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Formulating genome-scale kinetic models in the
post-genome era

Neema Jamshidi and Bernhard Ø Palsson*

Department of Bioengineering, University of California, San Diego, La Jolla,
CA, USA
* Corresponding author. Department of Bioengineering, 9500 Gilman Drive,
University of California, San Diego, La Jolla, CA 92093-0412, USA.
Tel.: þ 858 534 5668; Fax: þ 858 822 3120; E-mail: palsson@ucsd.edu

Received 21.12.07; accepted 22.1.08

The biological community is nowawash in high-throughput

data sets and is grappling with the challenge of integrating

disparate data sets. Such integration has taken the form

of statistical analysis of large data sets, or through the

bottom–up reconstruction of reaction networks. While

progress has been made with statistical and structural

methods, large-scale systems have remained refractory to

dynamic model building by traditional approaches. The

availability of annotated genomes enabled the reconstruc-

tion of genome-scale networks, and now the availability of

high-throughput metabolomic and fluxomic data along

with thermodynamic information opens the possibility to

build genome-scale kinetic models. We describe here a

framework for building and analyzing such models. The

mathematical analysis challenges are reflected in four

foundational properties, (i) the decomposition of the

Jacobianmatrix into chemical, kinetic and thermodynamic

information, (ii) the structural similarity between the

stoichiometric matrix and the transpose of the gradient

matrix, (iii) the duality transformations enabling either

fluxes or concentrations to serve as the independent

variables and (iv) the timescale hierarchy in biological

networks. Recognition and appreciation of these properties

highlight notable and challenging new in silico analysis

issues.
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Introduction

In the past decade, we have witnessed significant advances in

the development of statistical analysis of genome-scale

networks (Slonim, 2002), which has been propelled by the

availability of genome-scale high-throughput data sets and the

successes of constraint-based modeling approaches (Pharkya

et al, 2004; Price et al, 2004; Kummel et al, 2006; Palsson, 2006;

Reed et al, 2006). The foundation of such genome-scale

analysis is built on the stoichiometric matrix, S, which

describes all the biochemical transformations in a network in

a self-consistent and chemically accurate matrix format. Much

progress has been made with the genome-scale network

reconstruction process and a growing number of genome-scale

metabolic reconstructions are now available (Reed et al, 2006;

Feist et al, 2007; Jamshidi and Palsson, 2007; Oh et al, 2007;

Resendis-Antonio et al, 2007).

Reconstructions of genome-scale biochemical reaction net-

works (Reed et al, 2006) have been analyzed by topological-

(Barabasi and Oltvai, 2004) and constraints-based (Price et al,

2004) methods, but dynamic models, at this scale, still need

development. It turns out that S is not only a requisite for

dynamic models but also a major determinant in their

properties and thus it is important to have well-curated

reconstructions available. The growing availability of meta-

bolomic and fluxomic data sets (Goodacre et al, 2004;

Hollywood et al, 2006; Sauer, 2006; Breitling et al, 2008)

and methods to estimate the thermodynamic properties

(Mavrovouniotis, 1991; Henry et al, 2006, 2007) of biochem-

ical reactions has opened up the possibility to formulate large-

scale kinetic models.

The structure of the workflow that leads to large-scale

dynamic models is emerging and so are the associated data

and mathematical challenges. Here, we will propose a frame-

work for the data integration andmathematical challenges that

come with the construction of genome-scale kinetic models.

We proceed in four steps. First, we briefly describe the

governing equations for dynamic analysis of genome-scale

networks. Second, wewill outline a proposed workflow for the

formulation of large-scale kinetic models. Third, we describe

the matrix format of the basic data and the information that it

entails. Fourth, we outline the four newly identified key

mathematical properties of the resulting models. These four

properties are fundamental and the modeling community is

now faced with the challenge of studying them in detail. We

illustrate some of these properties with examples.

