
INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

Formulating Integer Linear Programs:
A Rogues’ Gallery

Gerald G. Brown and Robert F. Dell

Operations Research Department, Naval Postgraduate School
Monterey, California 93943

April 2006

“Convincing yourself is easy,
 persuading a colleague is harder,
 but proving it to a computer is hardest of all !”

R. Hamming, ca 1985

Abstract
The art of formulating linear and integer linear programs is, well, an art: It is hard to teach, and
even harder to learn. To help demystify this art, we present a set of modeling building blocks that
we call “formulettes.” Each formulette consists of a short verbal description that must be expressed
in terms of variables and constraints in a linear or integer linear program. These formulettes can
better be discussed and analyzed in isolation from the much more complicated models they
comprise. Not all models can be built from the formulettes we present. Rather, these are chosen
because they are the most frequent sources of mistakes. We also present Naval Postgraduate School
(NPS) format; a define-before-use formulation guide we have followed for decades to express a
complete formulation.

1. Introduction

Formulating linear and integer linear programs is an acquired skill, and developing this skill
requires a lot of practice. We present some simple “how-to” examples selected for their usefulness
and their likelihood to confuse.

Textbooks are full of complete examples that show how entire word problems are formulated, rather
than how the constituent components of these formulations are assembled, step-by-step, into a final
monolith. Stevens and Palocsay [2004] present a nice summary of typical textbook guidance,
review relevant research on cognitive psychology and word problem solving, and suggest a
sequence of formulation steps. They report this has helped their introductory management science
business students translate formulation “word problems” into linear programs.

We have learned that the best way to teach our graduate engineering students the art of formulation
is to distill common building blocks --- ubiquitous components drawn from many large, complex,
real-world models --- and present these in isolation. The idea is to show how to convert verbal
specification of a single concept into a mathematical description, and vice versa, and how to verify
that this translation retains its intended meaning.

We call our primitive examples “formulettes.” We have compiled these from experience as
consultants, and with our colleagues and military officer students who exhibit a wide range of

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 2

preparation and experience. For instance, our coursework ranges from a one-quarter optimization
survey course to a three-quarter graduate optimization sequence, with following electives. We have
learned to pay close attention to the common mistakes we struggle with, and our collection of
formulettes expresses the essence of each common point of failure or confusion.

Surprisingly, a short set of examples covers almost all common sources of confusion.

We present each formulette using an identifying index, a short verbal description of what we want
to do (written in quotes), an example of a mathematical formulation that achieves the desired result,
and a “take away” from the example explaining why it appears in this guide.

Why not use this as a self test?

Rather than just glancing though our guide, and missing all the fun and most of the insights, read
each example’s verbiage, and try your hand at formulating a response.

Then, compare your result with ours.

If your answer differs from ours, how do you explain this? If they agree, can you see why we
include this example in our rogues’ gallery?

2. Linear Programming Formulettes

Each linear programming formulette, L1-L6, represents a category from a large library of drills we
make our students solve for homework and on examinations.

For each formulette, write linear constraints in terms of the non-negative, continuous decision
variables X1, X2, and X3.

L1) “For each unit of X1, there must be at least 5 units of X2.”

5 X1 X2≤

The most frequent wrong answer is 5X1 X2≤ . We always suggest trying a sample
numerical value for X1 and deriving what that implies for a lower bound on X2. E.g., 3X1 =
yields 15X2 ≥ .

L2) “A port can load either 11 X1’s per week, or 45 X2’s, or 30 X3’s. What combinations of

X1, X2 and X3 can be loaded in 10 weeks?”

(1/11) (1/ 45) (1/ 30) 10X1 X2 X3+ + ≤

The most frequent wrong answer is 11 45 30 10X1 X2 X3+ + ≤ . A unit check helps here: 11
“X1’s per week” times “X1’s” yields “11 X1’s squared per week.” Another common answer
is the restriction (1/11) (1/ 45) (1/ 30) 10X1 X2 X3+ + = that eliminates feasible options such
as loading nothing at all: 0X1 X2 X3= = = .

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 3

L3) “There must be exactly 7 units of X1 for every 9 units of X2.”

9 7X1 X2=

This is called a fixed-assay (or fixed-recipe, or fixed-proportion) constraint. The formulette
might be better expressed: (1/ 7) (1/ 9)X1 X2= . Here too, we suggest trying a numerical
example for X1 and see what that implies for X2.

L4) “Sorties of type X1 must constitute at most 33% of all sorties of type X1, X2, and X3.”

