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This paper estimates models of the evolution of cognitive and noncognitive
skills and explores the role of family environments in shaping these skills at
different stages of the life cycle of the child. Central to this analysis is
identification of the technology of skill formation. We estimate a dynamic
factor model to solve the problem of endogeneity of inputs and multiplicity of
inputs relative to instruments. We identify the scale of the factors by
estimating their effects on adult outcomes. In this fashion we avoid reliance
on test scores and changes in test scores that have no natural metric. Parental
investments are generally more effective in raising noncognitive skills.
Noncognitive skills promote the formation of cognitive skills but, in most
specifications of our model, cognitive skills do not promote the formation of
noncognitive skills. Parental inputs have different effects at different stages of
the child’s life cycle with cognitive skills affected more at early ages and
noncognitive skills affected more at later ages.
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I. Introduction

The importance of cognitive skills in explaining socioeconomic suc-
cess is now firmly established. An emerging body of empirical research documents
the importance of noncognitive skills for predicting wages, schooling, and participa-
tion in risky behaviors.1 Heckman, Stixrud, and Urzua (2006) demonstrate that cog-
nitive and noncognitive skills are equally important in explaining a variety of aspects
of social and economic life in the sense that movements from the bottom to the top of
the noncognitive and cognitive distributions have comparable effects on many out-
comes.

There is a substantial body of empirical research on the determinants of cognitive
test scores and their growth.2 There is no previous research on the determinants of
the evolution of noncognitive skills. This paper identifies and estimates models of
the technology of skill formation. Building on the theoretical analyses of Cunha
and Heckman (2007) and Cunha, Heckman, Lochner, and Masterov (2006), we esti-
mate the joint evolution of cognitive and noncognitive skills over the life cycle of
children.

We model the self productivity of skills as well as their dynamic complementarity.
Our technology formalizes the notion that noncognitive skills foster acquisition of
cognitive skills by making children more adventuresome and open to learning.3 It
also formalizes the notion that cognitive skills can promote the formation of noncog-
nitive skills. With our estimated technology, it is possible to define and measure crit-
ical and sensitive periods in the life cycle of child development, and to determine at
which ages inputs most affect the evolution of skills.

Psychologists who study child development have long advocated the importance
of understanding the formation of noncognitive skills for interpreting the effects
of early childhood intervention programs (see Raver and Zigler 1997; Zigler and
Butterfield 1968). Heckman, Stixrud, and Urzua (2006) note that the Perry Preschool
Program did not raise IQ, but promoted success among its participants in a variety of
aspects of social and economic life. Our analysis of noncognitive skills, their role in
shaping cognitive skills, our investigation of the role of cognitive skills in shaping
noncognitive skills, and our determination of the effectiveness of parental inputs
on the formation of both types of skill over the life cycle, are first steps toward pro-
viding a unified treatment of the early intervention and family influence literatures.

The conventional approach to estimating cognitive production functions is best ex-
emplified by the research of Todd and Wolpin (2003; 2005). A central problem with
the production function approach is accounting for the endogeneity of inputs. An-
other problem is the wealth of candidate parental input measures available in many
data sets. The confluence of these two problems—endogeneity and the multiplicity

1. See Bowles, Gintis, and Osborne (2001), Heckman and Rubinstein (2001), and Heckman, Stixrud, and
Urzua (2006).
2. Todd and Wolpin (2003) survey the educational production function literature as well as the child de-
velopment literature.
3. Cameron (2004) reports evidence for such effects in her experimental studies of macaque monkeys, and
Meaney (2001) reports similar results for rodents. See the evidence in Knudsen, Heckman, Cameron, and
Shonkoff (2006) and the evidence summarized in Cunha and Heckman (2007).

Cunha and Heckman 739



of input measures—places great demands on standard instrumental variable (IV) and
fixed effect procedures, such as those used by Todd and Wolpin. It is common in
studies of cognitive production functions for analysts to have more inputs than instru-
ments. Indices of inputs are used to circumvent this problem and reduce the parental
input data to more manageable dimensions. The constructed indices often have an ad
hoc quality about them and may be poor proxies for the true combination of inputs
that enter the technology.

Our approach to the identification of the technology of skill formation bypasses
these problems. We estimate a dynamic factor model that exploits cross-equation
restrictions (covariance restrictions in linear systems) to secure identification using
a version of dynamic state space models (Shumway and Stoffer 1982; Watson and
Engle 1983). The idea underlying our approach is to model cognitive and noncogni-
tive skills, as well as parental investments as low dimensional latent variables. Build-
ing on the analyses of Jöreskog and Goldberger (1975), Jöreskog, Sörbom, and
Magidson (1979), Bollen (1989) and Carneiro, Hansen, and Heckman (2003), we
use a variety of measurements related to skills and investments to proxy latent skills
and investments. With enough measurements relative to the number of latent skills
and investments, we can identify the latent state space dynamics generating the evo-
lution of skills through cross-equation restrictions. When instruments are required,
they are internally justified by the model of Cunha and Heckman (2007). We econ-
omize on the instruments required to secure identification, which are often scarce.
We solve the problem of the multiplicity of measures of parental investments by us-
ing all of them as proxies for low dimensional latent investments. Instead of creating
an arbitrary index of parental inputs, we estimate an index that best predicts latent
skill dynamics.

We also address a recurring problem in the literature on cognitive production func-
tions. Studies in this tradition typically use a test score as a measure of output (see,
for example, Hanushek 2003). Yet test scores are arbitrarily normalized. Any mono-
tonic transformation of a test score is also a valid test score. Value added—the
change in test scores over stages (or grades)—is not invariant to monotonic transfor-
mations.

We solve the problem of defining a scale for output by anchoring our test scores
using the adult earnings of the child, which have a well-defined cardinal scale. Other
anchors such as high school graduation, college enrollment, and the like could also
be used. Thus, we anchor the scale of the latent factors that generate test scores by
determining how the factors predict adult outcomes.4 This sets the scale of the test
scores and factors in an interpretable metric.

Applying our methodology to CNLSY data we find that: (1) Both cognitive and
noncognitive skills change over the life cycle of the child. (2) Parental inputs affect
the formation of both noncognitive skills and cognitive skills. Direct measures of
mothers’ ability affect the formation of cognitive skills but not noncognitive skills.
(3) Parental inputs appear to affect cognitive skill formation more strongly at earlier
ages. They affect noncognitive skill formation more strongly at later ages. Ages
where parental inputs have higher marginal productivity, holding all inputs constant,

4. Cawley, Heckman, and Vytlacil (1999) anchor test scores in earnings outcomes. We substantially extend
their analysis by allowing for investment at different life cycle stages to affect the evolution of test scores.
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are called ‘‘sensitive’’ periods. The sensitive periods for cognitive skills occur earlier
in the life cycle of the child than do sensitive periods for noncognitive skills. Our
evidence is consistent with the evidence presented in Carneiro and Heckman
(2003) that noncognitive skills are more malleable at later ages than cognitive skills.
See also the evidence in Heckman (2007) and in Borghans et al. (2008). We also find
that (4) measurement error in inputs is substantial and that correcting for measure-
ment error greatly affects our estimates.

The plan of this paper is as follows. Section II briefly summarizes our previous
research on models of skill formation. Section III presents our analysis of identifica-
tion using dynamic factor models. Section IV discusses our empirical findings. Section
V concludes. We use a technical appendix to present our likelihood function. A web-
site provides supporting material.5

II. A Model of Cognitive and Noncognitive
Skill Formation

Cunha and Heckman (2007) analyze multiperiod models of child-
hood skill formation followed by a period of adulthood.6 They extend the model
of Becker and Tomes (1986), who assume childhood lasts one period, and that invest-
ment inputs at different stages of the life cycle of a child are perfect substitutes and
are equally productive. Becker and Tomes do not distinguish cognitive from noncog-
nitive skills. Cunha and Heckman (2007) analyze models with two kinds of skills: uC

and uN, where uC is cognitive skill and uN is noncognitive skill.
Let uI

k;t denote parental investments in child skill k in period t, k 2 fC;Ng and
t 2 f1;.; Tg, where T is the number of periods of childhood. Let h be the level
of human capital as the child starts adulthood which depends on both uC

T+1 and
uN

T+1. The parents fully control the investment in the child. A better model would in-
corporate investment decisions of the child as influenced by the parent through the
process of preference formation, and through parental incentives for influencing
child behavior. We leave the development of that model for another occasion.

Assume that each agent is born with initial conditions u#1 ¼ uC
1 ; u

N
1

� �
. Family en-

vironmental and genetic factors may influence these initial conditions (see Olds 2002
and Levitt 2003). At each stage t let ut# ¼ uC

t ; u
N
t

� �
denote the 132 vector of skill or

ability stocks. The technology of production of skill k in period t is

uk
t+1 ¼ f k

t ðut; u
I
k;tÞð1Þ

for k 2 fC;Ng and t 2 f1;.; Tg.7 In this model, stocks of both skills and abilities
produce next period skills and influence the productivity of investments. Cognitive
skills can promote the formation of noncognitive skills and vice versa because ut

is an argument of Equation 1. Cunha and Heckman (2007) summarize the evidence

5. See http://jenni.uchicago.edu/idest-tech.
6. See also their web appendix, where more general models of skill formation are analyzed.
7. We assume that f k

t is twice continuously differentiable, increasing and concave in uI
k;t . Twice continuous

differentiability is only a convenience.
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in economics and psychology about the interaction between cognitive and noncogni-
tive skills in the production of human capital.

Adult human capital h is a combination of period T + 1 skills accumulated by the
end of childhood:

h ¼ g uC
T+1; u

N
T+1

� �
:ð2Þ

The function g is assumed to be continuously differentiable and increasing in uC
T+1

and uN
T+1. This specification of human capital assumes that there is no comparative

advantage in the labor market or in other areas of social performance.8

Early stocks of abilities and skills promote later skill acquisition by making later
investment more productive. Students with greater early cognitive and noncognitive
abilities are more efficient in later learning of both cognitive and noncognitive skills.
The evidence from the early intervention literature suggests that the enriched early
environments of the Abecedarian, Perry, and Child-Parent Center programs promote
greater efficiency in learning in schools and reduce problem behaviors. See Blau and
Currie (2006), Cunha and Heckman (2007), Cunha et al. (2006), and Heckman, Stix-
rud, and Urzua (2006).

Technology 1 is sufficiently rich to capture the evidence on learning in rodents and
macaque monkeys documented by Meaney (2001) and Cameron (2004) respectively.
See Knudsen et al. (2006) for a review of the literature. Emotionally nurturing early
environments producing motivation and self-discipline create preconditions for later
cognitive learning. More emotionally secure young animals explore their environments
more actively and learn more quickly. This is an instance of dynamic complementarity.

Using Technology 1, Cunha and Heckman (2007) define critical and sensitive peri-
ods for investment. At some ages, and for certain skills, parental investment may be
more productive than in other periods. Such periods are ‘‘sensitive’’ periods. If invest-
ment is productive only in a single period, it is a ‘‘critical’’ period for that investment.

Cunha and Heckman (2007) discuss the role of complementarity in investments.
If early investments are complementary with later investments, then low early in-
vestments, associated with disadvantaged childhoods, make later investments less
productive. High early investments have a multiplier effect in making later invest-
ments more productive. If investment inputs are not perfect substitutes but are instead
complements, government investment in the early years for disadvantaged children
promotes investment in the later years.

Cunha and Heckman (2007) show that there is no tradeoff between equity and
efficiency in early childhood investments. Government policies to promote early ac-
cumulation of human capital should be targeted to the children of poor families.
However, the optimal later period interventions for a child from a disadvantaged en-
vironment depend critically on the nature of the technology of skill production. If

8. Thus we rule out one potentially important avenue of compensation that agents can specialize in tasks
that do not require the skills in which they are deficient. Borghans, ter Weel, and Weinberg (2007b) discuss
evidence against this assumption. Cunha, Heckman, Lochner, and Masterov (2006) present a more general
task function that captures the notion that different tasks require different combinations of skills and abil-
ities. If we assume that the output (reward) in adult task j is gj uC

T+1; u
N
T+1;h

� �
, where h is a person-specific

parameter and there are J distinct tasks, we can define gĵ uC
T+1; u

N
T+1;h

� �
¼ max

j
gj uC

T+1; u
N
T+1;h

� �� �J

j¼1
and

capture the operation of comparative advantage in the labor market.
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early and late investments are perfect complements, on efficiency grounds a low
early investment should be followed up by low later investments.

If inputs are perfect substitutes, later interventions can, in principle, eliminate ini-
tial skill deficits. At a sufficiently high level of later-period investment, it is techni-
cally possible to offset low initial investments. However, it may not be cost effective
to do so. Cunha and Heckman (2007) give exact conditions for no investment to be
an efficient outcome in this case. Under those conditions, it would be more efficient
to give children bonds that earn interest, rather than invest in their human capital in
order to raise their incomes.

The key to understanding optimal investment in children is to understand the tech-
nology and market environment in which agents operate. This paper focuses on iden-
tifying and estimating the technology of skill formation, which is a vital ingredient
for designing skill formation policies, and evaluating their performance.

III. Identifying the Technology using Dynamic
Factor Models

Identifying and estimating Technology 1 is a challenging task. Both the
inputs and outputs can only be proxied, and measurement error is likely to be a serious
problem. In addition, the inputs are endogenous because parents choose them.

