1, \ldots n \\
1 & =\Sigma_{k} p\left(t_{k}\right)
\end{aligned}
$$

Generalizations and proofs follow.

If a test has continuous item response functions $\neq 0,1$ defined on an interval [c,d] then the CS has a basis consisting of quasidensities of unit step distributions.

Proof: Let $\left\{h_{j}\right\}_{j=0}^{J}$ be an orthonormal basis for the CS and let $h(t)$ denote the column vector

$$
h(t)=\left\langle h_{0}(t), h_{1}(t), \ldots h_{J}(t)\right\rangle^{T}
$$

Since the h_{j} are linearly independent there must be $J+1$ values of t such that the vectors $h\left(t_{0}\right), h\left(t_{1}\right), \ldots h\left(t_{J}\right)$ are linearly independent. It follows that the partitioned matrix $\left[h\left(t_{0}\right), h\left(t_{1}\right), \ldots h\left(t_{J}\right)\right]$ has an inverse, say $A=\left(a_{i j}\right)$. Consequently, using Kronecker's delta notation each h_{j} can be written as a linear combination of the quasidensities $q\left(\cdot ; t_{i}\right)$

$$
\begin{aligned}
h_{j}(t) & =\Sigma_{k} h_{k}(t) \delta_{k j} \\
& =\Sigma_{k} h_{k}(t)\left(\Sigma_{m} h_{k}\left(t_{m}\right) a_{m j}\right) \\
& =\Sigma_{m} a_{m j} \Sigma_{k} h_{k}(t) h_{k}\left(t_{m}\right)
\end{aligned}
$$

$$
=\Sigma_{m} a_{m j} q\left(t ; t_{m}\right) .
$$

Thus the quasidensities form a basis for the CS.

As a corollary, we have

The quasidensities of unit step distributions at t_{0}, t_{1}, ${ }^{\prime} t_{J}$ span the CS if and only if $\left[h\left(t_{0}\right), h\left(t_{1}\right), \ldots h\left(t_{J}\right)\right]$ is non-singular.

In practice on this type of problem we compute the t_{k} recursively. After having chosen $t_{0}, t_{1}, \ldots t_{k}$ we choose t_{k+1} such that $h\left(t_{k+1}\right)$ makes a relatively large angle with its projection into the linear space spanned by $h\left(t_{0}\right), h\left(t_{1}\right), \ldots h\left(t_{k}\right)$.

After the t_{k} are selected the calculation of the $p\left(t_{k}\right)$ is straight forward. Since the quasidensities for the t_{k} form a basis for the $C S$, the ability distribution's quasidensity is a linear combination of the $q\left(\cdot ; t_{k}\right)$ and the coefficients of the combination are unique. The $p\left(t_{k}\right)$ are simply the coefficients of the linear combination.

Let $\left(q\left(\cdot ; t_{k}\right)\right\}_{k=0}^{J}$ be a basis for the $C S$ and the quasidensity for the ability distribution be $\Sigma_{k} p\left(t_{k}\right) q\left(\cdot ; t_{k}\right)$. Then for any statistic X, $E(X)=\Sigma_{k} E\left(X \mid \theta=t_{k}\right) p\left(t_{k}\right)$. In particulax for any vector of zeros and ones $u^{*}, \operatorname{Prob}\left(u=u^{*}\right)=\Sigma_{k} \operatorname{Prob}\left(u=u^{*} \mid \theta=t_{k}\right) p\left(t_{k}\right)$.

Proof: Let X be any statistic. Then from the defining property of quasidensities

$$
\begin{aligned}
E(X) & =\int_{c}^{d} E(X \mid \theta=t) \Sigma_{k} p\left(t_{k}\right) q\left(t ; t_{k}\right) d t \\
& =\Sigma_{k} p\left(t_{k}\right) \int_{c}^{d} E(X \mid \theta=t) q\left(t ; t_{k}\right) d t \\
& =\Sigma_{k} p\left(t_{k}\right) E\left(X \mid \theta=t_{k}\right)
\end{aligned}
$$

In particular for any vector of zeros and ones u^{*} if X is the random variable that is one if $u=u^{*}$ and zero otherwise, $\operatorname{Prob}\left(u=u^{*}\right)=E(X)$
$=\Sigma_{k} \operatorname{Prob}\left(u=u^{*} \mid \theta=t_{k}\right) p\left(t_{k}\right)$.

Models with Very Large J

If J is small, as is the case with the Rasch model and its generalization, then standard techniques can be used for computing an orthonormal basis. wever, if the dimensionality of the $C S$ is as large as the number of square-free monomials (2^{n}) then computing an orthonormal basis is problematical. To conclude this section it is shown that for the most commonly used item response models, the three parameter logistic models, J+1 typically is equal to its upper bound.

Item response functions are three parameter logistic (3PL) if

$$
P_{i}(t)=c_{i}+\left(1-c_{i}\right)\left[1+e^{-a_{i}\left(t-b_{j}\right)}\right]^{-1}
$$

for some item parameters $a_{i}>0, b_{i}$, and c_{i} in $(0,1)$. It is natural to consider the item parameters random variables because in most applications they are estimated from data. Suppose the sampling distribution of the estimated parameters has a continuous density. Then the following result is of interest.

If the joint distribution of the n item parameter vectors $\left\langle a_{i}, b_{i}, c_{i}\right\rangle$ has a continuous density, then with probability one the CS of the 3 PL item response model defined with sampled item parameters will have dimension 2^{n} Thus, for example, if one begins with the any published set of estimated item parameters for an application of the $3 P L$ model and adds an independent normally distributed "error" with zero mean and very small variance, say 10^{-10}, to each of the $3 n$ parameters, then with probability one either one of the $a^{\prime} s$ or $c^{\prime} s$ will be moved outside its allowed range or a 3 PL model with J as large as it possible can be will be obtained.