The basic equations used for dynamic
analysis

The dynamic mass balances

The reconstruction of a genome-scale reaction network

requires the identification of all its chemical components and

the chemical transformations that they participate in. This

process primarily relies on annotated genomes and detailed

bibliomic assessment (Reed et al, 2006). The result of this
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process is the stoichiometric matrix, S, that is used in the

dynamic mass balances

dx

dt
¼ S � vðxÞ x ¼ x0 at time t ¼ 0 ð1Þ

that are the basis of all kinetic models. Here d(.)/dt denotes the

time derivative, x is the vector of the concentrations of the

compounds in the network and v(x) is the vector of the

reaction rates. All biochemical transformations are fundamen-

tally uni- or bi-molecular. Such reactions can be represented by

mass action kinetics, or generalizations thereof (Segel, 1975).

The net reaction rate for every elementary reaction in a

network can be represented by the difference between a

forward and reverse flux (e.g. see Figure 1).

This commonly used formulation is based on several well-

known assumptions, such as constant temperature, volume

and homogeneity of the medium. If S, v(x) and the initial

conditions (x0) are known, then these ordinary differential

equations can be numerically solved for a set of conditions of

interest.

Linear form

The characterization of the dynamic states of networks can be

studied through numerical simulation or through using

mathematical analysis. A simulation is context dependent

and represents a case study. Mathematical methods for the

analysis of model characteristics typically rely on studying the
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Figure 1 (A) The fundamental matrices describing the dynamic states of biological networks: the stoichiometric matrixS and the gradient matrixG. The corresponding
stoichiometric and gradient matrices (for mass action kinetics) are shown. (B) The decomposition of the Jacobian matrix into the stoichiometric and gradient matrices
looks similar to other mathematical factorizations; however, this approach is biologically meaningful and driven by the underlying chemistry, kinetics and
thermodynamics. There are different ways to factor G into C and the diagonal j matrix. In this example, the forward rate constant is factored out of G. The structural
similarity between S andGT is highlighted by the fact that their row-reduced forms are equivalent and illustrated for a simple example involving two reactions. A duality
exists between the concentrations and fluxes. The practical significance of this duality is that in the linear regimen, the relationship between fluxes and concentrations can
be determined independently of the specific rate law formulation, if one can approximate the gradient matrix. When certain reactions occur much faster than others, the
related metabolites pool together into aggregate variables. For the example in (A), when the forward and reverse rate constants of the first reaction (2A2B;
dimerization reaction) are much faster than the rate constants for the second reactions (Bþ X2Cþ Y; cofactor exchange reaction), then the substrate and products of
the first reaction form an aggregate pool. Since B is a ‘dimer’ of A, the pool will consist of A and B in a 1:2 ratio. In this example, the ratios between the metabolites can
also be found in the left null space. Furthermore, since the first reaction occurs much more quickly than the second, the interaction between the Aþ 2B pool and the C
(X and Y are considered cofactors in this example) is determined by the rate constant(s) for the second reaction.
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properties of the transformation between the concentrations

and fluxes. The analysis of such fundamental properties

normally relies on the linearization of the governing equations

at a defined condition. The linearization of the dynamic mass

balance equations comes down to the linearization of the

reaction rate vector to form the gradient matrix

G ¼ ½gij� ¼
dvi

dxj

� �

ð2Þ

and then forming the Jacobian matrix at a reference state xref:

dx0

dt
¼ S � G � x ¼ J � x0 ð3Þ

where x0¼x	xref and J is the well-known Jacobian matrix.

Analysis of the characteristics of Jacobian matrix is standard

procedure in mathematical analysis of system dynamics (e.g.

Strogatz, 1994). The application of these methods to biochem-

ical networks has been carried out for decades (Heinrich et al,

1977, 1991; Heinrich and Sonntag, 1982; Palsson et al, 1987)

and in recent years there has been renewed interest and

recently further developments in the dynamic analysis of the

properties of J have appeared (Teusink et al, 2000; Kauffman

et al, 2002; Famili et al, 2005; Bruggeman et al, 2006; Steuer

et al, 2006; Grimbs et al, 2007).