General nonlinear specifications of Technology 1 raise additional problems regard-
ing measurement error in latent variables in nonlinear systems (see Schennach 2004).
This paper estimates linear specifications of Technology 1. A more general nonlinear
analysis requires addressing additional econometric and computational considera-
tions, which are addressed in Cunha, Heckman, and Schennach (2007).

A. Identifying Linear Technology

Using a linear specification, we can identify critical and sensitive periods for inputs.
We can also identify cross-effects, as well as self-productivity of the stocks of skills.
If we find little evidence of self-productivity, sensitive or critical periods, or cross-
effects in a simpler setting, it is unlikely that a more general nonlinear model will
overturn these results. Identifying a linear technology raises many challenges that
we address in this paper.

There is a large body of research that estimates the determinants of the evolution
of cognitive skills. Todd and Wolpin (2003) survey this literature. To our knowledge,
there is no previous research on estimating the evolution of noncognitive skills.

The empirical analysis reported in Todd and Wolpin (2005) represents the state of
the art in modeling the determinants of the evolution of cognitive skills.9 In their pa-
per, they use a scalar measure of cognitive ability uC

t+1

� �
in period t + 1 that depends

on period t cognitive ability uC
t

� �
and investment. We denote investment by uI

t in this
and remaining sections, rather than uI

k;t, as in the preceding section. This notation

9. Todd and Wolpin (2005) discuss a paper by Fryer and Levitt (2004) that uses inappropriate static meth-
ods to estimate a dynamic model of investment. Fryer and Levitt assume that parental inputs do not cumu-
late. Alternatively, they assume 100 percent depreciation of investment in each period. They also do not
account for endogeneity of inputs or measurement error in inputs which we find to be substantial.
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reflects the fact that we cannot empirically distinguish between investment in cogni-
tive skills and investment in noncognitive skills. Todd and Wolpin assume a linear-in-
parameters technology

uC
t+1 ¼ atu

C
t + btu

I
t + ht;ð3Þ

where ht represents unobserved inputs, measurement error, or both. They allow inputs
to have different effects at different stages of the child’s life cycle. They use the com-
ponents of the ‘‘home score’’ measure to proxy parental investment.10 We use a version
of the inputs into the home score as well, but in a different way than they do.

Todd and Wolpin (2003; 2005) discuss problems arising from endogenous inputs
uC

t ; u
I
t

� �
that depend on unobservable ht. In their 2005 paper, they use IV methods

coupled with fixed effect methods.11 Reliance on IV is problematic because of the
ever-present controversy about the validity of exclusion restrictions. As stressed by
Todd and Wolpin, fixed effect methods require very special assumptions about the
nature of the unobservables, their persistence over time and the structure of agent de-
cision rules.12 The CNLSY data used by Todd and Wolpin (2005) and in this paper
have a multiplicity of investment measures subsumed in a ‘‘home score’’ measure
which combines many diverse parental input measures into a score that weights
all components equally.13 As we note below, use of arbitrary aggregates calls into
question the validity of instrumental variable estimation strategies for inputs.

Todd and Wolpin (2005) and the large literature they cite use a cognitive test score
as a measure of output. This imparts a certain arbitrariness to their analysis. Test
scores are arbitrarily normed. Any monotonic function of a test score is a perfectly
good alternative test score. A test score is only a relative rank. While Todd and Wol-
pin use raw scores and others use ranks (see, for example, Carneiro and Heckman
2003; and Carneiro, Heckman, and Masterov 2005), none of these measures is intrin-
sically satisfactory because there is no meaningful cardinal scale for test scores.

We address this problem in this paper by using adult outcomes to anchor the scale
of the test score. Cunha, Heckman, and Schennach (2007) address this problem in a
more general way for arbitrary monotonically increasing transformations of the fac-
tors. In this paper, we develop an interpretable scale for uC

t ; u
N
t that is robust to all

affine transformations of the units in which factors uC
t ; u

N
t

� �
are measured. For exam-

ple, using adult earnings Y as the anchor, we write

ln Y ¼ m + dCuC
T+1 + dNuN

T+1 + e;ð4Þ

where the scales of uC
T+1 and uN

T+1 are unknown. For any affine transformation of uk
T+1,

corresponding to different units of measuring the factors, the value of dk and the in-
tercept adjust and we can uniquely identify the left-hand side of

10. This measure originates in the work of Bradley and Caldwell (1980; 1984) and is discussed further in
Section IV.
11. See Hsiao (1986); Baltagi (1995); and Arellano (2003) for descriptions of these procedures.
12. Fixed effect methods do not easily generalize to the nonlinear frameworks that are suggested by our
analysis of the technology of skill formation. See, however, the analysis of Altonji and Matzkin (2005)
for one approach to fixed effects in nonlinear systems.
13. There are many other papers that use this score. See, for example, Baydar and Brooks-Gunn (1991),
and the papers cited by Todd and Wolpin.
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@ln Y

@uI
t

¼ dk @uk
T+1

@uI
t

� �
for k 2 fC;Ng; t 2 f1;.; Tgð5Þ

for any scale of uI
t . Thus, although the scale of dk is not uniquely determined, nor is the

scale of uk
T+1, the scale of dkuk

T+1 is uniquely determined by its effect on log earnings and
we can define the effects of all inputs on lnY relative to their effects on earnings.

The scale for measuring investment uI
t is also arbitrary. We report results for alter-

native normalizations of the units of investment. Natural scales are in dollars or log
dollars. Using elasticities,

@ln Y

@uI
t

� �
uI

t ¼ dk@uk
T+1

@uI
t

� �
uI

t

produces parameters that are invariant to linear transformations of the units in which
investment is measured. This approach generalizes to multiple factors and multiple
anchors and we apply it in this paper. We now develop our empirical approach to
identifying and estimating the technology of skill formation.

B. Estimating the Technology of Production of Cognitive and Noncognitive Skills

Our analysis departs from that of Todd and Wolpin (2005) in six ways. (1) We analyze
the evolution of both cognitive and noncognitive outcomes using the equation system

uN
t+1

uC
t+1

� �
¼ gN

1 gN
2

gC
1 gC

2

� �
uN

t

uC
t

� �
+

gN
3

gC
3

� �
uI

t +
hN

t

hC
t

� �
;ð6Þ

where uI
t can be a vector. (2) Define h#t ¼ hN

t ;h
C
t

� �
. We determine how stocks of

cognitive and noncognitive skills at date t affect the stocks at date t+1, examining

both self productivity (the effects of uN
t on uN

t+1, and uC
t on uC

t+1) and cross-productiv-

ity (the effects of uC
t on uN

t+1 and the effects of uN
t on uC

t+1) at each stage of the life

cycle. (3) We develop a dynamic factor model where we proxy u#t ¼ uN
t ; u

C
t ; u

I
t

� �
by vectors of measurements on skills and investments which can include test scores
as well as outcome measures.14 In our analysis, test scores and parental inputs are
indicators of the latent skills and latent investments. We account for measurement
errors in output and input variables. We find substantial measurement errors in the
proxies for parental investment and in the proxies for cognitive and noncognitive
skills. (4) Instead of imposing a particular index of parental input based on compo-
nents of the home score, we estimate an index that best fits the data. (5) Instead of
relying solely on exclusion restrictions to generate instruments to correct for mea-
surement error in the proxies for ut, and for endogeneity, we use covariance restric-
tions that exploit a feature of our data that there are many more measurements on ut+1

and ut than the number of latent factors. This allows us to secure identification
from cross-equation restrictions using multiple indicator-multiple cause (MIMIC)

14. In this and later sections, ut includes the investment factor, whereas in Section II it only includes stocks
of skills at date t.
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(Jöreskog and Goldberger 1975) and linear structural relationship (LISREL) (Jöre-
skog, Sörbom, and Magidson 1979) models.15 When instruments are needed, they
arise from the internal logic of the model developed in Cunha et al. (2006) and
Cunha and Heckman (2007), using methods developed by Madansky (1964) and
Pudney (1982). (6) Instead of relying on test scores as measures of output and change
in output due to parental investments, we anchor the scale of the test scores using
adult outcome measures: log earnings and the probability of high school graduation.
We thus estimate the effect of parental investments on the adult earnings of the child
and on the probability of high school graduation.

C. Model for the Measurements

We assume access to measurement systems that can be represented by a dynamic fac-
tor structure:

Yk
j;t ¼ mk

j;t + ak
j;tu

k
t + ek

j;t; for j 2 f1;.;mk
t g; k 2 fC;N; Ig;

where mk
t is the number of measurements on cognitive skills, noncognitive skills, and

investments in period t; and where uk
t is a dynamic factor for component k,

k 2 fC;N; Ig. Varðek
j;tÞ ¼ s2

k; j;t. We account for latent initial conditions of the pro-
cess, uC

1 ; u
N
1

� �
, which correspond to endowment of abilities. Because we have mul-

tiple measurements of abilities in the first period of our data, we can also identify the
distribution of the latent initial conditions. We also identify the distribution of each
ut ¼ uC

t ; u
N
t ; u

I
t

� �
, as well as the dependence across ut and ut#; t 6¼ t#. The mk

j;t and the
ak

j;t can depend on regressors which we keep implicit.
As above, let uC

t denote the stock of cognitive skill of the agent in period t. We do
not observe uC

t directly. Instead, we observe a vector of measurements, such as test
scores, YC

j;t, for j 2 f1; 2;.;mC
t g. Assume that:

YC
j;t ¼ mC

j;t + aC
j;tu

C
t + eC

j;t for j 2 f1; 2;.;mC
t gð7Þ

and set aC
1;t ¼ 1 for all t. Some normalization is needed to set the scale of the factors.

The mC
j;t may depend on regressors.

We have a similar equation for noncognitive skills at age t, relating uN
t to proxies

for it:

YN
j;t ¼ mN

j;t + aN
j;tu

N
t + eN

j;t for j 2 f1;.;mN
t gð8Þ

and we normalize aN
1;t ¼ 1 for all t. Finally, we model the measurement equations for

investments, uI
t :

YI
j;t ¼ mI

j;t + aI
j;tu

I
t + eI

j;t for j 2 f1;.;mI
tgð9Þ

15. See Carneiro, Hansen, and Heckman (2003) and Hansen, Heckman, and Mullen (2004) for some recent
extensions.
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and the factor loading aI
1;t ¼ 1. The e’s are measurement errors that account for the

fallibility of our measures of latent skills and investments.16 Again, the mI
j;t and aI

j;t

may depend on the regressors which we keep implicit.
We analyze a linear law of motion for skills:

uk
t+1 ¼ gk

0 + gk
1uN

t + gk
2uC

t + gk
3uI

t + hk
t for k 2 fC;Ng and t 2 f1;.; Tg;ð10Þ

where the error term hk
t is independent across agents and over time for the same

agents, but hC
t and hN

t are freely correlated. We assume that the hk
t , k 2 fC;Ng,

are independent of uC
1 ; u

N
1

� �
. Below, we show how to relax the independence assump-

tion and allow for unobserved inputs. The gk
l , l ¼ 0;.; 3 may depend on regressors

which we keep implicit.
We allow the components of ut to be freely correlated for any t and with any vector

ut#; t# 6¼ t, and we can identify this dependence. We assume that any variables in the

mk
j;t are independent of ut, ek

j;t, and hk
t for k 2 fC;N; Ig and t 2 f1;.; Tg. We now

establish conditions under which the technology parameters are identified.

D. Semiparametric Identification

The goal of the analysis is to recover the joint distribution of uC
t ; u

N
t ; u

I
t

� �T

t¼1
, the dis-

tributions of fhk
t gT

t¼1 and fek
j;tg

mk
t

j¼1 nonparametrically, as well as the parameters
fak

j;tg
mk

t

j¼1; fgk
j;tg3

j¼1 for k 2 fC;Ng, and for t 2 f1;.; Tg. Identification of the means
of the measurements is straightforward under our assumptions.17

1. Classical Measurement Error for the Case of Two Measurements Per Latent Fac-
tor: mC

t ¼ mN
t ¼ mI

t ¼ 2

We make the following assumptions about the ek
j;t:

Assumption 1 ek
j;t is mean zero and independent across agents and over time for

t 2 f1;.; Tg; j 2 f1; 2g; and k 2 fC;N; Ig;
Assumption 2 ek

j;t is mean zero and independent of uC
t ; u

N
t ; u

I
t

� �
for all

t; t 2 f1;.; Tg; j 2 f1; 2g; and k 2 fC;N; Ig;
Assumption 3 ek

j;t is mean zero and independent from el
i;t for i; j 2 f1; 2g and i 6¼j

for k¼l; otherwise ek
j;t is mean zero and independent from el

i;t for i; j 2 f1; 2g; k 6¼ l ,
k; l 2 fC;N; Ig and t 2 f1;.; Tg.

