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The theory of gravitational relativity and intrinsic theory of gravitational relativity

(TGR/φTGR), the special theory of relativity and intrinsic special theory of relativity

(SR/φSR), and their union, on flat four-dimensional relativistic spacetime (Σ, ct) and its

underlying flat two-dimensional relativistic intrinsic spacetime (φρ, φcφt), at the second

stage of evolutions of spacetime/intrinisic spacetime and parameters/intrinsic parame-

ters in a gravitational field of arbitrary strength, isolated in the previous papers, are

developed fully in the first two parts of this paper. Mass and other parameter relations

in the context of TGR and the implied modification of Newton’s law of universal grav-

ity in the context of TGR are derived. Local Lorentz invariance is validated on flat

spacetime in the context of TGR. This first part is devoted to the graphical approaches

in the four-world picture to these flat spacetime/intrinsic spacetime theories, while an-

alytical approaches shall be developed in the second part to complement the graphical

approaches. The other theories isolated at the second stage of evolutions of space-

time/intrinsic spacetime and parameters/intrinsic parameters in every gravitational field

namely, the metric theory of absolute intrinsic gravity (φMAG) and combined metric

theory of absolute intrinsic gravity and absolute intrinsic motion (φMAG∪ φMAM), on

curved ‘two-dimensional’ absolute intrinsic spacetime (φρ̂, φĉφt̂ ); their projective theo-

ries into the flat relativistic intrinsic spacetime namely, the Newtonian theory of absolute

intrinsic gravity (φNAG) and combined Newtonian theory of absolute intrinsic gravity

and absolute intrinsic motion (φNAG∪ φNAM), as well as the outward manifestations

of these in the flat four-dimensional relativistic spacetime namely, the non-observable

Newtonian theory of absolute gravity (NAG) and combined Newtonian theory of ab-

solute gravity and absolute motion (NAG∪NAM), shall be developed in the third part

of this paper.

∗Author’s surname had been Adekugbe or Adekugbe-Joseph until 2011.
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1 Introduction

1.1 On the global spacetime/intrinsic spacetime geometries of theories/intrinsic

theories of gravity, motion and other non-gravitational laws at the second

stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic

parameters in a gravitational field

The theory of relativity in spacetime and intrinsic theory of relativity in intrinsic

spacetime, due to the presence of a long-range metric force field, developed in [1]

and adapted to the gravitational field in section 2 of [2], is a direct pre-requisite

to this paper. As has been robustly established in those previous papers, the four-

dimensional spacetime, qualified as relativistic spacetime and denoted by (Σ, ct) in

our notation, containing the relativistic masses (m, ε/c2) of material particles and

bodies and the underlying relativistic intrinsic spacetime (φρ, φcφt) containing the

relativistic intrinsic masses (φm, φε/φc2) of particles and bodies, which evolve at the

second stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic

parameters in a gravitational field, are everywhere flat in a gravitational field of

arbitrary strength (or in every gravitational field).

There are, in addition, in every gravitational field, the curved two-dimensional

proper intrinsic spacetime (φρ′, φcφt′) with orthogonal curvilinear intrinsic dimen-

sion φρ′ and φcφt′ and consequently with intrinsic Lorentzian metric tensor at every

point of it, containing the intrinsic rest masses (φm0, φε
′/φc2) of material particles

and bodies, which projects the flat relativistic intrinsic spacetime (φρ, φcφt) under-

neath it. There is also the curved ‘two-dimensional’ absolute intrinsic spacetime

(φρ̂, φĉφt̂ ), an absolute intrinsic Riemannian metric space with absolute intrinsic

sub-Riemannian metric tensor φĝik, containing the absolute intrinsic rest masses

φm̂0 and φM̂0 of particles and bodies. Finally there is the constantly flat ‘two-

dimensional’ absolute-absolute intrinsic-intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), isolated

in [3], containing the absolute-absolute intrinsic-intrinsic rest masses (φφ ˆ̂m0, φφ ˆ̂ε/φφ ˆ̂c)2

of particles and bodies in it, in every gravitational field.

The flat relativistic spacetime (Σ, ct) containing the relativistic masses (m, ε/c2)

or (M, E/c2) of particles and bodies and the hierarchy of intrinsic spacetimes

namely, flat relativistic intrinsic spacetime (φρ, φcφt) underlying (Σ, ct), curved pro-

per intrinsic spacetime (φρ′, φcφt′), curved absolute intrinsic spacetime (φρ̂, φĉφt̂ )

and flat absolute-absolute intrinsic-intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ) underlying

the flat (φρ, φcφt) and the associated hierarchy of intrinsic masses (φm, φε/φc2),

(φm0, φε
′/φc2), (φm̂0, φε̂/φĉ2) and (φφ ˆ̂m0, φφ ˆ̂ε/φφ ˆ̂c2) respectively, listed above have

been shown to evolve simultaneously at the combined first and second stages of
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evolutions of spacetime/intrinsic spacetimes and parameters/intrinsic parameters in

a gravitational field in sub-section 1.1 of [2] and illustrated graphically as the global

spacetime/ intrinsic spacetime geometries of Figs. 7 and 8 and their inverses in

Figs. 9 and 10 of that paper.

Fig. 7 of [2] was re-presented as Fig. 9 of [4], where the flat ‘two-dimensional’

absolute-absolute intrinsic-intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), isolated in [3] was in-

corporated into the geometry. Thus Fig. 9 of [4] of combined first and second stages

of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters

in a gravitational field and its complementary diagram and their inverses (not drawn)

in [4], constitute the complete set of spacetime/intrinsic spacetime geometries that

support the theories of gravity/intrinsic gravity, motion/intrinsic motion and all other

non-gravitational laws/intrinsic non-gravitational laws in a gravitational field in our

universe and the negative universe.

In order to make this paper as autonomous as possible and also for convenience

of reading, Fig. 9 of [4] shall be reproduced as Fig. 1 and its complementary dia-

gram (not drawn) in [4] shall be presented as Fig. 2 of this paper. We only need

to incorporate the flat (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ) and (−φφ ˆ̂ρ∗,−φφ ˆ̂cφφˆ̂t∗) into Figs. 7 and 8

of [2] to accomplish these. However the inverse diagrams obtained by incorpo-

rating (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), and (−φφ ˆ̂ρ∗,−φφ ˆ̂cφφˆ̂t∗), into Fig. 9 and 10 of [2], shall not be

drawn in order to conserve space.

As finally determined in section 3 of [4], the theories of gravity/intrinsic grav-

ity and theories of combined gravity/intrinsic gravity and motion/intrinsic motion at

the first stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic

parameters in a gravitational field must be formulated within intrinsic local Lorentz

frames on the curved ‘2-dimensional’ absolute intrinsic spacetime (φρ̂, φĉφt̂ ) and

curved two-dimensional proper intrinsic spacetime (φρ′, φcφt′) with respect to in-

trinsic 1-observers along the curved proper intrinsic space φρ′ and 3-observers in the

relativistic Euclidean 3-space Σ in Fig. 1. These are φMAG, φNAG* and φMAG+

φMAM, φNAG*+φNAM* on the curved (φρ̂, φĉφt̂ ) and the primed intrinsic theo-

ries φNAG′ and φNAG′+φNAM′ within intrinsic Local Lorentz frames on curved

(φρ′, φcφt′).

There is also the primed intrinsic classical (or Newton’s) theory of (relative)

gravity (φCG′) within intrinsic local Lorentz frames on the curved proper intrinsic

spacetime (φρ′, φcφt′), with essential equations (115) − (118) of [4], formulated

with respect to intrinsic 1-observers in the curved proper intrinsic space φρ′ and

3-observers in the relativistic Euclidean 3-space Σ in Fig. 1. The CG′/φCG′ arise
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Figure 1: The global spacetime/intrinsic spacetime diagram of combined first

and second stages of evolutions of spacetime/intrinsic spacetime and parame-

ters/intrinsic parameters in a gravitational field of arbitrary strength that is valid

with respect to 3-observers in the relativistic Euclidean 3-spaces in our universe and

the negative universe.

from the proper intrinsic gravitational speed φV ′g(φr′), proper intrinsic gravitational

potential φΦ′(φr′) and proper intrinsic gravitational field φg′(φr′) established along

the curved φρ′ and φcφt′ by φM0 and φE′/φc2 of the gravitational field source at the

origins of the curved φρ′ and φcφt′ respectively.

Apart from φMAG, φNAG*, φMAG+φMAM, φNAG*+ φNAM*, φNAG′,

φNAG′+φNAM′ and φCG′, there are also primed intrinsic spacial theory of relativ-

ity (φSR′) and other primed intrinsic classical non-gravitational laws φCNGL′ and

primed intrinsic special-relativistic non-gravitational laws (φCNGL′+φSR′) within

intrinsic local Lorentz frames on curved proper intrinsic spacetime (φρ′, φcφt′), for-

mulated with respect to intrinsic 1-observers along the curved proper intrinsic space
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Figure 2: The complementary diagram to Fig. 1 that is valid with respect to 1-

observers in the relativistic time dimensions in our universe and the negative uni-

verse.

φρ′ and 3-observers in the relativistic Euclidean 3-space Σ in Fig. 1. The intrinsic

theories on the curved (φρ̂, φĉφt̂ ) and curved (φρ′, φcφt′) listed in this and the fore-

going two paragraphs have been brought forward to the second stage of evolutions

of spacetime/intrinsic spacetime and parameters/intrinsic parameters from the first

stage in a gravitational field of arbitrary strength.

The primed intrinsic theories φNAG′, φNAG′+φNAM′, φSR′, φCNGL′, φSR′,

φSR′+φCNGL′ and φCG′ within proper (or primed) intrinsic local Lorentz frames

on curved two-dimensional proper intrinsic space (φρ′, φcφt′), formulated with re-

spect to intrinsic 1-observers along the curved proper intrinsic space φρ′ in Fig. 1, at

the first stage of evolutions of spacetime/intinsic spacetime and parameters/intrinsic

parameters in a gravitational field, project the unprimed intrinsic theories namely,
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φNAG, φNAG+φNAM, φSR, φCNGL, φCNGL+φSR and φCG respectively into the

respective unprimed (or relativistic) intrinsic local Lorentz frames on the flat two-

dimensional relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1, at the second stage

of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters

in a gravitational field, which are valid with respect to 3-observers in the relativistic

Euclidean 3-space Σ overlying in Fig. 1.

The projective unprimed (or gravitational-relativistic) intrinsic theories on the

flat relativistic intrinsic spacetime (φρ, φcφt) are then made manifest in the respec-

tive unprimed (or gravitational-relativistic) theories namely, NAG, NAG+NAM, SR,

CNGL, CNGL+SR and CG, within unprimed (or relativistic) local Lorentz frames

on flat four-dimensional relativistic spacetime (Σ, ct) with respect to 3-observers in

Σ at the second stage of evolutions of spacetime/intrinsic spacetime and parame-

ters/intrinsic parameters in a gravitational field.

There are also the φMAG, φNAG* and φMAG+φMAM, φNAG*+φNAM* on

the curved ‘two-dimensional’ absolute intrinsic spacetime (φρ̂, φĉφt̂ ) to be formu-

lated with respect to 3-observers in the relativistic Euclidean 3-space Σ, as well

as the Newtonian theory of absolute-absolute intrinsic-intrinsic gravity φφNAAG,

the Newtonian theory of absolute-absolute intrinsic-intrinsic motion φφNAAM and

their union φφNAAG+φφNAAM on the constantly flat absolute-absolute intrinsic-

intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), to be formulated with respect to 3-observers in

Σ in Fig. 1, at the second stage of evolutions of spacetime]intrinsic spacetime and

parameters/intrinsic parameters in a gravitational field.

The program of this paper in three parts is to formulate the unprimed (or gravita-

tional-relativistic) theories at the second stage of evolutions of spacetime/intrinsic

spacetime and parameters/intrinsic parameters in a gravitational field namely, NAG/

φNAG, NAG/φNAG+NAM/φNAM, SR/φSR, CNGL/φCNGL and CG/φCG on the

flat relativistic spacetime/flat relativistic intrinsic spacetime (Σ, ct)/(φρ, φcφt), as

well as φMAG, φNAG* and φMAG+φMAM, φNAG*+φNAM* on curved (φρ̂, φĉφt̂ )

with respect to 3-observers in the relativistic Euclidean 3-space Σ in Fig.1, while

φφNAAG, φφNAAM and φφNAAG+φφNAAM on flat (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), shall be for-

mulated with respect to 3-observers in the relativistic Euclidean 3-space Σ in Fig. 1

in another paper later in this volume.

The unprimed (or gravitational-relativistic) intrinsic classical (or Newton’s) the-

ory of gravity (φCG) within unprimed intrinsic local Lorentz frames on the flat rel-

ativistic intrinsic spacetime φρ, φcφt) and its outward manifestation (CG) within

unprimed local Lorentz frames on the flat relativistic spacetime (Σ, ct), shall be

609A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.
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developed along with the unprimed (or gravitational-relativistic) intrinsic special

theory of relativity (φSR) within unprimed intrinsic local Lorentz frames on the

flat relativistic intrinsic spacetime (φρ, φcφt) and its outward manifestation namely,

the unprimed (or gravitational-relativistic) special theory of relativity within un-

primed local Lorentz frames on the flat relativistic spacetime (Σ, ct), with respect to

3-observers in Σ in Fig. 1, in the first two parts of this paper.

The φMAG, φNAG* and φMAG+φMAM, φNAG*+ φNAM* on curved ab-

solute intrinsic spacetime (φρ̂, φĉφt̂ ) and NAG/φNAG, NAG/φNAG+NAM/φNAM

on flat relativistic spacetime/flat relativistic intrinsic spacetime (Σ, ct)/(φρ, φcφt),
shall be formulated with respect to 3-observers in Σ in Fig. 1 in the third part of this

paper, while φφNAAG, φφNAAM and φφNAAG+φφNAAM on flat (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ),

shall be formulated with respect to 3-observers in the relativistic Euclidean 3-space

Σ in another paper later in this volume, as mentioned above.

The unprimed classical and special-relativistic non-gravitational laws (CNGL

and CNGL+SR) on flat relativistic spacetime (Σ, ct) and the unprimed intrinsic clas-

sical and intrinsic special-relativistic non-gravitational laws (φCNGL and φCNGL+

φSR) on flat relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1, shall be considered

in the process of validating the principle of equivalence on flat relativistic spacetime

(Σ, ct) in a gravitational field of arbitrary strength in another paper following the

third part of this paper.

1.2 Further on the concepts of gravitational velocity, gravitational potential and

gravitational acceleration in spacetime and the respective intrinsic parame-

ters in intrinsic spacetime

The concept of static speed was derived graphically within a long-range metric force

field in section 2 of [5], where it was denoted by V ′s. It was particularized to the

gravitational field, given the alternative name of gravitational speed and re-denoted

by V ′g(r
′) in [2]. There indeed exists the concept of gravitational velocity ~V ′g(r

′) in

the Euclidean 3-space Σ′, which corresponds to the concept of gravitational acceler-

ation ~g ′(r′) in Σ′ in the phenomenon of gravity, where ~V ′g(r
′) and ~g ′(r′) are related

thus

|~g ′(r′) | = −
GM0a

r′2
=

1

2

d
dr′

[V ′g(r
′)2] (1)

The definition of V ′g(r
′) that satisfies Eq. (1) is

V ′g(r
′)2 =

2GM0a

r′
(2a)
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or

V ′g(r
′) = −

√

2GM0a

r′
(2b)

where ~V ′g(r
′) is the proper gravitational velocity at radial distance r′ from the center

of the assumed spherical rest mass M0 of the gravitational field source in the proper

Euclidean 3-space Σ′ (in Fig. 2 or 3 of [6]).

The relationship between gravitational speed and gravitational potential also de-

duced and written as Eq. (17) of [2] is the following

Φ′(r′) = −
1

2
V ′g(r

′)2 = −
GM0a

r′
(3)

Except for the replacement of the rest mass M0 by the active gravitational mass

(or gravitational charge) M0a, Eqs. (1) − (3) have been deduced and presented as

Eqs. (16a-b) − (18) of [2]. The need to replace the rest mass by the active gravita-

tional mass (or gravitational charge) in the definitions of the proper gravitational

velocity ~V ′g(r
′), proper (or Newtonian) gravitational potential Φ′(r′) and proper

(or Newtonian) gravitational acceleration (or field) ~g ′(r′) was deduced in sub-sub-

section 2.1.5 of [6] and sub-section 2.1 of [4], see the discussion leading to Eq. (55)

of [4].

The negative root is taken in Eq. (2b) in order to make the gravitational speed

(or velocity) attractive like gravitational acceleration and gravitational potential. In-

deed ~V ′g(r
′) and ~g ′(r′) are collinear vectors, both pointing radially towards the center

of the gravitational field source in the case of a spherical gravitational field source.

The definition of the gravitational speed along with its negative sign (or its attractive

nature) of Eq. (2b) was deduced in sub-sub-section 2.1.5 of [6] and sub-section 2.1

of [4] with respect to 3-observers in the relativistic Euclidean 3-space Σ in Fig. 1; see

the discussion leading to Eq. (55) of [4]. However there is yet a final more funda-

mental justification for the attractive nature of the gravitational speed (or velocity),

from which the gravitational potential and gravitational acceleration (or field) inherit

their attractive nature, which shall be presented elsewhere with further development,

as mentioned in section 1.2 of [4].

One finds from the relation of gravitational potential Φ′(r′) and gravitational

acceleration (or field) ~g ′(r′) to the gravitational velocity ~V ′g(r
′) in (1) and (3), that the

gravitational velocity is the most fundamental of the three gravitational parameters
~V ′g(r

′), Φ′(r′) and ~g ′(r′). There could not have been the concepts of gravitational

potential and gravitational acceleration without the concept of gravitational velocity

as Eqs. (1) and (3) show. As a matter of fact, gravitational potential and gravitational

611A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.
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field inherit their attractive natures from the attractive nature of their gravitational

velocity progenitor as shall be justified shortly. Recall that absolute intrinsic static

speed is a fundamental geometrical parameter isolated in a long range metric force

field in general in section 2 of [5]. The concepts of potential and field could not

appear at that geometrical foundation.

Now the centrality of the gravitational potential and gravitational field obtains

in a spherically symmetric gravitational field only. The gravitational potential and

gravitational field are functions of all the spherical coordinates r′, r′θ′ and r′ sin θ′ϕ′

that originate from the centroid of a non-spherical gravitational field source as

Φ′(r′, θ′, ϕ′) and ~g ′(r′, θ′, ϕ′). The gravitational field does not point purely radially

towards the centroid of a non-spherical gravitational field source.

On the other hand, gravitational velocity is central in both spherically-symmetric

and non-spherically-symmetric gravitational fields. Thus gravitational velocity can

be function of the radial coordinate only as ~V ′g(r
′) and point radially towards the cen-

ter or centroid of every every gravitational field source (spherical or non-spherical).

Thus we can write as follows for a non-spherically-symmetric gravitational field

~V ′g = ~V ′(r′) = V ′g(r
′)r̂ ′;

~g ′ = ~g ′(r′, θ′, ϕ′)

= g′r(r
′, θ′, ϕ′)r̂′ + g′θ(r

′, θ′, ϕ′)θ̂′;

+g′ϕ(r′, θ′, ϕ′)ϕ̂′;

Φ′ = Φ′(r′, θ′, ϕ′);

(non − spherical grav. field source)







































































(4)

The centrality in all gravitational fields is a property of the gravitational velocity to

be explained formally elsewhere with further development.