0.67 0.33 0.33X1 X2 X3≤ +

This is a discretionary recipe stating an extreme limit on admissible sortie mixes. We often
don’t simplify the expression as above, leaving it as (33/100)().X1 X1 X2 X3≤ + + The
confusion here usually arises because there is no fixed number of sorties given. Thus, we
are stating a recipe that can be applied to any total number of sorties. A nonlinear

expression here 33
100

X1
X1 X2 X3

⎛ ⎞≤⎜ ⎟+ +⎝ ⎠
 can also lend insight as an intermediate step before

converting to a linear expression.

L5) “What mixtures of punch from 80-proof X1, 100-proof X2, and 0-proof X3 are at least 30-
proof?” (Proof is a number that is twice the percent by volume of alcohol present.)

(80 30) (100 30) (0 30) 0X1 X2 X3− + − + − ≥

This is another discretionary recipe that is easier to understand when written as:
80 100 0 30().X1 X2 X3 X1 X2 X3+ + ≥ + + We point out equivalent forms using percent
alcohol (divide by 2) and fraction alcohol (divide by 200). (A note from naval history:
Burning a mixture of equal quantities of black gun powder and rum yields an ash that was a
quick chemical “powder proof” of alcohol content easily performed at sea a few hundred
years ago.)

L6) “Process X1 produces 24.5 units of X2 and 73.1 units of X3 per hour.”

24.5
73.1

X2 X1
X3 X1

=
=

The X1-process produces multiple outputs at a fixed, synchronous rate.

3. Integer linear programming formulettes

Our first optimization course introduces binary decision variables right away, long before we teach
how a solver accommodates such an embellishment. In the following examples, variables X are still
continuous and non-negative, but variables Z are binary. The usual interpretation of a binary
variable is that a value of one means “true”, “yes”, “select”, or “do”, while zero respectively means
“false”, “no”, “reject”, or “don’t.”

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 4

B1) “You can launch satellite Z1 only if you have chosen a compatible booster Z2.” “Z1 ONLY

IF Z2” “Z1 is sufficient for Z2” “Z1 implies Z2”

0 1

0 1 1
1 0 1

Z2

Z1
 Z1 Z2≤

At the left is the “truth table” for this expression. Our students are familiar with a truth table
so we use one to systematically enumerate each case in the English description and/or show
the constraint expresses the intended relationship.

B2) “Z3 can be produced if and only if a machine Z1 and a worker Z2 are available.” “Define Z3
as ‘Z1 AND Z2’”:

0 1

0 0 0
1 0 1

Z2
Z3

Z1

=

1

Z3 Z1
Z3 Z2
Z3 Z1 Z2

≤
≤
+ ≥ +

At the left is the truth table. A common wrong answer is the expression “Z3=Z1*Z2.” The
continuous relaxation of “Z3=Z1*Z2” is NOT linear.

Systems working synergistically often have increased capability that cannot be linearly
expressed solely in terms of, for instance, Z1 and Z2. The binary variable Z3 can be used to
convey any sub- or super-linear synergistic effect between Z1 and Z2. If the objective
function maximizes the value of Z3, the last inequality is not needed.

B3) “Project Z3 can be funded if and only if project Z1 or project Z2, or both projects are
funded.” “Define Z3 as the ‘INCLUSIVE OR’ of Z1 and Z2.”

0 1

0 0 1
1 1 1

Z2
Z3

Z1

=

Z3 Z1 Z2
Z3 Z1
Z3 Z2

≤ +
≥
≥

“INCLUSIVE OR” translates to “Z3 if and only if Z1, or Z2, or both Z1 and Z2.” At the left
is the truth table. If the objective function maximizes the value of Z3, the latter two
inequalities are not needed.

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 5

B4) “Packaging line Z3 can receive product from either processing line Z1 or processing line
Z2.” “Define Z3 as the ‘EXCLUSIVE OR’ of Z1 and Z2.”

0 1

0 0 1
1 1 0

Z2
Z3

Z1

=

2

Z3 Z1 Z2
Z3 Z1 Z2
Z3 Z1 Z2
Z3 Z1 Z2

≤ +
≥ + −
≥ − +
≤ − −

“EXCLUSIVE OR” translates to “Z3 if Z1 or Z2, but not both Z1 and Z2.” At the left is the
truth table. Students usually don’t find this formulette obvious at all. Do you?

B5) “NOT Z.”

1 Z− .

This “binary reflection” turns out to be useful, especially in conjunction with the previous
logical conditions.

