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ABSTRACT

Formulas for calculating Bessel functions of integral order aild

complex argument are derived in this report. Calculations based on

these formulas are not subject to the loss of signifiva.t figures

which occurs in the Taylor and Neumann series when the argument is

large and the order is small.

To calculate J (z), select an integer m > n and m H I I such
n

that I (z) <<, (z) I . Calculate J (z) and J (z) from the lavIor
m n m m+ 1

series, then calculate n (z) from the recurrence relation. A simi 'ar

procedure is used to calculate I (z).n

To calculate K (z), exoress the quotient Qn (z) = Kn  (z)/K 1(:

in terms of two Gauss continued fractions. The individual functions

K (z) and K (z) are obtained from Qn (z) and the Wronskian relationn n-i 1

i volving Kn (z), K n l(z), In (z), and I n (z). A similar ,rocedurc

involving Hankel functions is used to calculate YI (z) and Y nl(Z)
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Cancellation of significant figures is very severe in the Neumann

series for K (z) when ii is small and z is large and real. At then
present time, this difficulty is generally overcome by using multiple

precision arithmetic, quadrature formulas, or continued fractions with

very involved terms. The Gauss continued fractions us,- in this report

are simple in form, rapidly convergent, and are not subject to excess-

ive round-off error.
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I iST OF SYMBOLS*

it'complex variable, z =x + C

x eal part of z

Y imaginary part of z

absolute value of z

argument of z

k,j,m,n integers

J (z) ordinary Bessel function of the first kind

Y (z) ordinary Bessel function of the second kind

I (Z) modified Bessel function of the first kind

K (z) modified 9essel function of the second kindn

i 1)(:) lankel functions, sometimes called
n

H (2)> Bessel functions of the tird kind
n

f(a,buj Wall. for.i of the confluent hypergeonietric function

i" (z) Whittaker's form the confluent hypergcor etric tubior,

Qn(z) a quotient. Qn (z) = KnI (:)/K (z)

p (1)1 - quotients of Hankel functions;

tn (2) (Z) see equations (46), (47)n

a complex variable defined in terms of :; see

equation (21)
F1 (a ,b;u)

(;auss continued fractions. See eq, tio .s (30)-
G (a, ; o)

1) of the order of

r(7) the gamma function

Euler's constant

*:he ritation of Chapter 9, Ref. 5, is used whenever practical
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normalizing factor in Miller's algorithm

Ln(z) Ln (z) = aJn (z) + Yn (z), Eq. (5)

C a small quantity

Re the real part of

Im the imaginary part of

R{F(z)} the real part of F(z), Appendix A

I{F(z)} the imaginary part of F(z), Appendix A

F(z) a function of z

w dependent variable in the differential equation

d w -F(z)w = 0

dz2
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I. INTRODUCTION

Linear boundary value problems in cylindrical coordinates may

frequently be solved in terms of Bessel functions of integral order.

Certain problems in elasticity, viscoelasticity, and fluid flow require

Bessel functions of a complex argument in order to satisfy the boundary

conditions in a rigorous manner. Taylor and Neumann series are

generally used to calculate these functions when the argument is small
or mderae insize1,2,3*

or moderate in size. However, severe cancellation occurs unless

all the terms of the series have the same sign. Consequently, multiple

precision arithmetic is required in order to obtain final results of

the required accuracy.

Cancellation is a severe form of round-off error which occurs if

the sum of a series is small compared with the largest term. Several

significant figures may be lost by subtraction if the calculations are

carried out with a fixed number of significant figures. This diffi-

cultv is illustrated by the alternating series

- 1 1 3
= 1 +- x+ X 2 X +

since C is small Alhen x is large. It is evident that cancellation

does not occur when evaluating the series

x - , 1 . 3

-- x

Hence, to obtain w we first calcuI.,te e and th;en obtain e bv

d ivision.

