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ABSTRACT

Formulas for calculating Bessel functions of intcgral orcer and
complex argument are derived in this report. Calculations based on
these formulas are not subject to the loss of significant figures
which occurs in the Taylor and Ncumann series when the argument is

large and the order is small.

To calculate J (z), select an integer m > n and m = fz! such
that |J Doce | . Calculs z) and . z) fr ~ lavlor
hat | m(Z)\ < ' n(Z)’ alculate Jm( ) and ]m+1(“) from the Taylorx
series, then calculate Jn(z) from the recurrence relatien. A simi‘ar

procedure is used to calculate In(z).

To calculate Kn(z), exoress the quotient Qn(z) = Kn-l(z)/Kn(:
in terms of two Gauss continued fractions. The individual functions
Kn(z) and Kn_l(z) are obtained from Qn(z) and the Wronskian relation

i volving Kn(:), Kn—l(z)’ ln(z), and In (z). A similar nrocedure

-1
involving Hankel functions is used to calculate Yn(:) and Yn_l(:).
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Cancellation of significant figures is very severe in the Neumann
series for Kn(z) when o is small and z is large and real. At the
present time, this di1fficulty is generally overcome by using multiple
precision arithmetii, cuadrature formulas, or continued fractions with
very involved terms. The Gauss continued fractions usc¢l in this report
are simple in form, rapidly convergent, and are not subject to excess-

ive round-off error.
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Q, (2)
p

pn(z)(z)
v

[71 (a,b;u)

Gl(ush;u)

N

I'frz)

1 (ST OF SYMBOLS*

complex variable, z = x + 1y - pe

vcal part of z

ty

imaginary part of
absolute value of z

argument of -

integers

ordinary Bessel function of the first kind
ordinary Bessel function of the second kind
modified Bessel functicn of the first kind
modified Bessel function of the second kind

Hankel functions, sometines called

Bessel functions of the tiird kind

Wallt. form of the confluent hypergeometric function
Whittaker's form . the confluent hypergeometric fuiction
¢ ti . = K z}/K (z

1 quotient Qn(Z) kn-l( )/kn( )

quotients of Hankel functions;

sce cquations (46), (47)

a complex ¥ariable defired in terms of -, sec¢
equation (1)

Gauss continued fractions. See equotio.s (30)- (. t,

of the order of
the gamma function

Fuler's constant

*the rotation of Chapter 9, Ref. 5, 1is used whencver practical.
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a normalizing factor in Miller's algorithm

Ln(z) Ln(z) = aJn(z) + BYn(Z), Eq. (5)

€ a small quantity

Re the real part of

Im the imaginary part of

R{(F(z)} the real part of F(z), Appendix A

I{F(2)} the imaginary part of F(z), Appendix A

F(z) a function of z

W dependent variable in the differential equation
éfg_ - F(z)w =0
dz




1. INTRODUCTION

Linear boundary value problems in cylindrical coordinates may
frequently be solved in terms of Bessel functions of integral order.
Certain problems in elasticity, viscoelasticity, and fluid flow require
Bessel functions of a complex argument in order to satisfy the boundary
conditions in a rigorous manner. Taylor and Neumann series are

generally used to calculate these functions when the argument is small

2 *
1,2,

or moderate in si:ze. However, severe cancellation occurs unless
all the terms of the series have the same sign. Consequently, multiple
precision arithmetic 1s required in order to obtain final results of

the required accuracy.

Cancellation is a severe form of round-off error which occurs if
the sum of a series is small compared with the largest term. Several
significant figures may be lost by subtraction if the calculations are
carried out with a fixed number of significant figures. This diffi-

culty is 1tllustrated by the alternating scries

~X 1
e =1 - x+ 3z x -

: X . \ o e : s
since ¢ 1s smail when x 15 large. It 1s evident that cancellation
does not occur when evaluating the series

- X

X 12 1.3
2 3T

. -X S , X : : -X
Hence, to obtain ¢ 7, we tfirst valculate ¢ and then obtain ¢ by

division,

MiHcr'1 has shown that cancellation does not occur 1t stable
recurrence relations are used to calculate Bessel functions of the
first kind.  An analogous procedure cannot be used for cailculating
Bessel tfunctions of the second hind, us the corresponding recurrence

*

relations are unstable.