B6) “From the set Z1, Z2, ..., Zk, select at most one.”

... 1Z1 Z2 Zk+ + + ≤

This is called a “pack” constraint.

B7) “From the set Z1, Z2, ..., Zk, select exactly one.”

... 1Z1 Z2 Zk+ + + =

This is called a “partition” constraint.

B8) “From the set Z1, Z2, ..., Zk, select at least one.”

... 1Z1 Z2 Zk+ + + ≥

This is called a “cover” constraint.

B9) “From the set Z1, Z2, ..., Zk, select more than three.”

... 4Z1 Z2 Zk+ + + ≥

This is called a “cardinality” constraint. Did you catch that “more than three” is at least
four? While ... 3Z1 Z2 Zk+ + + > is a mathematically correct expression, its linear
programming relaxation isn’t tight. Our students know the divisibility assumption and that
there is no practical difference between > and ≥ in a linear program, or in an algebraic
modeling language.

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 6

B10) “If you build a warehouse Z=1, you can store up to 13 tons of X in it.” “If Z=0, then X=0,
but if Z=1, then 13X ≤ .”

13X Z≤

Z is called the controlling variable and X is the controlled variable. This constraint is called
a “variable upper bound.”

B11) “If you build a warehouse Z=1, it must be used to store at least 56 tons but no more than 141
tons.” “If Z=0, then X=0, but if Z=1, then X ∈[,]56 141 .”

56
141

X Z
X Z
≥
≤

X is called a “semi-continuous” variable, controlled by binary variable Z.

B12) “Use binary variables Z1, Z2, Z3, and Z4 to restrict variable X to a discrete value in the range
5,6,…,15.”

5 1 2 4 3X Z1 Z2 Z3 Z4= + + + +

This is a binary factorization that can also be written as 5 1 2 4 8X Z1 Z2 Z3 Z4= + + + + with
the additional constraint 15X ≤ . Generally, if you can accommodate a general integer
variable directly, this is preferred to a binary factorization. However, once in a while we
need to restrict some continuous variable to a domain that is a combination of points and
intervals, and there are situations where an all-binary model is easier to solve with help from
pre-solve reductions not applicable to general integers.

4. Subscripted Examples

Converting to notation using subscripts, here are a few more formulettes:

S1) “Given baseline solution ()* * *, , ,1 2 nz z z… , make sure revision (), , ,1 2 nZ Z Z… differs in at

least one position (or variable).”

| * 0 | * 1
(1) 1i i

i ii z i z
Z Z

= =
+ − ≥∑ ∑

This left-hand side of this expression computes the non-negative Hamming distance between
the baseline and any revision [Brown, Dell, and Wood 1997]. You can use this to limit the
number of bits that differ, or to force a number of bits to differ. Here, we just want a binary
revision distinct in at least one bit. The first summation counts the number of baseline
zeroes that are revised to one, and the second summation counts ones revised to zero.

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 7

S2) “During each period t in the planning horizon, fly no more than tlimit sorties , , ,i j m tX using

aircraft ‘i=FA18’ to drop munition ‘m=SL72’ against all targets j.”

, , ,FA18 SL72 tj tj
X limit t≤ ∀∑

We remind our students to always ensure each index is under control in an expression, and
there are only three, mutually exclusive, exhaustive ways to control an index: Either

a. Specify its value explicitly as is done above for ‘i=FA18’ , or

b. Sum over its value as is done above for the j index, or

c. Specify that the expression should be formed for specified members of index

sets as is done above for index t.

S3) “For each period t=1,2,…, in the planning horizon, model periodic review of a continuous

process, where the period t purchases, tbuy , and period t disposals, tdispose are aggregated
by planning period and the inventory state tX is reckoned at the end of each period t. Start
with an initial inventory of tX ()0t = units.”

1 , 1, 2,...t t ttX X buy dispose t−= + − =

Clearly, we can formulate an equivalent model substituting “begin” for “end.” Ambiguity
about the timing of state reviews is a frequent source of trouble.

The time-recursive expression above can be expressed in time-cumulant form:

0 (), 1, 2,...t
t

X X buy dispose tτ τ
τ≤

= + − =∑

S4) “For each period t=1,2,…, in the planning horizon, begin ()0t = with initial inventory of

units that are c years old, ,t cX . Then account for period-by-period purchases, tbuy , and

retirements, ,t cdispose , to determine active inventory at the end of each period t.”