Another important difference among the properties of gravitational potential

Φ′(r′, θ′, ϕ′) and gravitational field ~g ′(r′, θ′, ϕ′) in a non-spherically-symmetric

gravitational field (or Φ′(r′) and ~g ′(r′) in a spherically-symmetric gravitational

field) and the gravitational velocity ~V ′g(r
′) in a non-spherically-symmetric or spheri-

cally-symmetric gravitational field, is that proper (or classical) gravitational po-

tential Φ′(r′, θ′, ϕ′) and proper (or classical) gravitational field ~g ′(r′, θ′, ϕ′) in the

proper Euclidean 3-space Σ′ in the context of the primed classical theory of gravity

(CG′) on flat proper spacetime (Σ′, ct′) at the first stage of evolutions of space-

time/intrinsic spacetime and parameters/intrinsic parameters, transform non-trivia-

lly to relativistic gravitational potential Φ(r, θ, ϕ) and relativistic gravitational field
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~g(r, θ, ϕ) on flat relativistic Euclidean 3-space Σ in the context of the theory of grav-

itational relativity (TGR) on flat relativistic spacetime (Σ, ct) in Fig. 1 at the second

stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic para-

meters in a gravitational field as follows

Φ(r, θ, ϕ) = fΦ(V ′g(r
′))Φ′(r′, θ′, ϕ′) (5)

and

~g(r, θ, ϕ) = fg(V
′
g(r
′))~g ′(r′, θ′, ϕ′) (6)

where the functions fΦ(V ′g(r
′) and fg(V ′g(r

′) shall be determined in the second part

of this paper.

Whereas gravitational velocity is invariant, transforming trivially in the context

of the relativistic theory of gravity between flat proper spacetime (Σ′, ct′) and flat

relativistic spacetime (Σ, ct) in every gravitational field as follows

~Vg(r) = ~V ′g(r
′) (7)

This invariance was first stated without proof as invariance of static velocity by

Eq. (79b) of [7] and particularized to the gravitational field (still without proof) as

Eq. (2b) of [2]. The proof of Eq. (7) can still not be given at this point, but elsewhere

with further development, where the peculiar properties of the gravitational velocity

namely, its centrality in all gravitational fields and its invariance (7), as well as the

mechanism by which a gravitational field source establishes non-uniform gravita-

tional velocity ~V ′g(r
′) along every radial direction from its centroid, thereby giving

rise to gravitational field and gravitational potential as progenies, shall be unraveled.

As prescribed without proof in sub-sub-section 2.1.5 of [6], the non-observ-

able immaterial negative active gravitational mass (or negative gravitational charge)

−M0a, hidden within the observable positive physical (or material) rest mass M0 of a

gravitational field source is the source of the proper gravitational velocity, proper (or

classical) gravitational potential and proper (or classical) gravitational field. Hence

these parameters have been written in terms of the negative gravitational charge

−M0a in Eqs. (1), (2a) or (2b) and (3). Thus the negativity of the gravitational

charge is the origin of the attractive nature of gravitational velocity, gravitational

potential and gravitational field, as being prescribed for now in the present theory.

An important task to be executed elsewhere with further development is funda-

mental explanations of the origin of immaterial active gravitational mass (or gravi-

tational charge) and its negative sign, as well as the model of how −M0a is contained
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in the rest mass M0 and the mechanism by which −M0a hidden in M0 establishes
~Vg(r′), Φ′(r′, θ′, ϕ′) and ~g ′(r′, θ′, ϕ′) at every point in the proper Euclidean 3-space

Σ′ from the centroid of M0.

Just as gravitational potential Φ′(r′, θ′, ϕ′) is a property of space at a position of

coordinates (r′, r′θ′, r′ sin θ′ϕ′) from the centroid of the rest mass M0 of the gravita-

tional field source, such that when a test particle arrives at this position, it acquires

gravitational potential Φ′(r′, θ′, ϕ′), so is gravitational velocity ~V ′g(r
′) a property of

space at at the position of coordinates (r′, r′θ′, r′ sin θ′ϕ′) from the centroid of the

rest mass M0 of the gravitational field source, which a test particle acquires upon

arriving there.

Unlike the dynamical velocity v of dynamics (or special relativity), gravitational

velocity − a static velocity − is not made manifest in actual translation in space of

the test particle that acquires it. Thus a test particle at rest relative to an observer

at radial distance r′ from the centroid of the rest mass M0 of a gravitational field

source in the proper Euclidean 3-space Σ′, possesses yet gravitational velocity ~Vg(r′)
relative to this observer and all other observers.

Gravitational velocity is different from escape velocity vesc, which has the same

expression as Eq.(2b) for V ′g(r
′), in the sense that vesc is a dynamical velocity di-

rected radially away from a gravitational field source, which a particle possesses and

escapes the gravitational influence of the field source. Escape velocity, although de-

termined by the gravitational field source, is a property of the particle.

Gravitational velocity ~V ′g(r
′) is a more appropriate parameter to incorporate into

the theory of gravitational relativity (TGR) on flat relativistic spacetime (Σ, ct) in

Fig. 1, started in section 2 of [2], than gravitational potential. It has several analogies

to the dynamical velocity ~v of dynamics (or special relativity). For instance, the

gravitational speed V ′g(r
′) effects the theory of gravitational relativity (TGR) on flat

four-dimensional relativistic spacetime (Σ, ct), just as dynamical speed v effects the

special relativity (SR) on the flat four-dimensional relativistic spacetime (Σ, ct) in

Fig. 1.

The gravitational velocity ~V ′g(r
′) of TGR being a property of space, makes TGR

possible on the flat relativistic spacetime (Σ, ct) in all finite neighborhood of a grav-

itational field source in the absence of a test particle. On the other hand, dynamical

velocity ~v of SR, being a property of the particle in motion, makes it mandatory for

a particle to be in motion relative to the observer for SR to be possible.

The gravitational velocity ~V ′g(r
′), (like gravitational potential Φ′(r′, θ′, ϕ′)), is

invariant with the observer or frame of reference, whereas the dynamical velocity
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varies with the observer or frame of reference. The concept of relativity associated

with gravitational velocity ~V ′g(r
′) and the theory of gravitational relativity (TGR)

induced by ~V ′g(r
′), in the absence of SR, is merely relativity with position in space

in a gravitational field and not relativity with observer or frame of reference, as

discussed in sub-sub-section 2.2.1 of [2]. It refers to variation with gravitational

speed V ′g(r
′) of space and time intervals of events and physical parameters, which

implies their variations with position in a gravitational field.

On the other hand, gravitational velocity is an absolute parameter in the context

of dynamics (or SR), since the gravitational velocity at a given position in space is

not made manifest in motion and is the same relative to all observers of frames of

reference. Conversely dynamical velocity ~v is absolute in the context of TGR, since

a given dynamical velocity of a particle relative to an observer does not vary with

gravitational velocity or with position in a gravitational field. That is, it is invariant

in the context of TGR as shall be demonstrated in the second part of this paper.

It may be recalled that the clarification of the concepts of relative static speed

and relativity associated with relative static speed in a relative metric force field was

done in sub-section 2.3 of [1] and adapted to the clarification of relative gravita-

tional speed and relativity associated with relative gravitational speed in a relative

gravitational field in sub-sub-section 2.2.1 of [2].

Now the largest possible kinematic velocity of particles, including photon, in

spacetime is the velocity of an electromagnetic wave in vacuum, cγ = 3 × 108 m/s.

Likewise the largest possible gravitational (or static) velocity that can be established

at a point in spacetime by a gravitational field source or combination of gravitational

field sources is the velocity of gravitational waves, cg = 3×108 m/s. These velocities

of ‘signal’ were first introduced in [8], see Table III and Table IV of that paper.

While the velocity of light cγ is made manifest in actual translation through

space of electromagnetic waves, the maximum over all gravitational velocities cg,
(like gravitational velocity Vg(r′)), is not made manifest in actual translation through

space of gravitational waves. It is a priori in the present theory that gravitational

waves possess constant gravitational (or static) speed, cg = 3 × 108 m/s, but are at

rest always relative to all observers. This actually implies that gravitational radiation

involving energy transfer in spacetime is impossible or does not exist. The fact that

gravitational effect propagates through space at the speed of light but not as a wave,

such that if a body is suddenly introduced or annihilated at a point in space, the

effect propagates away at the speed of light, has a different explanation, which has

been started in sub-section 1.1 of [2] and will be completed elsewhere with further
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development.

The value of gravitational velocity at the surface (or event horizon) of a black

hole is cg. This is so since at the surface (or event horizon) of a black hole of rest

mass M0 and radius rb, the gravitational speed is given from Eq. (2a) as, Vg(rb)/cg =
(2GM0a/rbc2

g)
1/2. But 2GM0a/rbc2

g = 1 for a black hole. Hence Vg(rb) = cg. Thus

a particle that falls to the surface (or event horizon) of a black hole acquires the

gravitational (or static) speed, cg = 3 × 108 m/s. We shall find in future articles that

this event (of fall of a test particle to the event horizon of a black hole) is not allowed

for a test particle with non-zero rest mass, just as a particle with non-zero rest mass

cannot attain the speed of light in vacuum cγ in relative motion.

As has been noted in [8] and earlier in this section, we have isolated two dif-

ferent speeds of ‘signals’ namely, the dynamical speed of electromagnetic waves

(or light), usually denoted by c, but which has been re-denoted by cγ since [8], and

the gravitational (or static) speed of gravitational waves, which has been denoted

by cg since [8]. This fact has remained unknown in physics until now. The only

speed of signal known in physics until now is the dynamical speed of light cγ, usu-

ally denoted by c, which both electromagnetic and gravitational waves are known to

possess.

1.3 Further on the spacetime/intrinsic spacetime geometries of the theory of

gravitational relativity/intrinsic theory of gravitational relativity and special

theory of relativity/intrinsic special theory of relativity in a gravitational field

As introduced in section 2 of [8], the flat four-dimensional metric spacetime (Σ, ct)
is composed of the flat four-dimensional affine spacetime of dynamics and electro-

magnetism (Σd, cγt) and the flat four-dimensional metric spacetime of the theories

of gravity (Σg, cgt). That is,

(Σ, ct) ≡ (Σg, cgt) ∪ (Σd, cγt)

or

(x1, x2, x3, ct) ≡ (x1
g, x

2
g, x

3
g, cgt) ∪ (χ1, χ2, χ3, cγt)

The affine spacetime of dynamics and electromagnetism (Σd, cγt) is inseparably em-

bedded in the metric spacetime of the theories of gravity (Σg, cgt), yielding the met-

ric compound spacetime (Σ, ct).
Likewise the metric compound intrinsic spacetime (φρ, φcφt) is composed of

the affine intrinsic spacetime of intrinsic dynamics and intrinsic electromagnetism
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denoted by (φχ, φcγφt) in [8] and the metric intrinsic spacetime of the theories of

intrinsic gravity (φρg, φcgφt). That is,

(φρ, φcφt) ≡ (φρg, φcgφt) ∪ (φχ, φcγφt)

Again the affine (φχ, φcγφt) is inseparably embedded in the metric (φρg, φcgφt)
yielding the metric compound intrinsic spacetime (φρ.φcφt).

The masses m and intrinsic masses φm of every particle or body are likewise

composed of the non-ponderable (or affine) dynamical component md and φmd and

the ponderable (metric) components mg and φmg. That is,

m ≡ mg ∪ md

and

φm ≡ φmg ∪ φmd

Again md is inseparably embedded in mg forming the compound mass m and

φmd is inseparably embedded in φmg forming the compound intrinsic mass φm in

nature. Thus as the non-ponderable (or affine) dynamical mass md of a particle

moves at a velocity ~v in the affine spacetime of dynamics (Σd, cγt) relative to an

observer, it drags its ponderable (or metric) gravitational mass mg along, such that

mg moves at equal velocity ~v in its spacetime of the theories of gravity (Σg, cgt)
relative to the observer. Consequently the ponderable (or metric) compound mass m
is observed to move at velocity ~v in the metric compound spacetime (Σ, ct) relative

to the observer.

Now the gravitational velocity ~V ′g(r
′) is a relative velocity in the context of

the theory of gravitational relativity (TGR) on flat relativistic spacetime (Σ, ct) in

Fig. 1, started in section 2 of [2] and shall be advanced further in this first part of

this paper; the gravitational-relativistic form of the classical (or Newton’s) theory

of gravity (CG) on flat relativistic spacetime (Σ, ct), shall be developed in the sec-

ond part of this paper and a Maxwellian theory of gravity (MTG) that describes the

‘propagation’ at gravitational velocity ~V ′g(r
′) on the flat relativistic spacetime (Σ, ct),

of massless gravitational field ~g and another induced massless partner-gravitational

field ~d in the relativistic Euclidean 3-space Σ in a gravitational field, to be developed

elsewhere with progress of the present theory. The MTG in the metric spacetime

(Σg, cgt) of the theories of gravity is the gravitational counterpart of electromag-

netism (EM) in the affine spacetime of electromagnetism and dynamics (Σd, cγt).
The gravitational velocity ~V ′g(r

′) must be treated as a relative velocity in the

context of the theories of gravity namely, TGR, CG and MTG, on the flat relativistic
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spacetime (Σ, ct), where, as discussed in the sub-section 2 of [2] and mentioned

in the preceding sub-section, the relativity of ~V ′g(r
′) refers to the variation of its

magnitude with position in the gravitational field.

On the other hand, the gravitational velocity is absolute in the context of the dy-

namical theories namely, the special theory of relativity (SR), the special-relativistic

form of classical (or Newton’s) theory of motion (CM) and dynamics of non-gravita-

tional fields and parameters, that is, electromagnetism (EM) and other non-gravita-

tional laws. In other words, should the dynamical velocity ~v of relative motion

be replaced by the gravitational (or static) velocity ~V ′g(r
′) in these dynamical laws,

then ~V ′g(r
′) must be treated as absolute and the resulting theories as non-observable,

which is so since ~V ′g(r
′) is not made manifest in motion and since it is the same

relative to all observers or frames of reference.

Let us temporarily separate the affine proper intrinsic time dimension φcγφt′

from the metric proper intrinsic gravitational time dimension φcgφt′ and combine

the metric compound proper intrinsic space φρ′ with φcγφt′ to have flat proper intrin-

sic spacetime (φρ′, φcγt′) underlying flat proper spacetime (Σ′, cγt′) in the assumed

absence of relative gravity (or assumed absence of relative gravitational velocity
~V ′g(r

′)).

Then let us introduce non-uniform intrinsic gravitational speed φV ′g(r
′) along

the straight line φρ′ along the horizontal and straight line φcγφt′ along the vertical.

This will cause φρ′ to be curved towards the vertical, while φcγφt′ will remain not

curved from its vertical position. This is so because the intrinsic gravitational speed

φV ′g(φr′) being absolute in the context of intrinsic dynamics, it is absolute on the

intrinsic dynamical spacetime (φχ′, φcγφt′). Consequently the intrinsic dynamical

time dimension φcγφt′ is unaffected (or is invariant) with the presence of φV ′g(φr′).
On the other hand, the presence of φV ′g(φr′) along the compound proper intrinsic

space φρ′ will cause φρ′ to transform non-trivially into the compound relativistic

intrinsic space φρ. Graphically the foregoing paragraph and this paragraph mean

that the presence of non-uniform φV ′g(φr′) along φρ′ along the horizontal and along

φcγφt′ along the vertical, will cause φρ′ to be curved towards the vertical, thereby

projecting φρ along the horizontal, while φcγφt′ will remain not curved from its

vertical position, as illustrated in Fig. 3(a).

On the other hand, let us hypothetically combine the compound proper intrinsic

space φρ′ with the proper intrinsic gravitational time dimension φcgφt′ to have a flat

(φρ′, φcgφt′) in the assumed absence of relative intrinsic gravitational field (or in

the assumed absence of relative gravitational velocity ~V ′g(r
′)). Then let non-uniform
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Figure 3:

intrinsic gravitational speed φV ′g(φr′) be introduced along the straight line φρ′ along

the horizontal and straight line φcgφt′ along the vertical of the flat (φρ′, φcgφt′). This

will cause φρ′ to be curved into the first quadrant towards the vertical and φcgφt′ to

be curved into the second quadrant towards the horizontal simultaneously, so that

φρ′ and φcgφt′ constitute orthogonal curvilinear intrinsic dimensions, as illustrated

in Fig. 3(b).

Fig. 3(b) arises because φV ′g(φr′) being a relative intrinsic speed in the context

of the theories of intrinsic gravity, it is relative on the intrinsic gravitational space-

time (φρ′g,φcgφt′). Consequently the presence of non-uniform φV ′g(φr) along φcgφt′

will cause it to transform non-trivially into φcgφt. Graphically this means that the

presence of non-uniform φV ′g(φr′) along φcgφt′ along the vertical will cause φcgφt′

to be curved relative to the vertical as in Fig. 3(b).

The curved compound proper intrinsic space − straight line proper intrinsic dy-

namical time dimension (φρ′, φcγφt′) in Fig. 3(a) possesses non-Lorentzian intrinsic

metric tensor of the Gaussian form,

dφs′2 = φc2
γdφt′2 − φg11dφρ′2 (8)

On the other hand, the curved compound proper intrinsic space − curved proper

intrinsic gravitational time dimension (φρ′, φcgφt′) in Fig. 3(b) possesses the intrin-

sic Lorentzian metric

dφs′2 = φc2
gdφt′2 − dφρ′2 (9)

This is so because φρ′ and φcgφt′ are orthogonal curvilinear intrinsic dimensions.

However Eq. (9) must be derived from the full diagram in the two-world picture of

Fig. 1 along with its complementary diagram of Fig. 2, as done in section 2 of [2].

The conclusion that can be drawn from all the foregoing is that if the dynamical

time dimension cγt and the intrinsic time dimension φcγφt are the only time dimen-
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sion and intrinsic time dimension that exist along the with the metric 3-space Σ and

intrinsic metric space φρ in nature, then the theories of gravity on flat relativistic

spacetime (Σ, ct) namely, TGR, CG and MTG, will be impossible, since flat rela-

tivistic spacetime (Σ, cγt) with Lorentzian metric tensor does not exist in Fig. 3(a).

On the other hand, if the gravitational time dimension cgt and intrinsic grav-

itational time dimension φcgφt are the only time dimension and intrinsic time di-

mension that exist along with the metric 3-space Σ and intrinsic metric space φρ,

so that Fig. 3(b), which must be drawn in the two-world picture, obtains in every

gravitational field, then TGR, CG and MTG will be possible on the flat relativistic

spacetime (Σ, cgt). However the dynamical theories namely, SR, CM, EM and other

non-gravitational dynamical laws on flat spacetime in a gravitational field will be

impossible on flat spacetime in this case, as shall be discussed shortly.

However the dynamical time dimension and intrinsic dynamical time dimension

(cγt/φcγφt) and the gravitational time dimension and intrinsic gravitational time

dimension (cgt/φcgφt) are not separated in gravitation as done in Figs. 3(a) and

3(b) in nature. What happens in reality is that although it is the proper intrinsic

gravitational time dimension φcgφt′ that is curved by the presence of non-uniform

relative intrinsic gravitational speed φV ′g(φr′) in a gravitational field, since φcγφt′ is

not separated from φcgφt′, both φcgφt′ and φcγφt′ are curved, so that the compound

intrinsic time dimension φcφt′ ≡ φcφt′ ∪ φcγφt′ is curved along with the compound

intrinsic space φρ′ ≡ φρ′g ∪ φχ
′ in a gravitational field, as illustrated in Fig. 3(c).