The Jacobian matrix for biochemical reaction networks is

the product of two data matrices. Prior to looking at the

fundamental properties of J, we consider the workflows and

data properties that relate to S and G.

The workflow associated with
constructing large-scale dynamic models

The equations used to describe the dynamic states of networks

and outlined above are fairly well known, with the exception

of the explicit representation of the gradient matrix. This

factorization of the Jacobian matrix turns out to be important

in formulating the workflows and in the analysis of the

properties of these basic equations.

The integration of genomic, bibliomic, fluxomic and

metabolomic data with thermodynamic information into

dynamic models of metabolism is illustrated in Figure 2. The

process of reconstructing S is now well developed (Palsson,

2006). The formulation of G can now be performed based on

metabolomic data and methods to estimate thermodynamic

properties. As discussed below the chemical equations that

make up S determine the location of the non-zero elements in

G and hence its structure.

This workflow brings up two important issues. First, the

representation and the properties of the data that the two key

matrices are made up of. Second, the mathematical challenges

associated with analyzing the resulting equations. The

matrices represent data, and the equations represent physical

laws. Thus, these two issues basically represent data analysis

challenges under the constraints of the governing physical

laws. We now discuss both of these issues.

Key data and fundamental scientific
considerations are found in a matrix
format

Factoring J into the S and G matrices is not simply a

mathematical exercise, but represents a decomposition of J

into two fundamental factors each with its own relevance

(Table I). Comparing the properties of S and G further

highlights the contributions of each matrix to characteristics

of biological networks. For example, the formation of pools

and reaction co-sets is determined by S (Heinrich and Schuster,

1996; Papin et al, 2004; Jamshidi and Palsson, 2006), whereas

timescale separation is in the realm of G. This decomposition

factors the various underlying data needed for the formulation

of genome-scale kinetic models. Furthermore, it illustrates the

various underlying disciplinary interests that need to be

considered and integrated to successfully achieve the analysis

of dynamic states of genome-scale networks.

Bioinformatic considerations

S is primarily derived from an annotated genomic sequence

fortified with any direct bibliomic data on the organisms’ gene

products. The construction of G will rely on fluxomic and

metabolmic data, in addition to direct kinetic characterization

of individual reactions and assessment of thermodynamic

properties.

Genomic and

 bibliomic data

 Thermodynamic

and metabolomic data

 Timescale decomposition

and physiological analysis

Property 2

Property 1

Property 3

Property 4

t

t t

Figure 2 The workflow for constructing approximations to genome-scale
kinetic networks and how the four properties discussed in this article and
highlighted in Figure 1 enable such reconstructions.
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Physico-chemical considerations

S represents chemistry (i.e. stoichiometry of reactions), while

G represents kinetics and thermodynamics. The chemical

information is relatively easy to get, the thermodynamics

information harder but possible (Henry et al, 2007), and the

kinetic information is the hardest to acquire. The former two

represent hard physico-chemical constraints, while the third

represents biologically manipulable numbers; i.e. reaction

rates are accelerated by enzymes.

Biological and genetic considerations

Thematrix S is reconstructed based on the content of a genome

and is a property of a species. It has thus been used

productively for the analysis of distal causation (Ibarra et al,

2002; Fong and Palsson, 2004; Pal et al, 2006; Harrison et al,

2007). Distal (or ultimate) causation results from (genomic)

changes that occur from generation to generation, in contrast

to proximal (or proximate) causation that occurs against a

fixed genetic background (i.e. an individual) (Mayr, 1961).G is

genetically derived and can represent the variations among

individuals in a biopopulation. It is important in studying

proximal causation and the differences in phenotypes of

individuals in a biopopulation. For example, many disease

states in higher order organisms result from disruptions

or deficiencies in enzyme kinetics (Jamshidi et al, 2002).