, ,1, 1 1 11
, 1, 2,...; 1, 2,...t c t ct c t cc

X X buy dispose t c− − − =>
= + − = =

To keep track of the age of each unit, each cohort c must be maintained as a separate
commodity. This terse example shows how age-limited inventory expands the size of the
model. We placed conditional term (c>1) and (c=1) on the ,t cX and tbuy variables in lieu
of writing a separate constraint set for initial purchases.

Curiously, although inventory models appear in every textbook, aged inventory examples
like this rarely appear. Yet, accounting for age-influenced costs and effects is a business
bookkeeping requirement.

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 8

S5) “Each ship may spend two contiguous months in port dry dock, but the dry dock can

accommodate at most four ships during any month...”

Let ,s tZ be a binary variable with value one if ship s starts a two-month port dry dock at the
beginning of month t (and ends at the beginning of month t+2), and zero otherwise.

,
max(1, 2 1)

4, 1, 2,...,
t

s t
s t t

Z t T′
′= − +

≤ =∑ ∑

The binary variable definition above is not typically the first choice for our students. More
common is “let ,s tZ be a binary variable with value one if ship s is in dry dock during
month t, and zero otherwise.” This simplifies the above constraint to

, 2, 1,2,...,s t
s

Z t T≤ =∑

but requires additional constraints
, , 1 , 1

, , 1

, , 1 , 2

,1

2 , 2

s t s t s t

s T s T

s t s t s t

Z Z Z s t T
Z Z s
Z Z Z s t

− +

−

− −

≤ + ∀ < <

≤ ∀

+ + ≤ ∀ >

to ensure a ship stays in dry dock for consecutive months. This results in a model that often
takes longer to solve.

S6) “During each period t=1,2,…, in the planning horizon, a production line can either be in an
operating, mothballed, or closed mode. The production line is open at the start of the
planning horizon. If the line is ever closed, it must stay closed for the remainder of the
planning horizon.”

Let , ,m m tZ ′ be a binary variable with value one if the production line transitions from mode
m at the start of week t-1 to mode m′at the start of week t.

," ",
,

, ,
, '

" "," ","0"

1

1

1,

m closed t
m t

m m t
m m

open open

Z

Z

Z t′

≤

=

= ∀

∑

∑

The first pack inequality ensures that if the line closes, it stays closed, the second definition
fixes the mode at the start of the planning horizon, and the last partition equation regulates
period-to-period transitions.

S7) “Ensure the production line transitions from mode m (to any mode m′) at the start of week t
only if it was operating in mode m during the previous week.”

, , , , 1, , 1m m t m m t

m m
Z Z m t′ ′ −

′ ′

≤ ∀ >∑ ∑

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 9

There is usually a different operating cost for each mode, and a transition cost between each
successive pair of modes, and the binary variables , ,m m tZ ′ give us the fidelity we need to
represent this. By restricting permitted pairs of the m and m′ indices, we can express
conditions such as: “once operating, continue operating,” “once closed, stay closed,” and
“the line can operate in period t only if it was operating or mothballed in period t-1.” Here,
a cost , ,m m tc ′ associated with transition decision , ,m m tZ ′ can represent a setup or a
changeover.

Textbook examples usually express a simple fixed cost associated with an open-close binary
state variable for each planning period, and no period-to-period consequences --- we seldom
find this simplification useful in practice.

5. Formulating in NPS Format

We have developed and always use what we have immodestly come to call Naval Postgraduate
School (NPS) format for all our formulations. Further, to gain our advice and support, we require
our correspondents to use this format, and help them do so. NPS format defines model indices,
problem data, decision variables, the objective function(s) and constraints expressed in these terms,
and finally offers a discussion of the formulation that clarifies any potentially confusing terms.

This is a define-before-use format that guides clear exposition, and can be directly implemented in
any well-designed algebraic modeling language. NPS format has evolved from decades of
experience, but we also heartily recommend a rather obscure, seminal reference by Beale, Beare,
and Tatham [1974].

An NPS format template contains the following sections, with the given headings, in the given
order:

Index (and Set) Use [cardinality or ~cardinality]

defines dimensions and the cardinality or estimated cardinality of each index, and each
index-tuple. (When not all index-tuples exist, we carefully document these key details.) We
forecast our use of indices by including all functions of indices and mappings among
indices. Cardinalities help assess the size of the resulting model.

Data [units]

presents each exogenous data element and its units (using the already-defined indices). Data
derived from these exogenous sources is defined here, rather than later. Separating given
data from data derived from this is important to avoid confusion between exogenous and
endogenous effects in a formulation.