Fig. 3(c) must actually be presented in the full form within the two-world picture as

in Fig. 1.
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The conclusion then is that it is the metric compound two-dimensional proper
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intrinsic spacetime (φρ′, φcφt′) that is curved relative to its projective flat metric

compound two-dimensional relativistic intrinsic spacetime (φρ, φcφt) that underlies

flat metric compound four-dimensional relativistic spacetime (Σ, ct) in a gravita-

tional field in the contexts of the theory of gravitational relativity/intrinsic theory of

gravitational relativity (TGR/φTGR). Consequently the theories of gravity namely,

TGR, CG and MTG operate on flat compound four-dimensional metric spacetime

(Σ, ct) and the theories of intrinsic gravity namely, φTGR, φCG and φMTG operate

on flat compound two-dimensional intrinsic metric spacetime (φρ, φcφt) in every

gravitational field.

Again let us artificially separate the compound one-dimensional symmetry-part-

ner relativistic mass φε/φc2 of a particle in the straight line compound relativistic

intrinsic time dimension φcφt along the vertical into its affine dynamical component

φεd/φc2
γ and metric gravitational component φεg/φc2

g, where φεd/φc2
γ is resident in

the the affine relativistic intrinsic dynamical time dimension φcγφt and φεg/φc2
g is

resident in the metric relativistic intrinsic gravitational time dimension φcgφt.

The special theory of relativity (SR) and intrinsic special theory of relativity

(φSR) are yet absent in the discussion in the preceding paragraph. The term ‘rela-

tivistic’ in relativistic intrinsic mass φε/φc2 in relativistic intrinsic time dimension

φcφt and relativistic intrinsic mass φm in relativistic intrinsic space φρ, refers to

the presence of the theory of gravitational relativity (TGR) that converts the flat

proper spacetime (Σ′, ct′) containing the rest masses (m0, ε
′/c2) and (M0, E′/c2)

of particles and bodies into flat relativistic spacetime (Σ′, ct′) containing the rela-

tivistic masses (m, ε/c2) and (M, E/c2) of particles and bodies (in the absence of

SR) and the presence of the intrinsic theory of gravitational relativity (φTGR) that

converts the flat proper intrinsic spacetime (φρ′, φcφt′) containing the intrinsic rest

masses (φm0, φε
′/φc2) and (φM0, φE′/φc2) of particles and bodies into flat relativis-

tic intrinsic metric spacetime (φρ, φcφt) containing the relativistic intrinsic masses

(φm, φε/φc2) and (φM, φE/φc2) of particles and bodies (in the absence of φSR).

As done previously, gravitational-relativistic shall often be used to refer to the

presence of TGR, as distinct from special-relativistic that refers to the presence of

SR. The adjective relativistic shall be used to refer to either situation whenever pos-

sibility of confusion can be ruled out. The relativistic mass m or M in the relativistic

Euclidean 3-space Σ in the context of TGR shall be identified as the inertial mass in

the second part of this paper.

Let us artificially combine the metric gravitational-relativistic intrinsic gravi-

tational mass φεg/φc2
g (artificially separated from φεd/φc2

γ), which is resident in
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the metric relativistic intrinsic gravitational time dimension φcgφt along the vertical

with the metric compound relativistic intrinsic mass φm in the metric compound rel-

ativistic intrinsic space φρ along the horizontal. This gives the relativistic intrinsic

mass (φm, φεg/φc2
g) of the particle in flat relativistic intrinsic spacetime (φρ, φcgφt)

in the absence of special relativity and intrinsic special relativity yet.

Let us then introduce special relativity/intrinsic special relativity by considering

the gravitational-relativistic intrinsic mass (φm, φεg/φc2
g) of the particle to perform

intrinsic motion at intrinsic dynamical speed φv on the flat relativistic intrinsic met-

ric spacetime (φρ, φcgφt) relative to an observer. The possession of intrinsic speed

φv relative to the observer of the compound intrinsic mass φm contained in an ele-

mentary interval of intrinsic metric space dφρ, will cause it to be in intrinsic motion

along an affine intrinsic space coordinate φx̃ that is inclined at an intrinsic angle

φψ relative to φρ along the horizontal. This is so because possession of intrinsic

speed φv relative to the observer by the affine dynamical mass φmd will cause φmd

to undergo intrinsic motion along the inclined affine intrinsic space φx̃ and drag the

metric gravitational intrinsic mass φmg along, thereby making the metric compound

intrinsic mass φm ≡ φmg ∪ φmd contained in elementary interval dφρ of intrinsic

metric space φρ to move at intrinsic speed φv along the inclined affine intrinsic space

φx̃.

On the other hand, the possession of intrinsic dynamical speed φv relative to an

observer by the metric gravitational mass φεg/φc2
g in the metric intrinsic gravita-

tional time dimension φcgφt along the vertical, will not cause φεg/φc2
g contained in

elementary interval φcgdφt of the metric intrinsic gravitational time dimension φcgφt
to be in intrinsic motion along an affine intrinsic coordinate φcγφt̃ that is inclined

anti-clockwise at an intrinsic angle φψ relative to φcgφt along the vertical. Rather

φεg/φc2
g contained in interval φcgdφt will remain not rotated from φcgφt along the

vertical, but will move at intrinsic speed φv along φcgφt along the vertical.

The end of the foregoing paragraph is so because the relative intrinsic dynamical

speed φv in the context of φSR (or on the flat affine intrinsic dynamical spacetime

(φχ, φcγφt̃ ) of φSR), is an absolute intrinsic speed on the flat metric intrinsic grav-

itational spacetime (φρg, φcgφt). Hence the possession of φv relative to an observer

by φεg/φc2
g in φcgφt, will leave both φεg/φc2

g and φcgφt unchanged (or invariant).

Graphically this means that φεg/φc2
g contained in interval φcgdφt of φcgφt, cannot

be in motion along an affine intrinsic coordinate that is rotated anti-clockwise by an

intrinsic angle φψ relative to φcgφt along the vertical. Rather φεg/φc2
g contained in

φcgdφt will be moving at the intrinsic speed φv in φcgφt along the vertical relative
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to the observer.

Possession of intrinsic dynamical speed φv relative to an observer by the metric

intrinsic gravitational mass φmg contained in interval dφρg of the metric intrinsic

gravitational space φρg along the horizontal, will likewise leave both φmg and φρg
unchanged (or invariant). Graphically this means that φmg contained in dφρg should

not be in motion along an affine intrinsic coordinate that is rotated anti-clockwise

by an intrinsic angle φψ relative to φρg along the horizontal.

However since φmd contained in dφχ is not separated from φmg contained in

dφρg, thereby giving rise to the compound intrinsic mass φm contained in inter-

val dφρ of compound intrinsic space φρ in the artificially prescribed intrinsic mass

(φm, φε/φc2
g) of a particle, the intrinsic motion of φmd contained in dφχ along the

affine intrinsic space coordinate φx̃, which is rotated anti-clockwise by intrinsic an-

gle φψ relative to the horizontal, by virtue of the intrinsic speed φv of φmd relative to

the observer, will drag φmg contained in dφρg in intrinsic motion at intrinsic speed

φv along the inclined intrinsic affine space coordinate φx̃.

Whereas since only φεg/φc2
g contained in φcgdφt exists in φcgφt along the ver-

tical in the artificially prescribed intrinsic mass φm, φεg/φc2
g) of the particle, there

is no rotation of φεd/φc2
γ contained in φcγdφt̃ to cause the rotation of φεg/φc2

g con-

tained in φcgdφt from its vertical position. This paragraph and the foregoing two

paragraphs explain the geometry of Fig. 4(a) for the relative intrinsic motion of the

artificially prescribed φm, φεg/φc2
g).
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Figure 4:

On the other hand, let us artificially combine the metric compound intrinsic mass

φm occupying interval dφρ of the metric compound intrinsic space φρ along the

horizontal with the affine equivalent intrinsic dynamical mass φεd/φc2
γ occupying

interval φcγdφt of affine intrinsic dynamical time dimension φcγφt along the vertical
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(which is artificially separated from the metric intrinsic gravitational mass φεg/φc2
g),

in the assumed absence of intrinsic dynamical speed φv relative to an observer (or

of φSR).

Let us then introduce intrinsic special relativity/special relativity by considering

the intrinsic mass (φm, φεd/φc2
γ) of the artificial particle on the artificial flat intrinsic

space (φρ, φcγφt) to possess intrinsic dynamical speed φv relative to the observer.

This will cause the compound intrinsic mass φm contained in interval dφρ of the

metric compound intrinsic space φρ to be in intrinsic motion at intrinsic speed φv

along an affine intrinsic space coordinate φx̃ that is inclined at an intrinsic angle φψ

relative to φρ along the horizontal, as in Fig. 4(a).

The possession of intrinsic dynamical speed φv relative to the observer of the

affine symmetry-partner intrinsic dynamical mass φεd/φc2
γ occupying interval φcγdφt

of affine dynamical intrinsic time dimension φcγφt along the vertical, will likewise

cause φεd/φc2
γ contained in interval φcγdφt to be intrinsic motion along an affine in-

trinsic time coordinate φcγφt̃ that is inclined anti-clockwise into the second quadrant

at intrinsic angle φψ relative to φcγφt along the vertical. This is so because a relative

intrinsic dynamical speed φv is a relative intrinsic speed on the flat affine intrinsic

dynamical spacetime (φχ, φcγφt). Consequently possession of intrinsic dynamical

speed φv relative to an observer by affine intrinsic dynamical mass (φmd, φεd/c2
γ)

on flat (φχ, φcγφt ), will cause rotation of affine intrinsic frame (φχ̃, φcγφt̃ ) of the

particle relative to affine intrinsic frame (φχ̃, φcγφt̃ ) of the observer.

The foregoing two paragraphs imply that possession of intrinsic dynamical speed

φv of the artificially prescribed intrinsic mass (φm, φεd/φc2
γ) of a particle on the ar-

tificial flat intrinsic spacetime (φρ, φcγt), will give rise to the geometry depicted in

Fig. 4(b). However it is the full form within the two-world picture of Fig. 4(b) and

its complementary diagram that must be drawn, as shall be done later in this paper.

The inclined affine intrinsic space coordinate space − straight line intrinsic met-

ric time dimension along the vertical (φχ̃, φcgφt) in Fig. 4(b) possesses non-Lorent-

zian ‘metric’ tensor of the Gaussian form,

dφs̃2 = φc2
gdφt2 − φg11dφχ̃2 (10)

On the other hand, the inclined affine intrinsic spacetime (φχ̃, φcγφt̃) in Fig. 4(b)

possesses the intrinsic Lorentzian ‘metric’ tensor

dφs̃2 = φc2
gdφt2 − dφχ̃2 (11)

However Eq. (11) must be derived from the full diagram in the two-world picture
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along with its complementary diagram, as done with Figs. 8(a) and 8(b) of [9] and

as shall be re-visited later in this paper.

The conclusion that can be drawn from the above is that if the gravitational time

dimension cgt and intrinsic gravitational time dimension φcgφt are the only time

dimension and intrinsic time dimension that exist along with the metric Euclidean

3-space Σ and its underlying straight line intrinsic metric space φρ in every gravita-

tional field in nature, then the dynamical theories namely, SR, the special-relativistic

classical (or Newtonian) theory of motion (CM), electromagnetism (EM) and other

non-gravitational dynamical laws, will be impossible on a flat relativistic space-

time (Σ, cgt) in a gravitational field, since a flat relativistic affine intrinsic spacetime

geometry of φSR and hence a flat affine spacetime geometry of SR do not exist in

Fig. 4(a).

On the other hand, if the affine dynamical time dimension cγt and affine intrinsic

dynamical time dimension φcγφt are the only time dimension and intrinsic time di-

mension that exist along with the metric Euclidean 3-space Σ and straight line metric

intrinsic intrinsic space φρ underlying Σ in every gravitational field (as known until

now in physics), so that Fig. 4(b), which must be drawn in the two-world picture

along with its complementary diagram exists in every gravitational field, then SR,

CM, EM and other non-gravitational dynamical laws will be possible on a flat rela-

tivistic spacetime (Σ, cγt) in every gravitational field, since Lorentzian affine intrinsic

spacetime geometry and hence Lorentzian spcetime geometry obtain in Fig. 4(a).

However TGR, CG and MTG will be impossible on the flat relativistic spacetime

(Σ, cγt) in this situation.

However the affine dynamical time dimension/affine intrinsic dynamical time di-

mension (cγt/φcγφt) and metric gravitational time dimension/metric intrinsic grav-

itational time dimension (cgt/φcgφt) are not separated in dynamics an gravity in

reality unlike as done in Figs. 4(a) and 4(b). What happens in reality is that al-

though it is the affine symmetry-partner intrinsic dynamical mass φεd/φc2γ contained

in interval φcγdφt of affine intrinsic dynamical time dimension φcγφt, which pos-

sesses intrinsic dynamical speed φv relative to the observer and undergoes intrinsic

motion at intrinsic speed φv along an affine intrinsic time coordinate φcγφt̃ that is

inclined anti-clockwise at an intrinsic angle φψ relative to φcγφt along the vertical,

as illustrated in Fig. 4(b), since φεd/φc2
γ and φεg/φc2

g are not separated in nature,

φεd/φc2
γ drags φεg/φc2

g along. Consequently it is the metric compound symmetry-

partner intrinsic mass φε/φc2 ≡ φεg/φc2
g ∪ φεd/φc2

γ that undergoes intrinsic motion

at intrinsic speed φv along the inclined affine intrinsic time coordinate φcγφt̃ in a
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gravitational field.

Thus the metric compound symmetry-partner intrinsic mass φε/φc2 ≡ φεg/φc2
g∪

φεd/φc2
γ occupying interval φcdφt of the metric compound intrinsic time dimension

φcφt, which is in intrinsic motion at intrinsic dynamical speed φv along an affine in-

trinsic time coordinate φcγφt̃, which is inclined into the second quadrant at intrinsic

angle φψ relative to the metric intrinsic time dimension φcφt along the vertical, must

be combined with the metric compound intrinsic mass φm ≡ φmg ∪ φmd, occupying

interval dφρ of the metric compound intrinsic space φρ, which is in intrinsic motion

at intrinsic dynamical speed φv along an affine intrinsic space coordinate φχ̃ that is

inclined into the first quadrant at equal intrinsic angle φψ relative to the metric com-

pound intrinsic space φρ along the horizontal. In other words, the artificial diagram

of Fig. 4(b) must be replaced with the natural diagram of Fig. 4(c) for SR/φSR in

every gravitational field.
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Figure 4: c)

However it is the full form in the two-world picture of Fig. 4(c) and its com-

plementary diagram, along with their inverses, that must be drawn, from which the

intrinsic local Lorentz transformation/local Lorentz transformation (φLLT/LLT) and

their inverses must be derived in every gravitational field, as done in [9] and as shall

be re-visited later in this paper.

Again the conclusion that follows from the natural geometry of Fig. 4(c) for

SR/φSR in a gravitational field, is that the dynamical laws namely, SR, CM, EM

and other non-gravitational dynamical laws, operate on the flat metric compound

gravitational-relativistic spacetime (Σ, ct) (prescribed in the context of the theory of
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gravitational relativity (TGR)) and the intrinsic dynamical theories namely, φSR,

φCM, φEM and other non-gravitational intrinsic dynamical laws, operate on the flat

gravitational-relativistic intrinsic metric spacetime (φρ, φcφt) prescribed by φTGR.

The TGR, the relativistic form (in the context of TGR) of the classical (or New-

tonian) theory of gravity (CG) and the Maxwellian theory of gravity (MTG), involv-

ing relative gravitational velocity ~Vg(r′) on the flat metric compound gravitational-

relativistic spacetime (Σ, ct), are the counterparts of SR, the special-relativistic clas-

sical (or Newtonian) theory of motion (CM) and electromagnetism (EM), involving

dynamical velocity ~v relative to the observer on the flat relativistic spacetime (Σ, ct)
in a gravitational field. The φTGR, φCG and φMTG, involving relative intrinsic

gravitational speed φVg(φr′) on the flat metric compound gravitational-relativistic

intrinsic spacetime (φρ, φcφt), are likewise the counterparts of φSR, φCM and φEM,

involving intrinsic dynamical speed φv relative to the observer on the flat relativistic

spacetime (Σct) in every gravitational field.

2 The theory of gravitational relativity/intrinsic theory of gravitational rela-

tivity by graphical approach

As mentioned towards the end of sub-section 1.1, the first two parts of this paper

shall be devoted to the development of the theory of gravitational relativity/intrinsic

theory of gravitational relativity (TGR/φTGR); the gravitational-relativistic form

(in the context of TGR/φTGR) of the classical (or Newton’s) law of gravity/intrinsic

classical (or intrinsic Newton’s) law of gravity (CG/φCG) and the gravitational-

relativistic form (in the context of TGR/φTGR) of the special theory of relativity

and intrinsic special theory of relativity (SR/φSR), on the flat relativistic spacetime

(Σ, ct) and its underlying flat relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1.

Now the absolute intrinsic rest mass (φm̂0, φε̂/φĉ2) in absolute intrinsic motion

at absolute dynamical speed φV̂d relative to the curved ‘two-dimensional’ absolute

intrinsic metric spacetime (φρ̂, φĉφt̂ ) within an absolute intrinsic local Lorentz

frame on the curved (φρ̂, φĉφt̂ ), at ‘distance’ φr̂ from the base of the absolute in-

trinsic rest mass (φM̂0, φÊ/φĉ2) of the gravitational field source at the origin of

the curved (φρ̂, φĉφt̂ ) in Fig. 1, acquires the absolute intrinsic gravitational speed

φV̂g(φr̂) established at ‘distance’ φr̂ along the curved φρ̂ and φĉφt̂ by φM̂0 and

φÊ/φĉ2 respectively.

The absolute intrinsic dynamical speed φV̂d of the absolute intrinsic rest mass

(φm̂0, φε̂/φĉ2) of the test particle and the absolute intrinsic gravitational speed

φV̂g(φr̂) within the absolute intrinsic local Lorentz frame on the curved (φρ̂, φĉφt̂ )
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at ‘distance’ φr̂ along the curved φρ̂ and φĉφt̂ from the base of φM̂0 in φρ̂ and the

base of φÊ/φĉ2 in φĉφt̂, are then projected invariantly into the corresponding proper

intrinsic local Lorentz frame on the curved proper intrinsic spacetime (φρ′, φcφt′),
at ‘distance’ φr′ along the curved φρ′ and φcφt′ from the base of φM0 in φρ′ and the

base of φE′/φc2 in φcφt′ in Fig. 1.

Thus the intrinsic rest mass (φm0, φε
′/φc2) of the particle ‘projected’ into the

curved (φρ′, φcφt′) within the proper intrinsic local Lorentz frame on the curved

(φρ′, φcφt′) at ‘distance’ φr′ along the curved φρ′ and curved φcφt′ from the base

of φM0 on curved φρ′ and base of φE′/φc2 on curved φcφt′, by the absolute in-

trinsic rest mass (φm̂0, φε̂/φĉ2) of the particle in absolute intrinsic motion relative

to the curved (φρ̂, φĉφt̂ ) in Fig. 1, possesses the projective absolute intrinsic speeds

φV̂g(φr̂) and φV̂d. In addition, the intrinsic rest mass (φm0, φε
′/φc2) of the particle

possesses proper intrinsic gravitational speed φV ′g(φr′) established at ‘distance’ φr′

along the curved φρ′ by φM0 at the origin of the curved φρ′ and at ‘distance’ φr′

along φcφt′ by φE′/φc2 at the origin of the curved φcφt′ in Fig. 1.