16. Measurement Equations 7, 8, and 9 can be interpreted as output-constant demand equations arising
from the following two-stage maximization problem. Families use inputs Xj;t with prices Pj,t,
j 2 f1;.;mI

tg, to produce family investment uI
t ¼ fI

t X1;t;.;XmI;t

� �
. For the problem of minimizing the

cost of achieving a given output, one can derive demand functions Xj;t ¼ hj;tðP1;t ;.;PmI
t ; t; u

I
t Þ under gen-

eral conditions. Specifications (7) - (9) are consistent with Cobb-Douglas and Leontief technologies, when
uI

t is measured in logs. Prices appear in the intercepts. These technologies impose restrictions on the factor
loadings of the inputs. See Appendix 1 which develops this point further.
17. Obviously, we cannot separately identify the mean of the factor, E uk

t

� �
, and the intercepts mk

j;t . It is
necessary either to normalize the intercept in one equation mk

1;t ¼ 0 and identify E uk
t

� �
, or to normalize

E uk
t

� �
¼ 0 and identify all of the intercepts mk

j;t .
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a. Identification of the Factor Loadings

Since we observe f½Yk
j;t�

2
j¼1g

T
t¼1 for every person, we can compute

CovðYk
1;t; Y

l
2;tÞ from the data for all t,t and k,l pairs, where t; t 2 f1;.; Tg;

k; l 2 fC;N; Ig. Consider, for example, measurements on cognitive skills. Recall that
aC

1;t ¼ 1. We know the left-hand side of each of the following equations:

Cov YC
1;t; Y

C
1;t+1

� 	
¼ Cov uC

t ; u
C
t+1

� �
;ð11Þ

Cov YC
2;t; Y

C
1;t+1

� 	
¼ aC

2;tCov uC
t ; u

C
t+1

� �
; andð12Þ

Cov YC
1;t; Y

C
2;t+1

� 	
¼ aC

2;t+1Cov uC
t ; u

C
t+1

� �
:ð13Þ

We can identify aC
2;t by taking the ratio of Equation 12 to Equation 11 and aC

2;t+1 from
the ratio of Equation 13 to Equation 11. Proceeding in the same fashion, we can iden-
tify ak

j;t for t 2 f1;.; Tg and j 2 f1; 2g, up to the normalizations ak
1;t ¼ 1,

k 2 fC;N; Ig. We assume that ak
2;t 6¼ 0 for k 2 fC;N; Ig and t 2 f1;.; Tg. If

ak
2;t ¼ 0, we would violate the condition that states that there are exactly mk

t ¼ 2
valid measurements for the factor uk

t .

b. The Identification of the Joint Distribution of uC
t ; u

N
t ; u

I
t

� �� �T

t¼1
.

Once the parameters ak
1;t and ak

2;t are identified (up to the normaliza-
tion ak

1;t ¼ 1), we can rewrite Equations 7, 8, and 9 as

Yk
j;t

ak
j;t

¼
mk

j;t

ak
j;t

+ uk
t +

ek
j;t

ak
j;t

; j 2 f1; 2g for ak
j;t 6¼ 0; k 2 fC;N; Ig; t 2 f1;.; Tg:18

Now, define

Yj ¼
YC

j;t

aC
j;t

;
YN

j;t

aN
j;t

;
YI

j;t

aI
j;t

 !( )T

t¼1

for j ¼ 1; 2:

Similarly, define

ej ¼
eC

j;t

aC
j;t

;
eN

j;t

aN
j;t

;
eI

j;t

aI
j;t

 !( )T

t¼1

for j ¼ 1; 2;

and

18. The same remark applies as in Footnote 17. We can not separately identify the mean of the factor,
E uk

t

� �
, and the intercepts mk

j;t . It is necessary either to normalize the intercept in one equation mk
1;t ¼ 0

and identify E uk
t

� �
, or to normalize E uk

t

� �
¼ 0 and identify all of the intercepts mk

j;t .
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mj ¼
mC

j;t

aC
j;t

;
mN

j;t

aN
j;t

;
mI

j;t

aI
j;t

 !( )T

t¼1

for j ¼ 1; 2:

Let u denote the vector of all factors in all time periods:

u ¼ fðuC
t ; u

N
t ; u

I
t Þg

T
t¼1:

We rewrite the measurement equations as

Y1 ¼ m1 + u + e1;

Y2 ¼ m2 + u + e2:

Under the assumption that measurement error is classical, we can apply Kotlarski’s
Theorem (Kotlarski 1967) and identify the joint distribution of u as well as the dis-
tributions of e1 and e2. Since ak

j;t is identified, it is possible to recover the distribution
of ek

j;t for j 2 f1; 2;.;mk
t g; k 2 fC;N; Ig and t 2 f1; 2;.; Tg.

Example 1 Suppose that u;N 0;Sð Þ; ek
j;t;Nð0;s2

k;j;tÞ. We observe the vectors Y1

and Y2, m1 and m2 are identified and the Y1 and Y2 can be adjusted accordingly.
As previously established, we can identify the factor loadings ak

j;t by taking the ratio
of covariances such as Equation 12 to 11. To identify the distribution of the factors,
we need to identify the variance-covariance matrix S. We can compute the variance
of the factor uk

t from the covariance between Yk
1;t and Yk

2;t :

CovðYk
1;t; Y

k
2;tÞ ¼ ak

2;tVarðuk
t Þ for k 2 fC;N; Ig:

Recall that ak
2;t is identified and the covariance on the left-hand side can be formed

from the data. The covariance of any two elements of u can be computed from the
corresponding moments:

CovðYk
1;t; Y

l
1;tÞ ¼ Covðuk

t ; u
l
tÞ for k; l 2 fC;N; Ig and t; t 2 f1;.; Tg;ð14Þ

and

CovðYk
j;t; Y

l
k;tÞ ¼ ak

j;ta
l
k;tCovðuk

t ; u
l
tÞ;ð15Þ

where the coefficients ak
j;t; al

k;t are known by the previous argument. Since we know
VarðYk

j;tÞ; ðak
j;tÞ and Varðuk

j;tÞ, we can identify s2
k;j;t from these ingredients:

VarðYk
j;tÞ2ðak

j;tÞ
2 Varðuk

j;tÞ ¼ s2
k;j;t; k 2 fC;N; Ig; t 2 f1;.; Tg:

c. The Identification of the Technology Parameters Assuming
Independence of h.

Assume that hk
t is independent of uC

t ; u
N
t ; u

I
t

� �
. Consider, for exam-

ple, the law of motion for noncognitive skills,
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uN
t+1 ¼ gN

0 + gN
1 uN

t + gN
2 uC

t + gN
3 uI

t + hN
t for t 2 f1;.; Tg:ð16Þ

Assume that hN
t is serially independent but possibly correlated with hC

t . Define

ỸN
1;t+1 ¼YN

1;t+12mN
1;t+1

ỸN
1;t ¼YN

1;t2mN
1;t

ỸC
1;t ¼YC

1;t2mC
1;t

Ỹ I
t ¼YI

t 2mI
t :

We substitute these measurement equations ỸN
1;t+1; Ỹ

N
1;t; Ỹ

C
1;t; Ỹ

I
t as proxies for

uN
t+1; u

N
t ; u

C
t ; u

I
t , respectively:

ỸN
1;t+1 ¼ gN

0 + gN
1 ỸN

1;t+ gN
2 ỸC

1;t+ gN
3 Ỹ I

1;t+ðeN
1;t+12gN

1;te
N
1;t2gN

2;te
C
1;t2gN

3;te
I
1;t+ hN

t Þ:ð17Þ

If we estimate Equation 17 by least squares, we do not obtain consistent estimators of
gN

k for k 2 f1; 2; 3g because the regressors Ỹ N
1;t; Ỹ

C
1;t; Ỹ

I
1;t are correlated with the error

term vt+1, where

vt+1 ¼ eN
1;t+12gN

1;te
N
1;t2gN

2;te
C
1;t2gN

3;te
I
1;t+hN

t :

However, we can instrument ỸN
1;t; Ỹ

C
1;t; Ỹ

I
1;t, using YN

2;t; Y
C
2;t; Y

I
2;t as instruments by

applying two-stage least squares to recover the parameters gN
k for k¼1,2,3. See

Madansky (1964) or Pudney (1982) for the precise conditions on the factor loadings.
The suggested instruments are also independent of hN

t because of the assumed lack
of serial correlation in hN

t .19 We can repeat the argument for different time periods.
In this way, we can identify stage-specific technologies for each stage of the child’s
life cycle. We can perform a parallel analysis for the cognitive skill equation.

2. Nonclassical Measurement Error

We can replace Assumption 3 with the following assumption and still obtain full
identification of the model.

Assumption 4 ek
1;t is independent of el

j;t for j 2 f2;.;mk
t g; k; l 2 fC;N; Ig

and t; t 2 f1; 2;.; Tg, mt
k $ 2. ek

1;t is independent of ek
1;t, for t 6¼ t. Otherwise the

el
j;t, for j 2 f2;.;mk

t g; k; l 2 fC;N; Ig and t; t 2 f1; 2;.; Tg can be arbitrarily
dependent.

The proof of identification is as follows. Let Yk
j;t ¼ ak

j;tu
k
t +ek

j;t, for j 2 f1;.;mk
t g;

t 2 f1;.; Tg and k 2 fC;N; Ig. Normalize a k
1;t ¼ 1 for all k 2 fC;N; Ig

and t 2 f1;.; Tg. Within a k system, for a fixed t, we can compute
CovðYk

j;t; Y
k
1;tÞ ¼ ak

j;tVar uk
t

� �
, j 2 f1;.;mk

t g. For temporally adjacent systems, we
can compute

19. See our website for an analysis of the case in which hk
t are serially correlated for k 2 fC;Ng.
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CovðYk
1;t21; Y

k
1;tÞ ¼ Covðuk

t21; u
k
t Þ;

CovðYk
1;t21; Y

k
j;tÞ ¼ ak

j;tCovðuk
t21; u

k
t Þ; j 2 f2;.;mk

t g:
ð18Þ

Hence we can identify ak
j;t, j 2 f1;.;mk

t g; t 2 f1;.; Tg; and k 2 fC;N; Ig and thus
Var uk

t

� �
, t2 f1;.; Tg; k 2 fC;N; Ig. With these ingredients in hand, we can iden-

tify Varðek
j;tÞ, t 2 f1;.; Tg, as well as

Cov ek
j;t; e

k
j#;t

� 	
¼ Cov Yk

j;t; Y
k
j#;t

� 	
2ak

j;ta
k
j#;tVar uk

t

� �
;

since we know every ingredient on the right hand side of the preceding equation. By
a similar argument, we can identify

Covðek
j;t; e

l
j#;tÞ ¼ CovðYk

j;t; Y
l
j#;tÞ2ak

j;ta
l
j#;tCovðuk

t ; u
l
tÞ:ð19Þ

We can rewrite the measurement equations as a system:

Yk
j;t

ak
j;t

¼
mk

j;t

ak
j;t

+ uk
t +

ek
j;t

ak
j;t

; j 2 f1;.;mk
t g; t 2 f1;.; Tg; k 2 fC;N; Ig:

Applying Schennach (2004), we can identify the joint distribution of
ðuC

1 ;.; uC
T ; uN

1 ;.; uN
T ; u

I
1;.; uI

TÞ as well as the joint distribution of fek
j;tg,

j 2 f1;.;mk
t g; t 2 f1;.; Tg and k 2 fC;N; Ig using multivariate deconvolution.

Example 2 Assume access to three measurements for cognitive, noncognitive,
and investment factors, respectively. Suppose that u ¼ uC; uN ; uI

� �
;N 0;Sð Þ; ek

1;t;

N
�
0;s2

k;1;t

�
, and are independent of ðe2; e3), and ek

1;t and ek
1;t are independent for

t 6¼ t, but ðe2; e3Þ;Nð0;VÞ, where V need not be diagonal. As discussed above,
we identify Varðuk

t Þ, k 2 fC;N; Ig. Again, any element of the variance-
covariance matrix S is obtained from Equation 14. Furthermore, any element of
the matrix V can be obtained from Equation 19. Finally, we can identify s2

k;j;t from
VarðYk

j;tÞ.
For this more general measurement-error system, we can identify stage-specific

technologies using the same proof structure as was used for the case with classical
measurement error.