Proof: With probability one, the functions

$$
e^{a_{1} t}, e^{a_{2} t}, \ldots e^{a_{n} t}
$$

will be algebraicly independent over the reals, i.e. will not satisfy any nontrivial polynomial with real coefficients. But if $\mathrm{J}+1<2^{\mathrm{n}}$ then one of the square-free monomials can be expressed as a linear combination of the remaining monomials. On multiplying both sides of the equation giving one monomial as a linear combination of the others by positive $\Pi_{i}\left[e^{a_{i}{ }^{t}}+e^{a_{i} b_{i}}\right]$ one obtains a polynomial in the $e^{a_{i} t}$ and a contradiction to the hypothesis $\mathrm{J}+1<2^{\mathrm{n}}$.

Section Four

Large Canonical Spaces

Consider Example Three for a test with large CS for an application currently in progress. In a large scale simulation we are attempting to monitor and control the changes in a Bayes modal ability estimate as new items are introduced into a 100 item adaptive test item pool. The item response function estimates for the new items are not expected to be very accurate because of motivation, test format, and ability distribution differences between the item response function estimation sample and the examinees in the application. The methods to be reviewed in this section. permit us to compute as many as we need of the roughly 2^{100} orthornormal h_{j} for the test consisting of old items.

The trick is to compute the h_{j} one-at-a-time in such a way that the h_{j} needed to complete the application are computed first. Tr's the CS is treated as the union of nested vector spaces CS_{K}

$$
\mathrm{CS}_{\mathrm{K}}=\operatorname{Span}\left(\mathrm{h}_{0}, \mathrm{~h}_{1}, \ldots \mathrm{~h}_{\mathrm{K}}\right)
$$

where functions in only a dozen or so spaces can be and need be accurately computed. Some details follow.

We wish to approximate $E\left(\hat{\theta}_{W K} \mid \theta=t\right)=R(t)$, where $\hat{\theta}_{W K}$ is the Bayes mode adaptive test score. It turns out that although J is very large, the projectic \hat{R} of R into the twelfth space

$$
\hat{R}(t)=\sum_{j \leq 12}<R, h_{j}>h_{j}(t)
$$

is very close to $R(t)$. Now if $\hat{q}(\cdot ; s)=\Sigma_{j \leq 12} h_{j}(s) h_{j}(t)$ is the projec. tion $q(\cdot ; s)$ into the twelfth space then $\int_{c}^{d} E\left(\hat{\theta}_{W K} \mid \theta=t\right) \hat{q}(t ; s) d t=$ $\hat{R}(t)$. Thus if we can write $\hat{q}(\cdot ; s)$ as

$$
\hat{q}(\cdot ; s)=\Sigma_{k \leq K} c_{k}(s) q_{k}(\cdot)
$$

Section Four: Algorithms and Approximations for Large Spaces page 38
a linear combination of quasidensities for the K AR score groups $q_{k}(\cdot)$, then

$$
\hat{R}(t)=\Sigma_{k \leq K} c_{k}(s) E\left[\hat{\theta}_{W K} \mid \hat{\theta}_{A R} \text { is in } M_{k}\right]
$$

The point is that i.f an application can be completed using $h_{0}, h_{1}, \ldots h_{K}$ only then it may be possible to proceed as if $\mathrm{J}=12$.

This section describes a general technique used by our laboratory for calculating the h_{j} one-at-a-time in such a way that functions that are likely to be needed for an application are well approximated by a function in CS_{K} for small K .

The General Method

The first step of our approach to large spaces is to select a set of functions $\left\{f_{\nu}\right\}_{\nu=1}^{N}$ that span the CS and are such that the function of two variables $\sum_{\nu} f_{\nu}(s) f_{\nu}(t)$ can be easily evaluated. For example if f_{1}, f_{2}, $\ldots f_{\nu}, \ldots f_{2}$ is any enumeration of the square-free monomials then the f_{ν} span the CS. Furthermore for any s and t

$$
\sum_{\nu=1}^{2^{n}} f_{\nu}(s) f_{\nu}(t)=\prod_{1}^{n}\left[1+\mathrm{P}_{i}(s) P_{i}(\mathrm{t})\right]
$$

can be evaluated with $2 n-1$ multiplications and n additions. (This identity can be verified by induction on test length n.) Other examples of tractible spanning sets and additional criteria for spanning sets are discussed below.

There are two important points to be emphasized here. Although there are generally billions of f_{ν} to enter into the sum $H(s, t)=\Sigma_{\nu} f_{\nu}(s) f_{\nu}(t)$, the multiplicative formula for $H(s, t)$ requires only n additions and $2 n-1$ multiplications. Second, the ordering of the f_{ν} is inconsequential. Whereas the outcome of a Gram-Schmidt orthogonalization applied to the
square-free monomials or any other large set of functions f_{ν} would be very order dependent, the calculation of H is not.

The next step in computing the h_{j} can be carried out with commercial software or can be converted to a eigenvalue/eigenvector problem: Compute positive numbers λ and functions h not identically equal to zero such that each h is in the CS and satisfies

$$
\lambda h(\cdot)=\int_{c}^{d} H(\cdot, t) h(t) d t
$$

where $H(s, t)=\Sigma_{\nu} f_{\nu}(s) f_{\nu}(t)$. There will be only finitely many different values of λ such that there is some $h \neq 0$ in the CS satisfying the equation. Since the h 's are in the CS there can be only finitely many linearly independent solutions h for any λ. Thus any maximal set of linearly independent solutions can be subscripted and arranged in order of their subscript so that $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{K}>0$ for some $K \leq J$ and $\lambda_{j} h_{j}(\cdot)=$ $\int_{c}^{d} H(\cdot, t) h_{j}(t) d t$.