T’run~~\ i Ry N A.q.i .,. Y a4
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In this paper, the quotient of two modified B. .el functions of

the second kind is expressed in terms of two Gauss continued fractions.

The original function is then calculated from the Wronskian relation ._

and the functions of the first kind. This procedure eliminates cancel-

lation, so tlat accura:e values of the function can be obtained for a

wide range of order and argument. A similar procedure is used to calcu-

late ordinary Bessel functions of the second kind.

If we require a sequence of functions Jn(z), Jn+1(z) e Jn*i(z)’

we calculate J .(z) and J_ . . (z), then calculate the functions of
n+l n+i+l

lower order from the recurrence relation. Similarly, if Yn(z),

Y d oY (2] ired, w (2) ,
n l( )] nH( ) are required, we calculate Yn( ) and Yn+1(z) then
calculate functions of higher order from the re~urrence relations. The

routire being developed at the Ballisti~ Research Lahoratories (BRL)

will provide the pair cof Bessel functions required to start the

recurrence process.

IT. ORDINARY BESSEL FUNCTIONS OF THE FIRST KIND

These functions can be calculated accurately from the series*

R 14 1k
N (x 2) (5 ) (= z) , . ﬁ'
B = o= [T(nel) ~ 2T (nel)(n*2) 3 (n+el)(ne2)(n+3) P

3]

2 n!

if tz; is small, or if n is very large compared with iz . However, if

. . . th - ,
> is real and large compared with n, the n term of the series 1is

large compared with Jn(:); consegquent .y, severe cancellation occurs in

summing the series.

We will describe Miller's Algorithm briefly, as it is the buasis

N

of most subscjyuent work in the area. We assumé
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wherem ~ > n, m > > {:[. The functions Lm 1(:), L

generated from the recursion formula

z[Lk_l(:) Lk+1(:)] = 2kLk(:)

m-

2(;) Ln(.) are

(4)

We express Lm(:) as a linear combination of Jm(:) and Yn(:):

Lm(z) = aJm(:) + me(:)

(5)

Then, since JP(:), Ym(:), and Lm(:) all satisfy the same linear recur-

rence relation, we have

k(:} decreasses as

(6)

When 1z! > Kk, J, (2) increases and Y

sequently the second term in Eg.

Ln(:J " JJE(Z)

(6)

k decreases; con-

1s negligible, and we have

)

The normalizing facter @ is obtained from the Neumann series of an

elementary function.

tin,z) = & akaL:I
k=n
or
K=m
t{in,c! = .« I a, i, iz) (8}
Kk
h=n
N
It 1s assumed that o dkLk{:) is nepligible.  This procedure 1s very
™
etffective provided cancellation does net occur an summing the series in
bg. (80 dosever, it os ditfiosle to Tind g single tunction f(n, )
which <itisties this resvirement when ooth ool vacy owidely.
In contrast with Miljer's algorithr, the author uses tg. (1 te
Caltoalate 0 (zy and J {2y, where m - - = and m n. The terms of
m mel
the series are soderate in size, ang cancellation is negligible.  The

function 7 (20 s calculated by repeated use of the recurrence relation

n
1




Z{Jk_l(z) + Jk¢1(2}] = 2ka(z), {9)

so:irting with k = n,

The integer n was obtained from the polynomial approximation

2 1 4 1 28
n G o) ) & o
1 (0) v e {1 - 2 . 2 . + < y (10)
Tp (P S o li(n+l) 2 (n+1) (m*2) "7 Li(n+l)...(n+L)
where p = |z| and £ is the smallest integer for which
1 L
(o) ,
Ty el < ° (1)
Then
m=n-+ 4 (a2

The small constant ¢ was adjusted by trial. The final value was chesen
just small envugh to guarantee the accuracy of Jj(z} in the range of
3

interest.