As follows from the foregoing two paragraphs, the intrinsic rest mass (φm0,

φε′/φc2) of the particle possesses the intrinsic speeds φV̂d, φV̂g(φr̂) and φV ′g(φr′)
within the proper intrinsic local Lorentz frame on the global curved proper intrinsic

spacetime (φρ′, φcφt′) at ‘distance’ φr′ along the curved φρ′ from the base of φM0

in φρ′ and at ‘distance’ φr′ along the curved φcφt′ from the base of φE′/φc2 in

φcφt′, as indicated in Fig. 1. Given that the intrinsic rest mass (φm0A, φε
′
A/φc2) of

an observer possesses absolute intrinsic dynamical speed φV̂dA within this proper

intrinsic local Lorentz frame on the global curved (φρ′, φcφt′), then the intrinsic rest

mass (φm0, φε
′/φc2) of the particle will be in intrinsic motion at intrinsic dynamical

speed φv = φV̂d − φV̂dA, relative to the intrinsic rest mass (φm0A, φε
′
A/φc2) of the

observer within this proper intrinsic local Lorentz frame on the curved (φρ′, φcφt′).

It follows that primed intrinsic special theory of relativity (φSR′) can be for-

mulated for the intrinsic motion at intrinsic speed φv of the intrinsic rest mass

(φm0, φε
′/φc2) of the particle relative to the intrinsic rest mass (φm0A, φε

′
A/φc2) of

the observer within the proper intrinsic local Lorentz frame on the global curved

(φρ′, φcφt′) at ‘distance’ φr′ along the curved φρ′ from the base of φM0 in φρ′ in

Fig. 1. It also follows that the primed intrinsic classical (or intrinsic Newton’s) the-

ory of gravity (φCG′) can be formulated in terms of the proper intrinsic gravitational

speed φV ′g(φr′) and the associated proper intrinsic gravitational potential φΦ′(φr′)
and proper intrinsic gravitational acceleration φg′(φr′) within this proper intrinsic

local Lorentz frame on the global curved (φρ′, φcφt′).
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Further more the primed Newtonian theory of absolute intrinsic gravity (φNAG′)

can be formulated in terms of the absolute intrinsic gravitational speed φV̂g(φr̂)

and the associated absolute intrinsic gravitational potential φΦ̂(φr̂) and absolute in-

trinsic gravitational acceleration φĝ(φr̂), which are invariantly projected into the

proper intrinsic local Lorentz frame on the global curved proper intrinsic spacetime

(φρ′, φcφt′) at ‘distance’ φr′ along the curved φρ′ from the base of φM0 in φρ′ by

φV̂g(φr̂), φΦ̂(φr̂) and φĝ(φr̂) on the curved absolute intrinsic spacetime (φρ̂, φĉφt̂ )

in Fig. 1. Also the primed Newtonian theory of absolute intrinsic motion (φNAM′)

can be formulated in terms of the absolute intrinsic dynamical speed φV̂d projected

into the proper intrinsic local Lorentz frame on the global curved proper intrinsic

spacetime (φρ′, φcφt′) at distance φr′ from the base of φM0 in φρ′, as an intrinsic

speed possessed by the intrinsic rest mass (φm0, φε
′/φc2) of the particle.

Thus the primed intrinsic theories φCG′, φSR′, φNAG′+ φNAM′ exist within the

proper intrinsic local Lorentz frame on the global curved proper intrinsic spacetime

(φρ′, φcφt′) at ‘distance’ φr′ from the base of φM0 in the curved φρ′ in Fig. 1. Let the

elementary intervals dφρ′ of the curved proper intrinsic space φρ′ and elementary

interval φcdφt′ of the curved proper intrinsic time dimension φcφt′ be the dimen-

sions of this proper intrinsic local Lorentz frame on the global curved (φρ′, φcφt′).
Then the intrinsic local Lorentz frame shall be denoted by (dφρ′, φcdφt′). It con-

tains the intrinsic rest mass (φm0, φε
′/φc2) of the particle and harbors the primed

intrinsic theories φCG′, φSR′, φNAG′ and φNAM′.

The primed intrinsic local Lorentz frame (dφρ′, φcdφt′) on the global curved

proper intrinsic spacetime (φρ′, φcφt′), with the intrinsic rest mass (φm0, φε
′/φc2)

of the particle and the primed intrinsic theories φCG′, φSR′, φNAG′ and φNAM′

within it, is then projected as the unprimed intrinsic local Lorentz frame (dφρ,
φcdφt) on the global flat relativistic intrinsic spacetime (φρ, φcφt) with the gravita-

tional-relativistic intrinsic mass (φm, φε/φc2) of the particle and the gravitational-

relativistic (or unprimed) intrinsic theories φCG, φSR, φNAG and φNAM within it

in Fig. 1.

The projective unprimed intrinsic local Lorentz frame (dφρ, φdcφt) and the grav-

itational-relativistic intrinsic mass (φm, φε/φc2) of the particle and the gravitational-

relativistic intrinsic theories φCG, φSR, φNAG and φNAM in it on the global flat

relativistic intrinsic spacetime (φρ, φcφt), are then made manifest in the unprimed

local Lorentz frame, containing the gravitational-relativistic mass (m, ε/c2) of the

particle and harboring the unprimed theories CG, SR, NAG and NAM within it on

the global flat relativistic spacetime (Σ, ct) in Fig. 1.
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The foregoing paragraph is further summarized as the following transforma-

tions:

(dφρ′, φcdφt′)→ (dφρ, φcdφt);

(φm0, φε
′/φc2)→ (φm, φε/φc2);

(φCG′, φSR′, φNAG′, φNAM′)→ (φCG, φSR, φNAG, φNAM),

in the context of the intrinsic theory of gravitational relativity (φTGR), which are

made manifest outwardly in the following transformations:

(dr′, r′dθ′, r′ sin θ′dϕ′, cdt′)→ (dr, rdθ, r sin θdϕ, cdt);

(m0, ε
′/c2)→ (m, ε/c2);

(CG′,SR′,NAG′,NAM′)→ (CG, SR, NAG, NAM),

in the context of the theory of gravitational relativity (TGR).

Now global curved four-dimensional proper spacetime (Σ′, ct′) does not exist

along with global curved two-dimensional proper intrinsic spacetime (φρ′, φcφt′) in

Fig. 1. Thus there is nowhere to place the proper local Lorentz frame in Fig. 1.

It shall therefore be placed on the global flat proper spacetime (Σ′, ct′) in Fig. 11

of [6] at the first stage of evolutions of spacetime/intrinsic spacetime and para-

meters/intrinsic parameters in a gravitational field, which endured for no moment

before evolving to the final Fig. 1 at the second stage.

The program of this first part and the second part of this paper is the following

1. Derivation of intrinsic metric spacetime coordinate interval transformations,

intrinsic mass and other intrinsic parameter transformations in the context of

φTGR and derivation of the gravitational-relativistic intrinsic theories φGC

and φSR within intrinsic local Lorentz frames on the global flat relativistic in-

trinsic spacetime (φρ, φcφt), in terms of the gravitational-relativistic intrinsic

parameters φm, φΦ(φr) and φg(φr) obtained; and

2. Derivation of metric spacetime coordinate interval transformations, mass and

other parameter transformations in the context of TGR and derivation of the

gravitational-relativistic theories GC and SR within local Lorentz frames on

the global flat relativistic spacetime (Σ, ct), in terms of the gravitational-relat-

ivistic parameters m, Φ(φr) and ~g(φr) obtained.

There are two approaches towards the accomplishment of items 1 and 2 above

namely, a graphical approach to be developed in this first part of this paper and
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an analytical approach, to complement the graphical approach, to be developed in

the second part of this paper.

The rest of this section shall be devoted to the development of TGR/φTGR by the

graphical approach, while the next section shall be devoted to the development of

SR/φSR by the graphical approach on flat spacetime in a gravitational field, upon the

flat spacetime/intrinsic spacetime (Σ, ct)/(φρ, φcφt) and mass/intrinsic mass (m/φm)

that evolve in the context of TGR/φTGR. Actually the TGR/φTGR by the graphical

approach has been accomplished to a large extent in section 2 of [2]. We shall be

repeating section 2 of [2], while adding some important details in the rest of this

section.

2.1 Derivation of intrinsic gravitational local Lorentz transformation graphi-

cally and validating intrinsic gravitational local Lorentz invariance in the

context of the intrinsic theory of gravitational relativity

The global spacetime/intrinsic spacetime diagrams of combined first and second

stages of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic para-

meters in a gravitational field of arbitrary strength of Figs. 7 and 8 and their inverses

Figs. 9 and 10 of [2] are required here. Figs. 7 and 8 and [1] have been repro-

duced as Figs. 1 and 2 of this paper, while incorporating the flat absolute-absolute

intrinsic-intrinsic spacetimes (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ) of our universe and (−φφ ˆ̂ρ∗,−φφ ˆ̂cφφˆ̂t∗ )
of the negative universe isolated in [3], which could not appear in Figs. 7 – 10 of [2].

However the inverses of Figs. 1 and 2 of this paper have not been drawn on order to

conserve space.

The local spacetime/intrinsic spacetime diagrams (within a local Lorentz frame)

shown as Figs. 11 and 12 and their inverses as Figs. 13 and 14, drawn from the

global geometries of Figs. 7 and 8 and their inverses of Figs. 9 and 10 respectively,

within a gravitational field of arbitrary strength in [2], shall be reproduced as Figs. 5

– 8 here.

The local spacetime/intrinsic spacetime diagram of Fig. 5 is valid with respect

to 3-observers in the relativistic Euclidean 3-spaces Σ and −Σ∗ of our universe and

the negative universe. It has been drawn within a proper (or primed) intrinsic local

Lorentz frame at ‘distance φr′ along the curved proper intrinsic space φρ′ from

the base of the intrinsic rest mass φM0 of the gravitational field source located at

the origin of the curved proper intrinsic space φρ′ in Fig. 1 of this paper, which

corresponds to unprimed intrinsic local Lorentz frame at ‘distance’ φr along the

straight line relativistic intrinsic space φρ along the horizontal, from the base of

the gravitational-relativistic intrinsic mass φM of the gravitational field source in
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Figure 5:

φρ and unprimed local Lorentz frame at radial distance r from the center of the

gravitational-relativistic mass M of the assumed spherical gravitational field source

in Σ. Spherical gravitational field sources shall be assumed until such a time when

the Maxwellian theory of gravity (MTG) shall be developed when non-spherical

gravitational field sources shall be brought in.

The explanation of the derivation of Fig. 5 from Fig. 7 of [2] or from Fig. 1 of this

paper is as done for the derivation of Fig. 6 from Fig. 1 in [1]. The partial intrinsic

gravitational local Lorentz transformation derivable with respect to 3-observers in

the relativistic Euclidean 3-space Σ in our universe from Fig. 5, which has been

derived in [2], is the following

dφρ′ = dφρ sec φψg(φr′) − φcgdφt tan φψg(φr′);

(w.r.t. 3 − observers in Σ)

}

(12)

The complementary diagram to Fig. 5, which is valid with respect to 1-observers

in the time dimensions ct and −ct∗ of our universe and the negative universe respec-

tively, is depicted as Fig. 6. Fig. 6 has been drawn within the same local Lorentz

frame as Fig. 5, from the global geometry of Fig. 8 of [2] or Fig. 2 of this paper,

with the same explanation for drawing Fig. 7 from Fig. 3 in [1].
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Figure 6:

The partial intrinsic gravitational local Lorentz transformation derivable with

respect to 1-observers in the relativistic time dimension ct of our universe from

Fig. 6, which has been derived in [2] is the following

φcdφt′ = φcdφt sec φψg(φr′) − dφρ tan φψg(φr′);

(w.r.t. 1 − observers in ct)

}

(13)

By collecting Eqs. (12) and (13) we obtain the full intrinsic gravitational local

Lorentz transformation (φGLLT) derivable from Figs. 5 and 6 as follows

dφρ′ = dφρ sec φψg(φr′) − φcgdφt tan φψg(φr′);

(w.r.t. 3 − observers in Σ);

φcdφt′ = φcdφt sec φψg(φr′) − dφρ tan φψg(φr′);

(w.r.t. 1 − observers in ct)







































(14)

There is an inverse to system (14), which must be derived from the inverses to

Figs. 5 and 6. The inverse to Fig. 5 is depicted in Fig. 7. Fig. 7 has been drawn within

the same local Lorentz frame as Figs. 5 and 6, from the global geometry of Fig. 9
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of [2] or from the undrawn inverse to Fig. 1 of this paper, with same explanation for

drawing Fig. 8 from Fig. 4 in [1].
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Figure 7: The inverse to the spacetime/intrinsic spacetime geometry to Fig. 5 at

the second stage of evolutions of spacetimes/intrinsic spactimes within symmetry-

partner gravitational fields in the positive and negative universes that is valid with

respect to 1-observers in the relativistic time dimensions in the two universes.

Fig. 7 is valid with respect to 1-observers in the relativistic time dimensions

ct and −ct∗ of our universe and the negative universe. The explanation of this is

the same as given for the validity of Fig. 8 of [1] and Fig. 9 of [2] with respect to

1-observers in ct′ and −ct′∗ in those diagrams.

The partial inverse intrinsic gravitational local Lorentz transformation that is

derivable with respect to 1-observers in ct in our universe from Fig. 7, which has

been derived in [2] is the following

dφρ′ = dφρ′ sec φψg(φr′) + φcdφt′ tan φψg(φr′);

(w.r.t. 1 − observers in ct)

}

(15)

The inverse to Fig. 6 is depicted as Fig. 8. Again Fig. 8 has been drawn within
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the same local Lorentz frame as Fig. 5 – Fig. 7, from the global geometry of Fig. 10

of [2] or the inverse to Fig. 2 (not drawn) of this paper, with same explanation for

drawing Fig. 9 from Fig. 5 in [1].
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Figure 8: The inverse to the spacetime/intrinsic spacetime geometry to Fig. 6 at

the second stage of evolutions of spacetimes/intrinsic spactimes within symmetry-

partner gravitational fields in the positive and negative universe that is valid with

respect to 3-observers in the relativistic Euclidean 3-spaces in the two universes.

Fig. 8 is valid with respect to 3-observers in the relativistic Euclidean 3-spaces

Σ and −Σ ∗ of our universe and the negative universe. the explanation of this is as

given for the validity of Fig. 9 of [1] or Fig. 10 of [2] with respect to 3-observers in

Σ and −Σ∗ in those diagrams.

The partial intrinsic gravitational local Lorentz transformation that can be de-

rived with respect to 3-observers in Σ in our universe from Fig. 8, which has been

derived in [2] is the following

φcdφt = φcdφt′ sec φψg(φr′) + dφρ′ tan φψg(φr′);

(w.r.t. 3 − observers in Σ)

}

(16)

By collecting Eqs. (14) and (15) we obtain the full inverse intrinsic gravitational
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local Lorentz transformation (inverse φGLLT), that is, inverse to system (14), as

follows

dφρ = dφρ′ sec φψg(φr′) + φcdφt′ tan φψg(φr′);

(w.r.t. 1 − observers in ct)φcdφt;

= φcdφt′ sec φψg(φr′) + dφρ′ tan φψg(φr′);

(w.r.t. 3 − observers in Σ)







































(17)

The elementary indefinitely short intervals dφρ′ and φcdφt′ that appear in Figs. 5

– 8 and in systems (14) and (17), have been taken about ‘distance’ φr′ along the

curved φρ′ from the base of φM0 in φρ′ and along the curved φcφt′ from the base

of φE′/φc2 in φcφt′ in Figs. 7 and 8 of [2] or Figs. 1 and 2 of this paper. They

are the intrinsic dimensions of the proper (or primed) intrinsic local Lorentz frame

(dφρ′, φcdφt′) on the global curved proper intrinsic spacetime (φρ′, φcφt′) at ‘dis-

tance’ φr′ along the curved φρ′ from the base of φM0 in φρ′ in those figures, as

mentioned earlier. They project elementary intervals dφρ and φcdφt of relativistic

intrinsic space and relativistic intrinsic time dimension at ‘distance’ φr along φρ

from the base of φM in φρ along the horizontal and at ‘distance’ φr along φcφt from

the base of φE/φc2 in φcφt along the vertical.

The projective elementary intrinsic coordinate intervals dφρ and φcdφt are the

intrinsic dimensions of the relativistic (or unprimed) intrinsic local Lorentz frame

(dφρ, φcdφt) on flat relativistic intrinsic spacetime (φρ, φcφt) at ‘distance’ φr along

φρ from the base of φM in φρ in Figs. 7 and 8 of [2] or Figs. 1 and 2 of this paper.

As derived in [2], the relative intrinsic angle φψg(φr′) is related to the relative

intrinsic gravitational speed φV ′g(φr′) within the intrinsic local Lorentz frame at ‘dis-

tance’ φr′ along the curved φρ′ from the base of φM0 in φρ′ in Fig. 1 as

sin φψg(φr′) =
φV ′g(φr′)

φcg
≡ φβg(φr′) (18a)

cos φψg(φr′) =

√

1 −
φV ′g(φr′)2

φc2
g

≡ φγg(φr′)−1 (18b)

By using Eqs. (18a) and (18b), the φGLLT (14) and its inverse (17) can be
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written explicitly in terms of intrinsic gravitational speed respectively as follows

dφρ′ = φγg(φr′)(dφρ − φV ′g(φr′)dφt);

(w.r.t. 3 − observers in Σ);

dφt′ = φγg(φr′)(dφt −
φV ′g(φr′)

φc2
g

dφρ);

(w.r.t 1 − observers in ct)















































(19)

and
dφρ = φγg(φr′)(dφρ′ + φV ′g(φr′)dφt′);

(w.r.t. 1 − observers in ct);

dφt = φγg(φr′)(dφt′ +
φV ′g(φr′)

φc2
g

dφρ′);

(w.r.t 3 − observers in Σ)















































(20)

As also derived in [2], the intrinsic gravitational speed φV ′g(φr′) is related to the

intrinsic rest mass φM0 of the gravitational field source as

φV ′g(φ
′)2 = 2GφM0/φr′

However this relation must now be written in terms of the immaterial intrinsic ac-

tive gravitational mass (or gravitational charge), after introducing the gravitational

charge that is imperceptibly hidden within the rest mass as the source of gravita-

tional speed, gravitational potential and gravitational acceleration in [6], as already

done in [4]; see Eq. (119) of [4]. In other words, we must replace the last equation

by the following

φV ′g(φ
′)2 = 2GφM0a/φr′ (21)

Then the relations (18a) and (18b) can be written in terms of 2GφM0a/φr′ as

sin φψg(φr′) =

√

2GφM0a

φr′
≡ φβg(φr′) (22a)

cos φψg(φr′) =

√

1 −
2GφM0a

φr′φc2
g

≡ φγg(φr′)−1 (22b)

By using Eqs. (22a) and (22b), the φGLLT (14) or (19) and its inverse (17)

or (20) can be written explicitly in terms of the intrinsic gravitational parameter
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2GφM0a/φr′ respectively as follows

dφρ′ = φγg(φr′)(dφρ −

√

2GφM0a

φr′
dφt);

(w.r.t. 3 − observers in Σ);

dφt′ = φγg(φr′)(dφt −

√

2GφM0a

φr′φc4
g

dφρ);

(w.r.t 1 − observers in ct)



































































(23)

and

dφρ = φγg(φr′)(dφρ′ +

√

2GφM0a

φr′
dφt′);

(w.r.t. 1 − observers in ct);

dφt = φγg(φr′)(dφt′ +

√

2GφM0a

φr′φc4
g

dφρ′);

(w.r.t 3 − observers in Σ)



































































(24)

where φγg(φr′) is given by Eq. (22b).