Without loss of generality we can set $\left\langle h_{j}, h_{j}\right\rangle=1$ since $h_{j}(t)$ is a solution for λ_{j} if and only if $h_{j}(\cdot) /<h_{j}, h_{j}>$ is. Since the set of all h's corresponding to any λ form a vector space, they can be selected to be orthonormal. Since it can be shown h 's with different λ 's are orthogonal, the h_{j} will form an orthonormal set of vectors In fact it is easy to show that when the f_{ν} span the $C S, K=J$ and the h_{j} computed in this way form an orthonormal basis for the CS. If an application suggests a set of f_{ν} that don't span the $C S$, then $K<J$ and the h_{j} will be a basis for whatever subspace the f_{ν} span.

Note that except in the unusual case that more than one h correpsonds to one λ, the $h^{\prime} s$ are fully ordered by their $\lambda^{\prime} s$. Even if for some $j, \lambda_{j}=\lambda_{j+1}$, the $h ' s$ corresponding to different $\lambda^{\prime} s$ will be ordered and we can still speak of h_{j} occuring early or late in the sequence of h 's.

The ordering is important because for various reasons (cumulative numerical errors and the fact that λ_{j} is very close to zero for large j) the h_{j} that occur early in the sequence are relatively easy to compute (although the remaining h_{j} can be very hard to compute).

There are two related advantages in arranging the computation of basis functions as described above. The h_{j} with large λ_{j}, which are easy to compute, can be computed without computing the h_{j} with small λ, which can be very hard to compute. This is important because λ_{j} generally measures the relative importance h_{j} in representing functions in several senses. For example, if f_{ν} is approximated by its projection into $C S_{K}=\operatorname{span}\left(h_{0}, \ldots h_{K}\right)$, which turns out to be $\hat{f}_{\nu}(\cdot)=\sum_{j \leq K}\left\langle f_{\nu}, h_{j}>h_{j}\right.$ for $K<J$, then the total error

$$
\underset{\nu}{\Sigma} \int\left[f_{\nu}(t)-\hat{f}_{\nu}(t)\right]^{2} d t
$$

is simply $\underset{j>K}{\Sigma} \lambda_{j}$. (This sum can be evaluated even if J is very large because

$$
\left.\int_{c}^{d} H(t, t) d t-\sum_{j \leq K} \lambda_{j}=\sum_{j>K} \lambda_{j} .\right)
$$

As a bonus, the method also delivers a set of statistics X_{j} needed for Example One and Theorem One (i.e., statistics such that $h_{j}(t)=$ $E\left[X_{j} \mid \theta=t\right]$ for all t in $[c, d]$). Details are given in the final subsection.

Some Examples of Spanning Sets

In addition to the square-free monomials we use the 2^{n} likelihood functions for short tests. Here

$$
f_{\nu}(t)=\prod_{i=1}^{n} P_{i}(t)^{u_{i, \nu}^{*}}\left[1-P_{i}(t)\right]^{\left(1-u_{i, \nu}^{*}\right)}
$$

where $u_{1}^{*}, \ldots u_{\nu}^{*}, \ldots u_{2}^{*}$ is any enumeration of the 2^{n} item response patterns. For these functions

$$
\begin{aligned}
H(s, t) & =\Sigma_{\nu} f_{\nu}(s) f_{\nu}(t) \\
& =\Pi_{1}^{n}\left\{P_{i}(s) P_{i}(t)+\left[1-P_{i}(s)\right]\left[1-P_{i}(t)\right]\right\}
\end{aligned}
$$

which can be easily evaluated. (This also can be proven by induction on test length n after noting that each likelihood function can be written as $\left.f_{\nu}(t)=\prod_{i=1}^{n}\left(u_{i, \nu}^{*} p_{i}(t)+\left(1-u_{i, \nu}^{*}\right)\left[1-P_{i}(t)\right]\right\}.\right) \quad$ These functions certainly span the CS because any square-free monomial can be written as a linear combination of likelihood functions. (To prove this, simply write the general monomial $\prod_{j \leq r} P_{i}$ as the sum of the likelihoods for patterns u^{*} with $\left.u_{i_{1}}^{*}=u_{i_{2}}^{*}=\ldots u_{i_{r}}^{*}=1.\right)$

For adaptive tests and long tests satisfying (exactly or approximately) an algebraic property described below, we use likelihood functions for selected subtests. For example to study a fixed length adaptive test of 15 items with a 100 item pool it is natural to consider the $\binom{100}{15} \ll 2^{100}$ likelihood functions with fifteen factors since every statistic computed from an examinee's score depends on only 15 item scores.

The discussion of the Rasch model introduces a second rationale for forming the f_{ν} from the likelihood functions for short subtests. Recall that for the Rasch model every polynomial in the $C S$ could be rewritten as a "polynomial" in the $C S$, no monomial of which contained 2 or more factors. This property is remarkably general. For the 3PL model (and most of its generalizations) every polynomial in the CS can be rewritten as a linear
combination of monomials with five or fewer factors, at least to a surprisingly high degree of approximation ${ }^{1}$.

When every function in the CS can be expressed as a linear combination of square-free monomials with five or fewer factors, then the CS is spanned by the likelihood functions from subtests with five factors. There are still an enormous number of likelihood functions f_{ν} that can be formed from from all five item subtests. Nonetheless $H(s, t)=\Sigma f_{\nu}(s) f_{\nu}(t)$ can be computed efficiently for these functions as follows:

Let $F_{i}(s, t)$ abbreviate $P_{i}(s) P_{i}(t)+\left[1 \cdot P_{i}(s)\right]\left[1-P_{i}(t)\right]$.
Let $H_{i}^{m}(s, t)$ denote the sum of the likelihood functions for all i
item subtests formed from the first m items.
To initialize set

$$
\begin{aligned}
& H_{1}^{1}(s, t)=F_{1}(s, t) \\
& H_{i}^{1}(s, t)=0 \quad \text { for } \quad i=2,3, \ldots 5
\end{aligned}
$$

To update, compute

$$
\begin{aligned}
& H_{i}^{m+1}=F_{m+1} H_{i-1}^{m} \text { for } i=2, \ldots 5 \\
& H_{1}^{m+1}=F_{m+1}+H_{1}^{m}
\end{aligned}
$$

If in the update step H_{5}^{m+1} is computed first, followed by H_{4}^{m+1}, etc., then H_{j}^{m+1} can be written over H_{j}^{m} and the amount of storage required by the algorithm can be kept small.