Decision Variables [units]

presents each decision variable and its units (using the already-defined indices).
(We use UPPERCASE variable names, and lowercase for data and indices. Such a
convention helps a reader to quickly see whether a model is linear, and understand its
formulation.)

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 10

Formulation [dual variables]
 Using prior definitions, there should be no surprises in these expressions of objective

function(s), constraints and variable domains. When applicable, we name the dual variable
for each constraint.

Discussion

This explains the intent of each formulation feature, associating model nomenclature with
that of the seminal problem we want to solve. Here, we have a chance to associate
mathematical model notation with the lexicon of our client decision maker.

Ideally, we should be able to use this verbal model description to reconstruct the
formulation, and vice versa.

6. Composite formulettes

Each following small example illustrates some amalgam of the features introduced above, and
shows how to answer some question that we have encountered many times in practice.

C1) “There are k mutually exclusive, exhaustive production campaign options for a new missile.

Each campaign option is characterized by a qualifying minimum number of missiles, a
maximum number of missiles, a fixed campaign adoption cost, and a unit cost per missile.
Further ...”

Index Use [~cardinality]

p P∈ production campaign options [~10]
Given Data [units]

pfixed_cost fixed adoption cost for campaign option p [$]

punit_cost unit cost per missile in campaign option p [$/missile]

p pmin_units ,max_units minimum, maximum number of missiles
in campaign option p [missiles]

Decision Variables [units]
pMISSILES number of missiles to produce using option p [missiles]

pADOPT binary decision to adopt campaign option p [binary]
Formulation

,
MIN (11)

s.t. (12)

(13)

1 (14)

0 (15)

{0,1} (16)

MISSILES
ADOPT

p

p p p p
p p

p p p

p p p

p
p

p

unit_cost MISSILES fixed_cost ADOPT C

MISSILES min_units ADOPT p C

MISSILES max_units ADOPT p C

ADOPT C

MISSILES p C

ADOPT p C

+

≥ ∀

≤ ∀

=

≥ ∀

∈ ∀

∑ ∑

∑

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 11

Discussion
The objective (C11) expresses the total cost of any solution in terms of the decision variables. Each
constraint (C12) forces a selected production campaign option quantity to at least its minimum
volume, and each constraint (C13) limits a selected campaign option to no more than its maximum
volume. Constraint (C14) forces selection of exactly one binary campaign option. Variable
domains are defined by (C15) and (C16).

This formulation can express arbitrary alternate campaigns. The alternate ranges of campaign
missile quantities can overlap, or there may be gaps in missile quantities that no campaign can
produce. Alternate campaign costs can be used to represent efficiencies of scale, learning curve,
diminishing returns to scale, or any combination of these. Notice that because the index domain is
defined in advance, the expressions using this index need not include these details, and are thus
simplified.

C2) “Each year in the planning horizon has a budget allocation, but you can borrow 5% or save

10% of this allocation, paying a penalty for any cumulative deficit or surplus carried forward
from one planning year to the next, seeking to eventually make cumulative spending equal
cumulative budget. Further, ...”

Index Use [~cardinality]
 {2007, 2008,...}t T∈ = planning year (alias τ) [~30]
Given Data [units]
 tbudget annual budget allocation for planning year t [$]

_ , _t tpen under pen over penalty per dollar for carrying forward a cumulative deficit, or
a surplus at the end of year t [$/$]

Decision Variables [units]
 tSPEND amount of money to spend during planning year t [$]

,t tUNDER OVER cumulative surplus, or deficit at end of planning year t [$]

Formulation [dual variables]

,
,

MIN _ _ (21)

. . [] (22)

0 0.10 [] (23)

0 0.05 [] (24)

0, 0,

SPEND
UNDER

OVER
t

t t t t
t

t t t t t
t t

t t
t

t t
t

t t

pen under UNDER pen over OVER C

s t SPEND UNDER OVER budget t C

UNDER budget t C

OVER budget t C

SPEND UNDER OVER

τ τ

τ
τ

τ
τ

π

λ

α

≤ ≤

≤

≤

+

+ − = ∀

≤ ≤ ∀

≤ ≤ ∀

≥ ≥

∑ ∑

∑ ∑

∑

∑
0 (25)t t C≥ ∀

Discussion
The objective function (C21) expresses the total penalty incurred from any saving or borrowing
from year-to-year. Each constraint (C22) balances total spending through the end of each planning
year with the cumulative budget through the end of that year, accounting for any surplus or deficit
year by year. At the end of each year, cumulative surpluses or deficits are limited respectively by a
constraint (C23) and (C24). (C25) simply precludes negative spending. A penalty of 2.0 translates
into a 100% per annum charge on any saving or borrowing. Penalties indexed by year can be used