Miller'l has shown that cancel Iat ion does not occur if stable

recurrence relations are used to c kcu ,late Bessel funct ions of the
first k inrid. -\n in~lI ogous procedure cannot he used for cal cu 1 ating

Bes seI funct ions of the second k-id, .,s the correspondng recurrence

relations are unstable.*

*4.,t(c 2S A' ac (COkzr ( S d(6L.&co: c,, 5S5 0, t, ,. 6.

S J 0{ ,t Zb 4.1' P1



In this paper, the quotient of two modified B.. el functions of

the second kind is expressed in terms of two Gauss continued fractions.
6

The original function is then calculated from the Wronskian relation

and the functions of the first kind. This procedure eliminates cancel-

lation, so tL.at accurate values of the function can be obtained for a

wide range of order and argument. A similar procedure is used to calcu-

late ordinary Bessel functions of the second kind.

If we require a sequence of functions J n(z), Jn+l (z) ... J n+i(z),

we calculate J n+i(z) and Jn+i+t(z), then calculate the functions of

lower order from the recurrence relation. Similarly, if Y (z),n

Yn+l(z) ... Yn+i (z) are required, we calculate Yn (z) and Yn+l(Z), then

calculate functions of higher order from the re-".rrence relations. The

routine being developed at the Ballistic Research Laboratories (BRL)

will provide the pair of Bessel functions required to start the

recurrence process.

II. ORDINARY BESSEL FUNCTIONS OF THE FIRST KIND

These functions can be calculated accurately from the series*

1 1 41- --{_ _

n n) 2n n 1! (n+l) + 2! (n+l) (n+2) 3! (n+l) (n+2) (n 3) * (1)

if is small, or if n is very large compared with i.. However, it'
th

i is rt'al and large compared with n, the n term of the series is

large compared with Ji (:) consequent,Y, severe cancellation occurs inn

summing the series.

We will describe Miller's Algorithm briefly, as it is the basis

of most subscquent wcrk in the area. We assume

t. (z) = 1 3)m

-71C c ii out", tcc u ~ i~z rc CLtz~ A ..jin '.
5 an d 7.
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where m - > n, m > -, z:. The functions Lm(z), L 2 (:) ... L ( are
generated from the recursion formula

z[Lk-l(z) + Lk+l (z)] = 2 kLk(z) (4)

We express L m(:) as a linear combination of J m (: and Yn (z):

1m (Z' = a.J (: )  + nYm (7) (53

Then, since J (:) Y m(:) and 1. (: all satisfy the same linear recur-

rence relation, we have

L (:) = J () + Y (z) ()
n n n

Wqhen z k Jk(:) increases and Yk(z) decreases as k decreases; con-

sequentlv the second term in Eq. (6) is neg' igible, and we have

L. (Z) ' ,, : (7)
n

The normalizing factor , is obtained from the Neumann series of an

elermentary function.

k=:

k~i

It is assumed that 1 aL t as ne gligible. "his procedure is vcr
M

ctiect ive proi i, id cluncel lition does .iol occur in s,.mmir. g the series in

1: . iS'. it1Ho , e , I t s di ff i t to "ind , s i n ul fu ct ! n t'(,T )

ih :c' s trisfies ths re'; -M'nt When ', Oth P d v idev

In :ont 1ast .,ith Mli ei ' a I orlth' , t!t. author "Ises 'q.tl to
.;.'. cl-itc , t nd There : and m n Ihe terms of

the scries .ire n.oderate in szc, in,i c:ancel lat ion is negl i ibI e Th '

unctin : is calculated hv repeated use of the recurrence relat io n



z[Jkl(Z) + J (z) =
2kJk~) 9

-ifting with k =n.

The integer n was obtained from the polynomial approximation

1 2 1 4 1 12t

nm

l,2n ' 1(n+l) 2TF(n+l)tPT2) + + !(fl+l) ...(+Z

where p = z! and Z is the smallest integer for which

Then

M = 1 + Z(12)

The small constant c was adjusted by trial. The final vallue was chc.sen

just s-,all enough to guarantee the accuracy of i 1(z) in the range of

interest.