Most of our current applications to one dimensional ability tests use this algorithm. Although some of the CS may be left out, the algorithm in practice works very well. It is the only algorithm that has consistently produced useful results with long tests.

A number of assertions were made without proof concerning the solutions for the functional equation

$$
\psi(h)=\lambda h
$$

where $\psi(h)(\cdot)=\int_{c}^{d} H(\cdot, t) h(t) d t$ for $H(s, t)=\Sigma_{\nu} f_{\nu}(s) f_{\nu}(t)$. By taking advantage of the finite dimensionality of the CS these proofs can be obtained with matrix algebra. In this section the reduction to matrix algebra is indicated after a few of the assertions are proven directly.

First ψ is a transformation of the CS to itself because the f_{ν} are in the CS and $\psi(\mathrm{h})=\Sigma_{\nu}<\mathrm{f}_{\nu}, \mathrm{h}>\mathrm{f}_{\nu}$ is a linear combination of the $\mathrm{f}_{\nu} \cdot \psi$ is thus a linear mapping of a finite dimensional vector space into itself.

To show that the eigenfunctions of ψ span the CS it is neccesary to show that ψ maps the CS onto the CS. Equivalently, since the CS is finite dimensional, one may show $\psi(h)=0$ implies $h=0$. To show this one can write $f_{\nu}(\cdot)=\sum_{j=0}^{J} a_{\nu j} g_{j}(\cdot)$ for some orthonormal basis $\left\{g_{j}\right\}_{j=0}^{J}$. The matrix $A=\left(a_{\nu j}\right)$ must have rank $J+1$ since the f_{ν} span the CS. If $\psi(h)=0$, then $\left.0=\left\langle g_{j}, \psi(h)\right\rangle=e_{j}^{T} A^{T} A<g, h\right\rangle, j=0, \ldots J$ where e_{j} is the j th unit vector and $\langle g, h\rangle$ is the column vector of $\left\langle g_{j}, h\right\rangle^{\prime} s$. Thus $A^{T} A<g, h>=0$. Since $A^{T} A$ has rank $J+1,<g, h>=0$, i.e., h is orthogonal to each g_{j}. Thus $\mathrm{h}=0$.

The existence of eigenfunctions in the CS and the fact that the eigerrfunctions span the CS can be shown with matrix algebra. To introduce matrix notation, for each t in [c,d] let $f(t)$ be the column vector with vth coordinate $f_{\nu}(t)$. Then $H(s, t)$ is the scalar product of $f(s)$ and $f(t)$. Let Q denote the matrix of definite integrals $Q=\int_{c}^{d} f(t) f^{T}(t) d t$, i.e. Q is the matrix with typical entry $q_{\nu \nu^{\prime}}=$ $\left\langle f_{\nu}, f_{\nu},\right\rangle$.

Q must be positive definite or positive semidefinite since for any vector $a, a^{T} Q=\int_{c}^{d}[a \cdot f(t)]^{2} d t \geq 0$. Therefore for some K, Q can be written $Q=\left[a^{0}, a^{1}, \ldots a^{K}\right]^{T} D\left[a^{0}, a^{1}, \ldots a^{K}\right]$ for $K+1$ orthonormal vectors a^{j} and a diagonal matrix D having positive diagonal entries $d_{j}>0$. For $0 \leq j \leq K$ let h_{j} be defined by

$$
h_{j}(t)=d_{j}^{-1 / 2} a^{j} \cdot f(t)
$$

Since each h_{j} is a linear combination of functions in the CS, each must be in the CS. The h_{j} are orthonormal since

$$
\begin{aligned}
<h_{j}, h_{k}> & =d_{j}^{-1 / 2} d_{k}^{-1 / 2} a^{j T} \int_{c}^{d} f(t) f^{T}(t) d t a^{k} \\
& =d_{j}^{-1 / 2} d_{k}^{-1 / 2} a^{j T} Q a^{k} . \\
& =\left\{\begin{array}{l}
0, \text { if } j \neq k \\
1,
\end{array}\right.
\end{aligned}
$$

In fact the h_{j} must be eigenfunctions of ψ because

$$
\begin{aligned}
\psi\left(h_{j}\right) & =\int_{c}^{d} f^{T}(t) f(\cdot) d_{j}^{-1 / 2} a^{j} \cdot f(t) d t \\
& =d_{j}^{-1 / 2} a^{j T} \int_{c}^{d} f(t) f^{T}(t) d t f(\cdot) \\
& =d_{j}^{-1 / 2} a^{j T} Q f(\cdot) \\
& =d_{j}^{1 / 2} a^{j T} f(\cdot) \\
& =d_{j} h_{j} .
\end{aligned}
$$

K must equal J because otherwise ψ would not map the CS onto the CS. Thus the eigenfunctions form an orthonormal basis for the CS.

The Statistics X_{j}

In Example One and Theorem One statistics with regression functions equal to h_{j} were needed. Of course such statistics exist because every function in the $C S$, by definition, is the regression function of at least one statistic. Finding a statistic matching a function fortunately turns out to be easy for bases formed from eigenfunctions.

When the h_{j} are obtained as eigenfunctions, these statistics are calculated in two steps. First, the examinee's data is transformed into a continuous function $X(t)$. Then a statistic is obtained by computing $\left\langle X, h_{j}>/ \lambda_{j}\right.$.