As also derived in [2], the φGLLT (14), (19) or (23) or its inverse (17), (20) or

(24) leads to intrinsic gravitational local Lorentz invariance (φGLLI)

φc2dφt2 − dφρ2 = φc2dφt′2 − dφρ′2 (25)

This invariance obtains at every point on the curved proper intrinsic spacetime

(φρ′, φcφt′) and at every point on the flat relativistic intrinsic spacetime (φρ, φcφt)
in Figs. 1 and 2, showing formally that the relativistic intrinsic spacetime (φρ, φcφt)
is everywhere flat in every gravitational field.

Another results derived in [2] is the intrinsic gravitational length contraction and

intrinsic gravitational time dilation implied by the φGLLT and its inverse. In order

to do this, only the intrinsic coordinate interval transformations derived with respect

to 3-observers in the Euclidean 3-space Σ in the φGLLT and its inverse are relevant,

since these are the observers that observe or measure length contraction and time

dilation. By collecting the intrinsic coordinate interval transformations with respect
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to 3-observers in Σ in systems (14) and (17) we have

dφρ′ = dφρ sec φψg(φr′) − φcgdφt tan φψg(φr′);

(w.r.t. 3 − observers in Σ);

φcdφt = φcdφt′ sec φψg(φr′) + dφρ′ tan φψg(φr′);

(w.r.t. 3 − observers in Σ







































(26)

Now when a hypothetical intrinsic 1-observer in the relativistic intrinsic space

φρ underlying Σ, with respect to whom the first equation of system (26) is also valid,

picks his intrinsic laboratory rod to measure the resultant intrinsic coordinate inter-

val projected into the relativistic intrinsic space φρ along the horizontal in Fig. 5,

given by the right-hand side of the first equation of system (26), he will be able to

measure the term dφρ sec φψg(φr′) but not the term φcdφt tan φψg(φr′). Likewise

when the hypothetical intrinsic 1-observer in the intrinsic space φρ underlying Σ,

with respect to whom the second equation of system (26) is also valid, picks his lab-

oratory clock to measure the resultant intrinsic coordinate interval projection into

the relativistic intrinsic time dimension φcφt in Fig. 6, expressed by the right-hand

side of the second equation of system (26), he will be able to measure the term

φcdφt′ sec φψg(φr′) but not the term dφρ′ tan φψg(φr′).
Thus by collecting the terms that are measurable with intrinsic laboratory rod

and intrinsic laboratory clock in system (26) by intrinsic 1-observer in φρ we have

dφρ = dφρ′ cos φψg(φr′) (27a)

φt = dφt′ sec φψg(φr′) (27b)

Equations (27a) and 27(b) are mere intrinsic coordinate interval projections with

respect to intrinsic 1-observers in φρ and 3-observers in the relativistic Euclidean

3-space Σ overlying φρ.

The forms of Eqs. (27a) and (27b) implied by system (19) and (20) are the

following

dφρ = φγg(φr′)−1dφρ′ =















1 −
φV ′g(φr′)2

φc2
g















1/2

dφρ′ (28a)

dφt = φγg(φr′)dφt′ =















1 −
φV ′g(φr′)2

φc2
g















−1/2

dφt′ (28b)

And the form of Eqs. (27a) and (27b) implied by systems (23) and (24) are the

639A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.



Vol. 1(3B) : Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

following

dφρ = φγg(φr′)−1dφρ′ =













1 −
2GφM0a

φr′φc2
g













1/2

dφρ′ (29a)

dφt = φγg(φr′)dφt′ =













1 −
2GφM0a

φr′φc2
g













−1/2

dφt′ (29b)

Equations (27a) and (27b), Eqs. (28a) and (28b) and Eqs, (29a) and (29b) are

alternative forms of intrinsic gravitational length contraction and intrinsic gravita-

tional time dilation formulae in the context of the intrinsic theory of gravitational

relativity (φTGR). They pertain to the measurable sub-space of the total space of

φTGR, where the total space of φTGR is the flat relativistic intrinsic spacetime

(φρ, φcφt) in Fig. 1.

Let us obtain a graphical representation of the measurable sub-space of φTGR,

to which the intrinsic gravitational length contraction and intrinsic gravitational time

dilation formulae pertain. We must simply combine the lower half of the first quad-

rant of Fig. 5 and the upper half of the first quadrant of Fig. 8, both of which are

valid with respect to 3-observers in the relativistic Euclidean 3-space Σ, into one

diagram depicted in Fig. 9.
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Figure 9: The measurable sub-space of the space of φTGR to which intrinsic grav-

itational length contraction and intrinsic gravitational time dilation formulae in the

context of φTGR pertain with respect to 3-observers in the Euclidean 3-space Σ.

The intrinsic coordinate interval projection relations that can be derived with
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respect to 3-observers in the Euclidean 3-space Σ from Fig. 9 are

dφρ = dφρ′ cos φψg(φr′) ; φcdφt = φcdφt′ cos φψg(φr′),

which are the same as Eq. (27a) and (27b).

Fig. 9 and the intrinsic gravitational length contraction and intrinsic gravitational

time dilation formulae derivable from it are valid with respect to 3-observers in the

relativistic Euclidean 3-space Σ overlying the relativistic intrinsic space φρ along the

horizontal. It is important to note that there is no projection of the inclined φcdφt
along the horizontal and no projection of the inclined dφρ′ along the vertical in the

measurable sub-space of φTGR of Fig. 9.

2.2 Derivation of intrinsic mass relation in the context of φTGR by the graphical

approach

Now in the hypothetical situation of the absence of relative intrinsic gravitational

speed but the presence of non-uniform absolute intrinsic gravitational speed φV̂g(φr̂)

along the straight line proper intrinsic space φρ′ along the horizontal in Fig. 3 or 4

of [6], the intrinsic rest mass φm0 of a particle located at ‘distance’ φr′ along the

straight line φρ′ along the horizontal from the base of the intrinsic rest mass φM0 of

the gravitational field source in φρ′, is equivalent to intrinsic total energy m0φc2.

If we now allow the intrinsic rest mass φM0 of the gravitational field source to

establish relative intrinsic gravitational speed φV ′g(φr′) at ‘distance’ φr′ along the

straight line φρ′ along the horizontal where φm0 is located, then the interval dφρ′

of φρ′ about this point containing φm0 will be inclined at intrinsic angle φψg(φr′)
relative to the horizontal and project interval dφρ of relativistic intrinsic space along

the horizontal, as illustrated in Fig. 9. The intrinsic rest mass of the test particle

still possessing intrinsic total energy φm0φc2 is inclined along dφρ′ and ‘projects’

intrinsic grav- itational-relativistic mass φm contained within the projective interval

dφρ along the horizontal. The ‘projective’ gravitational-relativistic intrinsic mass

φm is equivalent to intrinsic total energy φmφc2 within dφρ along the horizontal, as

illustrated in Fig. 9.

The intrinsic mass relation in the context of φTGR is a relationship between

the intrinsic rest mass φm0 contained within the inclined dφρ′ and the ‘projective’

gravitational-relativistic intrinsic mass φm contained within the projective dφρ along

the horizontal in Fig. 9. In other to derive that relationship, let us re-write Eq. (18b)

as follows

φc cos φψg(φr′) = φc
√

1 − φV ′g(φr′)2/φc2
g (30)

641A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.



Vol. 1(3B) : Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

The interpretation of this equation is that the compound intrinsic speed of signals φc
at every point of the inclined interval of proper intrinsic metric space φρ′ projects

a component φc cosψg(φr′) into every point of the projective interval of relativistic

intrinsic metric space dφρ along the horizontal. Let us obtain the square of Eq. (30)

and multiply the result by φm0 to have

φm0φc2 cos2 φψg(φr′) = φm0φc2(1 − φV ′g(φr′)2/φc2
g) (31)

The implication of Eq. (31) is that the intrinsic total energy φm0φc2 of the test

particle in the inclined proper intrinsic space interval dφρ′ ‘projects’ gravitational-

relativistic intrinsic total energy φm0φc2 cos2 φψg(φr′) into the projective relativistic

intrinsic space interval dφρ along the horizontal in Fig. 9.

Thus what has been written as φmφc2 within dφρ in Fig. 9 is the same as

φm0φc2 cos2 φψg(φr′), from which we have

φmφc2 = φm0φc2 cos2 φψg(φr′)

Hence

φm = φm0 cos2 φψg(φr′) (32)

or

φm = φm0















1 −
φV ′g(φr′)2

φc2
g















(33)

or

φm = φm0













1 −
2GφM0a

φr′φc2
g













(34)

Eqs. (32) – (34) are alternative forms of the intrinsic mass relations in the context

of φTGR, which shall be re-derived by an alternative analytical approach in the

second part of this paper. The intrinsic mass relation in the context of φTGR is a

new result not derived in [2].

As mentioned earlier, the gravitational-relativistic intrinsic mass φm (= φm0

×φγg(φr′)−2) in the context of φTGR, shall be referred to as gravitational-relativistic

intrinsic mass. Indeed every relativistic (or unprimed) parameter on the flat rela-

tivistic spacetime (Σ, ct) in Fig. 1, which evolves from the corresponding proper (or

classical) parameter on the flat proper spacetime (Σ′, ct′) in Fig. 11 of [6] in the

context of TGR, shall be referred to as the gravitational-relativistic parameter.

The intrinsic gravitational local Lorentz transformation (φGLLT) in the alter-

native forms of systems (14), (19) and (23) and its inverse in the alternative forms
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(17), (20) and (24); the validation of intrinsic gravitational local Lorentz invariance

(φGLLI) (25); the intrinsic gravitational length contraction and intrinsic gravita-

tional time dilation formulae in the alternative forms of Eqs. (27a-b), (28a-b) and

(29a-b) and the intrinsic mass relation in the context of φTGR in the alternative

forms of Eqs. (32) – (34), all derived graphically in this sub-section and the previ-

ous one are sufficient results of φTGR for now. Other results shall be added from

the analytical approach in the second part of this paper.

3 Intrinsic special theory of relativity (φSR) and combined φSR and φTGR

on flat intrinsic spacetime in a gravitational field by the graphical approach

The flat four-dimensional relativistic spacetime (Σ, ct) and its underlying flat two-

dimensional relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1 and 2, which evolve

in the context of the theory of gravitational relativity (TGR) and intrinsic theory

of gravitational relativity (φTGR) respectively, constitute the flat spacetime for the

special theory of relativity (SR) and flat intrinsic spacetime for the intrinsic special

theory of relativity (φSR) in a gravitational field of arbitrary strength.

It is the gravitational-relativistic mass m that evolves in the relativistic Euclid-

ean 3-space Σ in the context TGR that undergoes relative motion on the flat rela-

tivistic spacetime (Σ, ct) in the context of SR in every gravitational field and it is the

gravitational-relativistic intrinsic mass φm that evolves in the relativistic intrinsic

space φρ, given in the alternative forms of Eqs. (32) – (34), that undergoes relative

intrinsic motion on the flat relativistic intrinsic spacetime (φρ, φcφt) in the context

of φSR in every gravitational field.

The unprimed (or gravitational-relativistic) intrinsic special theory of relativity

(φSR), involving the gravitational-relativistic intrinsic mass φm in relative intrinsic

motion within an unprimed intrinsic local Lorentz frame on flat relativistic intrinsic

spacetime (φρ, φcφt), to be developed in this section, is the projection of the primed

intrinsic special theory of relativity (φSR′), involving the intrinsic rest mass φm0 of

the particle or object in relative intrinsic motion within the corresponding proper

(or primed) intrinsic local Lorentz frame on the curved proper intrinsic spacetime

(φρ′, φcφt′) in Fig. 1.

The unprimed (or gravitational-relativistic) special theory of relativity (SR), in-

volving the gravitational-relativistic mass m of the particle or object in relative mo-

tion within the corresponding local Lorentz frame on the flat four-dimensional rela-

tivistic spacetime (Σ, ct) is the outward (or physical) manifestation of φSR.
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3.1 Derivation of intrinsic local Lorentz transformation (φLLT) and its inverse

and validating intrinsic local Lorentz invariance (φLLI) of φSR on the flat

relativistic intrinsic spacetime of φTGR by the graphical approach

In order to derive combined φTGR and φSR, we must simply formulate φSR on the

flat relativistic intrinsic spacetime (φρ, φcφt) in terms of the gravitational-relativistic

intrinsic mass φm of the test particle, which evolved in the context of φTGR, derived

in sub-section 2.2, as the intrinsic mass that undergoes intrinsic motion relative to

the observer in every gravitational field.

Let the gravitational-relativistic intrinsic mass (φm, φε/φc2) of a particle occupy

a little relativistic intrinsic metric spacetime (dφρ, φcdφt) of the flat two-dimensional

relativistic intrinsic spacetime (φρ, φcφt) of φTGR. Let us denote the intrinsic affine

spacetime frame attached to (φm, φε/φc2) by (φx̃, φcφt̃) – this is the particle’s intrin-

sic affine spacetime frame on the flat relativistic intrinsic metric spacetime (φρ, φcφt)
in every gravitational field (denoted by (φx̃′, φcφt̃′) on the flat proper intrinsic metric

spacetime (φρ′, φcφt′) in the absence of relative gravity at the first stage of evolu-

tions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in every

gravitational field in [6] and [4]).

As the gravitational-relativistic intrinsic mass (φm, φε/φc2) moves at intrinsic

dynamical speed φv relative to the observer within an intrinsic local Lorentz frame

on flat intrinsic metric spacetime (φρ, φcφt), it becomes the special-relativistic cum

gravitational-relativistic intrinsic mass in the context of combined φSR and φTGR

(or in the context of φSR+φTGR) on the flat (φρ, φcφt). The special-relativistic

cum gravitational-relativistic intrinsic mass shall be denoted by (φm, φε/φc2), where

φm = φγd(φv)φm and φε/φc2 = φγd(φv)φε/φc2. The special-relativistic cum gravi-

tational-relativistic intrinsic mass (φm, φε/φc2) occupies a little intrinsic metric

spacetime interval to be denoted by (dφρ, φcdφt ) of the global flat relativistic in-

trinsic spacetime (dφρ, φcdφt).

Let us denote the intrinsic affine spacetime frame attached to (φm, φε/φc2) by

(φx̃, φcφt̃) – this is the observer’s intrinsic affine spacetime frame on the flat relativis-

tic intrinsic metric spacetime (φρ, φcφt) in a gravitational field of arbitrary strength

(denoted by (φx̃, φcφt̃) on flat proper intrinsic spactime (φρ′, φcφt′) in the absence

of relative gravity at the first stage of evolutions of spacetime/intrinsic spacetime in

a gravitational field in [6] and 13).

As developed in [9] and applied in section 2 of [4], the intrinsic motion of the

gravitational-relativistic mass (φm, φε/φc2) of the particle at intrinsic dynamical

speed φv will give rise to the spacetime/intrinsic spacetime geometry of φSR in a
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gravitational field in the two-world picture depicted in Fig. 10.
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Figure 10:

Fig. 10 is valid relative to symmetry-partner 3-observers (Peter and Peter*)

in the relativistic Euclidean 3-spaces Σ and −Σ∗ in our universe and the negative

universe. Fig. 10 is the same as Fig. 8(a) of [9], except that the intrinsic rest

mass (φm0, φε
′/φc2) and the intrinsic special-relativistic mass (φm, φε/φc2); φm =

φγd(φv)φm0 of the particle in intrinsic motion relative to the observer were not

shown in Fig. 8(a) of [9].

Further more, the affine intrinsic space coordinates denoted by φx̃′ and φx̃ in in

the assumed absence of gravitational field [9] are denoted by φx̃ and φx̃ respectively

in a gravitational field in Fig. 10. The affine intrinsic time coordinates denoted

by φcφt̃′ and φcφt̃ in [9], are denoted by φcγφt̃ and φcγφt̃ respectively in Fig. 10.

Fig. 10 on flat relativistic spacetime (Σ, ct) of TGR in a relative gravitational field,

at the second stage of evolutions of spacetime/intrinsic spacetime, corresponds to

Fig. 4 of [4] on flat proper spacetime (Σ′, ct′) in the absence of relative gravity at the

first stage.

As first introduced in [8] and discussed further in sub-section 1.3 of this paper,
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the intrinsic time dimension φcφt is composed of the affine dynamical component

φcγφt and the metric static (or gravitational) component φcgφt. The affine intrin-

sic dynamical time coordinates must appear in φSR, as discussed in sub-section 1.3

of this paper and must be denoted by φcγ t̃ and φcγφt̃, as done one in Fig. 10. In-

deed Fig. 10 is the full two-world form of the partial spacetime/intrinsic spacetime

geometry of SR/φSR of Fig. 4(c) in a gravitational field field. The concept of time

dimension being composed of the affine dynamical and metric gravitational compo-

nents was unknown in [9], hence the affine intrinsic time coordinates were denoted

by φcφt̃′ and φcφt̃ in that paper.

The intrinsic affine coordinates are represented by broken lines, while the in-

trinsic metric space φρ and intrinsic metric time dimension φcφt are represented

by dotted lines as usual in Fig. 10. The little intrinsic metric spacetime inter-

val (dφρ, φcdφt) contained within the gravitational-relativistic intrinsic mass (φm,
φε/φc2) is located at the end of the inclined extended affine intrinsic spacetime

(φx̃, φcγφt̃ ) of the particle’s intrinsic frame and the little intrinsic metric spacetime

interval (dφρ, φcdφt ) contained within the gravitational-relativistic cum special-

relativistic intrinsic mass (φm, φε/φc2) is located at the end of the projective ex-

tended affine intrinsic spacetime (φx̃, φcγφt̃ ) of the observer’s intrinsic frame in

Fig. 10. The projective affine intrinsic coordinates φx̃ and φcγ t̃ lie along the in-

trinsic metric space φρ and intrinsic metric time dimension φcφt respectively, but

they cannot alter φρ and φcφt.

The global flat relativistic intrinsic metric spacetime (φρ, φcφt) that evolved in

the context of φTGR is not affected by the intrinsic motion on the flat intrinsic

metric spacetime (φρ, φcφt) of the intrinsic mass of a particle relative to an ob-

server. However the little gravitational-relativistic intrinsic metric spacetime inter-

val (dφρ, φcdφt) contained within the intrinsic gravitational-relativistic mass (φm,
φε/φc2) of φTGR is transformed into little gravitational-relativistic cum special-

relativistic intrinsic metric spacetime interval (dφρ, φcdφt) contained within the in-

trinsic gravitational-relativistic cum special-relativistic mass (φm, φε/φc2) that

evolves at the top of the intrinsic observer’s frame (φx̃, φcγφt̃), due to the intrin-

sic motion of (φm, φε/φc2) relative to the observer (or in the context of combined

φTGR and φSR).

The partial intrinsic local Lorentz transformation (in the context of φSR), which

can be derived from Fig. 10 with respect to the 3-observer (Peter) in the relativistic
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Euclidean 3-space Σ, as done from Fig. 8(a) of [9], is the following

φx̃ = φx̃ sec φψd − φcγφt̃ tan φψd;

(w.r.t. 3 − observer Peter in Σ)















(35)

The complementary diagram to Fig. 10 that co-exists with Fig. 10, which is valid

with respect to 1-observers P̃eter and P̃eter* in the time dimensions ct and −ct∗ of

our universe and the negative universe is depicted in Fig. 11.
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Figure 11:

Fig. 11 is the same as Fig. 8(b) of [9], except for the same differences between

Fig. 8(a) of [9] and Fig. 10, discussed above, which also exist between Fig. 8(b)

of [9] and Fig. 11.