111. MiODIFIED SP-S -L FUNCTIONS OF THE FIRST KIND

A similar procedure is used to calculate I n(z) from the series

n/

I z) n 2 (1 4 l 6n n l!(nZ) + !hY7 )+f~.1(32 n2

I[klZ +Z +klZ]=2~() 9

Obviously, no uancellation occurs if z Is reel and positive, as the

terms of the serits are all positive. If, however, z is a -1.

im-6inary, number, severe cancellation will occv,-' when IJis large comn-

pared with n.

We calcuha I (z) and I (z) where the integer r is given by

Eq. (12). The functic. (z) is calculated by saiccessive application )

m = n+ £ (2912



of the recurrence relation

z[ kliZ) - Ikl(] 2kk(, (14)

starting with k m. This recurrence relation is stable for decreasing

indey.

A number of functions w.hich have Taylor series expansions and rect

rmnce relations which are stable for decreasing index can be calculated

by Miller's algorithm or procedures similar to the one outlined above.

If, however, the function has a logarithn'ic singularity at the origin,

no simple method of calculation based on series and recurrence relations

appears to be available.

lV. MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND

These functions can be calculated from the Neumann series

K (z) = [y - loge 2 + loge 7]Io(z)

1 2 1 4 1 6(7 -Z ) (- Z)6

+ 1.:.1. 2 (z + 2 1. 1 2 + I + +.'" (1)

n-I n-2r
K(z) -[ log ? + log z] In(z) + 7.
n e e n r=O z

1 n-2r

(-l)n,  (z) 1 + 1
r!(n~r)! 2 r + + 2 (16)

r=O

if Izi is small, or if jzj > n. However, severe cancellation occurs if

z is large, real, and greater than n. In this range, we have the

approximations

Kn(Z) ', / e, (z) --L U

13



so that Kn (z) is small and In (z) is large. It is evident from Eq. (16)

that K (z) will be calculated from the difference of two large andn
nearly equal numbers.

Although the Neumann series is useful when n is large compared with

Iz!, functions of lower order cannot be calculated accurately from the

recurrence relation

[Kn (z) - Kn 1 Z)] = 2nK (z) (17)
n+ n1 n ,

as the differences of nearly like numbers also occur in the course of

these calcu ions. It appears that K (z) should be calculated from an
formula which does not separate the analytic and logarithmic parts of

the function.

This requirement is satisfied by the integral repreF:ntation*

1 M1 1

(Z) ) 2eZ e u n-- (1 + n- du (18)
n 2z 1 du! (n 1)

0

which is valid provided z does not lie on the negative half of the real

axis. It is related to a form of the confluent hypergeometric function

discussed by Wall.**

/~ -ua-ld

f(a,b;v) dI e (19)
f b F(a) (1 + vu)

0

We see that

1

K(z) () e - z f(' b;v) (20)n 2z

"PageL., Re6 . 8
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1
v =2 (21)

a 1 (22)

1
b -(23)

Similarly

1

Kn(Z) = ( e- e f(a - 1, b + 1; v) (24)

We define the quotient function by the equation

Qn (z) = K n-(z)/K n(z) (25)

Then

Qn (z) = f(a - 1, b + 1; v)/'a,b;v) (26)

We reduce the c. ,)ression on the right to a form that can be

expressed in terms of Gauss continued fractions. The function f(a,b;v)

satisfies the recurrence relations

f(a, b; v) = f(a + 1, b; v) + bvf(a + 1, b + 1; v) (27)

f(a, b; v) = f(a, b + 1; v) + avf(a + 1, b + 1; v) (28)

Now replace a by a - 1 and b by b + 1 in Eq. (27). We find

f(a - 1, b + 1; v) = f(a, b + 1; v) + (b + 1) vf(a, b + 2; v) (29)

so that

S f(a, b ' 1; v) (b + 1) vf(a, b + 2; v)
n z= f(a,b;v) + f(a,b;v)

On re-arranging this expression, we find

Q(Z) f(a, b + 1; v) [ (b + 1) vf(a, b + 2; v) (30)= f(a,b;v) 1 + f(a, b + 1; v)