For concreteness consider the second example of the general method in which each f_{ν} is a likelihood function. The general technique applied to this example gives $X(t)$ equal to the familiar likelihood function as the random function

$$
X(t)=\prod_{i=1}^{n}\left[u_{i} P_{i}(t)+\left(1-u_{i}\right) Q_{i}(t)\right]
$$

and $X_{j}=\int_{c}^{d} X(t) h_{j}(t) d t / \lambda_{j}$.
To verify that the regression function for this statistic is h_{j}, we compute as follows. The regression function for X_{j} evaluated at θ_{0} is

$$
\begin{aligned}
E\left[X_{j} \mid \theta=s\right] & =\lambda_{j}^{-1} E\left[\int X(t) h_{j}(t) d t \mid \theta=s\right] \\
& =\lambda_{j}^{-1} \int \prod_{i=1}^{n} \cdot\left[P_{i}(s) P_{i}(t)+Q_{i}(s) Q_{i}(t)\right] h_{j}(t) d t \\
& =\lambda_{j}^{-1} \int H(s, t) h_{j}(t) d t \\
& =h_{j}(s) .
\end{aligned}
$$

The general rule for obtaining a random function $X(t)$ for arbitrary f_{ν} is to make the replacements

$$
P_{1}(s)+u_{1}
$$

$$
\begin{gathered}
P_{2}(s)+u_{2} \\
\cdot \\
\cdot \\
P_{n}(s)+u_{n}
\end{gathered}
$$

in $f_{\nu}(s)$ to obtain a random variable $Y_{\nu}(u)$ from $f_{\nu}(s)$. A random function X is defined by

$$
X(t)=\Sigma_{\nu} Y_{\nu}(u) f_{\nu}(t)
$$

Finally, a random variable having regression function equal to the j th basis function is obtained as $\int_{c}^{d} X(t) h_{j}(t) d t / \lambda_{j}$. To summarize

Let $H(s, t)=\Sigma f_{\nu}(s) f_{\nu}(t) \quad$ for functions in the CS f_{ν} not necessarily spanning the CS. Let h satisfy $\int_{C}^{d} H(\cdot, t) h(t) d t=\lambda h(\cdot)$ for positive λ. For each t in $[c, d]$ let $X(t)$ be the random variable obtained by replacing each $P_{i}(s)$ by u_{i} in the formula defining $H(s, t)$. If $X_{j}=$ $\left\langle X, h_{j}>/ \lambda_{j}\right.$, then $E\left[X_{j} \mid \theta=t\right]=h_{j}(t)$ for $c \leq t \leq d$.

Note, the transformation $f_{\nu}(s) \rightarrow Y_{\nu}$ generally cannot be defined on the CS because if two items have the same item response function, then we can have $f_{\nu}(\cdot)=f_{\nu^{\prime}}(\cdot)$ as functions in the CS but $Y_{\nu^{*}} \neq Y_{\nu^{\prime}}$. The problem can be avoided by regarding $f_{\nu}(s)$ as a polynomial with real coefficients in algebraicly independent variables $P_{1}(s), P_{2}(s), \ldots P_{n}(s)$.

Proof: $E[X(t) \mid \theta a s]=H(s, t)$.

1. Levine, M. and Williams, B. Latent trait theory as fundamental measurement, Paper presented at Society for Mathematical Psychology Annual Conference, Irvine, California, 1989.

Acknowledgements

This research was supported by the Cognitive Science Program of the Office of Naval Research contract N00014-83K-0397, NR 150-518 and N00014-86K-0482, NR 4421546. I am indebted to Bruce Williams, Tim Davey, Charles Davis, Fritz Drasgow, Brian Junker, and Gary Thomasson for detailed comments on earlier versions of this work. Conversations with J.O. Ramsay were also useful.

Or. ierey nekerman
Educational Psychologr
210 Education Bldg.
University of llifinors
Chanpaign, IL 61001
Or, Robert Ahlers
Cote N7II
Muan factorg laboratory Haval iraining Systens Center Oflando, FE 32013

Of, Janes Agina 1403 Norman Hall
University of Florida
Gainusville, fL 32605
Or. Eeling 0. Andersen
Oopartment of Statisties
Studiestraed. 6
1455 Copenhagen
OERMARK
Dr. Eva L. Baker
UCla Center for the Study
of Evaluation
145 Moert Hall
University of California
Los Angeles, CA 90024
Dr, Isaac Degar
Mail Stop: $10 \cdot \mathrm{R}$
Educational Testing Service
Rosedale Ro=d
Princeton, NJ OOSA1
Dr. Menucha Direnbsum
School of Education
Tel Aviv University
Ramal Aviv 69978
ISRAEL
Or. Arthur S. O1aives
Coce N712
Naval Iraining Syiteas Center
Orlando, FL 32513-7100
Or. Bruce Bloxom
Oefense Manpowir Oata Center
39 Pacifle St.
Suite I5SA
Hontersy, CA 93943-3231
Or. Stanley Collyer
Orfice of Naval Iechnology
Code 222
800 N. Duiney Street
Arlington. VA 22217-5000
Or. Hans f. Croabag
Faculty of Lav
University of Limburg
P.O. Bor 616

The NEIFERLANOS 6200 kO
Or. Iisothy Davey
Aeprican College Iestíng Program
P.0. Box 168
low City, IA 52243
Or. C. H. Cayton
Oeparteent of Keasurement
Statistics 8 Cualuation
College of Education
University of Haryland
College Park, HD 20742
Or. Raloh S. DeAyala Measurement. Statistics, and Evaluation
Benjamin B1dg., Ran. 4112
Benjasin eld of Mar.
University of Maryland
University of Haryiand
College Park, MD 20742
Or. Datiprasad Divg
Center for Kaval Analysis
4401 ford Avenue
P.O. Bor 16268