I11. MODIFIED ZESSEL FUNCTIONS OF THE FIRST KIND

A similar procedure is used to calculate In(z) from the series

5

12 1 1
N (5 2) & z) (5 z}
)

W = T e e e ey ot 09

Obviously, no cancellation occurs if z is recl and positive, as ihe
terms of the series are all positive. If, however, z is a pute:
im.ginary number, severe cancellation will occur when || is large com-

pared with n,

We calculate Im(z) and Im+1(z) where the integer m is given by

Eq. (12). The functicn n“(z} is calculated by successive applications




cf the recurrence relation
z (z) - {(z)} = 2k b 14
“[Ik-1(~/ 1k+1\ )} }\]]\( )r ( )

starting with k = m. This recurrence relation is stable for dacreasing

index.

A number of functions which have Taylor series expansicns and rect =

rence relations which are srable for decreasing index can be calculated
by Miller's algerithm or procedvres similar to the one outlined above.
If, however, the function has a logarithmic singularity at the origin,
no simple method of calculation based on series and recurrence relations

appears to be available.

IV, MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND

These functions can be calculated from the Neumann series

Ko(z) = - [y - loge 2+ loge :}Io(z)
12 14 1 .6
32 (z 2 1 (72 11
T T U s Uy g e (19)

n-1 T n-2r
. \ 1 (-13" (n-r-1)! 2
- = . Iy . D z — - -—\
hn(_) Iy loge 2+ loge 2] In(h) + 3 - (z’
r=0
o n-2r
n (l Z)
(-1) 27 1 1 1 1
YT r!(n+T)! (1 - TRl g n+r] (16)
r=0

if |z| is small, or if |z] > n. However, severe canceliation occurs if
z is large, real, and greater than n. In this range, we have the

approximations

K () v /=2e %, 1 (2)~ .2
I 2z n /:;;

13




so that Kn(z) is small and In(z) is large. It is evident from Eq. (16)
that Kr(z) will be calculated from the difference of two large and

nearly equal numbers.

Although the Neumann series is useful when n is large compared with
{z], functions of lower order cannot be calculated accurately from the

recurrence relaticn

PR { . I =
L[kn+1\z) Kn_lkz)] 2nKn(z) (17)

as the differences of nearly like numbers also occur in the course of
these calculz ions. It appears that Kn(z) should be calculated from a
formula which does not separate the analytic and logarithmic parts of

the function.

This requirement is satisfied by the integral repres:ntation*

o]

1
m2 e - u
= (—— -
Kn(z) \22) i '/. e u

F(n+§J

u n-%
(1 + §EJ du (18)

[T

o]

which is valid provided z does not lie on the negative half of the real
axis. It is related to a form of the confluent hypergeometric function

discussed by Wall.**

1 f e-uuavldu
f(a,b;v) = Fa) .j' T vu)b (19)
0
We see that
1
K (2) = (%)7 e % £(r b;v) (20)

“¥Page 706, Red. §
*¥Page 04, Ref. 8
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-

V=53 (213
as= L, n (22)
2
b = %-- n (23)
Similarly
1
. _ T2 -z .
hn_l(z) = (22 e f(a-1,b+1; v) (24)

We define the quotient function by the equation

L
~—~
(8]
R

I

= K (2)/K_(2) (25)

Then

il

Q(z) = f(a - 1, b+ 1; v)/ "a,b;v) (26)

We reduce the ¢ pression on the right to a form that can be
expressed in terms of Gauss continued fractions. The function f(a,b;v)

satisfies the recurrence relations

f(a, b; v) fla+1, b; v) + bvf(a + 1, b+ 1; v) 27

f(a, b; v)