15



or

Qll(z) =F I(a,b;v) [II + v (b + 1) G (a~b;v)1

where

F (a,b;v) = f(a, b +~ 1; v)
f (a, b ;vT-

and

G (~b~) =f(a, b + 2; v)

G1(ab f(a, b + 1; v)

The functions F 1(a,b;v) and G 1(a~b;v) can be expressed in terms of Gauss

continued fractions. We have*

f(a,b;v) =1(30)

f~~-1v) 1 +av b

1 + (a + 1)v
+(b + I)v

1 + (a +2)v
1 + T'T2 Z 2)v

+

Then

F (a, b; v) 1(31)

1 + (a + 1)v
1(b + 2)v_

'Eq. 9-.3, page 352, Re6. 6.

1b



and

G 1 (a,b;v) = (32)
av

+ (b + 2)v

1 + (a + 1)v1+(b +3)-v
I +

To compute these continued fractions, we assume that

f(a + - 1, b + £ - 1; v)F(a,b;v) fa -,fb (a + t- 2; (33)

and

f(a + - 1, b + t; v)
g f(a + t -1, b + - 1; v)

Then we can prove that

1 + (b + /)v F &(a,b;v)
F,(a,b;v) = 1 + (b + Z)v F +l(a,b;v) + (a + E- ()3v

and

(b 1 + (b + + 1)v G+l1 (a,b;v) (36)

G(a,b;v= + + 1)v G,+I(a,b;v) + (a + - l)v

In order to start the iterative procedures, we assume that

Ff+l(a,b;v) = 0 (37)

Ge+l(a,b;v) = 0

when

max

The integer fmax is chosen sufficiently large to keep the truncation

error within the required bounds.
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fhe individual function. Kn (z) and Knl (z) are obtained from the
Wronskian relation

I (z)K (z) + I (z)K (z) 1 (38)n n-I n-1 n Z

By definition, we have

K nl(z) = K n(z)Qn(z)

On eliminating Kn- (z) from these equations, we find

I
Kn(Z ) = Z[I n-(z) + In(Z)Qn- (39)

Convergence of these continued fractions is rapid if z lies in the

right half plane and IzI is large, b'., becomes much slower as z

approaches the origin or a point on the negative half of the real axis.

Moreover, the complex zeros of Kn (z), Knl (z), and f(a, b + 1; v) all

lie in the left half plane, and may possibly lead to division by zero

for certain ,alues of z. Division by zero cannot occur if Izi > 2, lies

on the imaginary axis or in the right half plane, and the integer

-max is sufficiently large.*

Analytic continuation is used in conjun tion with the Gauss

continued fraction if

Re z < 0

and

2

Let t = -z; then t lies in the right half plane, so that the functions

K n(t) and K nl(t) can be calculated as indicated above. Kn (z) and

Kn-I(Z) are then calculated from the following formulas for analytic

continuation.

*A detaited p4oof 1z given in Appendix A.

18



K. (z) = K (t) - i-1. (t), Im z > 0, j even (40)

K.(z) = K.t) + i7TI.(t), Im z < 0, j even (41)

K.(z) = -K.(t) * irI.(t), In z > 0, j odd (42)

K. (z) = -Kj t) - iTI. (t), Im z < 0, j even (43)3 •. 3

These formulas are obtained by comparing the Neumann series for K (t)j

and K. (z). We note that K. (z) is discontinuous wjien we cross the
3 . 3

negative real axis.

V. ORDINARY BESSEI FUNCTIONS OF THE SECOND KIND

These functions are calculated in terms of the Hankel functions

1n (1)(z) and H (2)(z), which are linear combinations of the ordinaryn n

Bessel functions.