The partial intrinsic local Lorentz transformation (in the context of φSR), which

can be derived from Fig. 11 with respect to 1-observer P̃eter in the relativistic metric

time dimension ct, as done from Fig. 8(b) of [9], is the following

φcγφt̃ = φcγφt̃ sec φψd − φx̃ tan φψd;

(w.r.t. 1 − observer P̃eter in ct)















(36)
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By collecting Eqs. (35) and (36) we obtain the full intrinsic local Lorentz trans-

formation (φLLT) (in the context of φSR) as follows

φx̃ = φx̃ sec φψd − φcγφt̃ tan φψd;

(w.r.t. 3 − observer Peter in Σ)

φcγφt̃ = φcγφt̃ sec φψd − φx̃ tan φψd;

(w.r.t. 1 − observer P̃eter in ct)







































(37)

There is an inverse to system (37), which must be derived from the inverses to

Figs. 10 and 11. While Figs. 10 and 11 are essentially the same as Figs. 8(a) and

8(b) of [9], as mentioned above, the inverses to Figs. 10 and 11 are essentially the

same as the inverses to the inverses of Figs. 8(a) and 8(b) of [9] namely, Figs. 9(a)

and 9(b) of that paper. The inverses to Fig. 10 and 11 shall not be drawn here in

order to conserve space, while the inverse to system (37) shall just be written as

follows
φx̃ = φx̃ sec φψd + φcγφt̃ tan φψd;

(w.r.t. 1 − observer P̃aul in ct)

φcγφt̃ = φcγφt̃ sec φψd + φx̃ tan φψd;

(w.r.t. 3 − observer Paul in Σ)







































(38)

The intrinsic local Lorentz transformation (φLLT) of system (37) and its inverse

of system (38) are described as local because the intrinsic affine coordinates that

appear in them and in Figs. 10 and 11 and their inverses (not drawn), are limited

in extensions to the interior of the intrinsic local Lorentz frame on the flat two-

dimensional relativistic intrinsic spacetime (φρ, φcφt), at an arbitrary ‘distance’ φr
from the base of the gravitational-relativistic mass φM of the gravitational field

source in φρ in Fig. 1.

Now the relative intrinsic angle φψd in systems (37) and (38) and in Figs. 10 and

11, is related to the intrinsic dynamical speed φv of intrinsic motion relative to the

observer within the intrinsic local Lorentz frame as follows

sin φψd = φv/φcγ ≡ φβd(φv) (39a)

cos φψd =

√

1 − φv2/φc2
γ ≡ φγd(φv) (39b)

The formal derivation of Eqs. (39a) and (39b) from systems (37) and (38) has

been done in [9]. It must be noted that the dynamical intrinsic speed φcγ of intrinsic

electromagnetic waves appears in Eqs. (39a) and (39b) in the context of φSR, so
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that the numerator and the denominator in φv/φcγ are homogeneous in dynamical

intrinsic speeds. It may be recalled that the separation of the speed of ‘signals’ into

the static (or gravitational) speed of gravitational waves cg and dynamical speed of

electromagnetic waves cγ was first introduced only in [8]. Consequently the intrinsic

speed φcγ in Eqs. (39a) and (39b) could only appear as φc in the corresponding

equations in [9].

By using Eqs. (39a) and (39b), the φLLT (37) and its inverse (38) can be written

explicitly in terms of the intrinsic speed φv respectively as follows

φx̃ = φγd(φv)(φx̃ − φvφt̃ );

(w.r.t. 3 − observer Peter in Σ)

φt̃ = φγd(φv)(φt̃ −
φv

φc2
γ

φx̃ );

(w.r.t. 1 − observer P̃eter in ct)















































(40)

and
φx̃ = φγd(φv)(φx̃ + φvφt̃ );

(w.r.t. 1 − observer P̃aul in ct)

φt̃ = φγd(φv)(φt̃ +
φv

φc2
γ

φx̃ );

(w.r.t. 3 − observer Paul in Σ)















































(41)

Either system (37) or (38) or the explicit form (40) or (41) leads to intrinsic

local Lorentz invariance (φLLI) (in the context of φSR) on the flat relativistic in-

trinsic metric spacetime (φρ, φcφt) that evolved in the context of φTGR in every

gravitational field,

φc2
γφt̃ 2 − φx̃2 = φc2

γφt̃ 2 − φx̃2 (42)

This intrinsic local Lorentz invariance is valid within every intrinsic local Lorentz

frame on the flat relativistic intrinsic spacetime (φρ, φcφt) of φTGR in Fig. 1 in every

gravitational field.

The intrinsic affine length contraction and intrinsic affine time dilation formulae

in the context of φSR on the flat relativistic intrinsic metric spacetime (φρ, φcφt) in

a gravitational field, which systems (37) and (38) imply, as derived in [9], are the

following

φx̃ = φx̃ cos φψd (43a)

φt̃ = φt̃ sec φψd (43b)
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The alternative forms in terms of the intrinsic speed φv of Eqs. (43a) and (43b),

which systems (40) and (41) imply are the following

φx̃ = φγd(φv)−1φx̃ = (1 −
φv2

φc2
γ

)1/2dφx̃ (44a)

φt̃ = φγd(φv)φt̃ = (1 −
φv2

φc2
γ

)−1/2dφt̃ (44b)

The derivations of Eqs. (43a) and (43b) from systems (37) and (38) and the

derivations of Eqs. (44a) and (44b) from systems (40) and (41) have been done fully

in [9]. It must be mentioned that Eqs. (43a-b) and (44(a-b) are valid with respect to

3-observer (Peter) at rest relative to the observer’s frame.

3.1.1 Explicit form of combined φTGR and φSR

Now as mentioned earlier in this section, the unprimed (or gravitational-relativistic)

intrinsic special theory of relativity (φSR) within an intrinsic local Lorentz frame

on flat relativistic intrinsic metric spacetime (φρ, φcφt) that evolved in the context

of φTGR in Fig. 1, is the projection of the primed intrinsic special theory of rela-

tivity (φSR′) within the corresponding intrinsic local Lorentz frame on the curved

proper intrinsic metric spacetime (φρ′, φcφt′) in that figure. Consequently the intrin-

sic affine coordinates φx̃ and φcγφt̃ of the intrinsic particle’s frame in φSR within

intrinsic local Lorentz frame on flat relativistic intrinsic spacetime (φρ, φcφt), are

projections of the intrinsic affine coordinates φx̃′ and φcγφt̃′ of intrinsic particle’s

frame in φSR′ within the corresponding intrinsic local Lorentz frame on curved

(φρ′, φcφt′) in Fig. 1.

The transformation of the particle’s intrinsic frame (φx̃′, φcγφt̃′) on the curved

(φρ′, φcφt′) into particle’s intrinsic frame (φx̃, φcγφt̃) on the flat (φρ, φcφt) must be

derived in the context of φTGR, as the intrinsic gravitational local Lorentz transfor-

mation (φGLLT) of system (14), (19) or (23) and its inverse of system (17), (20) or

(24). That is, we must simply replace dφρ′, φcdφt′, dφρ and φcdφt in those systems

by φx̃′, φcγφt̃′, φx̃ and φcγφt̃ respectively. The resulting systems shall not be written

out explicitly in order to conserve space. However the intrinsic gravitational length

contraction and intrinsic gravitational time dilation (in the context of φTGR), which

they imply are given like Eqs. (27a-b) or (28a-b) or (29a-b) as follows

φx̃ = φx̃ ′ cos φψg(φr′) (45a)

φt̃ = φt̃ ′ sec φψg(φr′) (45b)
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or

φx̃ = φγg(φr′)−1φx̃ ′ = (1 −
φVg(φr′)2

φc2
g

)1/2φx̃ ′ (46a)

φt̃ = φγg(φr′)φt̃ ′ = (1 −
φVg(φr′)2

φc2
g

)−1/2φt̃ ′ (46b)

or

φx̃ = φγg(φr′)−1φx̃ ′ = (1 −
2GφM0a

φr′φc2
g

)1/2φx̃ ′ (47a)

φt̃ = φγg(φr′)φt̃ ′ = (1 −
2GφM0a

φr′φc2
g

)−1/2φt̃ ′ (47b)

We shall now incorporate Eqs. (45a-b), (46a-b) and (47a-b) derived int the con-

text of φTGR into Eqs. (43a-b),and Eqs. (44a-b) derived in the context of φSR to ob-

tain gravitational-relativistic cum special-relativistic intrinsic length contraction and

gravitational-relativistic cum special-relativistic intrinsic time dilation in the context

of combined φTGR and φSR in the following alternative forms on flat relativistic

intrinsic metric spacetime (φρ, φcφt) in a gravitational field of arbitrary strength

φx̃ = φx̃ ′ cos φψg(φr′) cos φψd (48a)

φt̃ = φt̃ ′ sec φψg(φr′) sec φψd (48b)

or

φx̃ = φγg(φr′)−1φγd(φv)−1φx̃ ′

= (1 −
φVg(φr′)2

φc2
g

)1/2(1 −
φv2

φc2
γ

)1/2φx̃ ′ (49a)

φt̃ = φγg(φr′)φγd(φv)φt̃ ′

= (1 −
φVg(φr′)2

φc2
g

)−1/2(1 −
φv2

φc2
γ

)−1/2φt̃ ′ (49b)

or

φx̃ = φγg(φr′)−1φγd(φv)−1φx̃ ′

= (1 −
2GφM0a

φr′φc2
g

)1/2(1 −
φv2

φc2
γ

)1/2φx̃ ′ (50a)
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φt̃ = φγg(φr′)φγd(φv)φt̃ ′

= (1 −
2GφM0a

φr′φc2
g

)−1/2(1 −
φv2

φc2
γ

)−1/2φt̃ ′ (50b)

Now the intrinsic local Lorentz transformation (φLLT) of system (37) and its

inverse of system (38) and their explicit forms in terms of intrinsic dynamical speed

φv of systems (40) and (41), have been written for the intrinsic affine coordinates

φx̃, φcγφt̃, φx̃ and φcγφt̃ in Figs. 10 and 11 and their inverses (not drawn). They can

equally be written for the little interval of intrinsic metric spacetime (dφρ, φcdφt)
contained within the gravitational-relativistic mass (φm, φε/φc2) and the little in-

terval of intrinsic metric spacetime (dφρ, φcdφt) contained within the gravitational-

relativistic cum special-relativistic mass (φm, φε/φc2) in respectively as follows

dφρ = dφρ sec φψd − φcdφt tan φψd;

(w.r.t. 3 − observer Peter in Σ)

φcdφt = φcdφt sec φψd − dφρ tan φψd;

(w.r.t. 1 − observer P̃eter in ct)







































(51)

and

dφρ = dφρ sec φψd + φcdφt tan φψd;

(w.r.t. 1 − observer P̃aul in ct)

φcdφt = φcdφt sec φψd + dφρ tan φψd;

(w.r.t. 3 − observer Paul in Σ)







































(52)

or

dφρ = φγd(φv)(dφρ − φvdφt );

(w.r.t. 3 − observer Peter in Σ)

dφt = φγd(φv)(dφt −
φv

φc2
γ

dφρ );

(w.r.t. 1 − observer P̃eter in ct)















































(53)

and

φρ = φγd(φv)(dφρ + dφvφt );

(w.r.t. 1 − observer P̃aul in ct)

dφt = φγd(φv)(dφt +
φv

φc2
γ

dφρ );

(w.r.t. 3 − observer Paul in Σ)






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









(54)
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System (51) or (52) or its explicit form in terms of φv (53) or (54) leads to the

following invariance

φc2dφt
2
− dφρ2

= φc2dφt2 − dφρ2 (55)

This is intrinsic local Lorentz invariance (in the context of φSR) within the little

intrinsic metric spacetime (dφρ, φcdφt) contained within the intrinsic mass (φm,
φε/φc2) of the particle in relative intrinsic motion relative to an observer.

The intrinsic length contraction and intrinsic time dilation formulae (43a) and

(43b) implied by systems (37) and (38) or their explicit forms in terms of φv of

Eqs. (44a) and (44b) implied by systems (40) and (41), correspond to the following

implied by systems (51) and (52) and systems (53) and (54)

dφρ = dφρ cos φψd (56a)

dφt = dφt sec φψd (56b)

or

dφρ = φγd(φv)−1dφρ = (1 −
φv2

φc2
γ

)1/2dφρ (57a)

dφt = φγd(φv)dφt = (1 −
φv2

φc2
γ

)−1/2dφt (57b)

Equations (56a) and (56b) and Eqs. (57a) and (57b) are alternative form of intrin-

sic length contraction and intrinsic time dilation of the little intrinsic metric space-

time interval within the intrinsic mass of the particle in intrinsic motion relative to

an observer. They are valid with respect to the 3-observer (Peter) at rest relative to

the observer’s frame as being formulated at present.

The intrinsic length contraction and intrinsic time dilation formulae in terms of

intrinsic affine coordinates φx̃, φcγφt̃, φx̃ and φcγφt̃ of Eqs. (45a-b), Eqs. (46a-b) and

Eqs. (47a-b) in the context of φTGR can equally be written in terms of the little in-

trinsic metric spacetime coordinate intervals dφρ, φcdφt, dφρ and φcdφt contained

within the intrinsic mass of the particle in intrinsic motion relative to the observer.

However those equations shall not be written in order to conserve space.

Finally the intrinsic length contraction and intrinsic time dilation formulae in the

context of combined φTGR and φSR of Eqs. (48a-b), (49a-b) and (50a-b) are given

terms of the intrinsic metric coordinate intervals dφρ, φcdφt, dφρ and φcdφt within
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the particle respectively as follows

dφρ = dφρ′ cos φψg(φr′) cos φψd (58a)

dφt = dφt′ sec φψg(φr′) sec φψd (58b)

or
dφρ = φγg(φr′)−1φγd(φv)−1dφρ′

= (1 −
φVg(φr′)2

φc2
g

)1/2(1 −
φv2

φc2
γ

)1/2dφρ′ (59a)

dφt = φγg(φr′)φγd(φv)dφt′

= (1 −
φVg(φr′)2

φc2
g

)−1/2(1 −
φv2

φc2
γ

)−1/2dφt′ (59b)

or
dφρ = φγg(φr′)−1φγd(φv)−1dφρ′

= (1 −
2GφM0a

φr′φc2
g

)1/2(1 −
φv2

φc2
γ

)1/2dφρ′ (60a)

dφt = φγg(φr′)φγd(φv)φt′

= (1 −
2GφM0a

φr′φc2
g

)−1/2(1 −
φv2

φc2
γ

)−1/2φt′ (60b)

Equations (58a-b), (59a-b) and (60a-b) express gravitational-relativistic cum

special-relativistic intrinsic length contraction and gravitational-relativistic cum special-

relativistic intrinsic time dilation in the context of φTGR+φSR of the little proper

intrinsic metric spacetime intervals dφρ′ and φcdφt′ contained within the intrinsic

rest mass (φm0, φε
′/φc2) in intrinsic motion at intrinsic dynamical speed φv within

the proper (or primed) intrinsic local Lorentz frame on the curved proper intrinsic

metric spacetime (φρ′, φcφt′) relative to the observer in Fig. 1. They are valid rel-

ative to the 3-observer (Peter) in the relativistic Euclidean 3-space Σ, who is at rest

relative to the observer’s frame within the corresponding local Lorentz frame on the

flat relativistic spacetime (Σ, ct).

3.1.2 The case of the electron

Now all equations from system (51) through Eqs. (60a-b) have been written for a

particle or object with compound rest mass

(m0 , ε
′/c2) ≡ (m0g ∪ m0d , ε

′
g/c

2
g ∪ ε

′
d/c

2
γ),
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contained in non-zero volume of compound proper metric spacetime

(dΣ′, cdt′) ≡ (dΣ′g ∪ dΣ′d , cgdt′ ∪ cγdt′).

Consequently such a particle or object has non-zero compound intrinsic rest mass

(φm0 , φε
′/φc2) ≡ (φm0g ∪ φm0d , φε

′
g/φc2

g ∪ φε
′
d/φc2

γ),

contained in a non-zero interval of compound proper intrinsic metric spacetime

(dφρ′ , φcdφt′) ≡ (dφρ′g ∪ dφχ′ , φcgdφt′ ∪ φcγdφt′).

Consequently the gravitational-relativistic intrinsic mass of the particle or object

that evolved in the context of φTGR namely,

(φm , φε/φc2) ≡ (φmg ∪ φmd , φεg/φc2
g ∪ φεd/φc2

γ),

is contained in non-zero interval of compound relativistic intrinsic spacetime of

φTGR,

(dφρ , φcdφt) ≡ (dφρg ∪ dφχ , φcgdφt ∪ φcγdφt)

and the gravitational-relativistic cum special-relativistic intrinsic mass,

(φm , φε/φc2) ≡ (φmg ∪ φmd , φεg/φc2
g ∪ φεd/φc2

γ),

is contained in non-zero interval of gravitational-relativistic cum special-relativistic

intrinsic spacetime,

(dφρ , φcdφt) ≡ (dφρg ∪ dφχ , φcgdφt ∪ φcγdφt),

in Figs. 10 and 11.

On the other hand, let us replace the particle or object with metric compound rest

mass m0 ≡ m0g ∪m0d by the electron with pure affine dynamical rest mass m0e. The

rest mass of the electron occupies a spherical volume dΣ′d of radius r0e, of the affine

proper dynamical 3-space Σ′d, which corresponds to a point of zero extension of

the metric compound proper Euclidean 3-space Σ′. Consequently the intrinsic rest

mass of the electron (φm0e , φε0e/φc2
γ), occupies interval (dφχ ′ , φcγdφt′) of affine

dynamical proper intrinsic spacetime (φχ ′ , φcγφt′), which corresponds to a point

of zero extension in the metric compound proper intrinsic spacetime (φρ , φcφt′).
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Thus if we replace the particle or object in motion relative to the observer in a

gravitational field, considered so far, by the electron, then the little interval of the rel-

ativistic intrinsic metric spacetime interval (dφρ , φcdφt) containing the metric com-

pound gravitational-relativistic intrinsic mass (φm , φε/φc2) and the intrinsic met-

ric spacetime interval (dφρ , φcdφt) containing the metric compound gravitational-

relativistic cum special-relativistic intrinsic mass (φm , φε/φc2), must be replaced

by little interval of pure affine relativistic intrinsic dynamical spacetime coordinate

interval (dφχ , φcγdφt) (that evolved in the context of φTGR), containing gravita-

tional-relativistic mass of the electron (φme , φεe/φc2
γ) (that evolved in the context

of φTGR) and little interval of pure affine relativistic intrinsic dynamical spacetime

coordinate interval (dφχ , φcγdφt) (that evolved in the context of φTGR+φSR), con-

taining gravitational-relativistic cum special-relativistic intrinsic mass of the elec-

tron (φme , φεe/φc2
γ) (that evolved in the context of φTGR+φSR) respectively, in

Figs. 10 and 11 and in all equations from system (51) through Eqs. (60a-b). Those

equations shall not be written however in order to conserve space.

The unwritten resulting equations obtain for the pure affine dynamical intrinsic

spacetime interval (φχ ′ , φcγdφt′) contained within the intrinsic rest mass of the

electron (φm0e , φε0e/φc2
γ), on curved proper intrinsic metric spacetime (φρ′, φcφt′),

despite the fact that the rest mass of the electron (m0e , ε0e/c2
γ) occupies a point of

zero extension of the metric compound proper spacetime (Σ′, ct′) and the intrinsic

rest mass of the electron occupies a point of zero extension of the metric compound

proper intrinsic spacetime (φρ′ , φcφt′).