These changes are reflected in G since this contains the

information about kinetics, consequently the analysis of

disease states, inter-individual differences and transitions

from a healthy to disease state in a particular individual will

in general focus on G.

Mathematical and numerical considerations

Whereas S is a ‘perfect’ matrix comprised of integers (i.e.

digital), G is an analog matrix whose entries are real numbers

and we may only know within an order of magnitude. From a

numerical and mathematical standpoint, S is a well-condi-

tioned matrix comprised of integers (	2, 	1, 0, 1, 2), whereas

G is an ill-conditionedmatrix of real numbers that can differ up

to 10 orders of magnitude in their numerical values. This

property leads to timescale separation. Both matrices are

sparse, that is, most of their elements are zero.

The four fundamental properties

Study of the result from the linearization of the dynamic mass

balance equations yields four properties that are of funda-

mental importance (Figure 1). These properties are illustrated

using the familiar glycolytic pathway (Figure 3A).

Property 1. Fundamental structure of the Jacobian

Thewide differences in the numerical values of the entries ofG

lead to its factorization (G¼j .C) by scaling it by the length of

its rows to yield a factorization of J into three matrices:

J ¼ S � j � C ð4Þ

where j is a diagonal matrix of the norms of the rows in G

(Figure 1B1). We emphasize that ith column of S contains the

stoichiometric coefficients of the ith reaction in the network

and the ith row in G contains the forward and reverse rate

constants of that same reaction. Thus, the reciprocal of the

diagonal entries, 1/kii, corresponds to characteristic time

constants of the corresponding reactions. Their numerical

values will differ significantly.

The factorization of the Jacobian in equation (4) shows that

the study of the dynamic properties of biochemical networks

can be formally decomposed into chemistry (represented by

S), kinetics (represented by j) and thermodynamic driving

forces (represented by C). The effects of each can thus be

formally determined. Chemistry and thermodynamics are

physico-chemical properties, whereas the kinetic constants

are biologically set through a natural selection process. The

particular numerical values (chosen through the selection

process) lead to the formation of biologically meaningful

dynamic properties of the network. These biological features

of the network can be assessed through timescale decomposi-

tion, see property 4 below.

Glycolysis
We use the familiar glycolytic pathway (Figure 3A) to illustrate

this and the properties below (See Supplementary Information

for the data matrices). A full kinetic model of red cell

metabolism (Jamshidi et al, 2001) is available and the

stoichiometric and gradient matrices are readily obtained for

its glycolytic pathway. G can be factored into j and

(Figure 3A). We see that the elements in j are spread over

approximately 10 (log[kmax/kmin]¼9.7) orders of magnitude.

The matrix S is universal and so are the elements of G for a

given set of physico-chemical conditions, such as temperature.

Table I A comparison of the properties of the stoichiometric and gradient
matrices

Properties Stoichiometric matrix Gradient matrix

Biological Species differences
Distal causation

Individual differences
Proximal causation

Genetic Genomic
characteristics
represents a species

Genetic characteristics
represents an individual

Informatic Annotated genome
Bibliomic
Comparative
genomics

Kinetic data
Metabolomics
Fluxomics

Physico-chemical Chemistry
Conservation laws

Kinetics
Thermodynamics

Mathematical Integer entries
Knowable matrix

Real numbers
Entries have errors

Numerical Sparse
Well conditioned
Non-stiff

Sparse
Ill conditioned
Leads to stiffness

Systemic Pool formation
Network structure

Timescale separation
Dynamic function

Genome-scale kinetic models
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Property 2. The structural relationship between the

stoichiometric and gradient matrices

It can be readily shown from equation (2) that if sij¼0 then gji is

also zero, that is, if a compound does not participate in a

reaction it has no kinetic effect on it. Conversely, if sija0 then

gji is also not zero.When elementary rate law formulations are

used, this relationship holds for allosteric regulation as well,

for net reactions. Further inspection reveals the property that S

is structurally similar to	GTas illustrated in Figure 1B2. Thus,

the non-zero entries in S have corresponding non-zero

elements in 	GT, but with a different numerical value. This

fundamental feature shows that the topology of the network as

reflected in S has a dominant effect on its dynamic features,

providing another example of the biological principle that

structure has a dominant effect on function.