H (1)(z) = i (z) + iY (z) (44)
nnn

H (2)(z) = J (Z) - iY (z) (45)
n n n

The quotient functions

p (1) = n- I (z)/H n() (z) (46)

Pn (2) (z) = in l (2) (:)/Htn (2) (z) (47)

are derived from the integral representations

-I i(: - 1] 4T)/ n1 n-
--,t 7

- 4 e,/ u -u + u)'In !(n = ( _) J e u (1 + ,.) du (48)
1Z ' (n + 2-z

0

1 3
avg z

19



1 i 1 1 1
2 (z - - T fn-7

H (2) 2 e e -u  2 u(49)
n z F(n + I (

0

3 1
-- 

< avg z <

On referring to Eqs. (19), (21), (22), and (23), we find

v = i/2z, P n1(z) = Qn(v) (50)• n

if Im z > 0

v = - i/2z, P n(2)() = - iQ n(v) (Si)

if Im z < 0

The restrictions on Im z insure that

Re v > 0

in both cases. As Eqs. (50) and (51) taken together account for the

entire complex z planc, additional formulas for analytic continuation

are not required.

We now derive Wronskian formulas which involve only one type of

lankel furction. We have

Jn-I (z) Yn (z) - dn (Z) Y n-l (z) = -2, /z

On referring to Eqs. (44) and (45), we find

Y n(Z) = i[J ntz) - I (1)(z)] t53)

Yn(z) i t HI(2)( )]I (s )

We use these rlations to eliminate Yn () and Y (z) from Eq. t52).

J l(Z )  1)I : J n(z)  Hi_ z :( 4I n-i n n n-I

20
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n- - Jn (z) Hn-1 (z) = - 2ri/z (56)

On referring to Eqs. (S0) and (S1), we find

H (1)(z) = 2Ti (S7)
z [J n- (z) - Pn (z) Jn (z)

H ( (Z, = p n (Z) I (1)z) (58)n n n

H (2)(z) = - 2 ni (59)
Z[J n(Z) - P n(2)(z) Jn(z)]

(2 ~ (2) (2)

(2)(z) = pn ( H n ( ) (60)n-1 nn

We calculate Y (t) and Y n-(t) from Lqs. (50), (53), (57), and (59),

if Im 0. If Im 7 > 0, we use Eqs. (51), (54), (58), and (60'..

This involved sequence ot calculations has been checked by extensive

calculations on the BRLESC.

kI. RESULTS AND CONCLUSIONS

We have derived an accurate and efficient method for calculating

Bessel functions of the second kind for integral order and complex

argument. [he formulas given here have been programmed in both the

FORAST rod FORTRAN IV program ning languages,

In general, .1 ,x) and Y (x) can be calculated to 14 decimal piacesn1

if x is positive and less than n. The calculations are accurate to 1.1
significant figures if n x 'he functions I (x) and X (x) can also

n n

be calculated to 1-1 significant figures. It is difficult to check the

accuracy of the calculations when the arguiment is comulex, as suffi-

ciently accur,,, tables are not available. These remarks apply to the

range.

" ,- 25

0 " n .25a~
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Existing tables were used whenever possible. In additlcn, quadrature

formulas based on Gaussian quadrature along paths of steepest descent

in the complex plane were also derived. Tho calculations were time-

consuming but highly accurate. Calculations based on these quadrature

formulas were used as a basis of comparison whenever tables were not

available.

In the routines under development at BRL, Taylor and Neumann series

are used when

No cancellation occurs for these small values of the argument. The

Hankel asymptotic expansions "il' be used when zj is large compared

with n. The routines are being written in both the FORASF and FORTRAN

I% programming languages.

The procedure outlined in this report can be extended to Bessel

functions of fractional order, .ad also to Whittaker's function W K,m(Z).

The Gauss continued fraction is must effective precisely where the

series development is plagued with cancellation.
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APPENDX A

S-.is:t show that divoisi' Ly 'tero w; 11 nat occo~r i-1 calculating

.,...iuss co.inued fct~r~s and thei ouot:.ent f3;ict. on Q.,(z) provided

8 nd

Re 0.

c fur ccns Kn (7) ana Kni- have no zeros in this region.* It

fC;Ilo %js from Eqs. (24) and (25) that f(a, b; v) and f(a - 1, b + 1; v)

are also free of zeros. It is shown below that f(a, b + i; v) is also

f-ree of zeros in this region; consequently, division by zeio cannot

-cccur in Lqs. (26) and (3u).