3.2 Graphical approach to the derivation of intrinsic mass relations in the con-

texts of φSR and combined φTGR and φSR

We recall that like the coordinate 4-vector x̃λ = (x̃0, x̃1, x̃2, x̃3) = (cγ t̃, x̃, ỹ, z̃) of SR

in the rectangular coordinate system of the Euclidean 3-space Σ, in the flat four-

dimensional relativistic metric spacetime (Σ, ct) that evolved in every gravitational

field in the context of TGR, the momentum 4-vector pλ on (Σ, ct) is given in the

rectangular coordinate system of the Euclidean 3-space Σ as

pλ = (p0 , p1 , p2 , p3 ) = (mcγ , mv′x , mv′y , mv′z ) (61)

This is the gravitational-relativistic momentum 4-vector that evolved on the flat rel-

ativistic spacetime (Σ, ct) in the context of TGR. The velocity ~v ′ = v′x î + v′y ĵ + v′zk̂
is being assumed to be a non-zero velocity of the gravitational-relativistic mass m
of the particle (that evolved in the relativistic Euclidean 3-space Σ in the context of
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TGR), relative to its own frame, that is relative to the particle’s frame (cγ t̃ , x̃ , ỹ , z̃ )

on the flat metric spacetime (Σ, ct).
The corresponding gravitational-relativistic cum special-relativistic momentum

4-vector pλ that evolved on the flat relativistic spacetime (Σ, ct) in the context of

combined TGR and SR is

pλ = (p0 , p1 , p2 , p3 ) = (mcγ , mv′x , mv′y , mv′z ) (62)

where ~v = vx î + vy ĵ + vzk̂ is the velocity of the gravitational-relativistic mass m
in the particle’s affine frame (cγ t̃ , x̃ , ỹ , z̃ ) relative to the observer’s affine frame

(cγ t̃ , x̃ , ỹ , z̃ ) on the flat metric spacetime (Σ, ct).
Also corresponding to the intrinsic coordinate 2-vector φx̃λ = (φx̃0 , x̃1) =

(φcγφt̃ , φx̃) of φSR on the flat two-dimensional relativistic intrinsic spacetime (φρ,

φcφt) that evolved in the context of TGR, the intrinsic momentum is a 2-vector φpλ
on the flat relativistic intrinsic spacetime (φρ, φcφt) where

φpλ = (φp0 , φp1) = (φmφcγ , φmφv′) (63)

This is the gravitational-relativistic intrinsic momentum 2-vector that evolved in on

the flat relativistic intrinsic spacetime (φρ, φcφt) in the context of φTGR. The intrin-

sic speed φv′ is being assumed to be non-zero intrinsic speed of the gravitational-

relativistic intrinsic mass φm of the particle relative to its own frame, that is, of φm
relative to the intrinsic particle’s frame (φcγφt̃ , φx̃) on the flat relativistic intrinsic

metric spacetime (φρ, φcφt) of φTGR.

The corresponding gravitational-relativistic cum special-relativistic intrinsic

momentum 2-vector φpλ, in the context of combined φTGR and φSR is

φpλ = (φp0 , φp1) = (φmφcγ , φmφv) (64)

where φv is the intrinsic speed of the gravitational-relativistic intrinsic mass φm in

the intrinsic particle’s frame (φcγφt̃ , φx̃ ) relative to the observer’s intrinsic frame

(φcγφt̃ , φx̃ ) on the flat intrinsic metric spacetime (φρ, φcφt).
Corresponding to the intrinsic spacetime diagrams of Figs. 10 and 11 in the

context of φSR , there are intrinsic momentum diagrams, which must be obtained

by replacing the affine intrinsic spacetime coordinates φcγφt̃ and φx̃ of the particle’s

intrinsic frame by the components φp0 = φmφcγ and φp1 = φmφv′ respectively of

the gravitational-relativistic intrinsic momentum 2-vector φpλ of Eq. (63) and by

replacing the affine intrinsic spacetime coordinates φcγφt̃ and φx̃ of the observer’s
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Figure 12:

intrinsic frame by the components p0 = φmφcγ and p1 = φmφv respectively of the

gravitational-relativistic cum special-relativistic intrinsic momentum 2-vector φpλ
of Eq. (64). The resulting diagrams are depicted in Figs. 12(a) and 12(b).

Fig. 12(a) is valid with respect to the 3-observer (Peter) in the Euclidean 3-

space Σ at rest relative to the observer’s frame in our universe and his symmetry-

partner (Peter*) in the Euclidean 3-space −Σ∗ at rest relative to the observer’s frame

in the negative universe, while Fig. 12(b) is valid with respect to the 1-observer

(P̃eter) the time dimension ct at rest relative to the observer’s frame in our universe

and his symmetry-partner (P̃eter*) in the time dimension −ct∗ at rest relative to the

observer’s frame in the negative universe.

The partial intrinsic momentum transformation derivable with respect to 3-ob-

server Peter in Σ in our universe from Fig. 12(a), by following the procedure used

to derive partial intrinsic coordinate transformation with respect to Peter in Σ from

Fig. 8(a) of [9], is the following

φp1 = φp1 sec φψd − φp 0 tan φψd;

(w.r.t. 3 − observer Peter in Σ)

}

(65)

And the partial intrinsic momentum transformation derivable with respect to 1-

observer P̃eter in our universe from Fig. 12(b), by following the procedure used to

derive partial intrinsic coordinate transformation with respect to P̃eter in ct from

Fig. 8(b) in [9], is the following

φp0 = φp 0 sec φψd − φp1 tan φψd;

(w.r.t. 1 − observer P̃eter in ct)

}

(66)
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By collecting Eqs. (65) and (66) we obtain the full intrinsic momentum trans-

formation derivable from Figs. 12(a) and 12(b) as follows

φp1 = φp1 sec φψd − φp 0 tan φψd;

(w.r.t. 3 − observer Peter in Σ)

φp0 = φp 0 sec φψd − φp1 tan φψd;

(w.r.t. 1 − observer P̃eter in ct)


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
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
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











(67)

There is an inverse intrinsic momentum transformation, that is, the inverse to

system (67), which must be derived from the inverses to Figs. 12(a) and 12(b). The

inverse diagrams shall not be drawn however in order to conserve space, while the

inverse to system (67) is the following

φp1 = φp1 sec φψd + φp0 tan φψd;

(w.r.t. 1 − observer P̃eter in ct)

φp 0 = φp0 sec φψd + φp1 tan φψd;

(w.r.t. 3 − observer Peter in Σ)


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
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
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















(68)

Either system (67) or (68) leads to the following invariance

(φp 0)2 − (φp1)2 = (φp0)2 − (φp1)2 (69)

And by letting p 0 = φmφcγ; φp1 = φmφv; φp0 = φmφcγ and φp1 = φmφv′,
along with sec φψd = φγd(φv) = (1 − φv2/φc2

γ)−1/2 and tan φψd = φγd(φv)φv/φcγ in

systems (67) and (68) we have

φmφv′ = φγd(φv)(φmφv − φmφv);

(w.r.t. 3 − observer Peter in Σ)

φmφcγ = φγd(φv)(φmφcγ − φm
φv2

φcγ
);

(w.r.t. 1 − observer P̃eter in ct)
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(70)

and
φmφv = φγd(φv)(φmφv′ + φmφv);

(w.r.t. 1 − observer P̃aul in ct)

φmφcγ = φγd(φv)(φmφcγ + (φmφv′
φv

φcγ
);

(w.r.t. 3 − observer Paul in Σ)















































(71)
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And the invariance (69) becomes the following

φm 2φc2
γ − φm 2φv2 = φm2φc2

γ − φmφv′2 (72)

The vanishing of the right-hand side of the first equation of system (70) implies

the vanishing of φp1 = φmφv′. Indeed the gravitational-relativistic intrinsic mass

φm is at rest relative to its own frame (or particle’s intrinsic frame) (φcγφt̃, φx̃).

Hence it possesses zero intrinsic speed (φv′ = 0) and zero intrinsic momentum

(φmφv′ = 0) relative to its frame. On the other hand, φm possesses component of

intrinsic momentum φp0 = φmφcγ along the natural intrinsic geodesic φcγφt̃ of its

intrinsic frame. Consequently φp0 = φmφcγ in the particle’s frame must be retained.

In other words, φv′ must be allowed to vanish in Eq. (63) to have the correct intrinsic

momentum 2-vector in the intrinsic particle frame as φpλ = (φmφcγ , 0).

The gravitational-relativistic cum special-relativistic intrinsic mass φm̄ of the

particle actually possesses intrinsic speed φv of intrinsic motion relative to its frame

(or relative to the observer at rest relative to its frame) (φcγφt̃ , φx̃). Consequently

both φp 0 = φmφcγ and φp1 = φmφv must be retained in the observer’s frame.

By allowing φmφv′ to vanish, while retaining the other terms in the invariance

(72) we have

φm 2(φc2
γ − φv

2) = φmφc2
γ (73)

Hence

φm = φm(1 −
φv2

φc2
γ

)−1/2 = φγd(φv)φm (74)

This is the intrinsic mass relation with respect to 3-observer (Peter) at rest relative

to the observer’s frame in the context of φSR on flat relativistic intrinsic spacetime

(φρ, φcφt) in every gravitational field. It can also be written in terms of the intrinsic

angle φψd in Figs.10 and 11 and Figs. 12(a) and 12(b) as

φm = φγd(φv)φm = φm sec φψd (75)

Now by multiplying through Eq. (73) by φc2
γ, we obtain the following intrinsic

energy expression in the context of φSR

φm 2φc4
γ − φm 2φc2

γφv
2 = φm2φc4

γ (76)

The intrinsic special-relativistic kinetic energy φT is likewise given as follows

φT = φmφc2
γ − φmφc2

γ

= φγd(φv)φmφc2
γ − φmφc2

γ

= φmφc2
γ

(

(1 − φv2/φc2
γ)−1/2 − 1

)

(77)
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Equations (76) and (77) are valid with respect to the 3-observer (Peter) at rest rela-

tive to the observer’s affine frame (cγ t̃ , x̃ , ỹ , z̃ ) on the flat relativistic metric space-

time (Σ, ct).
By incorporating the intrinsic mass re4lation in the context of φTGR derived

graphically and presented in the alternative forms of Eqs. (32) – (34) in sub-section

2.2 into the intrinsic mass relation in the context of φSR in the alternative forms of

Eqs. (74) and (75) we obtain the following alternative forms of the intrinsic mass

relations in the context of combined φTGR and φSR

φm = φm0 cos2 φψg(φr′) sec φψd

= φm0φγg(φr′)−2φγd(φv) (78)

= φm0(1 −
φV ′g(φr′)2

φc2
g

)(1 −
φv2

φc2
γ

)−1/2 (79)

= φm0(1 −
2GφM0a

φr′φc2
g

)(1 −
φv2

φc2
γ

)−1/2 (80)

And the intrinsic special-relativistic kinetic energy in the context of combined

φTGR and φSR is given in the following alternative forms by incorporating Eqs. (32)

– (34) into Eq. (77)

φT = φm0φc2
γ cos2 φψg(φr′)[sec φψd − 1] (81)

= φm0φc2
γ(1 −

φV ′g(φr′)2

φc2
g

)[(1 −
φv2

φc2
γ

)−1/2 − 1] (82)

= φm0φc2
γ(1 −

2GφM0a

φr′φc2
g

)[(1 −
φv2

φc2
γ

)−1/2 − 1] (83)

Now the gravitational-relativistic cum special-relativistic intrinsic mass φm in

the context of φTGR+φSR is given in the alternative forms of Eqs. (78), (79) and

(80) and the pure gravitational-relativistic intrinsic mass φm in the context of φTGR

is given in the alternative forms of Eqs. (32), (33) and (34). By using Eq. (78) or

(79) or (80) and Eq. (32) or (33) or (34) in Eq. (76) we have

φm̃2
0φc4

γ − φm̃2
0φc2

γφv
2 = φm2

0φc4
γ (84)

where φm̃0 = φγd(φv)φm0 is the special-relativistic intrinsic mass expression in the

context of the primed intrinsic special theory of relativity (φSR′) (while retaining

the notation in section 2 of [4]), on the within the proper intrinsic local Lorentz
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frame on the curved proper intrinsic spacetime (φρ′, φcφt′) at ‘distance’ φr′ along

the curved φρ′ from the base of φM0 in φρ′ with respect to an intrinsic 1-observer

on the curved φρ′ within or outside this intrinsic local Lorentz frame in Fig. 1.

The effect of intrinsic gravitational relativity (φTGR) cancels out in the intrinsic

gravitational-relativistic cum intrinsic special-relativistic expression (76), thereby

making the pure intrinsic special-relativistic expression (84) to remain unchanged

with position in a gravitational field.

The intrinsic local Lorentz transformation (φLLT) and its inverse in the context

of φSR on the flat relativistic intrinsic spacetime (φρ, φcφt) in the alternative forms

of systems (37) and (38) and systems (40) and (41); the intrinsic local Lorentz in-

variance (φLLI) (42) in the context of φSR on flat (φρ, φcφt) in a gravitational field

of arbitrary strength; the intrinsic length contraction and intrinsic time dilation for-

mulae on flat (φρ, φcφt) in the context of φSR in a gravitational field of arbitrary

strength in the alternative forms of Eqs. (43a-b) and (44a-b) and in the context of

combined φTGR and φSR in the alternative forms of Eqs. (48a-b), (49a-b) and (50a-

b); the intrinsic mass relation in the context φSR on flat intrinsic metric spacetime

(φρ, φcφt) in a gravitational field of arbitrary strength in the alternative forms of

Eqs. (74) and (75); the intrinsic total energy expression and intrinsic kinetic en-

ergy in the context of φSR on the flat (φρ, φcφt) in a gravitational field of arbitrary

strength of Eqs. (76) and (77); the intrinsic mass expression in the context of com-

bined φTGR and φSR of Eqs. (78), (79) or (80) and for intrinsic kinetic energy of

Eqs. (81), (82) or (83), are adequate results for the topic of this sub-section. The

results have indeed been derived graphically. Other intrinsic parameter relations in

the context of combined φTGR and φSR shall be derived analytically in the second

part of this paper.

4 The TGR, SR and combined TGR and SR on flat four-dimensional space-

time as outward manifestations of φTGR, φSR and combined φTGR and

φSR on flat two-dimensional intrinsic spacetime

4.1 The TGR as outward manifestation on flat spacetime of φTGR on flat in-

trinsic spacetime

The flat four-dimensional relativistic metric spacetime (Σ, ct) that evolved at the

combined first and second stages of evolutions of spacetime/intrinsic spacetime

and parameters/intrinsic parameters in a gravitational field in Fig.1, is the out-

ward manifestation of the underlying flat two-dimensional relativistic intrinsic met-

ric spacetime (φρ, φcφt), where φρ is a one-dimensional isotropic intrinsic space
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(with no unique orientation in the relativistic Euclidean 3-space Σ) with respect to 3-

observers in Σ. The theory of gravitational relativity (TGR) on flat four-dimensional

spacetime (Σ, ct) is likewise the outward (or physical) manifestation of the intrinsic

theory of gravitational relativity (φTGR) on the flat two-dimensional intrinsic space-

time (φρ, φcφt).
The foregoing implies that the results of TGR on flat spacetime (Σ, ct) can be

written directly from the results of φTGR on flat intrinsic spacetime (φρ, φcφt) by

simply removing the symbol φ from the results of φTGR. However in doing this,

proper care must be taken of the fact that TGR is a physical four-dimensional theory,

while φTGR is an intrinsic two-dimensional theory.

Now in converting the two-dimensional intrinsic gravitational local Lorentz

transformation (φGLLT) and its inverse, written in terms of the intervals dφρ′ and

φcdφt′ of the two-dimensional proper intrinsic spacetime (φρ′, φcφt′) and inter-

vals dφρ and φcdφt of the flat two-dimensional relativistic intrinsic metric space-

time (φρ, φcφt) in the alternative forms of systems (14) and (17), systems (19) and

(20) and systems (23) and (24), to the four-dimensional gravitational local Lorentz

transformation (GLLT) and its inverse, to be written in terms of coordinate in-

tervals dr′ , r′dθ′ , r′ sin θ′dϕ′ and cdt′ of the flat four-dimensional proper space-

time (Σ′, ct′) and coordinate intervals dr , rdθ , r sin θdϕ and cdt of the flat four-

dimensional relativistic spacetime (Σ, ct), we must be guided by the following facts:

1. The Euclidean Σ′ and Σ are relative spaces (i.e. without hat label unlike the

absolute space Σ̂) and non-isotropic with respect to 3-observers in Σ′ or Σ

(unlike the absolute space Σ̂, which is isotropic with respect to 3-observers in

the relative Euclidean 3-spaces Σ′ or Σ, as properly established in sub-section

4.7 of [6]). Isotropy of a given 3-space relative to an observer in the same or

another space, as used here, means that all directions of the given space are

identical with respect to the observer, thereby making the isotropic space to

contract to a one-dimensional isotropic space (or isotropic dimension) with

no unique orientation in the 3-space of the observer. clearly the 3-space Σ is

not isotropic with respect to observers in it by this definition.

2. The gravitational velocity ~V ′g(r
′) is a relative velocity in the context of TGR.

This simply means that the magnitude of ~V ′g(r
′) varies with position of differ-

ent radial distances r from the center of the gravitational field source in Σ, as

discussed in sub-section 2.2.1 of [2].

3. The gravitational velocity ~V ′g(r
′) is purely radial in every gravitational field,

spherically-symmetric or not, as discussed earlier in sub-section 1.2 (see sys-
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tem (4)) of this paper, but which is still to be formally established.

The three facts itemized above imply that the φGLLT (14) and its inverse (17)

must be transformed into GLLT and its inverse on flat four-dimensional spacetime

respectively as follows

dr′ = dr secψg(r′) − cdt tanψg(r′);

r′dθ′ = rdθ; r′ sin θ′dϕ′ = r sin θdϕ;

(w.r.t. 3 − observers in Σ)

cdt′ = cdt secψg(r′) − dr tanψg(r′)

(w.r.t. 1 − observers in ct)



















































(85)

and
dr = dr′ secψg(r′) + cdt′ tanψg(r′);

rdθ = r′dθ′; r sin θdϕ = r′ sin θ′dϕ′;

(w.r.t. 1 − observers in ct′)

cdt = cdt′ secψg(r′) + dr′ tanψg(r′)

(w.r.t. 3 − observers in Σ′)



















































(86)

If the Euclidean 3-spaces Σ′ and Σ were absolute and isotropic with respect to

3-observers in them, (like the absolute space Σ̂ is absolute and isotropic with respect

to 3-observers in Σ′ or Σ), then the first three equations of system (85) would have

been

dΣ′ = dΣ secψg(r
′) − cdt tanψg(r

′)

. And if Σ′ and Σ are considered to be relative and non-isotropic with respect to 3-

observers in them, which they are, but ~V ′g(r
′) is not purely radial towards the center

of the gravitational field source, then the transformations of r′dθ′ and r′ sin θ′dϕ′

into rdθ and r sin θdϕ would not have taken the trivial forms they take in systems

(85) and (86).