Alerandria, VA 22302-0268
Or, Hei-Ki Dong
Bell Comunications Researeh
6 Corporate Place
PYA-IK226
Piscatamay, NJ 0B854
Or. Frita Orasgon
Universily of lilienois
Departanent of Pirchology
E03 E. Dancel St.
Chanpaign. IL G1020

Dr. R. Daceelif Doct
University of Chicaso
idRC
cosis South E1lis
Chicaso. It 60637
Cdt. Aenold Echrer
Sectie Paychalogisch Onderzoek Rekruterings-En Selestiecentrun Rekruterings-En Selictiecen
Kuartier Koningen Astrid Bruijnstrast
Bruijnstrast
1120 Drussels, actolum
Or, Robert Bresus
Cos. 70
Haval Iraininn Sutiens Center Orlando, FL 32813-7100

Or. Robert Orennan
Anerican College lesting
Prograns
P. O. Boz 168
lows City, IA 52243
Or. Jotn B. Carroll
409 Elliott Rd., North
Chapal Hill, NC 27514
Or. Robert M. Carroll
Chief of Haval Operations
$00-0102$
Hashington, OC 20350
Dr. Raynend E. Christal
UES LAMP Serence Advisor AFIHR/MOCL
Brooks $45 \mathrm{~B}, \mathrm{ix} 70235$
Or. Norman Cliff
Department of Psychology
Univ. of So. California Los Angeles, CA 90089-1061

Dipector,
Manpower Support and
Readiness Program
Center for Haval Analysis
2000 North Beauregard Street
Alemandría, VA 22311

Defense iechnical
Infornation Center
Caetron Station, Bidg S
Alerandria, VA 22314
Atin: IC
(12 Coores)
Dr. Stephen Ounbar
2248 Lindquist Center
for Heasurement
University of lowa
lowa City. IA 52242
Dr. James A. Earles
Air Ferce Human Resources Lab
Brooks N0, ix 78235
Or. Kent Eaton
Aray Researeh Institute
5001 Eisenhover Avenue
Aleiandria, Va 22333
Or. Susan Enbectson
University of Kansas
Psychology Deoartaent
426 Fraser
Lawrence, RS 6604S
Or. George Englehard, Jr. Oivision of Eeveational Studies Eaory University
210 Fishburne B1dg.
Atlanta, GA 30322
Or. Benjanin A. Fairbank
Perforaznce Hetrics, Inc.
S8zs Callaghan
Suite 225
San Antonio. Ix 70228
Or. P-A, Fecerico
Code SI
MPROC
-San Diego, CA 92152-6000
Dr. Leonard relet
Lindquist Center
for tieasurement
University of lowa

Dr. Rishard L. Fergusom
American College lesting
Pror Een 160
lows Cuir. IA 52243
Or. Gerhad fischer
Luebigsasse 5/3
a 1010 Vienna
AUSTRIA
Or. Myron Fisch
U.S. Rirny Headquarters

OAPE - HRR
the Pentagon
Hashington, OC 20310-0300
Prof. Donald Fitigerald
University of New England
Deoartaent of Pischology
Araidale. Nem South Hales 2351 ausiralia

Mr. Paul foley
Havy Persennel Reo Conter
San Diego, CA 92152-6000
Or. Alfied R. fregly
AFOSR/R BId $\$ 10$
Bolling AFB, OC 20332-6448
Dr. Robert D. Gibbons
Illinous State Psychiatris Inst.
Ra 529 H
1601 H . Taylor Street
Chicago, IL 60612
Or. Janice Gifford
University of Hassachuselts
Sehool of Ebucation
Anherit, MA 01003
Or. Robert Glaser
Leapning Research
University of Pitisburgh
3939 O'Hara Strect
Pillisturgh, PA 15260
Dr. Dert Green
Johins Hopkins Univergity
Departeent of Piychology
Eharles 8 34th Street
Daltieort, MD 21218

Mr. Dick Hoshav
0p-135
Arlington Annex
Roon 2834
Hashington, OC 20350
Or. Lloyd Humphreys
Univercity of llisinols
Departeent of Psychology
603 East Oancel Street
Changaign, It 61820
Or. Steven Hunha
3-104 Educ. N.
University of Alberta
Edaonton, Alberta
CANAOA TGG 2C5
Or. Huyah Huynh
College of Education
Univ. of South Carolina
Colusbia, SC 29208
Or. Robert Jannarone
Elec, and Computer Eng. Dept.
University of South Carolina
Columbia, SC 29208
Or. Oouglas H. Jones
Thateher Jones Associates
P.0. Bla: 6640

10 Tratalgar Court
lavencevilit, tis 30648
De. Brisn Junker
University of lilimoss
Cepartanen of Statistics
101 lilini hall
725 South Height 5t.
Ghaspaign, IL 61020
Or. Milton S. Natz
European Science Coordination orfice
U.S. Army Researeb Institute

Bon 65
5PO Hew York 09510-1500
Prof, John A, Keats
Oegartment of Psychology
University of Newesstio
M.S.H. 2300
ausiralia

COPBIEF GMOH
P.0. Dex 1420
0.1930 Irreserehstaten:
west Germany
Peofx Edwars Hasertel
Schiod of Cducation
Stanford Unaversity
Siantore, CA 34305
Df. Ronale ki, Rambleton
University of Massachusetts
Unversiery of Paschometiris
Laboratery of Psychonetric
and Evaluative Researen
Hills South, Room IS2
Ambersh. HA 0100,
Or. Delwyn Harniteh
University of lllinois
51 Geriy Orive
Chapargn. IL 61020
Or. Grant Henning
Semor Reseacch Scientist
Ourision of Kessurement
Research and Services
Educatronal iesting Secvice
Princeton, 1 HJ 00541
Ms, Rebectal lietter
Havy Persomnel Rzo Center
Code 63
San Oiego, CA 92152*6800
Or. Paul H. Helliand
Equcational Testing Service. 21-I
Rosedale Road
Princeion, $11 J$ 08511
Prof. Lut: F. Hornke
Instifut fur Piychologie
full Aachen
Jaegerstrasse 17/19
0.5100 aachen