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 12

to convert to present value, if needed. Constraints (C22) are called elastic goals, and the cumulative
elastic budget goals shown here are the most useful tool we have for long-term capital planning,
where it is key to know when and how much flexibility to ask for. The dual variables provide
additional guidance on the value of altering the budget. For example, tπ (the value of restricting
cumulative spending allowed by the end of year t) is in the range _ _t t tpen over pen underπ− ≤ ≤
when constraints (C23) and (C24) are nonbinding.

See, e.g., Brown, Dell, and Newman [2004] for more complete formulations and real-world
examples.

7. Parting Comments

The best way we know to teach our students the art of formulating linear and integer linear
programs is by giving them lots of practice: We pepper them with confusing formulettes, and build
more interesting models from these. Alternately, we dissect large, complex models, to isolate such
components.

A class examination expressed in terms of a set of independent formulettes is much less likely to
overwhelm a student than some large word problem, but the demonstration of mastery of concepts
is equivalent.

We also expose our students to our clients for optimization models. It is quite instructive to let a
client tell his version of a problem that the students supposedly have already formulated and solved.
The subsequent exchange is insightful.

Perversely, formulating a textbook problem intended for instruction can be harder than dealing with
a real problem: You can call your client to get clarification, negotiate details and assumptions, or
try alternate ideas. The ability to verbally express a formulette back to a client in the client’s own
terms aids substantially in this negotiation.

Sadly, our literature still publishes many articles that feature astonishingly muddled formulations.
The result is, at best, confusion, but it’s often worse than this. Our recommended “NPS standard
form” is minimally restrictive. Much more ambitious, formal formulation methods have been
suggested (e.g., Geoffrion’s structured modeling [1987]). We admire this formalism, but our goal is
much more modest: We just want to teach students how to reliably get the mathematics to agree
with the verbiage, and avoid errors.

Few clients understand a mathematical formulation verbatim --- that’s why they engage our help ---
so we must translate our formulation into words they do understand. The ability to express a
client’s problem in clear, unambiguous client language is key. Brown [2004] presents a
complementary guide that highlights how to organize and present such exposition.

The few examples presented here represent about 90 percent of all formulation errors we encounter.

NPS standard form helps us catch the rest.

INFORMS TRANSACTIONS ON EDUCATION, Volume 7, Number 2, January 2007 (pdf version)

 13

8. Acknowledgements

We have spent about six professor-decades learning from our military officer students how to teach
these modeling methods: We are grateful for their instruction.

9. References

Beale E.M.L., Beare, G.C., and Tatham P.B. 1974, “The DOAE Reinforcement and Redeployment
Study: A Case Study in Mathematical Programming” Mathematical Programming Theory and
Practice: Proceedings of the NATO Advanced Study Institute, Figueira da Foz, Portugal, June 12-
23, 1972, Edited by P.L. Hammer and G. Zoutendijk, Elsevier, New York, pp. 417-442.

Brown, G.G. 2004, “How To Write About Operations Research,” PHALANX, 37(3), p. 7.

Brown, G.G., Dell, R.F., and Newman, A.M. 2004, “Optimizing Military Capital Planning,”
INTERFACES, 34(6), pp. 415-425, exhibits more than a trillion dollars worth of applications
following (C1), (C2), and many of the formulettes.

Brown, G.G., Dell, R.F., and Wood, R.K. 1997, “Optimization and Persistence,” INTERFACES,
27(5), pp. 15-37, develops (S1) and many more features to preserve similarity, or force diversity
between revisions to baseline plans.

Geoffrion, A.M. 1987, “An Introduction to Structured Modeling,” Management Science, 33(5),
547-588.

Hamming, R.W. ca 1985, author Brown’s recollection of a private communication over lunch, but
likely something that also appears in at least one of Dick’s many legacy publications. Those who
knew Dick understand the mandatory exclamation point. We miss him.

Stevens, S.P., and Palocsay, S.W. 2004, “A Translation Approach to Teaching Linear Programming
Formulation,” INFORMS Transactions on Education, 4(3), pp. 1-27.
http://ite.pubs.informs.org/Vol4No3/StevensPalocsay/