1]

f(a, b+ 1; v) + avf(a + 1, b + 1; v) (28)

i

Now replace a by a - 1 and b by b + 1 in Eq. (27). We find

f(a-1,b+1; v)y=1f(a, b+1; v)+ (b+ 1) vf(a, b+ 2; v) (29)
so that
_f(a, b+ 1; V) (b + 1) vf(a, b + 2, v)
Qn(z) - f(a,b;v) * f(a,b;v)

On re-arranging this expressicn, we find

Q (z) = (30)

fa, b+ 1;v) [, (b+1) vi(a, b+ 2; v)
{a,b;v) f(a, b +1; v)

15




= Fl(a,b;v) [1 +v{b + 1) Gl(a,b;v)]

fla, b + 1; v)
f(a,b;v)

Fl(a,b;v) =

f(a, b + 2; v)
f(a, b + 1; v)

Gl(a,b;v) =

The functions Fl(a,b;v) and Gl(a,b;v) can be expressed in terms of Gauss

continued fractions. We have*

fla,byv) .
&, 5- 5LV . (30)

bv
{a + v
1+1+(b+DV
1+ {(a + 2)v
1+ (b + 2)v
1+

1 +

*Tq. 90.3, page 352, Ref. 6.




and

G)(a,bv) = —— - (32)
2 RCEEIY
\ {(a + v
1« b+ 3)v
1 +

To compute these continued fractions, we assume that

fla+ 4 -1,b+ L -1;v)

Fz(a,b;v) = fa+Z -1,b+Z -2, v) (33)
and
. fa+ L -1,b+ L V)
AL Bl Y Furay S v ey A Py ()
Then we can prove that
1 + (b + 2)v F£+l(a,b;v)
Fz(ayb;\’) = 1+ (b - I)V F£+l(a’b;v) + (a +T— l)V (35)
and
1+ b+ £+ 1y G£+l(a,b;v)
Ge(a,b;v) = T+ (b+ T~ v G£+l(a,b;v) + (a+ € - 1v (36)
In order to start the iterative procedures, we assume that
Fp, (a,b;v) =0 (37)

t
<

G£+1(a,b;v) =

when

max

The integer Kmax 1s chosen sufficiently large to keep the truncation

error within the required bounds.

17




The individual functions Kn(z) and Kn_l(z) are obtained from the

Wronskian relation

LK () + 1 (K (2) = 2 (38)

By definition, we have
Kop(2) = K (2)Q (2)
On eliminating Kq_l(z) from these equations, we find

_ 1
K, (z) = Z[In-l(z) + In(Z)Qn(i)]

(39)

Convergence of these continued fractions is rapid if z lies in the
right half plane and |z| is large, bu- becomes much slower as :
approaches the origin or a point on the negative half of the real axis.
Moreover, the complex zeros of Kn(z), Kn_l(z), and f(a, b + 1; v) all
lie in the left half plane, and may possibly lead to division by zero
for certain values of z. Division by zero cannot occur if |z| > 2, lies
on the imaginary axis or in the right half plane, and the integer

£ is sufficiently large.*
max

Analytic continuation is ¢sed in conjun *ion with the Gauss

continued fraction if
Re z < 0
and
|z:>2
Let t = -z; then t lies in the right haif plane, so that the functions
Kn(t) and Kn-l(t) can be calculated as indicated above. Kn(z) and

Kn_l(z) are then calculated from the following formulas for analytic

continuation.

YA deladled proof <s given in Appendix A.

18




Kj(z) = Kj(t) - inlj(t), Imz >0, j even (40)
Kj(z) = Kj(t) + ian(t), Im z < 0, j even (41)
Kj(z) = -Kj(t) * ian(L), Imz >0, j odd {42)
Kj(z) = -Kj(t) - inlj(t), Imz <0, j} even (43)

These formulas are obtained by comparing the Neumann series for Kj(t)
and Kj(z). We note that Kj(z) is discontinuous wiien we cross the

negative real axis.