LSSI gCRimatiy
Or. Paul Herst
677 G Stecet, 1104
(Mula visiz, CA 92010

Or. G. Gage Kingsbury
Portiand Public Schools
Research and Evaluation Degacinent
SOI North Oinon Street
P. O. Bon 3107

Poriland, OR 97209-3107
Or. William Koch
Bon 724G, Heas: and Cual. Cir.
University of liaras-Ausim
Austin, 1×78703
Or. Leonard rroeter
Hayy Pecsonnel RED Center
Gede 62
San O.ego, Ca 92152-6900
Dr: Jerry tahnus
Gelense Manpower Data Center
Suife 400
1600 Hilson Blva
Rosslyn, VA 22209
Or. Themas leonard
University of Hisconsin
Departhent of Statistics
1210 west Oayton Sifeet
Madison, H1 53705
Or. Kichatl Levine
Coucational Piychology
210 Education BIog.
University of lllinois
Chamosign. It Gleol
tir. Ceprlest leuns
Coucational lesting Service
ferinceron, Hi Gejsal-6eg:
Ge. Rotere L. Linn
Campur Do. 249
University of Coloraso
Goulder, CO B0303-0249
Or. Robery Lockran
Center for Haval hnalysts
4401 Ford Avenue
P.0. Bor I6268

Alexandria, VA 22302-0268
Or. Frederis M, Lord
Educational iesting Service
Prenceton, MJ 08541

Dr. Geerge B. Hacready
Department of Measurement
Statistics \& Evaluation
College of Education
University of Mofyland
Crillege Park, HS 20742
Oi. Eary Hares
Stos $31=\mathrm{C}$
Coticational lestong Service Pracketon, 14 Og 0 st

Or. James R, HeOride
ita Payshological Corporation
1250 Si: in Avenue
San biego. ca 92101
Or. Clarence C. MiCormact HS, USKSPCOH/REPCI 2500 Green Oay Ro3d Horth Chicago, IL. 60064

Mr. Christopher McCusker University of llimois Oegartment of Psychologr CO3 E. Daniel St. Champagn, It GIOzo

Or, Robert mekinioy Law Schiool Admission Services Uo. 40
Hevtwan, PA 10910
Or, Jeess Mathichael lieshoreal Ourector Havy Personnol Rio Center San Oiego, CA 92152-6800

Mr. Alan Mad
6/o Or, Michael Levine
Educational Psychology
210 Education Bidg.
University of llifinors
Champaign, IL 61001
De. Robert Mislevy Ctucational lesting Service Princeton, iJ 08ss.

Dex Lillian Montague
hone Coce 13
san Öero, CA 92152-6000

Or. James B. Olsen
hicat Systens
1875 South State Street
Oren, uf 04058
Office of Naval Research, Code 1142CS
800 it. Ouincy Street
felington, VA 22217-5000 (6 CoDies)

Orfice of fiaval Researeti, Code 125
$600 \mathrm{H}_{*}$ Ouiney Strett
Arlington, VA 22217-5000
Assisiant for poi Researeh,
Developeent and Studies of 0187
Uashington, OC 20370
Or. Judith Orasanu
Basic Research Office
Aray Rezearch Instiqute
S001 Eisenhever Avenue
Alenandria; VA 22333
Or. Jesse Oriansky
Institute for Defense Analyses 1001 N . Beauregard St .
Alerandria, VA 22311
Or. Peser J. Pashley
Cducational iesting Sepvice
Rosedale goad
Princeton, HJ 00541
Hayna M. Patience
Ahatrican Council on Educalien
GCo tesing Service, Sulie 20
One Dudon: Cisele, dird
Hashington, OC 20036
Or. James Paulson
Oepartaent of Psyehology
Sortignd State University
P.0. Don 751

Pertiand, OR 97207
Dept. of Admintstestive Sciences
Code 54
Naval Postgraduats School
Monterey, CA 93943-5026

Ms. Kathleen Horano
tisuy Persennel RsD Center
Cose 62
San OICjo, CA 92152-6e00
lendouartoes Harime Coras
rose $P \times n=20$
hvelioxAlten, OC 20300
ur. Ratira Handakumar
Crebx of Lucational Stuises
Hillace Mall, Roont 213
Eniversity of Deleware
thewark, OE 19716
Or. H. Alan Hiceuandep
Unoversity of Oklahema
Oepartetni of Psychology
Norman, OK, 73071
Deputy Pechnical Director
bipROC Code OIA
San Orege, Ca 92152-6800
Oicector, icaining laboratory, NMOCC (Code 05)
San Orego. CA 92152-6000
Ourector, Manpower and Personnel lisborstory.
ponec (Coce OG)
San Urego. Ca 92152-6800
Ourector, Human Factors t Organizational Systems Lab. NPRDC (Code O7)
San Oiego, CA 92152-E800

tibrary, IIPROC

Code PZOIL
San Diege, Ca 92152-6800
Commanding Officer.
Naval Research Laboratory
Code 2C27
Hashington, OC 20390
Or. liarold F. O"fieil, dr.
Setiool of Equcation - WPY BOL Depsriment of Edueational Psyefiology t lechnology University of Southern Californea Le: Angeles, CA 90089-0031

Departapht of Operations Researet. llaval posispatuate Serool
ronterev. CA 93940
Dr. Merk O. Reckase
ACI
P. O. Bo: 160
lowa City. IA 52243
De. Malcolm Ree
ASHRLMOA
Brooks AFB, ix 78235
Hp. Secre Reiss
H550 Clliot: Hall
Mobo Eiliot: Rail
75 E. River Road
Minneapolis, PM 55455-03sa
Or. Carl Ross
Crifi-POCO
Quilding 90
Corest takes NIC, IL 60080
Or. 1. Ryan
Department of Education
University of South Carolina
Celuabia, SC 29200
Or. Fumito Samejoma
Deosertnent of Psyenology
University of Pennessee
3108 Austin Degr Bice.
Knoville, iff 37916-0900
Me. Orem jands
respe Code 62
San O.ege, Ca 92152-6000
omell Sencep
P3ychoregical \& Ouaniciative Founcations
College ef Equca:ion
University of lowa
lowa Cify, IA 52zat