3. The Identification of the Technology with Correlated Omitted Inputs

It is unrealistic to assume that omitted inputs are serially independent. Fortunately,
we can relax this assumption. Assume now that hk

t is not independent of
u#t ¼ ðuC

t ; u
N
t ; u

I
t Þ. Consider a model in which hk

t can be decomposed into two parts:

hN
t ¼ gN

4 l + nN
t and hC

t ¼ gC
4 l + nC

t ;

so that the equations of motion can be written as
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uN
t+1 ¼ gN

0 + gN
1 uN

t + gN
2 uC

t + gN
3 uI

t + gN
4 l + nN

t ; andð20Þ

uC
t+1 ¼ gC

0 + gC
1 uN

t + gC
2 uC

t + gC
3 uI

t + gC
4 l + nC

t :ð21Þ

In this section, we normalize gN
4 ¼ 1. The term l is a time-invariant input permitted

to be freely correlated with ut. We allow l to have a different impact on cognitive
and noncognitive skill accumulation. Let nt ¼ ðnN

t ; n
C
t Þ. We make the following as-

sumption.
Assumption 5 The error term nt is independent of ut; l; nt, conditional on regres-

sors for any t 6¼t.
Under this assumption, we can identify both a stage-invariant technology and a

stage-varying technology. We first analyze the stage-invariant case. Consider, for ex-
ample, the law of motion for noncognitive skills. For any periods t, t+1 we can com-
pute the difference

uN
t+12uN

t ¼ gN
1 ðuN

t 2uN
t21Þ+ gN

2 ðuC
t 2uC

t21Þ+ gN
3 ðuI

t 2uI
t21Þ+ nN

t 2nN
t21:ð22Þ

We use the measurement equations to proxy the unobserved u’s:

ỸN
1;t+12ỸN

1;t ¼ gN
1 ðỸN

1;t2ỸN
1;t21Þ + gN

2 ðỸC
1;t2ỸC

1;t21Þ + gN
3 ðỸ I

1;t2Ỹ I
1;t21Þ + nN

t 2nN
t21

+ fðeN
1;t+12eN

1;tÞ2gN
1 ðeN

1;t2eN
1;t21Þ2gN

2 ðeC
1;t2eC

1;t21Þ2gN
3 ðeI

1;t2eI
1;t21Þg:

ð23Þ

OLS applied to Equation 23 does not produce consistent estimates of gN
1 ; g

N
2 , and gN

3

because the regressors ðỸk
1;t2Ỹk

1;t21Þ are correlated with the error term v, where

v ¼ ðeN
1;t+12eN

1;tÞ2gN
1 ðeN

1;t2eN
1;t21Þ2gN

2 ðeC
1;t2eC

1;t21Þ2gN
3 ðeI

1;t2eI
1;t21Þ:

However, we can instrument ðỸ k
1;t2Ỹ k

1;t21Þ using Yk
j;t212Yk

j;t22

� 	n omk
t

j¼2
as instru-

ments. These instruments are valid because of the generalization of investment Equa-
tion 9 in Cunha and Heckman (2007) to a T period model.20 Using a two-stage least
squares regression with these instruments allows us to recover the parameters gN

1 ; g
N
2

and gN
3 . We can identify gN

0 if we assume that EðlÞ ¼ 0. Following a parallel argu-
ment, we can identify gN

0 ; g
N
1 ; g

N
2 and gN

3 using the data on the evolution of cognitive
test scores.

Next, define

ck
t+1 ¼ uk

t+12ðgk
0 + gk

1uN
t + gk

2uC
t + gk

3uI
t Þ:

From the measurement equations, we know the joint distribution of uk
t+1; u

N
t ; u

C
t ; u

I
t

� �
for k 2 fC;Ng. We have established how to obtain the parameter values gN

0 ; g
N
1 ;

gN
2 , and gN

3 . Consequently, we know the distribution of ck
t for k 2 fC;Ng and

t 2 f1;.; Tg. We have 2T equations:

20. See their web appendix.
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cN
T ¼ l + nN

T cC
T ¼ gC

4 l + nC
T

cN
T21 ¼ l + nN

T21 cC
T21 ¼ gC

4 l + nC
T21

..

. ..
.

cN
1 ¼ l + nN

1 cC
1 ¼ gC

4 l + nC
1
:

Under Assumption 5 we can apply Kotlarski’s Theorem to this system and obtain the
distribution of l and nt for any t. Note that we can identify the parameter gC

4 from the
covariance:

CovðcN
t ;c

C
t Þ ¼ gC

4 VarðlÞ

for any t, t 2 f1;.; Tg since the variance of l is known. This approach solves the
problem raised by correlated omitted inputs for stage-invariant technologies.

For the stage-varying case, a similar but more subtle argument applies. Recall that
the first period of life is t¼1. In place of Equation 22, we can write

uN
t+12uN

t ¼ gN
0;t2gN

0;t21+gN
1;tu

N
t 2gN

1;t21uN
t21+gN

1;tu
C
t 2gN

2;t21uC
t21+gN

3;tu
I
t

2gN
3;t21uI

t21+nN
t 2nN

t21:

ð24Þ

Using the measurement equations to proxy the u’s, we obtain

ỸN
1;t+12ỸN

1;t ¼gN
0;t2gN

0;t21+gN
1;tỸ

N
1;t2gN

1;t21ỸN
1;t21+gN

2;tỸ
C
1;t2gN

2;t21ỸC
1;t21

+gN
3;tỸ

I
1;t2gN

3;t21ỸI
1;t21+nN

t 2nN
t21+fðeN

1;t+12eN
1;tÞ2ðgN

1;te
N
1;t2gN

1;t21e
N
1;t21Þ

2ðgN
2;te

C
1;t2gN

2;t21e
C
1;t21Þ2ðgN

3;te
I
1;t2gN

3;t21e
I
1;t21Þg; t$2:

We can instrument Ỹ k
1;t, Ỹ k

1;t21, k 2 fC;N; Ig, using Yk
j;t2l

n omk
t

j¼2
, k 2 fC;N; Ig and

l $2, as instruments. The validity of the instruments is based on the generalization
of investment Equation 9 in Cunha and Heckman (2007), discussed in our analysis
of stage-invariant technologies. Thus we can identify the coefficients of Equation 24 ex-
cept for the intercepts. We can identify relative intercepts ðgN

0;t2gN
0;t21Þ, t 2 f2;.; Tg.

With these intercepts in hand, we can identify the remaining parameters by the preced-
ing proof provided we have enough proxies for each factor in each period.21

E. Anchoring the Factors in the Metric of Earnings

We can set the scale of the factors by estimating their effects on log earnings for chil-
dren when they become adults. Let Y be adult earnings. We write

21. Identification of the distribution of n1 follows from the following observation. We know the distribution
of eN

1;t+1; e
N
1;t (and ð1 + gN

1;tÞeN
1;tÞ, gN

1;t21e
N
1;t21; g

N
2;te

C
1;t; g

N
2;t21e

C
1;t21; g

N
3;te

I
1;t ; g

N
3;t21e

I
1;t21 for t $ 2 from the mea-

surement system and from the IV estimation of the equation just below Equation 24. From the residuals of
the error term for succesive stages we can use deconvolution to isolate the distribution of nN

t+12nN
t , t $ 1.

By Kotlarski’s Theorem we can identify the distributions of nN
t , t ¼ 1;.; T .
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ln Y ¼ mT + dN uN
T + dCuC

T + e;ð25Þ

where e is not correlated with uT or ek
j;t: Define

D ¼ dN 0
0 dC

� �
:

Assume dN 6¼ 0 and dC 6¼ 0.22 For any given normalization of the test scores, we
can transform the ut to an earnings metric by multiplying Equation System 6 by D:

D ut+1 ¼ ðDAD21ÞðDutÞ+ðDBÞuI
t +ðD htÞ;ð26Þ

and work with Dut+1 and Dut in place of ut+1 and ut. The cross terms in DAD21ð Þ are
affected by this change of units but not the self-productivity terms. The relative mag-
nitude of uI

t on the outcomes can be affected by this change in scale. We can use
other anchors besides earnings. We report results from two anchors in this paper:
(a) log earnings and (b) the probability of graduating from high school. For the latter,
we use a linear probability model.

IV. Estimating the Technology of Skill Formation

We use a sample of 1053 white males from the Children of the Na-
tional Longitudinal Survey of Youth, 1979 (CNLSY/79) data set. Starting in 1986,
the children of the NLSY/79 female respondents have been assessed every two years.
The assessments measure cognitive ability, temperament, motor and social develop-
ment, behavior problems, and self-confidence of the children as well as their home
environment. Data were collected via direct assessment and maternal report during
home visits at every biannual wave. Table 1 presents summary statistics of the meas-
ures of skill and investment used in this paper. The web appendix presents a more
complete description of our data set.

The measures of quality of a child’s home environment that are included in the
CNLSY/79 survey are the components of the Home Observation Measurement of
the Environment—Short Form (HOME-SF). They are a subset of the measures used
to construct the HOME scale designed by Bradley and Caldwell (1980; 1984) to as-
sess the emotional support and cognitive stimulation children receive through their
home environment, planned events and family surroundings. These measurements

22. Note that we can identify the loadings dN and dC from:

Cov ln Y; YN
1;T

� 	
¼ dN Var uN

T

� �
+ dCCov uN

T ; u
C
T

� �
and

Cov ln Y; YC
1;T

� 	
¼ dN Cov uN

T ; u
C
T

� �
+ dCVar uC

T

� �
which gives us two linearly independent equations in two unknowns ðdN ; dCÞ. The solution is:

dN

dC

� �
¼ 1

Var uN
T

� �
Var uC

T

� �
2Cov uN

T ; u
C
T

� �2

Var uC
T

� �
2Cov uN

T ; u
C
T

� �
2Cov uN

T ; u
C
T

� �
Var uN

T

� �
 �
:
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have been used extensively as inputs to explain child outcomes (see, for example,
Todd and Wolpin 2005).23 Web appendix Tables 1–8 show the raw correlations of
the home score items with a variety of cognitive and noncognitive outcomes at dif-
ferent ages of the child.24 Our empirical study uses measurements on the following
parental investments: the number of books available to the child, a dummy variable
indicating whether the child has a musical instrument, a dummy variable indicating
whether the family receives a daily newspaper, a dummy variable indicating whether
the child receives special lessons, a variable indicating how often the child goes to
museums, and a variable indicating how often the child goes to the theater. We also
report results from some specifications that use family income as a proxy for parental
inputs, but none of our empirical conclusions rely on this particular measure.

As measurements of noncognitive skills we use components of the Behavior Prob-
lem Index (BPI), created by Peterson and Zill (1986), and designed to measure the
frequency, range, and type of childhood behavior problems for children aged 4 and
older, although in our empirical analysis we only use children aged 6-13. The Behav-
ior Problem score is based on responses from the mothers to 28 questions about

Table 2
Unanchored Technology Equations:a Measurement Error is Classical, Absence of
Omitted Inputs Correlated with ut White Males, CNLSY/79

Noncognitive Skill uN
t+1

� �
Cognitive Skill uC

t+1

� �
Independent Variable (1) (2) (3) (4) (5) (6)

Lagged noncognitive skill, uN
t

� �
0.884 0.884 0.884 0.028 0.028 0.028

(0.021) (0.021) (0.021) (0.013) (0.013) (0.013)
Lagged cognitive skill, uC

t

� �
0.003 0.003 0.003 0.977 0.977 0.977

(0.013) (0.012) (0.013) (0.038) (0.038) (0.038)
Parental investment, uI

t

� �
0.072 0.078 0.080 0.064 0.069 0.071

(0.020) (0.021) (0.024) (0.013) (0.014) (0.015)
Mother�s education, S 0.004 0.004 0.004 0.003 0.003 0.003

(0.008) (0.008) (0.008) (0.010) (0.010) (0.010)
Mother�s cognitive skill, A 20.006 20.006 20.006 0.025 0.025 0.025

(0.006) (0.006) (0.006) (0.009) (0.009) (0.009)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

uk
t+1 ¼ gk

1uN
t + gk

2uC
t + gk

3uI
t + ck

1S + ck
2A + hk

t :

In this table we show the estimated parameter values and standard errors (in parentheses) of
gk

1; g
k
2; g

k
3;c

k
1; and ck

2 in Columns 1–6. In Columns 1 and 4, the parental investment factor is normalized
on the log-family income equation. In Columns 2 and 5, the parental investment factor is normalized on
trips to the museum. In Columns 3 and 6, we normalize the parental investment factor on trips to the theater.

23. As discussed in Linver, Brooks-Gunn, and Cabrera (2004), some of these items are not useful because
they do not vary much among families (that is, more than 90 percent to 95 percent of all families make the
same response).
24. See http://jenni.uchicago.edu/idest-tech.
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specific behaviors that children aged 4 and older may have exhibited in the previous
three months. Three response categories are used in the questionnaire: often true,
sometimes true, and not true. In our empirical analysis we use the following sub-
scores of the behavioral problems index: (1) antisocial, (2) anxious/depressed, (3)
headstrong, (4) hyperactive, (5) peer problems. We standardize these variables so that
among other characteristics, a child who scores low on the antisocial subscore is a
child who often cheats or tells lies, is cruel or mean to others, and does not feel sorry
for misbehaving. A child who displays a low score on the anxious/depressed mea-
surement is a child who experiences sudden changes in mood, feels no one loves
him/her, is fearful, or feels worthless or inferior. A child with low scores on the
headstrong measurement is tense, nervous, argues too much, and is disobedient at
home. Children will score low on the hyperactivity subscale if they have difficulty
concentrating, act without thinking, and are restless or overly active. Finally, a child
will be assigned a low score on the peer problem subscore if they have problems get-
ting along with others, are not liked by other children, and are not involved with
others.

For measurements of cognitive skills we use the Peabody Individual Achievement
Test (PIAT), which is a wide-ranging measure of academic achievement of children
age five and over. It is commonly used in research on child development. Todd and
Wolpin (2005) use the raw PIAT test score as their measure of cognitive outcomes.