V. ORDINARY BESSEI FUNCTIONS OF THE SECOND KIND

These functions are calculated in terms of the Hankel functions
Hn(])(z) and Hn(z)(z), which are linear combinations of the ordinary

Bessel functions.
(1), . : .,
Hn (z) = Jn(z) + 1Yn(_) (44)

y (2
n

i

(z) =J_(2) - 1Y (2] (45)
The quotient functions

v )y . 00 ., (),
P2 = H T (R)/H () (46)

(2)

p
n

() =1 Bom e (47)

are derived from the integral representations

0

1
% i(z - %ﬂ“ - jﬂ) aol n-%
, 2 N i 5 . 2
n Wy o=y ¢ f ey (1 e = du (48)
n nz . 1 2z
in + %)




< avg z < %m

i
TR

On referring to Eqs. (19), (21), (22), and (23), we find

v =i/, Pn(l)(z) =1 Q (v)

if Im 2 > 0
I ¢ D
v = -1/2z, Pn (z) = - lQn(V)
i f Imz <0

The restrictions on Im z insure that

Re v > 0

in both cases. As Eqs. (50) and (51) taken together account for the

(49)

(50}

(51)

entire complex z planec, additional formulas for analytic continuation

are not required.

We now derive Wronskian formulas which involve only one type of

Hankel furction. We have
4 - - - ’ - = .7 -
Jo @) Y () -3 () Y () 2n/z

On referring to Egs. (44) and (45), we find

(1)

n

Y (2) ()]

n 1[Jn(:\ - Hn

()

1]

Y (2) (:)]

n 1{Jn(:) - Hn

We use these rolations te eliminate Yn(:} and Yn-l(:) from Eq.

(1) (1

Jn-l(:) Hn (z) - Jn(:) Hn-l

(52).

(52)

(54




s i e @ Py s i (56)

On referring to Eqs. (50) and (51), we find

}{1(1)(2) - Eni“) ’ (57)
2[J, (z) - P ") Jo(2)]
(ny, o, (. (1)
Ho" W7z = P27 (z) H 27 (z) (58)
i (2)(:) . ZNi(v) (59)
n 2[J () - Pn~° (z) J_(2]]
Hn_l(z)(:) = pn(3)(:) un(z)(:) (60)

We calculate Yn(r) and Yn_l(t) from tgs. (50), (53). (57), and (59),

if Im = 0. It Im z > 0, we use Eqs. (51), (54), (58), and (60:.

This involved sequence ot calculations has been checked by extensive

calculations on the BRLESC.

V1.  RESULTS AND CONCLUSIONS

We have derived an accurate and efficient method for calculating
Bessel functions of the second kind for integral order and complex
argument . The formulas given here have been programmed in both the

FORAST and FORTRAN IV programming languages.

In general, Jn{x) and Yn(x) can be calculated to 14 decimal piaces
it x 1s positive and less than n.  The calculations are accurate to 14
significant figures 1f n > x . The functions In(x} and Kn(x) can also
be caiculated te 14 significant tigures. It is difficult to check the
accuracy of the calculations when the argument is complex, as suffi-
clentiy accura.o tables are not available. These remarks apply to the

range.




Existiny tables were used whenever possible. In addit.»n, quadrature
formulas based on Gaussian quadrature along paths of steepest descent
in the complex plane were also derived. The calculations were time-
consuming but highly accurate. C(alculations based on these quadrature
formulas were used as a basis of comparison whenever tables were not

available.

In the routines under development at BRL, Taylor and Neumann series

are used when

No cancellation occurs for these small values of the argument. The
Hankel asymptotic expansions wil' be used when [z| is large compared
with n. The routines are being written in both the FORAST and FORTRAN

IV programming languages.