lic ,o, is based on an oscillation theorem due to Einar Hille:**

'Let f< ') ,e real and positive wiien z is real a.,.d greater than xl,

analytic throughout a region D including the real axis for R(z) > x

and such thav, :ither

RjF(z) - 0or i{F(z)} 0

in U,'" let W(z) be a Solution of

d F(z)w 0
u.3

U-1

and sjch tiiat h.z) - 0 as z .. in P along z. parallel to the real axis,

then tvidr vely general assuptions, W(z) has no zero nor extremum

in D.

rhe futction f(a, b+; v) can be expressed in terms of Whittaker's

function W (71'), whizh satisfies a differential equation of the

requireJ1 for..*-*

#*Exarcir 4, page 52', Re. 9$ pages 360 and 361, Ref, 10.
*'LChupter XV1, pct3oy? 337-354, Res. 11.
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k2 W 1 (Z 4
dkm [ 1 k Wk,m(z) =0 (A-i)

-) 4 -z 2n
dz' z

C.1 1
-z k  + M + m

W N e (1 + ) e du (A-2)(Z) = E(--k))2 ~ d A2
Wk m~z F~ k + m)

0

Now

1 3

f(a, b + 1; v) r-n - } (I + Vu) e 2 u (A-3)r(n + 'j

0

A comparison of Eqs. (A-2) and (A-3) shows that

1 1
V - m = n 7, k -f (A-4)

Eq. (61) now becomes

d2W 1 1 (z)
2 n 2 -

+ + n2-n] W (z) =0 (A-S)dz2  z - 'n -

The function F(z) of Hille's theorem is

21 1 n - n
F(z) = + 2z + 2 (A-6)

Two cases arise. If n = 0 or n = 1,

1 x

Re{F(z)) - + 2 2

x + y

The function Re{F(z)} is positive outside the circle

2 2
(x + 2) + y 4
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and negative within it. The region D consists of the entire complex

z plane outsi.e the semi-infinite strip bounded by the semicircle

y = /4 - (x + , -2 , x < 0

and the lines

v=+2, x < -2.

When r, > 2, we must consider both the real and imaginary parts of

F(z) in delineating the region D. We assume

Re{F(z))} 0 in DI

Im{F(z)} > 0 in D2

and

lm{F(z)} < 0 in D3

Re{F(z) =1 + X 2._ + (n2 - n)(x2 y2) (A-7)

2(x + Y'. (x2 + y )2
9

Im{F(z)} = - y 2(n2 - n)xz (A-8)2 2 2 22(x + y2) (x + y2)

We find

Re{F(z)} > 0 if x2 > y

of if

2 1 2 2
x + y > 4(n - n)

7f we scz

ImF(z) 0

we: f i )d

y= 0
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or

2 2 2 2
[x + 2(n -n] + y 4( -n

We see that lm{F(z)) $ 0 provided z lies outside this circle and does

not lie ont the x axis. The regions Dip D 2, and D3are shown below.

__0_ 000::= =:

Figure A-1. Zero-Free Regions of W

The region D contains these three regions. The entire right-half plane

and the imaginary axis, exclusive of the origin, lies in 1).

If arg z < r, Whittaker's function has the asymptotic expansion

M12

WK I: + m'-k-~ + 0(-) (A-9)
k z
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and hence tends to zero as z along a path parallel to the x axis.

Consequently, W I I(z) has no zeros in D, and division by zero
- -, n - 2

will not occur in Eq. (30). Th " conclusion has been verified by exten-

sive calculations. on the BRLESC. The functions occurring in Eq. (33)

and Eq. (34) may be analyzed in the same way. The parameter k of

Whittaker's function must be negative or zero if we are to be certain

that the right half plane is free of zeros. This condition is satis-

fied for the cases under consideration.

These results show that the continued fractions for F (a, b; v)

and G (a, b; v), Eqs. (31) and (32), have -no poles in the right half

plane or the imaginary axis. Hence, these continued fractions converge

uniformly in this region.*

iTnoeim 92.2, page 35i, Ref. 9.
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