Glycolysis
The structural similarity between the stoichiometric matrix

and negative of the transpose of the gradient matrix for

glycolysis is immediately apparent (Figure 3A1).

The dynamic properties of glycolysis: Fundamental properties 1 and 2

1: Decomposition

2: Structural similarity

The dynamic properties of glycolysis: Fundamental properties 3 and 4
3: Duality

4: Timescale hierarchy

The Jacobian in terms of metabolites: J
x

The Jacobian in terms of fluxes: J
v

Flux modal matrix from J
v

Concentration modal matrix from J
x

Figure 3 (A) An example of the first two properties for the glycolytic pathway. A reaction map of the glycolytic pathway is shown. The decomposition of the Jacobian
(Jx) into the stoichiometric, j, and C matrices follows below (1	norm used for the factorization of C). The negative transpose of the gradient matrix is shown directly
below the stoichiometric matrix, demonstrating the structural similarity. (B) Explicit illustration of the third and fourth properties via the resulting data matrices. The
Jacobian duals are shown; they are related by the gradient matrix. Hierarchical analysis can be carried out of the network in terms of metabolites or fluxes. The resultant
modal matrices can be related to one another via the stoichiometric matrix. As illustrated in Figure 4, sometimes it is convenient to think about the hierarchical structure in
terms of metabolites and sometimes it is more intuitive to think in terms of the fluxes. The network was constructed using equilibrium constants and concentrations from a
kinetic red cell model, which has been validated in the literature. Network dynamics were then described using mass action kinetics for a particular steady state.
Abbreviations: ALD, fructose-bisphosphate aldolase; ATPase, ATP hydrolysis (demand/utilization); ENO, enolase; GAPD, glyceraldehyde phosphate dehydrogenase;
HK, hexokinase; LDH, lactate dehydrogenase; LEX, lactate transporter; PFK, phosphofructokinase; PGI, phosphoglucoisomerase; PGK, phosphoglucokinase; PGM,
phosphoglucomutase; PYK, pyruvate kinase; TPI, triose-phosphate isomerase; TS, timescales in hours.
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Property 3. Duality—either fluxes or

concentrations can be used as the independent

variables

A flux deviation variable, v0 can be defined such that v0¼G .x0,

from which it follows that

dv0

dt
¼ G � S � v0 ¼ Jv � v

0 ð5Þ

This transformation illustrates the switch from concentrations

to fluxes as the independent variables. While concentrations

have historically been used as the independent variables, the

use of fluxes has grown in recent years as they tie together the

multiple parts of a network to form its overall functions.

Furthermore, the ability to relate the fluxes and concentrations

independently of a specific rate law formulation, if the

elements of G can be approximated, has significant implica-

tions for the construction and analysis of kinetic networks.

The two Jacobian matrices, G .S and S .G, are similar and

share eigenvalues. Equation (5) is the ‘dynamic’ flux balance

equation since the variables in it are the fluxes, v0. One can thus

analyze network properties either in terms of concentrations or

fluxes as illustrated within Figure 1B3. The fluxes are ‘network’

variables, as they tie all the components together, while the

concentrations are ‘component’ variables. Note that since Jv
has not been fully recognized and studied in this field, when

not otherwise specified, J is the metabolite Jacobian, or Jx.

Glycolysis
The duality between fluxes and concentrations highlights a

deep relationship in network dynamics. The gradient matrix

can be used to convert a set of differential equations in terms

of metabolites into a set of differential equations in terms of

fluxes. Consequently, the Jacobian can be defined in terms of

metabolites or fluxes (Figure 3B3).