Table 3
Contemporaneous Correlation Matrices: Measurement Error is Classical, Absence
of Omitted Inputs Correlated with ut , White Males, CNLSY/79

Noncognitive Cognitive Investments

Period 1 — Children ages 6 and 7
Noncognitive 1.0000 0.1892 0.3426
Cognitive 0.1892 1.0000 0.2921
Investments 0.3426 0.2921 1.0000

Period 2 — Children ages 8 and 9
Noncognitive 1.0000 0.2334 0.4065
Cognitive 0.2334 1.0000 0.3835
Investments 0.4065 0.3835 1.0000

Period 3 — Children ages 10 and 11
Noncognitive 1.0000 0.2643 0.4785
Cognitive 0.2643 1.0000 0.4892
Investments 0.4785 0.4892 1.0000

Period 4 — Children ages 12 and 13
Noncognitive 1.0000 0.2845 0.5511
Cognitive 0.2845 1.0000 0.6111
Investments 0.5511 0.6111 1.0000
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The CNLSY/79 includes two subtests from the full PIAT battery: PIAT Mathematics
and PIAT Reading Recognition.25 The PIAT Mathematics test measures a child’s at-
tainment in mathematics as taught in mainstream education. It consists of 84 multi-
ple-choice items of increasing difficulty. It begins with basic skills such as
recognizing numerals and progresses to measuring advanced concepts in geometry
and trigonometry. The PIAT Reading Recognition subtest measures word recognition
and pronunciation ability. Children read a word silently, then say it aloud. The test
contains 84 items, each with four options, which increase in difficulty from preschool
to high school levels. Skills assessed include the ability to match letters, name
names, and read single words aloud.

Our dynamic factor models allow us to exploit the wealth of measures available in
these data. They enable us to solve several problems. First, there are many proxies
for parental investments in children’s cognitive and noncognitive development. Even
if all parents provided responses to all of the measures of family input, we would still
face the problem of selecting which variables to use and how to find enough instru-
ments for so many endogenous variables. Applying the dynamic factor model, we let
the data tell us the best combination of family input measures to use in predicting the
levels and growth in the test scores instead of relying on an arbitrary index. Measured
inputs that are not very informative on family investment decisions will have

Table 4
Unanchored Technology Equations:a Measurement Error is Nonclassical, Absence
of Omitted Inputs Correlated with ut , White Males, CNLSY/79

Independent Variable
Noncognitive
Skill uN

t+1

� � Cognitive
Skill uC

t+1

� �
Lagged noncognitive skill, uN

t

� �
0.8672 0.0264

(0.024) (0.011)
Lagged cognitive skill, uC

t

� �
0.0045 0.9739

(0.014) (0.038)
Parental investment, uI

t

� �
0.0801 0.0647

(0.018) (0.012)
Maternal education, S 0.0041 0.0026

(0.008) (0.010)
Maternal cognitive skill, A 20.0092 0.0252

(0.006) (0.009)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

uk
t+1 ¼ gk

1uN
t + gk

2uC
t + gk

3uI
t + ck

1S + ck
2A + hk

t :

In this table we show the estimated parameter values and standard errors (in parenthesis) of gk
1; g

k
2; g

k
3;c

k
1;

and ck
2 for noncognitive (k ¼ N) and cognitive (k ¼ C) skills. Investment is normalized in family income.

25. We do not use the PIAT Reading Comprehension battery since it is not administered to the children
who score low in the PIAT Reading Recognition.
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estimated factor loadings that are close to zero. Covariance restrictions in our model
substitute for the missing instruments to secure identification.

Second, our models have the additional advantage that they help us solve the prob-
lem of missing data. It often happens that mothers do not provide responses to all
items of the HOME-SF score. Similarly, some children may take the PIAT Reading
Recognition exam, but not the PIAT Mathematics test. Another missing data problem
that arises is that the mothers may provide information about whether the child has
peer problems or not, but may refuse to issue statements regarding the child’s hyper-
activity level. For such cases, some researchers drop the observations for the parents
who do not respond to certain items, or do not analyze the items that are not
responded to by many parents, even though these items may be very informative.
With our setup, we do not need to drop the parents or entire items in our analysis.
Assuming that the data are missing randomly, we integrate out the missing items

Table 5
Contemporaneous Correlation Matrices in Measurement Error: Measurements for
Noncognitive Skills, White Males, CNLSY/79

Period 1 — Children ages 6 and 7
Antisocial Anxious Headstrong Hyperactive Peer conflict

Antisocial 1.0000 0.0000 0.0000 0.0000 0.0000
Anxious 0.0000 1.0000 20.0054 20.0083 0.0479
Headstrong 0.0000 20.0054 1.0000 0.0193 20.1113
Hyperactive 0.0000 20.0083 0.0193 1.0000 20.1721
Peer conflict 0.0000 0.0479 20.1113 20.1721 1.0000

Period 2 — Children ages 8 and 9
Antisocial 1.0000 0.0000 0.0000 0.0000 0.0000
Anxious 0.0000 1.0000 20.0023 20.0020 0.0117
Headstrong 0.0000 20.0023 1.0000 0.0328 20.1941
Hyperactive 0.0000 20.0020 0.0328 1.0000 20.1652
Peer conflict 0.0000 0.0117 20.1941 20.1652 1.0000

Period 3 — Children ages 10 and 11
Antisocial 1.0000 0.0000 0.0000 0.0000 0.0000
Anxious 0.0000 1.0000 0.0196 0.0001 20.0007
Headstrong 0.0000 0.0196 1.0000 0.0067 20.0312
Hyperactive 0.0000 0.0001 0.0067 1.0000 20.0002
Peer conflict 0.0000 20.0007 20.0312 20.0002 1.0000

Period 4 — Children ages 12 and 13
Antisocial 1.0000 0.0000 0.0000 0.0000 0.0000
Anxious 0.0000 1.0000 20.0797 20.1495 20.0105
Headstrong 0.0000 20.0797 1.0000 0.0692 0.0049
Hyperactive 0.0000 20.1495 0.0692 1.0000 0.0092
Peer conflict 0.0000 20.0105 0.0049 0.0092 1.0000
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from the sample likelihood. Appendix 2 presents our sample likelihood. We now pre-
sent and discuss our empirical results using the CNLSY data.

A. Empirical Results

We first present our estimates of an age-invariant version of the technology where we
assume no critical and sensitive periods. We report estimates of a model with critical
and sensitive periods in Subsection 5 below.

1. Estimates of Time-Invariant Technology Parameters

Using the CNLSY data, we estimate the simplest version of the model that imposes
the restriction that the coefficients on the technology equations do not vary over peri-
ods of the child’s life cycle, there are no omitted inputs correlated with ut, and the
measurement error is classical. In Table 2 we report results in the scale of standard-
ized test scores. We normalize the scale of the investment factor uI

t on different meas-
ures. Columns 1 and 4 show the estimated noncognitive and cognitive skill
technologies, respectively, when we normalize the investment factor on family in-
come. Columns 2 and 5 show the estimated parameters when we normalize the in-
vestment factor on ‘‘trips to the museum.’’ Finally, in Columns 3 and 6 we show
the results when we normalize the factor loading in ‘‘trips to the theater.’’ The esti-
mated technology is robust to different normalization assumptions.26

Table 7
Unanchored Technology Equations:a Measurement Error is Classical, Allows for
Omitted Input l Correlated with ut , White Males, CNLSY/79

Independent Variable Noncognitive Skill uN
t+1

� �
Cognitive Skill uC

t+1

� �
Lagged noncognitive skill, uN

t

� �
0.8848 0.0276

(0.021) (0.013)
Lagged cognitive skill, uC

t

� �
0.0022 0.9891

(0.013) (0.039)
Parental investment, uI

t

� �
0.0797 0.0844

(0.020) (0.017)
Omitted correlated inputs, l 0.2835 1.0000

(0.134) (normalized)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let l denote omitted inputs that are potentially correlated with ut. The technology equations are:

uk
t+1 ¼ gk

1uN
t + gk

2uC
t + gk

3uI
t + gk

4l + nk
t :

In this table we show the estimated parameter values and standard errors (in parentheses) of
gk

1;g
k
2; g

k
3 and gk

4: Note that for identification purposes we normalize gC
4 ¼ 1: Investment is normalized

on family income.

26. The magnitude of the estimated parental investment effect clearly depends on the scale in which invest-
ments are measured.
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Table 2 shows the estimated parameter values and their standard errors. From this
table, we see that: (1) both cognitive and noncognitive skills show strong persistence
over time; (2) noncognitive skills in one period affect the accumulation of next pe-
riod cognitive skills, but cognitive skills in one period do not affect the accumulation
of next period noncognitive skills; (3) the estimated parental investment factor
affects noncognitive skills slightly more strongly than cognitive skills, but the differ-
ences are not statistically significant; (4) the mother’s ability affects the child’s cog-
nitive ability but not noncognitive ability; (5) the mother’s education plays no role in
affecting the evolution of ability after controlling for parental investments, and moth-
er’s ability. We contrast the OLS estimates of this model (presented in Table 16) with
our measurement-error corrected versions in Subsection 6 below.

The dynamic factors are statistically dependent. Table 3 shows the evolution of the
correlation patterns across the dynamic factors. The correlation between cognitive
and noncognitive skills is 0.18 at ages six and seven, and grows to around 0.28 at
ages 12 and 13. There is a strong contemporaneous correlation among noncognitive
skill and the home investment. The correlation starts off at 0.40 at ages six and seven
and grows to 0.55 by ages 12 and 13. The same pattern is true for the correlation
between cognitive skills and home investments. The correlation between these two
variables goes from 0.38 at ages six and seven to 0.61 at ages 12 and 13.

2. Allowing for Nonclassical Measurement Error

We check the robustness of our findings by relaxing the assumption that the error
terms in the measurement equations are classical. We allow the measurement errors
(except for the first measurement) to be freely correlated and estimate their depen-
dence. Table 4 shows the estimated technologies for noncognitive and cognitive
skills estimated under these more general conditions.27 The main conclusions based
on Table 2 are robust to the assumption that measurement error is classical.28 In Ta-
ble 5 we show the estimated contemporaneous correlation across the measurement
errors in our measures of noncognitive skills. Most of the correlations across the er-
ror terms are low. In fact, no correlation in any period exceeds, in absolute value, 0.2,
and most are well below it.

Table 6 reports the contemporaneous correlation of the error terms in the measure-
ment equations for investment. We assume that the error term in family income is
independent of the remaining error terms. Virtually all correlations are well below
0.04 in absolute value. The only exceptions are the correlations between ‘‘trips to
the museum’’ and ‘‘trips to the theater’’ in Periods 1 and 2. In sum, these findings
suggest that the assumption that the measurement error is classical is not at odds with
the data we analyze, and allowing for correlation in errors does not change the main
conclusions obtained from the simpler technology assuming classical measurement
error.

27. We use family income to normalize investment.
28. As discussed in Section IIID2, to generalize our results to allow for nonclassical measurement error, we
need to assume that the error term in one of the measures is independent of all measurement errors. For the
measurements for noncognitive skills, we impose this assumption on the error term in the anti-social score
equation.
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3. Allowing for Correlated Omitted Inputs

We next investigate the assumption that the error term in the technology equations ht is
independent of the vector ut, by allowing for the presence of a time-invariant omitted
input l, as discussed in Section III.D.3.29 The results, displayed in Table 7, are consis-
tent with the results shown in Table 2. Accounting for correlated omitted inputs does
not reverse any major conclusion. Note that for purposes of identification, we normal-
ize the coefficient on l in the cognitive technology equation to one, gC

4 ¼ 1, and we
estimate the coefficient on the noncognitive technology equation, gN

4 ¼ :2835.

4. Anchoring our estimates of the factor scale using adult outcomes

Table 8 reports estimates of the time-invariant technology that use the earnings data
for persons age 23–28 to anchor the output of the production function in a log dollar
metric.30 We initially assume that ht is serially uncorrelated and that measurement

Table 8
Anchored Technology Equations:a Anchoring on Log Earnings and Graduation from
High School, Measurement Error is Nonclassical, No Omitted Inputs Correlated with
ut , White Males, CNLSY/79

Noncognitive Skill uN
t+1

� �
Cognitive Skill uC

t+1

� �
Independent Variable (1) (2) (3) (4)

Lagged noncognitive skill, uN
t

� �
0.8844 0.8843 0.0100 0.0687

(0.0210) (0.0210) (0.0046) (0.0319)
Lagged cognitive skill, uC

t

� �
0.0084 0.0012 0.9777 0.9771

(0.0364) (0.0053) (0.0380) (0.0380)
Parental investment, uI

t

� �
0.0101 0.0079 0.0032 0.0173

(0.0028) (0.0022) (0.0007) (0.0035)
Maternal education, S 0.0006 0.0004 0.0002 0.0008

(0.0011) (0.0009) (0.0005) (0.0027)
Maternal cognitive skill, A 20.0008 20.0007 0.0013 0.0068

(0.0008) (0.0007) (0.0005) (0.0024)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

uk
t+1 ¼ gk

1uN
t + gk

2uC
t + gk

3uI
t + ck

1S + ck
2A + hk

t :

In this table we show the estimated parameter values and standard errors (in parentheses) of gk
1; g

k
2; g

k
3;

ck
1; and ck

2 in Columns 1 through 4. In Columns 1 and 3, we anchor the skill factors in log earnings of the child
when adult. In Columns 2 and 4, we anchor the skill factors in the probability of graduating from high-school
using a linear probability model. The investment factor is normalized in family income.