The procedure outlined in this report can be extended to Bessel

functions of fractional order, sud also to Whittaker's function W (2).

k,m
The Gauss continued fraction is most effective precisely where the

series development is plagued with cancellation.
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APPENDIX

P

#: must show that divisicr by Zero will not occur in calculating

the Gauss centinued fractions and rhe guotient funct.on Q (z) provided

x:§ >
and
Re 7z > 0.
The funcricns ( ) ar {zj have nc zeros in this region.* It

n i
foilows from Eqsa (24) and (25) that f(a, b; v) and f(a - 1, b + 1; v)

2re alszo free of zeros. It is shown below that f{a, b + iI; v) is also
free ot zeros in this region: consequently, division by zero cannot

ur in Eqs. (26) and (34
fhe provt is based on ar oscillation theorem dus to FEinar Hille:**

“Let F{:) »e real and positive when z is real aund gieater than X1

znalytic throughout a region D including the real axis for R(z) > X1
and such that zither
RiF{z)} » T or Y{F(2)}; # @

in ¢; let W(z) be a soiution of

- F{zdw = 0O

and such that W{z) » 0 as z -+ = in [} aiong « parallei to the real axis,
then undar very general assumptions, W(z) has n¢ zero nor extremum

an DY

The function f{a, b+; v) can be expressed in terms of Whittaker's
function wk m(z}, wnich satisfies a differential equation of the
required form. ***

¥Page 517, Ref. %,
¥ Exampd e 4, page 517, Ref. 9; pages 360 and 361, Ref.
*ERChupten XVI pages 337- 354, Reg. .
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d2W {2z L. m2
k,m ) 1 k2
Tttt T K@ =0
dz z ?
1 oG
e- ?sz -k - %—+ m g K- % +m
wk m(z) = u (1 + EJ e “du
’ I'(z -k +m)
o]
Now
f'mn_}, n- 2
fla, b+ 1;v) = —— 1 u 2@ +wvw) L
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A comparison of Eqs. (A-2) and (A-3) shows that
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Eq. (61) now becomes
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The function F(z)} of Hille's theorem is

2
n -n

F(z) = 5
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Two cases arise. If n=0orn=1,

Re{F(z)} = = +

£ -

The function Re{F(z)} is positive outside the circle

(x + 2)2 + y2 = 4

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)




and negative within it. The region D consists of the entire complex

z plane outsi-le the semi-infinite strip bounded by the semicircle

y =*7v 4 - (x + 2)2 , -2 <x<0
and the lines
v=3*2, X< =2

When n > 2, we must consider both the real and imaginary parts of

F(z) in deiineating the region D. We assume
Re{F(z2)} > 0 in D1

Im{F(z)} > 0in D

2
and
Im{F(z)} < 0 in Dy
2 2
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We find
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/ x2 + y2 > 4(n2 - nj
g it we sct
ImF(z) =0

we find




or

5 .
[x + Z(n2 -7+ Y2 = 4(n2 - n}

We see that Im{F(z)} # 0 provided z lies outside this circle and does

not lie on the x axis. The regions Dl’ D2, and D3 are shown below,

y _ y y
——
0,0  b—— 0,0
P -
D2 — D3

Figure A-1. Zero-Free Regions of W
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The region D contains these three regions.

The entire right-half plane
and the imaginary axis, exclusive of the origin, lies in D.

If arg z < v,

Whittaker's function has the asymptotic expansion

o

S
‘ m- - (k - %)~
-7 kK 2

1
3 + 0(:79
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and hence tends to zero as z + « along a path parallel to the x axis.

Consequently, W

) 1(z) has no zeros in D, and division by zero

e

2

will not occur in Eq. (30). Th’- conclusion has been verified by exten-
sive calculations on the BRLESC. The functions occurring in Eq. (33)
and Eq. (34) may be analyzed in the same way. The parameter k of
Whittaker's function must be negative or zero if we are to be certain
that the right half plane is free of zeros. This condition is satis-

fied for the cases under consideration.

These results show that the continued fractions for Fl(a, b; v)
and Gl(a, b; v), Eqs. (31) and (32), have io poles in the right half
plane or the imaginary axis. Hence, these continued fractions converge

uniformly in this region.*

YTheowem 97.7, page 35i, Ref. 9.
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