Property 4. Multi-timescale analysis of network

dynamics

The properties of the Jacobian matrix that determine the

characteristics of the network dynamics are its eigen proper-

ties. The eigenvalues are network-based time constants (in

contrast to the reaction-based time constants in j). Formally,

the standard eigen analysis is performed by the diagonaliza-

tion of the Jacobian matrix as:

J ¼ M � L �M	1 ð7Þ

whereM is thematrix of eigenvectors,K is a diagonalmatrix of

the eigenvalues and M	1 is the matrix of eigenrows.

If the decomposition of equation (7) is introduced into

equation (3), we obtain differential equations for the modes

(m¼M	1
.x0)

dm

dt
¼ L �m; or

dmi

dt
¼ li �mi; or

miðtÞ ¼ mi;0 expðlitÞ

ð8Þ

or a set of completely decoupled dynamic variables, that is,

eachmi moves on its own timescale defined by li independent

of all the other mj. The eigenrows give lumped or aggregate

variables that move independently on each timescale since m

is a set of dynamically independent variables. The eigenvec-

tors form a natural coordinate system to describe the dynamic

motion of the modes. We note that this decomposition can be

applied to Jx or Jv (Figure 3B4). The eigenvalues will be the

same whereas the eigenvectors and eigenrows will differ since

the variable sets (concentrations versus fluxes) will not be the

same.

The distribution of the numerical values of the eigenvalues

is the basis for timescale separation. Timescale separation

forms the basis for decomposition of biochemical reaction

networks in time and the interpretation of the biochemical

events that take place on the various time constants. Timescale

separation has been analyzed in the context of biological

networks and shown to lend insight and enable the simplifica-

tion of these networks (Reich and Selkov, 1981; Heinrich and

Sonntag, 1982; Palsson et al, 1987). Glycolysis provides an

example.

Glycolysis
Pooling of variables (metabolites or fluxes) refers to the

formation of aggregate groups of variables, in which the group

of variables move together in a concerted manner. Pools that

form on very fast timescales reflect the formation of chemical

equilibrium pools, whereas pooling that occurs on the slower

timescales reflects physiologically relevant interactions. Mov-

ing from the very fast timescales to the slower ones (Figure 4),

one observes the well-known examples of pool formation

between hexose phosphates (HPs) and phosphoglycerates

(PGs). With successive removal of modes on the slower

timescales, more and more of the metabolites begin to form

aggregate variables and move together in a concerted fashion

at fixed ratios. For glycolysis alone, the successive aggregation

of chemical moieties (i.e. HP, PG) culminates in, on the slowest

timescale, the formation of a physiologically meaningful pool

that represents the sum of high-energy phosphate bonds found

in the glycolytic intermediates (i.e. their ATP equivalents)

(Figures 3.4 and 4). The last row of M	1 for Jv shows that this

pool is moved by hexokinase as the input and ATPase as the

output (Figure 3B4).

Recapitulation

Once recognized, these four properties will require further

study.

The first property is a result of the explicit reconstruction

process and the incorporation of different data types. The

properties, completeness and accuracy of the data can be

explicitly traced to dynamic properties. This decomposition

will not only tie the models directly back to the data but also

explicitly gives us the parts of the model that are under

biological control and subject to change with adaptation or

evolution. Measurement uncertainties are primarily in j and

are subject to evolutionary changes. These ‘biological’ design

parameters will likely need to be dealt with through the use of

methods that bracket the range of values within uncertainty

limitations.

The second property is a result of the full delineation of the

chemical equations that make up a network and ideally their

representation as net combinations of elementary reactions

Genome-scale kinetic models
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(i.e. vnet¼vþ	v	). In this format, we not only determine the

structure of the gradient matrix but also make integration of

multiple networks possible and enable the explicit analysis of

the effects of regulatory molecules. Furthermore, it explicitly

recognizes the underlying bilinear kinetic nature of network

dynamics, as all chemical reactions are combinations of

bilinear interactions, including regulatory processes (Segel,

1975).