29. We normalize investment on family income.
30. Investment is normalized on family income.
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error is classical. We relax these assumptions below, when we report estimates of
more general specifications. Our fitted earnings function is linear in age, and depends
on the final level of the factors uC

T+1 and uN
T+1. The coefficient on cognitive skills in

the log earnings equations is estimated to be 0.052 (standard error is 0.0109). For
noncognitive skills, we estimate a loading of 0.14 (with a standard error of 0.054).
These estimates are consistent with estimates reported in Heckman, Stixrud, and
Urzua (2006). From Equation 26, it is clear that anchoring does not affect the esti-
mates of self productivity but can affect the estimates of cross-productivity. It can
also affect the magnitude of the estimated effect of uI

T on outcomes.
Columns 1 and 3 in Table 8 transform the estimates in Table 2 by D into a log

earnings metric. The two cross effects are ordered in the same direction as in the
model reported in Table 2 where we use the metric of test scores. The effect of non-
cognitive skills on cognitive skills is precisely estimated.

One problem that might arise in using log earnings as an anchor for this sample is
that log earnings are observed for the children who are born to very young mothers,
making it a very selected sample. To check the robustness of these conclusions with
regard to the log earnings anchor, we also use high school graduation for a person at
least 19 years old to anchor the parameters of the technology equations. We model
the probability of high school graduation as a linear probability equation. It is inter-
esting to note that in the metric of the probability of graduating from high school, the

Table 9
Unanchored Stage Specific Technology Equations:a Measurement Error is Classical,
No Omitted Inputs Correlated with ut , White Males, CNLSY/79

Noncognitive Skill uN
t+1

� �
Cognitive Skill uC

t+1

� �
Independent Variable Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Lagged noncognitive skill, uN
t

� �
0.9849 0.9383 0.7570 0.0605 0.0212 0.0014

(0.014) (0.015) (0.010) (0.012) (0.008) (0.008)
Lagged cognitive skill, uC

t

� �
0.0508 20.0415 0.0412 0.9197 0.8845 0.9099

(0.043) (0.041) (0.041) (0.023) (0.021) (0.019)
Parental investment, uI

t

� �
0.0533 0.1067 0.0457 0.1125 0.0364 0.0379

(0.013) (0.022) (0.019) (0.032) (0.014) (0.014)

Maternal education, S 0.0034 20.0028 0.0138 0.0050 0.0131 0.0021
(0.007) (0.007) (0.008) (0.010) (0.012) (0.014)

Maternal cognitive skill, A 0.0007 20.0077 20.0134 0.0506 0.0044 0.0194
(0.001) (0.001) (0.002) (0.013) (0.008) (0.007)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

uk
t+1 ¼ gk

1;tu
N
t + gk

2;tu
C
t + gk

3;tu
I
t + ck

1;tS + ck
2;tA + hk

t :

In this table we show the estimated parameter values and standard errors (in parentheses) of gk
1;t ; g

k
2;t; g

k
3;t ;

ck
1;t; and ck

2;t : Stage 1 is the transition from ages 6–7 to ages 8–9. Stage 2 refers to the transition from ages
8–9 to 10-11. Stage 3 is the transition from ages 10–11 to 12–13.
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estimated parental investment factor affects cognitive skills more strongly than non-
cognitive skills. This is because cognitive skills receive higher weight in the high school
graduation equation than in the log earnings equation. The relative strength of these
effects is reversed across the two metrics. The choice of a metric is not innocuous.

5. Evidence of Sensitive Periods of Investment in Skills

We now report evidence on critical and sensitive periods. Our analysis in this section
presents conditions under which we can identify the parameters of the technology
when they are allowed to vary over stages of the life cycle. We can identify whether
or not there are sensitive periods in the development of skills provided that we nor-
malize the investment factor on an input that is used at all stages of the child’s life
cycle. Results for an unanchored stage-specific technology, not correcting for non-
classical measurement error and serially correlated omitted inputs are presented in
Table 9. Using several alternative measures, including family income, trips to the
museum, and trips to the theater, we estimate the same qualitative ordering on the
sensitivity of parental investments at different stages of the life cycle.31 Using a

Table 10
Unanchored Stage Specific Technology Equations:a Measurement Error is
Nonclassical, No Omitted Inputs Correlated with ut , White Males, CNLSY/79

Noncognitive Skill uN
t+1

� �
Cognitive Skill uC

t+1

� �
Independent Variable Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Lagged noncognitive skill, uN
t

� �
0.9884 0.9427 0.7568 0.0597 0.0211 0.0014

(0.016) (0.018) (0.012) (0.012) (0.008) (0.008)
Lagged cognitive skill, uC

t

� �
0.0497 20.0463 0.0418 0.9192 0.8846 0.9101

(0.046) (0.042) (0.042) (0.024) (0.023) (0.021)
Parental investment, uI

t

� �
0.0532 0.1002 0.0435 0.1116 0.0367 0.0378

(0.013) (0.022) (0.019) (0.033) (0.002) (0.001)
Maternal education, S 0.0032 20.0029 0.0138 20.0050 0.0131 0.0021

(0.007) (0.007) (0.008) (0.010) (0.010) (0.010)
Maternal cognitive skill, A 20.0008 20.0062 20.0119 0.0510 0.0045 0.0194

(0.001) (0.001) (0.002) (0.021) (0.010) (0.004)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

uk
t+1 ¼ gk

1;tu
N
t + gk

2;tu
C
t + gk

3;tu
I
t + ck

1;tS + ck
2;tA + hk

t :

In this table we show the estimated parameter values and standard errors (in parentheses) of
gk

1;t; g
k
2;t ;g

k
3;t ;c

k
1;t ; and ck

2;t : Stage 1 is the transition from ages 6–7 to ages 8–9. Stage 2 refers to the tran-
sition from ages 8–9 to 10–11. Stage 3 is the transition from ages 10–11 to 12–13.

31. In the text we report the results for the normalization of investment relative to family income. In our
website appendix, we report estimates of alternative normalizations using ‘‘trips to the theater’’ and ‘‘trips
to the museum.’’
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likelihood ratio test, we test and reject the hypothesis that the parameters describing
the technologies are invariant over stages of the life cycle.32

Although we use test scores as a measure of output, transformation of output
units by D will not affect our inference about sensitive periods because D is time
invariant. When we allow the coefficients of the technology to vary over time we
find evidence of sensitive periods for parental investment in both cognitive and
noncognitive skills. Sensitive periods for parental investments in cognitive skills
occur at earlier ages than sensitive periods for parental investments in noncognitive
skills. The coefficient on investments in the technology for cognitive skills for the
transition from period one to period two (ages 6 and 7 to ages 8 and 9) is around
0.11 (with a standard error of 0.032). For the transition from Period 2 to Period 3
(ages 8 and 9 to 10 and 11) the corresponding coefficient decreases rather sharply
to 0.0364 (with a standard error of 0.014). For the final transition (ages 10 and 11 to
ages 12 and 13), the estimate is about the same: 0.0379, with a standard error of
0.014. The difference between the early coefficient and the two later coefficients

Table 11
Anchored Stage Specific Technology Equations:a Anchor is Log Earnings of the
Child Between Ages 23–28, Measurement Error is Classical, No Omitted Inputs
Correlated with ut , White Males, CNLSY/79

Noncognitive Skill uN
t+1

� �
Cognitive Skill uC

t+1

� �
Independent Variable Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Lagged noncognitive skill, uN
t

� �
0.9849 0.9383 0.7570 0.0216 0.0076 0.0005

(0.014) (0.015) (0.010) (0.004) (0.003) (0.003)
Lagged cognitive skill, uC

t

� �
0.1442 20.1259 0.1171 0.9197 0.8845 0.9099

(0.120) (0.115) (0.115) (0.023) (0.021) (0.019)
Parental investment, uI

t

� �
0.0075 0.0149 0.0064 0.0056 0.0018 0.0019

(0.002) (0.003) (0.003) (0.002) (0.001) (0.001)
Maternal education, S 0.0005 20.0004 0.0019 20.0003 0.0007 0.0001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Maternal cognitive skill, A 0.0001 20.0011 20.0019 0.0025 0.0002 0.0010

(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

a. Let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

uk
t+1 ¼ gk

1;tu
N
t + gk

2;tu
C
t + gk

3;tu
I
t + ck

1;tS + ck
2;tA + hk

t :

In this table we show the estimated parameter values and standard errors (in parentheses) of gk
1;t ; g

k
2;t; g

k
3;t ;

ck
1;t; and ck

2;t : Stage 1 is the transition from ages 6–7 ages 8–9. Stage 2 refers to the transition from ages 8–9
to 10–11. Stage 3 is the transition from ages 10–11 to 12–13.

32. Under the restricted model, we estimate 277 parameters and the value of the log likelihood at the max-
imum is -53,877. Under the unrestricted model, we estimate 305 parameters and the log likelihood attains
the maximum value of -53,800. The statistic L ¼ 22 lnLR2lnLUð Þ, where ‘‘R’’ denotes restricted and ‘‘U’’
denotes unrestricted, is distributed as chi-square with 28 (¼305-277) degrees of freedom. We find that L is
155, significantly above the critical value of 41.337 at a 5 percent significance level.
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is statistically significant. This finding is consistent with Periods 1 and 2 being sen-
sitive periods for cognitive skills.33

For noncognitive skills in Period 1, the coefficient on investments is only 0.0533,
with a standard error of 0.013. Then, it increases to 0.1067 in period two. It decreases

Table 12
The Weights in the Construction of the Investment Factor

Estimated

Weightsa
Ad Hoc

Weightsb

Share of Total

Residual Variance

due to Factorsc

Share of Total

Residual Variance

due to Uniquenessd

Ages 6 and 7

Log family income 0.0787 – 0.1188 0.8812

Number of books 0.0919 0.1667 0.1359 0.8641

Musical instrument 0.0917 0.1667 0.1358 0.8642

Newspaper 0.1083 0.1667 0.1564 0.8436

Child has special lessons 0.2251 0.1667 0.2783 0.7217

Child goes to museums 0.2019 0.1667 0.2569 0.7431

Child goes to theater 0.2025 0.1667 0.2575 0.7425

Ages 8 and 9

Log family income 0.0646 – 0.0686 0.9314

Number of books 0.0987 0.1667 0.1011 0.8989

Musical instrument 0.1338 0.1667 0.1323 0.8677

Newspaper 0.0828 0.1667 0.0862 0.9138

Child has special lessons 0.1990 0.1667 0.1848 0.8152

Child goes to museums 0.1912 0.1667 0.1789 0.8211

Child goes to theater 0.2299 0.1667 0.2076 0.7924

Ages 10 and 11

Log family income 0.0721 – 0.0537 0.9463

Number of books 0.1310 0.1667 0.0934 0.9066

Musical instrument 0.1566 0.1667 0.1097 0.8903

Newspaper 0.0973 0.1667 0.0711 0.9289

Child has special lessons 0.1386 0.1667 0.0983 0.9017

Child goes to museums 0.1785 0.1667 0.1232 0.8768

Child goes to theater 0.2260 0.1667 0.1510 0.8490

Ages 12 and 13

Log family income 0.0862 – 0.0349 0.9651

Number of books 0.1314 0.1667 0.0523 0.9477

Musical instrument 0.1109 0.1667 0.0445 0.9555

Newspaper 0.0968 0.1667 0.0390 0.9610

Child has special lessons 0.1036 0.1667 0.0417 0.9583

Child goes to museums 0.1890 0.1667 0.0735 0.9265

Child goes to theater 0.2821 0.1667 0.1059 0.8941

a. See text for derivation. We assume mutually uncorrelated measurement errors.
b. Ad hoc weighting is uniform weighting. If there are mI

t measures, each measure has weight 1
mI

t
:

c. Var Ỹ I
k;t

� 	
¼ aI

k;t

� 	2
Var uI

t

� �
+Var eI

k;t

� 	
. The share of the variance due to the factor is

aI
k;t

� 	2

Var uI
t

� �
=Var Ỹ I

k;t

� 	
.

d. Var eI
k;t

� 	
=Var Ỹ I

k;t

� 	
.

33. For the coefficients on cognitive skills, the lower bound for the t statistic for the hypothesis gC
I;2 ¼ gC

I;1

is 2.73. For the hypothesis gC
I;2 ¼ gC

I;3 it is 3.43.
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to 0.0457 in the final transition. This evidence suggests that sensitive periods for the
development of noncognitive skills occur at later ages in comparison to sensitive
periods for cognitive skills.34

For the sake of completeness, in Table 10 we show the estimated technologies for
cognitive and noncognitive skills when we allow the error term in the measurement
equations for noncognitive skills and investments to be correlated. Again, the esti-
mates in Tables 9 and 10 are very similar, suggesting that the assumption of indepen-
dence across measurement errors does not substantially affect our estimates. Table 11
shows that the qualitative evidence on sensitive periods reported in Table 9 is robust
to anchoring. Period 1 is the sensitive period for cognitive skills. Period 2 is the sen-
sitive period for noncognitive skills in all of these specifications. The effects of pa-
rental investment on noncognitive skill remain strong at all stages, and are stronger
and more precisely determined than in the case where we impose a stage-invariant
technology.35

6. Estimating the Components of the Home Investment Dynamic Factor

The CNLSY/1979 reports an aggregate HOME score by taking a simple mean
of the variables presented in Table 12 which assigns each component of
the score the same weight. For expositional purposes we call these ad hoc
weights.