Or, Haey Schrai:
905 Orehid Hay
Carlsbar. CA 92009
Or. Oan Segoll
Mavy Personnel Reó Center
San Diego. Ca 92152Havy Personnel R20

D, α Steve Sellinan

-resis the rentagan
washingtan, $D C$ zosol
Or. A: Anc Strgenasu
7-94-24 Yujenuma-Kalgan

JROAT
Or. William Sims
Criter for Maval Anslysis
4401 reed Avenue
a 0 . Bo 10260
P.O. Con 16268

Aleandera, VA 22302-0269
Or. H. Hillace Sinaiko
Maroower Research
and havisory Services
Sarinsonian lastitution
G01 liseth Pilt Strcet, Suite 120
Aterandeta, Vh 22314-1713
Er. Riehars E. Snow
Schoci of Education
Stenf ord Universaty
simeter
simeferd. CA 04305
Or. Riemard C. Sopensen
liavy Personnel Rzo Center
San Onego. Ca 92152-6000
Or: Juoy Soray
ACI
f.C Ben 168
lowa Cuiz. la 52243
Op, Marths Stocking
Edveational testing Service
Pernceton, HS 00541
Dr. Deter Stoloff
Center for Naval Analysis
4401 Sors Avenue
P.0. Box 16268

Aleraneria, VA 22302-0260
Or. Hillian Stout
University of llimors
Department of Statistics
101 |llinit kall
725 South Wright St.
Champaign, IL 61820

Or. Ledyard lucker
University of Illinors
Departnent of Psychology
603 E. Oantel Street
Chamoaign, il 61820
Dr. Oavid Vale
Assessment Systens Corp.
2233 University Avenue
Suite 440
St. froul, riv 55114
Sor. Reint l. Vicino
tavy ferenannel Rtí Center
san Ouege. (f. 92152-6800
Dr. Homard Hainer
Cducational Iesting Service
princeton, is O8S4i
Op. King-Yer Hang
indquist Center
for Heasurement
Universily of lowi
Howa City, IA 52242
Or: ihicmas h. Warn
Tha Aeaceny hac9340
P.O. Be, 35002

CkIahoms C: iy, Or 73125
Gr, Deasn Hasers
Hurgan
12930 firgyla Circle
hievancria, VA 2231A
Ce. Oavid J. Weiss
B6CO Clloot Hall
University of Himnesota
-S E. River Road
Minneapolis, wis S5455-0344
fir. Ponald A. Hertiman
Con 146
Carmel, CA 93921
Maser John Welsh
AFHRC/ROAII
Broots ArO, ix 20223

Or. ilar, tatan frimucathan
taserpiopy of Breblinatiexe ane
traluaiven Ersearen
Setcet ce tucates
Unaverstir of Massastiusetis
Amhers: ra glest
*ngray Sy"stan
liavy Persanmel safo Center
Coge-131
San Diege, CA \$2152-6800
Or. John iangeey
AFCSR/M, B1E8. 410
Solling Are, C 20352-64<8
Or, kikuni isisucka
CERL
252 Engineering Researeh Laboratary
103 S. Mathews awnue
Urbana, il elegh
Or. Maurce ia:suera
220 teucasiof tilat
1310 S. Suith s.
Changaign. IL 6:020
Or= Oavic inisser
Oeportesen: of Esychology
University of hansas
tawrence, is g50ce
Me. thonas J. inomas
Jotins Hopkens University
Departache of Psuchelogy
Charles 34 ith Street
Balfinore, po zlate
tir. Gory ibimasson
University of lllinots
Ccucational Peychelogy
Chapsigh, il 61020
Or. Rober: isuiaizad
University of tíssouri
Denartment of Statistics
22: Hath. Sciences Bleg.
Colunsia, y:o 65211

San Oiego. CA 92152-6800
Or. George Wing
Buostatisics laberstory
Buostatisicics laberatory
morial Sloan-liestering
Cancer Genter
1275 York Auenue
fiem Yopk, hy 10021
Or. Hallzee Wullect, ill
Navy Personnol azo Center
Cose 51
San Oiego. Ca 92152-6n00
Pr. Vientare Yamambie
03-1
Educational iesting Service
Poccedale Road
Princeion, 18 OBSA!

Dr. Douglas He:iel
Code 51
Havy Personnel Red Center
San Diege. CA 98152-6800
Dr. Rand R. Hileon
Uneversity of Southern
Californit facholog
Californit parchology
Los angeles. Ca 900e3-1C61
Gerean hilisary kepresentative
Milit: Lo.ligang Wilçrule Sireitbractsedat Siceitbren
D-s 300 Donn
$4(0)$ Beancyurne Sipect, kio
bestingten. OC 2001t
Or. Bruce Witlians
Department of Educational
Psyetiolegy
University of flliners
Urbena. If 6l8ot
Cor. Hilda Hing
MRC Millize
2101 Constitution ave.
hashington, © 20418
Mr. Jatha W. Holle
Havy Personael asd Cenief

\qquad

Or．Wendy Yen
Del tionte Rescarch Park
Honterey，CA 93940
Dr．Josept．L ．Young
Mational Science roundation
Rational 320
1800 G street，N．H．
Hashington， $\mathcal{O} 20550$
He．Anthony R．Zara
National Council of State
Dozeds of Nursing，Inc．
625 Horth Mishigan avenue
Suite 1544
Chicage．it cogll