The third property is helpful now that we have systems

biological thinking developing fast in the community. The

systems biology paradigm of ‘components-networks-com-

putational models-physiological states’ naturally leads to the

use of fluxes as variables to characterize the functional states

of a network. Fluxomic data tie components in a network

together and are interpreted through networkmodels, whereas

concentration data are component data. Fluxes have been

widely used for steady-state analysis and can now be used to

study dynamic states as well.

The fourth property has been known and studied for several

decades (Heinrich et al, 1977; Reich and Selkov, 1981; Heinrich

and Sonntag, 1982; Palsson et al, 1987). Such studies have

primarily been performed for small-scale models today, but

their conceptual foundation has been established. At larger

scales new issues will arise. These are likely to include, data

sensitivity, course graining and modularization of physiologi-

cal functions in time. New methods to study the bases vectors

in M and M	1 that directly relate them to biochemistry and

physiological functions need to be established. The promise

of the elucidation of (dynamic) structure–(physiological)

function relationships (Palsson et al, 1987) may now grow to

large-scale networks.

Example of a cell-scale kinetic model

With fluxomic,metabolomic and thermodynamic data, we can

anticipate the ability to generate large-scale kinetic models

where more complicated structures of chemical and physio-

logical pool formationwill be found. Currently, human red cell

is the only cell-scale kinetic model available, whose formula-

tion followed a 30-year history of iterative model building

(summarized in Joshi and Palsson, 1989, 1990). Analysis of

the dynamic structure of this model resulted in the simplifica-

tion of network dynamics and the description of the cellular

functions in terms of physiologically meaningful pools of

metabolites.

Hierarchical reduction of glycolysis

Network map

2nd timescale pooling

3rd timescale pooling

Continued pooling

on slower Timescales

Physiologically

focused, core

functionality
PYKPGM LDHENO

LEX

ALDPGI
TPI

PFK PGK

ATPase

HK GAPD

2-PG + 3-PG

G6P + F6P

3 G6P + 3 F6P + 4 FDP +  2 DHAP + 2 GAP + 2 1,3-DPG + 3-PG + 2-PG + PEP + ATP 
2 HK ATPase

Figure 4 Illustration of pooling for glycolysis. The pools that form on the fastest timescales reflect achievement of chemical equilibria between particular metabolites,
such as the hexose phosphates (HPs) on the second timescale and the partial phosphoglycerate (PG) pool on the third timescale. Pools that form on the slower
timescales reflect more biologically relevant interactions. For this example of glycolysis, the slowest timescale reflects the sum total of the high-energy phosphate bonds,
which can be viewed in terms of the metabolites or fluxes (see Figure 3B3 and 3B4). From the flux point of view, the net balance can be described by the hexokinase flux
and the ATPase (in a ratio of 2:1). On this very slow timescale, all of the other glycolytic metabolites have pooled together and the physiological function of the pathway
emerges; namely, the sum of the high-energy phosphate bonds found in the glycolytic intermediates. The bottom illustration and corresponding equation detail the
metabolites and fluxes comprising the final mode, in the fixed ratios. Metabolite abbreviations: ATP, adenosine triphosphate; DHAP, dihydroxyacetone phosphate;
1,3-DPG, 1,3-bis-phosphoglycerate; F6P, fructose-6-phosphate; FDP, fructose-2,6-phosphate; G6P, glucose-6-phosphate; GAP, glyceraldehyde-3-phosphate;
LAC, lactate; PEP, phosphoenolpyruvate; 2-PG, 2-phosphoglycerate; 3-PG, 3-phosphoglycerate; PYR, pyruvate.
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Hierarchical analysis and simplification of red cell metabolism