The logic of the factor model speaks against uniform weighting. From Equation 9,
it follows that different components of the HOME score, Hi;t, weight latent uI

T dif-
ferently. A uniformly weighted average of the mean adjusted components of the
scores for person i is

H̃i;t ¼
1

mI
t

+
mI

t

j¼1

YI
i;j;t2mI

j;t

� 	
¼ 1

mI
t

+
mI

t

j¼1

aI
j;t

 !
uI

i;t+
1

mI
t

+
mI

t

j¼1

eI
i;j;t:ð27Þ

Table 13
Covariance between Measurement Error and the Dynamic Factors: White Males,
CNLSY/79

Period 1 Period 2 Period 3 Period 4

Cov 1
mN

t

+mN
t

k¼1 aI
t;k21

� 	
uI

t +
1

mN
t

+mN
t

k¼1e
I
t;k ; u

I
t

� 	
20.0271 20.0593 20.0498 20.0099

Cov 1
mC

t

+mC
t

k¼1 aI
t;k21

� 	
uI

t +
1

mC
t

+mC
t

k¼1e
I
t;k ; u

I
t

� 	
0.0113 0.0346 0.0421 0.0441

Cov 1
mI

t

+mI
t

k¼1 aI
t;k21

� 	
uI

t +
1

mI
t

+mI
t

k¼1e
I
t;k ; u

I
t

� 	
0.0237 0.0216 0.0066 0.0029

34. For the coefficients of investments on noncognitive skills, the lower bound for the t statistic for the hy-
pothesis gN

I;2 ¼ gN
I;1 is 2.16 and for the hypothesis gN

I;2 ¼ gN
I;3 it is 2.34.

35. When we anchor on high school graduation instead of log earnings, we find that parental effects on the
cognitive factor are stronger than on the noncognitive factor. This is also found in the stage-invariant tech-
nology. See Web Appendix Table 11.

768 The Journal of Human Resources



There is no guarantee that the term in front of uI
i;t in Equation 27 is 1. Thus, the

mean-adjusted HOME scores may be biased for uI
i;t for each person even if the

eI
i;j;t are mutually independent and mI

t gets large so the second term converges to zero.
The measurement error of the standard mean adjusted home score H̃i;t for uI

i;t for
person i is thus

H̃i;t2uI
i;t ¼

1

mI
t

+
mI

t

j¼1

aI
j;t21

 !
uI

i;t+
1

mI
t

+
mI

t

j¼1

eI
i;j;t:

Unless the term in parentheses on the right hand side equals zero, the measurement
error is correlated with the true score. Instrumenting H̃i;t by a variable Zi;t correlated
with uI

i;t but uncorrelated with eI
i;j;t and j 2 f1;.;mI

tg, will not produce consistent

Table 14
Estimated Factor Loadings and Standard Errors: White Males, CNLSY/79

Period 1 Period 2 Period 3 Period 4

Noncognitive Skills (Normalization: Antisocial Score)
Anxiety score 0.9006 0.8910 0.9364 1.0122

(0.0231) (0.0236) (0.0233) (0.0234)
Headstrong score 1.0671 0.9692 0.9590 1.1071

(0.0366) (0.0368) (0.0368) (0.0372)
Hyperactivity score 1.0028 0.8980 0.8673 0.9208

(0.0329) (0.0331) (0.0332) (0.0337)
Peer conflict score 0.7647 0.7252 0.7974 0.8472

(0.0188) (0.0182) (0.0189) (0.0194)

Cognitive Skills (Normalization: PIAT-Math Score)
Reading recognition score 1.2995 1.4878 1.6533 1.8307

(0.0244) (0.0274) (0.0322) (0.0411)

Parental Investments (Normalization: Family Income)
Number of books 0.2710 0.2514 0.6244 0.6797

(0.0098) (0.0097) (0.0163) (0.0167)
Number of musical instruments 0.3908 0.4346 0.5180 0.4622

(0.0103) (0.0151) (0.0158) (0.0153)
Newspaper subscriptions 0.4191 0.3559 0.4318 0.4430

(0.0311) (0.0308) (0.0317) (0.0318)
Special lessons 0.5546 0.4678 0.4487 0.3899

(0.0373) (0.0351) (0.0350) (0.0346)
Trips to the museum 0.9874 0.8619 0.9247 0.9384

(0.0412) (0.0427) (0.0433) (0.0434)
Trips to the theater 0.8895 0.8113 0.9764 1.0578

(0.0277) (0.0257) (0.0299) (0.0331)
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estimates of the skill technology. Trivially, it would produce consistent estimates of

the technology parameter for uI
i;t divided by 1

mI
t
+
mI

t

j¼1

aI
j;t.

36

Rewriting Equation 9 and removing the means ðỸ I
j;t ¼ YI

j;t2mI
j;tÞ, we obtain

Ỹ I
i;j;t

aI
j;t

¼ uI
i;t+

eI
i;j;t

aI
j;t

:

An unweighted average of the inverse-factor-weighted mean adjusted scores is unbi-
ased for uI

t for each person. The minimum variance unbiased combination of the in-

verse-factor loading weighted Ỹ I
i;j;t in the case of uncorrelated

eI
i;j;t

aI
j;t

assigns weight

(dropping the i subscript to simplify the notation)

vj;t ¼
ðaI

j;tÞ
2

VarðeI
j;tÞ

+mI
t

k¼1

ðaI
k;tÞ

2

VarðeI
k;tÞ

" #21

to
Ỹ I

j;t

aI
j;t

where +
mI

k;t

j¼1vj;t ¼ 1.

Arraying
Ỹ I

j;t

aI
j;t

into a vector,

Ỹ I
t ¼

Ỹ I
1;t

aI
1;t

;.;
Ỹ I

mI
t ;t

aI
mI

t ;t

 !
;

and the
eI

j;t

aI
j;t

into a vector,

eI
t ¼

eI
1;t

aI
1;t

;.;
eI

mI
t ;t

aI
mI

t ;t

 !
;

and defining Vt ¼ E eI
t

� �
#eI

t

� 
, where in this expression ‘‘E’’ denotes expectation, we

can produce optimal weights vt as the solution to

min vt#Vtvt subject to i#vt ¼ 1;

where i is a 1 by mI
t vector of ones. The solution in the general case is

vt ¼
1

ði#V21
t iÞðV

21
t iÞ;

which specializes to the weight previously given when Vt is diagonal. These weights
are optimal normalized home scores in the sense that they produce a minimum var-
iance unbiased estimator of uI

t that will produce less bias for the true coefficient of uI
t

in a least squares regression using uI
t as a regressor.

36. The proof is straightforward. Divide both sides of (27) by 1
mI

t
+
mI

t

j¼1

aI
j;t, substitute into Technology 6 and

apply standard IV.
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Table 15
Fractions of Total Variance Explained by Skill Factor versus Uniqueness: White
Males, CNLSY/79

Share of Total
Variance Explained

by Factor

Share of Total
Variance Explained

by Uniqueness

Ages 6–7
Noncognitive Measurements

Antisocial score 0.5321 0.4679
Anxiety score 0.3673 0.6327
Headstrong score 0.6289 0.3711
Hyperactivity score 0.5500 0.4500
Peer conflict score 0.2073 0.7927

Cognitive Measurements
PIAT-math 0.3512 0.6488
PIAT-reading recognition 0.9473 0.0527

Ages 8–9
Noncognitive Measurements

Antisocial score 0.5409 0.4591
Anxiety score 0.3983 0.6017
Headstrong score 0.5620 0.4380
Hyperactivity score 0.4371 0.5629
Peer conflict score 0.2005 0.7995

Cognitive Measurements
PIAT-math 0.3938 0.6062
PIAT-reading recognition 0.9119 0.0881

Ages 10–11
Noncognitive Measurements

Antisocial score 0.5266 0.4734
Anxiety score 0.4460 0.5540
Headstrong score 0.5368 0.4632
Hyperactivity score 0.4286 0.5714
Peer conflict score 0.2738 0.7262

Cognitive Measurements
PIAT-math 0.3835 0.6165
PIAT-reading recognition 0.9181 0.0819

Ages 12–13
Noncognitive Measurements

Antisocial score 0.5040 0.4960
Anxiety score 0.4803 0.5197
Headstrong score 0.6324 0.3676
Hyperactivity score 0.4064 0.5936
Peer conflict score 0.2613 0.7387

Cognitive Measurements
PIAT-math 0.3561 0.6439
PIAT-reading recognition 0.9149 0.0851

Note: For Ỹk
j;t ¼ ak

j;tu
k
t + ek

j;t; ak
j;t

� 	2
Var uk

t

� �
=Var Ỹk

j;t

� 	
is share of variance explained by factor.

Var ek
j;t

� 	
=Var Ỹk

j;t

� 	
is share of variance explained by uniqueness.
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The importance of these weights depends on the importance of the measurement
error in the components of these scores. For example, consider the number of books
available to the child. This variable is correlated with parental inputs because parents
who invest more in the development of their children will tend to spend more resour-
ces on books. The number of books is unlikely to be a perfect indicator of total pa-
rental input. Our method allows for imperfect proxies. Under our method, the
number of books a child has at age t (Rt) is modeled as Rt ¼ aI

R;tu
I
t + eI

R;t so that
VarðRtÞ ¼ ðaI

R;tÞ
2 VarðuI

t Þ+VarðeI
R;tÞ, because of the independence between uI

t and
eI

R;t. We can decompose the total unobserved variance into two terms: one that is
due to the parental input, the other that is orthogonal to it. The latter arises from
measurement error. The relative importance of the two sources of error can be com-
puted as:

sI;R;t ¼
ðaI

R;tÞ
2VarðuI

t Þ
ðaI

R;tÞ
2VarðuI

t Þ+ VarðeI
R;tÞ

and

sI;eR;t ¼
VarðeI

R;tÞ
ðaI

R;tÞ
2VarðuI

t Þ+ VarðeI
R;tÞ
:

Table 12 reports that sI,R,1 ¼ 0.1359 (for the first stage, corresponding to ages six and
seven), while sI,eR,t ¼ 0.8641. Most of the unobservable variance in ‘‘the number of
books a child has’’ is actually not informative on the unobserved parental input uI

t .
We report the same measures for the other input variables in Table 12. Over stages
of the life cycle, all of the input measures tend to become relatively more error laden
as proxies for uI

t.
Table 12 also displays the estimated optimal weights vj;t for each measurement j at

each period t. The weights are far from uniform across inputs, as is assumed in

Table 16
OLS Estimation of the Technology Equations: Measurement Error is Classical,
Absence of Omitted Inputs Correlated with u#t, White Males, CNLSY/79

Independent Variable Antisocial Score (t + 1) PIAT Math (t + 1)

Antisocial score, t 0.6431 0.0333
(0.0165) (0.0096)

PIAT math, t 0.0933 0.5909
(0.0317) (0.0184)

HOME score, t 0.0147 20.0137
(0.0059) (0.0034)

Maternal education 0.0358 0.0208
(0.0091) (0.0053)

Maternal ASVAB arithmetics 20.0254 0.0658
(0.0190) (0.0110)
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constructing the traditional home score. Note further that the weights change over the
life cycle reflecting the differential importance of measurement-error variance at dif-
ferent ages. The change in the error variance reflects in part the change in aI

j;t with t.
Our estimates show that whether the child has special lessons has high weight early
on (ages 6 and 7 to 8 and 9), but the weight declines considerably in the later periods
(ages 10 and 11 to 12 and 13). The variable that indicates the number of books at
home, on the other hand, exhibits the opposite behavior. It starts small in early ages,
but becomes more important at later ages. It is interesting to note that variables that
describe the number of books at home and whether the family takes a newspaper,
although informative about home investments, receive lower weight in our method
than other components of the home score. The optimal weighting differs greatly from
the uniform weighting traditionally used in constructing home scores.

In our sample, the covariance between the measurement error ðH̃i;t2uI
i;tÞ and the

true score uI
t is relatively weak (see Table 13). This happens because 1

mI
t
+mI

t

k¼1aI
t;k is

Table 17a
The Percentage Impact on Log Earnings at Age 23 of an Exogenous Increase by
10 Percent in Investments at Different Periods, White Males, CNLSY/79

Total Percentage
Impact on Earnings

Percentage Impact on
Log Earnings Exclusively
through Cognitive Skills

Percentage Impact on
Log Earnings Exclusively

through Noncognitive Skills

Period 1
0.2487 0.1247 0.1240
(0.0302) (0.0151) (0.0150)

Period 2
0.3065 0.0445 0.2620
(0.0358) (0.0052) (0.0306)

Period 3
0.2090 0.0540 0.1550
(0.0230) (0.0059) (0.0170)

Note: Let Ỹ I
j;t denote the jth measurement on the parental investment dynamic factor uI

t with the mean re-
moved. We obtain the predicted parental investment û

I

t by applying the weights reported in Table 12 and
measurements in the following way:

û
I

t ¼ +
mI

t

j¼1

vj;t Ỹ
I
j;t :

We then simulate the model and obtain the adult level of cognitive and noncognitive skills. Using the an-
choring equation, we then predict baseline log earnings, log E. We then perform a counterfactual simula-
tion. We investigate the level of adult skills if investments at different periods were increased by 10 percent
and we check the impact on log earnings, log Et, where Et is the counterfactual earnings if investment in
period t were 10 percent higher, t ¼ 1, 2, 3. In this table, we report the percentage change in earnings, that
is log Et–log E.