Figure 5 Hierarchical simplification of metabolic dynamics in the human red cell. Illustration of the reduction of biological networks through the formation of aggregate
pools on progressively slower timescales, for a full kinetic model of the human red cell. Pool formation, as observed for the simple glycolytic pathway in Figure 4, occurs in
a more complicated form in the red cell metabolism. A map for the complete kinetic model of human red cell metabolism is illustrated as pools form on progressive
timescales. Ultimately, the function of the red cell can be reduced to redox and adenosine ‘potentials’ in a similar spirit to Atkinson’s energy charge (Atkinson, 1968). The
adenosine phosphate potential drives the sodium potassium ATPase pump, the redox potential reflects redox state of the cell and determines the oxidative loads that it
can withstand. The glycolytic phosphate potential interacts with the redox and adenosine and pentose phosphate potentials. It also affects the redox state of hemoglobin
and the oxygen-binding affinity via NADH and 2,3-DPG. This ‘functional block diagram’ describes the principle functionalities of red cell metabolism.
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Analysis of the hierarchical dynamics of the human red cell

model resulted in a richer and more complex physiological

pool formation (Kauffman et al, 2002) that is detailed above for

glycolysis alone. An overview of the hierarchical reduction of

the network into a functional diagram is schematized in

Figure 4. For example, the adenosine phosphate potential is

defined analogously to Atkinson’s energy charge (Atkinson,

1968). As originally elaborated by Reich and Selkov (1981),

this ‘potential’ is the ratio of the number of energy-rich

phosphate bonds and the ability or capacity to carry such

bonds. The different pools of metabolites in the red cell

contribute to phosphate potentials and/or oxidation/reduction

potentials. The result of the pool formation is an ‘operating

diagram’ (bottom of Figure 5) that describes the function

of the metabolic network in the red cell slower timescales

(minutes to hours).

This example shows how physiologically meaningful

dynamic structures form as a result of the particular numerical

values in G and how they overlay on the network structure

given by S. Not all sets of numerical values give this dynamic

structure. It has been shown that genetic variation, as

represented by sequence polymorphism in particular enzymes

(pyruvate kinase and glucose-6-phosphate dehydrogenase),

can disrupt this dynamic structure and lead to pathological

states (Jamshidi et al, 2002).

Concluding remarks

Large-scale kinetic models have not been successfully

constructed to date, with the human red blood cell being an

exception (Heinrich et al, 1977; Heinrich, 1985; Joshi and

Palsson, 1989, 1990; Mulquiney and Kuchel, 1999; Jamshidi

et al, 2001). The chief reason for this lack of success is the large

number of kinetic parameters required to define the system

that is confounded by the fact that in vitro measurements of

kinetic constants may not be representative of their numerical

values in vivo (e.g. for a recent example, see Teusink et al,

2000). Thus, the probability of achieving other cell-scale

models using these approaches appears to be very low.

Recently, there have been efforts by investigators to develop

methods to fill the gap between constraint-based models

and kinetic models (Famili et al, 2005; Smallbone et al, 2007;

Ishii et al, 2008).

As metabolomic data become available and drives toward

genome-scale coverage (Brauer et al, 2006;Wishart et al, 2007)

and approaches for approximating thermodynamic quantities

using computational approaches (Mavrovouniotis, 1991) are

being realized on the genome-scale (Henry et al, 2007), the

data needed to build large-scale kinetic models will become

available. In anticipation of the completion of these develop-

ments, we present here a workflow for the formulation of

large-scale dynamic models and identification of four funda-

mental properties of the governing equations that genome-

scale dynamic analysis will be based on. By focusing on the

key structural and dynamic properties of networks and the

inherent relationships between fluxes and concentrations, it

will become possible to achieve dynamic descriptions of

genome scale models, as illustrated in Figure 2.

Supplementary information

Supplementary information is available at the Molecular

Systems Biology website (www.nature.com/msb).
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