Cunha and Heckman 773



close to 1. See Table 14 for the factor loadings and normalized factor loadings for
noncognitive, cognitive, and parental investment (HOME score) components. The

fact that 1
mI

t
+mI

t

k¼1aI
t;k ¼ 1 implies that in our sample, standard IV methods designed

to protect against classical measurement error in the standard HOME score are likely
to be effective.

Table 15 displays the reliability in the test scores for cognitive and noncognitive
skills in a manner comparable to the estimates of the share of measurement error
for the components of the HOME score in Table 12. The components of both cog-
nitive and noncognitive tests are measured with substantial error. Simple unweighted
averages of the components of these tests are biased for uC

t and uN
t for each person.

We display the proportion of the variance due to measurement error in each of these
scores for each test in the second column. The share of measurement error is roughly
stable across ages but fluctuates for some components (for example, hyperactivity).

Table 17b
The Percentage Impact on the Probability of Graduating from High School of an
Exogenous Increase by 10 Percent in Investments at Different Periods, White Males,
CNLSY/79

Total Percentage
Impact

Percentage Impact
through Cognitive

Skills

Percentage Impact
Exclusively through
Noncognitive Skills

Period 1
0.6441 0.5480 0.0961
(0.0789) (0.0672) (0.0118)

Period 2
0.3980 0.1951 0.2029
(0.0466) (0.0229) (0.0238)

Period 3
0.3565 0.2366 0.1198
(0.0389) (0.0258) (0.0131)

Note: Let Ỹ I
j;t denote the jth measurement on the parental investment dynamic factor uI

t with the mean re-
moved. We obtain the predicted parental investment û

I

t by applying the weights reported in Table 12 and
measurements in the following way:

û
I

t ¼ +
mI

t

j¼1

vj;t Ỹ
I
j;t :

We then simulate the model and obtain the adult level of cognitive and noncognitive skills. Using the an-
choring equation, we then predict the probability of graduating from high school, p. We then perform a
counterfactual simulation. We investigate the level of adult skills if investments at different periods were
increased by 10 percent and we check the impact on the probability of graduating from high school, pt,
where pt is the counterfactual graduation probability if investment in period t were 10 percent higher.
In this table, we report the percentage change in probability of graduating, that is log pt – log p. Standard
errors in parentheses.
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Our evidence of substantial measurement error in all of the measures of inputs and
outputs suggests that simple OLS estimates of the technology of skill formation are
likely to be considerably biased. Table 16 presents an OLS version of the model with
estimates reported in Columns 1 and 4 of Table 2 that use income as the investment
anchor.37 The contrast between the estimates reported in the first and fourth columns
of Table 2 and the least squares estimates in Table 16 is striking. Generally, OLS
coefficients are downward-biased, showing much smaller self productivity, cross pro-
ductivity and investment productivity effects. The estimated effect of the HOME
score on the Math score is perverse.

V. Conclusion

This paper identifies and estimates a model of investment in child
cognitive and noncognitive skills using dynamic factor models. The model is based
on the analysis of Cunha and Heckman (2007) and Cunha, Heckman, Lochner, and
Masterov (2006).

Our empirical methodology accounts for the proxy nature of the measurements of
parental investments and outcomes and for the endogeneity of inputs. It allows us to
utilize the large number of potentially endogenous proxy variables available in our
data set without exhausting the available instruments. Our instruments are justified
by the model of Cunha and Heckman (2007). To avoid the arbitrariness that arises
in using test scores to measure the output of parental investments, we anchor esti-
mated effects of investment in the metric of adult earnings and in the metric of
the probability of high school graduation. The choice of the metric affects our con-
clusions about the relative productivity of parental investment on cognitive and non-
cognitive skills. We report results for alternative normalizations of the scale of
parental investment and generally find agreement among alternative specifications.

We reach the following major conclusions. (1) We find high levels of self produc-
tivity in the production of cognitive and noncognitive skills. (2) We find evidence of
sensitive periods for parental investments in both types of skills with the sensitive
period for cognitive skill investments occurring earlier in the life cycle than the sen-
sitive period for investments in noncognitive skills. (3) We also find substantial ev-
idence of measurement error in the home input proxies and corollary evidence of
attenuation bias in the OLS estimates of the technology of skill formation. (4) The
estimated relative effect of parental input on cognitive and noncognitive skills
depends on the metric in which we measure input.

Different adult outcomes are affected differently by cognitive and noncognitive
skills. Sensitive periods occur at different stages for cognitive and noncognitive
skills. Therefore, different stages of the child’s life cycle are sensitive periods for in-
vestment to achieve different adult outcomes.

To show this, we simulate the effect of a 10 percent increase in investment at dif-
ferent stages of the life cycle of the child on log earnings at age 23 (Table 17a) and

37. We get similar results for other anchors.
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on high school graduation (Table 17b). These estimates include the cross effects of
each skill on the other, self productivity, and direct investment effects.38

For the log earnings outcome, the strongest effect is for investment in Period 2.
This operates primarily through its effect on noncognitive skills which then percolate
into the next period and raise both cognitive and noncognitive skills. The strongest
effect of investment on earnings operating through effects on cognitive skills is in
Stage 1. Even at Stage 1, however, the effects of investment on cognitive skills
and noncognitive skills are equally strong.

For high school graduation, the strongest effect of investment comes in Period 1
and it operates primarily through its effects on cognitive skills. Even though Period 1
is important, the effects of investment in later periods are substantial.

Missing from this paper is an estimate of the key substitution parameters that de-
termine the cost of later remediation relative to early investment. To recover these
crucial parameters requires a more general specification of the technology and more
advanced econometric methods. These problems are addressed in Cunha, Heckman,
and Schennach (2007), who also present a more general nonlinear approach to an-
choring the test scores in an outcome measure.

Appendix 1

Interpretation of the Measurement Equations as
Derived Demands

Write a production function

uI
t ¼ uI

t ðX1;t;.;XmI
t ;t
Þ;

which is the output of the investment sector. Let Xt ¼ ðX1;t;.;XmI
t ;t
Þ#.

Pt ¼ ðPt;.;PmI
t ;t
Þ is the price vector.

The problem of the family is to minimize costs,

min Pt Xt+lðuI
t 2uI

t ðXtÞÞ
� 

:

The first order condition for this problem is

Pi;t2l
@uI

t ðXi;tÞ
@Xi;t

¼ 0; i 2 f1;.;mI
tg

38. Allowing for stage-specific coefficients in Technology 6, we obtain the effect of investment in a
period k stages before the terminal period on adult abilities as

uT+1 ¼
Yk

j¼0

AT2j

 !
BT2kuI

T2k :

The effects of variations in components of uI
T2k operating through cognitive and noncognitive skills are

reported in Tables 17A and 17B. (The top element of BT2k corresponds to the noncognitive effect of in-
vestment in the period; the bottom element corresponds to the cognitive effect of investment in the period.)

776 The Journal of Human Resources



for an interior solution. We can derive input demands as a function of prices and out-
put levels

Xi;t ¼ hj;tðPt; u
I
t Þ; j 2 f1;.;mI

tg;

which implicitly define the measurement equations.
For the Cobb-Douglas case, the technology is

uI
t ¼ At

YmI
t

i¼1

Xai
i;t :

The input demand function for input i is

ln Xi;t ¼
1

+mI
t

j¼1aj

ln uI
t 2

ln At

+mI
t

j¼1aj

2 +
mI

t

j¼1

ln
ajPi

aiPj

� �
; i 2 f1;.;mI

tg:

Accounting for measurement error,

YI
i;t ¼ ln Xi;t + eI

i;t:

In the Cobb-Douglas case, all inputs (measurements) have the same factor loading on
lnuI

t . Only the intercepts which depend on the share parameters and the prices are
different. In the Cobb-Douglas case, one would use logs of the factors.39

In the Leontief case,

uI
t ¼ min

X1;t

a1
;.;

XmI
t ;t

amI
t

( )
:

The input demand equations are

Xi;t ¼ aiu
I
t ; i 2 f1;.;mI

tg;

and in logs,

ln Xi;t ¼ ln ai + ln uI
t ;

so

YI
i;t ¼ ln Xi;t + eI

i;t; i 2 f1;.;mI
tg:

Thus all factor loadings on lnuI
t are unity.

A generalized Leontief function writes

39. One can always write ũ
I
t ¼ loguI

t and work with ũ
I
t everywhere.
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uI
t ¼ min

Xt1

1;t

a1
;.;

X
t

mI
t

mI
t ;t

amI
t

8<
:

9=
;:

Thus,

ln Xi;t ¼
1

ti
ln ai +

1

ti
ln uI

t ; i 2 f1;.;mI
tg:

In this case, the factor loadings are input-specific.

Appendix 2

Sample Likelihood for the Basic Estimation Strategy

We derive the likelihood and describe the basic estimation strategy for the model
with classical measurement error and without serially correlated ht. The likelihood
for the more general models we estimate follows from a straightforward modification
of the analysis in this appendix. In period t, let mt ¼ mN

t + mC
t + mI

t where mN
t is the

number of measurements on the noncognitive factor, and mC
t and mI

t are defined ac-
cordingly for the cognitive and investment factors. Here we explicitly allow for the
number of measurements to be period specific. Let Yt denote the ðmt31Þ vector

Y#t ¼ ðYN
1;t;.; YN

mN
t ;t
; YC

1;t;.; YC
mC

t ;t
; YI

1;t;.; YI
mI

t ;t
Þ:

In each period t, let u#t ¼ uN
t ; u

C
t ; u

I
t

� �
. We use at to denote the ðmt33Þ matrix con-

taining the factor loadings.

at ¼

1 0 0
..
. ..

. ..
.

aN
mN

t ;t
0 0

0 1 0
..
. ..

. ..
.

0 aC
mC

t ;t
0

0 0 1
..
. ..

. ..
.

0 0 aI
mI

t ;t

2
6666666666666664

3
7777777777777775

Let et denote the ðmt31Þ vector of uniquenesses and Kt¼ VarðetÞ where Kt is ðmt3mtÞ
matrix. With this notation, we can write the observation equations in period t as:

Yt ¼ atut + et:ð28Þ
Recall that we use S, A to denote the mother’s education and cognitive ability, re-

spectively. Let Gt be a (3 3 3) matrix of coefficients. Let c1;t and c2;t denote (3 3 1)
vectors. The Gt matrix and the vectors c1;t and c2;t contain the technology parame-
ters for both the cognitive and noncognitive factors:
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ut+1 ¼ Gtut + c1;tS + c2;tA + ht

where ht is a (3 3 1) vector of error terms in the technology equations. Define
Qt¼ VarðhtÞ.

We assume that u1jS;A;N a1;P1ð Þ. In the text, we establish the conditions for iden-
tification of a1 and P1. We also assume that et;N 0;Ktð Þ and ht;N 0;Qtð Þ. Then, given
the normality assumption, together with linearity, it follows that Y1;N m1;F1ð Þ where:

m1 ¼ a1a1 and F1 ¼ a1P1a#1 + K1:

Normality is not required for identification but it facilitates computation. In
work underway, we relax this assumption. To proceed in the normal case, we
apply the Kalman filtering procedure (for details on the derivations see, for
example, Harvey 1989 or Durbin and Koopman 2001). If we define
Yt ¼ Y1;.; Ytð Þ; at+1 ¼ Eðut+1jS;A; YtÞ; and Pt+1 ¼ Varðut+1jS;A; YtÞ, it is straight-
forward to establish that:

at+1 ¼ Gtat + GtPta#t ðatPta#t + KtÞ21ðYt2atatÞ+ c1;tS + c2;tA;

and

Pt+1 ¼ GtPtG#t 2GtPta#t ðatPta#t + KtÞ21atPtG#t +Qt:

Consequently, using Equation 28 we obtain Yt+1jS;A; Yt;N mt;Ftð Þ where:

mt ¼ atat and Ft ¼ atPta#t+Kt:

Assuming that we observe mother’s schooling, S, and mother’s education, A, we can
decompose the contribution of individual i to the likelihood as:

f Yi;T ; Yi;T21;.; Yi;1jSi;A
� �

¼ f Yi;1jSi;A
� �YT

t¼2

f Yi;tjSi;A; Y
t21
i

� �
;

where Yt21
i is the history of Yi up to time period t-1. In general we observe S but

not A. However, we have shown that we can identify the distribution of A if we have
a set of cognitive test scores for the mother, M. Consequently, we can integrate A out:

f Yi;T ; Yi;T21;.; Yi;1jSi

� �
¼
Z

f Yi;1jSi;A
� �Y

f Yi;tjSi;A; Y
t21
i

� �
fAðAÞdA:

Assuming that observations are i.i.d. over children, the likelihood of the sample is

Yn

i¼1

f Yi;T ; Yi;T21;.; Yi;1jSi

� �
¼
Yn

i¼1

Z
f Yi;1jSi;A
� �YT

t¼2

f Yi;tjSi;A; Y
t21
i

� �
fAðAÞdA:

Missing data can be integrated out and so all cases can be used even in the presence
of missing data. Extensions to the other cases are straightforward and for the sake of
brevity are deleted.
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