The appearance of the angle ψg(r′) in systems (85) and (86) suggests that the

spacetime coordinate intervals dr′ and cdt′ are inclined at angle ψg(r′) relative to

dr and cdt respectively in a local spacetime geometry, like dφρ′ and φcdφt′ are

actually inclined at intrinsic angle φψg(φr′) relative to dφρ and φcdφt respectively

in the local intrinsic spacetime geometries of Figs. 7 and 8. The appearance of the

angle ψg(r′) in systems (85) and (86) then suggests further that there are global

spacetime geometries in which extended proper radial dimension r′ and extended

proper time dimension ct′ are curved relative to their projective extended straight
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line relativistic radial dimension r and relativistic time dimension ct respectively,

like extended φρ′ and φcφt′ are actually curved relative to extended φρ and φcφt
respectively in Figs. 1 and 2.

However local spacetime geometries in which spacetime intervals dr′ and cdt′

are inclined by angle ψg(r′) relative to dr and cdt respectively and global spacetime

geometries in which extended spacetime dimensions r′ and ct′ are curved relative

to extended r and ct, which system (85) may suggest, is hypothetical; they does

not exist in reality. They may be referred to as intrinsic relative rotation of dr′ and

cdt′ relative to dr and cdt and intrinsic curvature of extended r′ and ct′ relative to

extended r and ct. This is what is realized by the actual rotational of intrinsic space-

time intervals dφρ′ and φcdφt′ relative to dφρ and φcdφt by intrinsic angle φψg(φr′)
in Figs. 7 and 8 and actual curvature of extended intrinsic spacetime dimensions φρ′

and φcφt′ relative to extended φρ and φcφt in every gravitational field in Figs. 1 and

2.

The outward manifestations of the definition of the intrinsic angle φψg(φr′) in

Eqs. (18a) and (18b), obtained by simply removing the symbol φ are the following

sinψg(r
′) = V ′g(r

′)/cg ≡ βg(r
′) (87a)

cosψg(r
′) =

√

1 − V ′g(r′)2/c2
g ≡ γg(r

′)−1 (87b)

The outward manifestations on four-dimensional spacetime of systems (19) and

(20), which can be obtained by using Eqs. (87a) and (87b) on systems (85) and (86)

are the following respectively

dr′ = γg(r′)(dr − V ′g(r
′)dt);

r′dθ′ = rdθ; r′ sin θ′dϕ′ = r sin θdϕ;

(w.r.t. 3 − observers in Σ)

dt′ = γg(r′)













dt −
V ′g(r

′)

c2
g

dr













;

(w.r.t. 1 − observers in ct)


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
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


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
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
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
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
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



















(88)

and
dr = γg(r′)(dr′ + V ′g(r

′)dt′);

rdθ = r′dθ′; r sin θdϕ = r′ sin θ′dϕ′;

(w.r.t. 1 − observers in ct′)

dt = γg(r′)













dt′ +
V ′g(r

′)

c2
g

dr′












;

(w.r.t. 3 − observers in Σ′)






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
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


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
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
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



(89)
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where γg(r′) is given by Eq. (87b).

The outward manifestations on flat four-dimensional spacetime in the context of

TGR of Eqs. (22a) and (22b) in the context of φTGR are the following

sinψg(r
′) =

√

2GM0a

r′c2
g

≡ βg(r
′) (90a)

cosψg(r
′) =

√

1 −
2GM0a

rc2
g

≡ γg(r)−1 (90b)

The outward manifestation on flat four-dimensional spacetime (Σ, ct) of systems

(23) and (24) on flat intrinsic spacetime (φρ, φcφt), which can be obtained by using

Eqs. (90a) and (90b) in systems (85) and (86) are the following respectively

dr′ = γg(r′)















dr −

√

2GM0a

r′
dt















;

r′dθ′ = rdθ; r′ sin θ′dϕ′ = r sin θdϕ;

(w.r.t. 3 − observers in Σ)

dt′ = γg(r′)

















dt −

√

2GM0a

r′c4
g

dr

















;

(w.r.t. 1 − observers in ct)
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
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








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





(91)

and

dr = γg(r′)















dr′ +

√

2GM0a

r′
dt′














;

rdθ = r′dθ′; r sin θdϕ = r′ sin θ′dϕ′;

(w.r.t. 1 − observers in ct′)

dt = γg(r′)

















dt′ +

√

2GM0a

r′c4
g

dr′
















;

(w.r.t. 3 − observers in Σ′)
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
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(92)

where γg(r′) is given by Eq. (90b).

Systems (85), (88) and (91) are alternative forms of gravitational local Lorentz

transformation (GLLT) in the context of TGR and systems (86), (89) and (92) are

their inverses. Either the GLLT (85), (88) or (91) or its inverse (86), (89) or (92)

leads to gravitational local Lorentz invariance (GLLI) in the context of TGR

c2dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) = c2dt′2 − dr′2 − r′2(dθ′2 + sin2 θ′dϕ′2) (93)
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This is the outward manifestation on flat four-dimensional spacetime in the context

of TGR of the intrinsic gravitational local Lorentz invariance (φGLLI) (25) on flat

two-dimensional intrinsic spacetime in the context of φTGR.

The validity of Eq. (93) at every point in spacetime in a gravitational field,

guarantees formally the flatness everywhere in a gravitational field of the four-

dimensional relativistic spacetime (Σ, ct), which evolved in the context of TGR at the

second stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic

parameters in a gravitational field, as illustrated already in the global geometries of

Figs. 1 and 2.

The outward manifestations on flat four-dimensional spacetime in the context

of TGR of the intrinsic gravitational length contraction and intrinsic gravitational

time dilation in the context of φTGR, given in the alternative forms of Eqs. (27a-b),

(28a-b) and (29a-b) are the following respectively

dr = dr′ cosψg(r
′); rdθ = rdθ′; and r sin θdϕ = r′ sin θ′dϕ′ (94a)

dt = dt′ secψg(r
′) (94b)

dr = γg(r
′)−1dr′ = (1 −

V ′g(r)2

c2
g

)1/2dr′; rdθ = rdθ′;

and r sin θdϕ = r′ sin θ′dϕ′ (95a)

dt = γg(r
′)dt′ = (1 −

V ′g(r)2

c2
g

)−1/2dt′ (95b)

and

dr = γg(r
′)−1dr′ = (1 −

2GM0a

r′c2
g

)1/2dr′; rdθ = rdθ′;

and r sin θdϕ = r′ sin θ′dϕ′ (96a)

dt = γg(r
′)dt′ = (1 −

2GM0a

r′c2
g

)−1/2dt′ (96b)

Equations (94a-b), (95a-b) and (96a-b) are alternative forms of gravitational

length contraction and gravitational time dilation in the context of TGR. It must be

noted that the rotation of dr′ relative to dr suggested by the first equation of system

(94a) and the rotation of cdt′ relative to cdt suggested by Eq. (94b) are intrinsic rota-

tions, that is, they are not actual or observable rotations with respect to 3-observers

in Σ, as discussed earlier. The non-observable intrinsic rotations are what appear as
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actual rotations of dφρ′ relative to dφρ and φcdφt′ relative to φcdφt in Fig. 9 of the

measurable sub-space of φTGR, to which intrinsic gravitational length contraction

and intrinsic gravitational time dilation formulae of Eqs. (27a-b), 28(a-b) or (29a-b)

in the context of φTGR pertain.

Finally the outward manifestations on the flat four-dimensional spacetime in the

context of TGR of the intrinsic mass relation in the context of φTGR, derived graph-

ically in sub-section 2.2 and presented in the alternative forms of Eqs. (32), (33) and

(34), is given in the following alternative forms, obtained by simply removing the

symbol φ from Eqs. (32) – (34)

m = m0γg(r
′)−2 = m0 cos2 ψg(r

′) (97)

= m0















1 −
V ′g(r

′)2

c2
g















(98)

= m0













1 −
2GM0a

r′c2
g













(99)

The gravitational-relativistic mass m that evolved from the rest mass m0 in the con-

text of TGR shall be identified as the inertial mass and passive gravitational mass in

the second part of this paper.

The gravitational local Lorentz transformation (GLLT) in the alternative forms

of systems (85), (88) and (91) and its inverse in the alternative forms of systems (86),

(89) and (92); the gravitational local Lorentz invariance (GLLI) (93); the gravita-

tional length contraction and gravitational time dilation formulae in the alternative

forms of Eqs¿ (94a-b), (95a-b) and (96a-b) and the mass relation in the context

of TGR in the alternative forms of Eqs. (97) – (99), are sufficient results of TGR

for now. Other results shall be added from the analytical approach to TGR to be

developed in the second part of this paper.

Since the results of TGR in this sub-section have been written directly from

the results of φTGR derived graphically in sub-sections 2.1 and 2.2, we have in

effect accomplished the graphical approach to TGR. It must be reiterated however

that there are no local spacetime geometries involving relative rotations of physi-

cal spacetime intervals and no global spacetime geometries involving curvature of

extended physical spacetimes in the context of TGR.

A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.668



Mar, 2012 THE FUNDAMENTAL THEORY ... (M) Vol. 1(3B) : Article 14

4.2 SR and combined SR and TGR on flat spacetime in a gravitational field of

arbitrary strength

Just as done by writing the results of the theory gravitational relativity (TGR) on the

flat relativistic spacetime (Σ, ct) in sub-section 4.1 directly from the corresponding

results of the intrinsic theory of gravitational relativity (φTGR), derived graphically

in sub-sections 2.1 and 2.2, the results of SR and combined SR and TGR on the flat

relativistic spacetime (Σ, ct), shall be written directly from the results of φSR and

combined φSR and φTGR on flat two-dimensional relativistic intrinsic spacetime

(φρ, φcφt), derived graphically in sub-sections 3.1 and 3.2. This shall entail the

removal of the symbol φ from the results of φSR and φSR+φTGR essentially, while

taking proper care of the fact that SR and SR+TGR are four-dimensional theories

on flat (Σ, ct), while φSR and φSR+φTGR are two-dimensional intrinsic theories on

flat (φρ, φcφt).

The intrinsic local Lorentz transformation (φLLT) in the context of φSR and

its inverse in terms of extended straight line affine intrinsic spacetime coordinates,

which are but limited in extensions to the interior of a local Lorentz frame in the

external gravitational field, in the alternative forms of systems (37) and (38) and

systems (40) and (41), on the flat relativistic intrinsic metric spacetime (φρ, φcφt)
that evolved in the context of φTGR in a gravitational field, are made manifest out-

wardly (or physically) within a local Lorentz from on the flat four-dimensional rel-

ativistic metric spacetime (Σ, ct) in the context of SR in the external gravitational

field respectively as follows

x̃ = x̃ secψd − cγ t̃ tanψd; ỹ = ỹ; z̃ = z̃;

(w.r.t. 3 − observer Peter in Σ)

cγ t̃ = cγ t̃ secψd − x̃ tanψd;

(w.r.t. 1 − observer P̃eter in ct)


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
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

(100)

and

x̃ = x̃ secψd + cγ t̃ tanψd; ỹ = ỹ; z̃ = z̃;

(w.r.t. 1 − observer P̃eter in ct)

cγ t̃ = cγ t̃ secψd + x̃ tanψd;

(w.r.t. 3 − observer Peter in Σ)




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


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
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



(101)
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or
x̃ = γd(v)(x̃ − vt̃ ); ỹ = ỹ; z̃ = z̃;

(w.r.t. 3 − observer Peter in Σ)

t̃ = γd(v)(t̃ −
v

c2
γ

x̃ );

(w.r.t. 1 − observer P̃eter in ct)
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
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(102)

and
x̃ = γd(v)(x̃ + vt̃ ); ỹ = ỹ; z̃ = z̃;

(w.r.t. 1 − observer P̃eter in ct)

t̃ = γd(v)(t̃ +
v

c2
γ

x̃ );

(w.r.t. 3 − observer Peter in Σ)
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


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




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
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

(103)

where the outward manifestations on the flat spacetime (Σ, ct) of Eqs. (39a) and

(39b) on flat intrinsic spacetime (φρ, φcφt) namely,

sinψd = v/cγ ≡ βd(v) (104a)

cosψd =

√

1 − v2/c2
γ ≡ γd(v)−1 (104b)

have been used in converting systems (100) and (101) to systems (102) and (103).

Except for the change of notations of the affine intrinsic coordinates, systems (100)

and (101) are the same as systems (28) and (29) of [9] and systems (102) and (103)

are the same as systems (33) and (34) of [9].

As discussed in [9], the rotation of the affine spacetime coordinates x̃ and cγ t̃

relative to x̃ and cγ t̃ respectively by angle ψd, which system (100) may suggest and

the inverse rotation of x̃ and cγ t̃ relative to x̃ and cγ t̃ respectively at negative angle

−ψd, which system (101) may suggest, do not exist in reality, or are fictitious. They

may be described as intrinsic rotations, which is formally what the rotations of the

intrinsic affine coordinates φx̃ and φcγφt̃ relative to φx̃ and φcγφt̃ respectively in

Figs. 10 and 11 and the inverse rotation of φx̃ and φcγφt̃ relative to φx̃ and φcγφt̃
respectively by negative intrinsic angle −φψd in the inverses to Figs. 10 and 11 (not

drawn) represent.

The outward (or physical) manifestations on the flat four-dimensional relativis-

tic metric spacetime (Σ, ct) in the context of TGR, of intrinsic gravitational local

Lorentz transformation (φGLLT) and its inverse on the flat relativistic intrinsic met-

ric spacetime (φρ, φcφt) in the context of intrinsic gravitational theory of relativ-

ity (φTGR), in the alternative forms of systems (14) and (17), systems (19) and
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(20) and systems (23) and (24), take on the alternative forms of systems (85) and

(86), systems (88) and (89) and systems (91) and (92) in every gravitational field

(spherically-symmetric or not), with respect to 3-observers in Σ. This, as discussed

earlier in sub-section 4.1, is due to the fact that the relativistic Euclidean 3-space Σ

is not isotropic (i.e. all directions in Σ are not the same) with respect to 3-observers

in Σ and the gravitational velocity is purely radial in every gravitational field, as dis-

cussed in sub-section 1.2 leading to system (4), to be established formally elsewhere

with further development.

The outward manifestations on the flat four-dimensional relativistic spacetime

(Σ, ct) in the context of SR in a gravitational field of the intrinsic local Lorentz trans-

formation (φLLT) and its inverse on flat two-dimensional intrinsic metric spacetime

(φρ, φcφt) in the context of φSR in a gravitational field, in the alternative forms of

systems (37) and (38) and systems (40) and (41), likewise take the alternative forms

of systems (100) and (101) and systems (102) and (103), for every pair of frames of

reference in relative motion, as explained hereunder.

Now let the affine spacetime coordinate systems (cγ t̃ , x̃ , ỹ , z̃) and (cγ t̃ , x̃ , ỹ , z̃ )

on the flat four-dimensional relativistic metric spacetime (Σ, ct) of TGR be the

frames of reference of a particle and the observer respectively within a local Lorentz

frame on the flat spacetime (Σ, ct) in a gravitational field of arbitrary strength. The

corresponding affine intrinsic spacetime coordinate systems of the intrinsic frames

of the particle and observer in the underlying flat two-dimensional relativistic in-

trinsic metric spacetime (φρ , φcφt) of φTGR are (φcγφt̃ , φx̃) and (φcγφt̃ , φx̃ ) re-

spectively, where φx̃ and φx̃ are both aligned along the singular one-dimensional

universal isotropic relativistic intrinsic space φρ.

Let the particle’s frame (cγ t̃ , x̃ , ỹ , z̃) be in motion at velocity, ~vOP = ~v, rela-

tive to the observer’s frame (cγ t̃ , x̃ , ỹ , z̃), which implies that the particle’s intrinsic

frame (φcφt, φx) is in intrinsic motion at intrinsic speed, φvOP = φv, relative to the

observer’s intrinsic frame (cγ t̃ , x̃ , ỹ , z̃), where |φv| = |~v|. The intrinsic speed φv

lies along the intrinsic coordinate φx, which, itself lies along the singular universal

isotropic intrinsic space φρ.

The outward (or physical) manifestation of the intrinsic coordinate system

(φcγφt̃, φx̃) obtained by simply removing the symbol φ is (cγ t̃ , x̃). It then follows

that the intrinsic motion at intrinsic speed φv along the intrinsic coordinate φx̃ of

the particle’s intrinsic frame, (φcγφt̃ , φx̃) relative to the observer’s intrinsic frame

(φcγφt̃ , φx̃ ) is made manifest outwardly as the motion at speed v along the coor-

dinate x̃ of the partial coordinate system (cγ t̃ , x̃) of the particle’s frame on the flat
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four-dimensional spacetime (Σ , ct) relative to the observer. When the other coordi-

nates of the particle’s frame namely, ỹ and z̃, are incorporated into (cγ t̃ , x̃ ) we have a

situation where the intrinsic motion at intrinsic speed, φvOP = φv, along the intrinsic

coordinate φx̃ of the particle’s intrinsic frame (φcγφt̃, φx̃ ) relative to the observer’s

intrinsic frame (φcγφt̃ , φx̃ ) is made manifest outwardly as the motion at velocity,

~vOP = ~v, along the coordinate x̃ of the particle’s frame (cγ t̃ , x̃ , ỹ , z̃) relative to the

observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ) on the flat four-dimensional spacetime (Σ , ct).
Once it is adopted as a convention that the X−axis of every frame shall be along

the direction of the velocity ~v of relative motion of the frame, then the velocity,

~vOP = ~v, is purely along the X−axis of every frame. Thus for the present case

of a particle’s frame (cγ t̃ , x̃ , ỹ , z̃) in motion at velocity, ~vOP = ~v, relative to the

observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ), ~vOP is purely along the coordinate x̃, which also

lies above the isotropic intrinsic space φρ. That is,

~vOP = ~v = vx î = vî (105a)

On the other hand, the observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ) is in motion at velocity,

~vPO = −~v, relative to the particle’s frame (cγ t̃ , x̃ , ỹ , z̃ ) and the observer’s intrinsic

frame (φcγφt̃ , φx̃ ) is in intrinsic motion at intrinsic speed, φvPO = −φv, relative to

the particle’s intrinsic frame (φcγφt̃ , φx̃ ) in the above. The intrinsic motion at intrin-

sic speed −φv of the observer’s intrinsic frame (φcγφt̃ , φx̃) relative to the particle’s

intrinsic frame (φcγφt̃, φx̃ ), which occurs along the intrinsic space coordinate φx̃ that

is aligned along the singular universal isotropic intrinsic space φρ, is made manifest

in the motion of the observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ) at velocity, ~vPO = −~v, along the

coordinate x̃ of the observer’s frame relative to the particle’s frame (cγ t̃ , x̃ , ỹ , z̃ )

on the flat four-dimensional spacetime (Σ , ct). Again, ~vPO = −~v, is purely along the

coordinate x̃ of the observer’s frame. That is,

~vPO = −~v = −vx̃ î = −vî (105b)

The velocities ~vPO and ~vOP lie along the same line but are oppositely directed

in the Euclidean 3-space Σ. It then follows that the coordinates x̃ of the particle’s

frame, along which the velocity ~vOP lies, and the corresponding coordinate x̃ of the

observer’s frame along which the velocity ~vPO lies, are collinear in Σ.

The conclusion then is that although the coordinate systems (cγ t̃ , x̃ , ỹ , z̃) and

(cγ t̃ , x̃ , ỹ , z̃ ) of two frames in relative motion can be orientated relative to each

other in space in an uncountable number of ways, the relative orientation of the
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coordinate systems in which the coordinates x̃ and x̃ of the two frames are collinear

along the direction of their relative velocity is the naturally prescribed orientation

for deriving the Lorentz transformation (LT) and its inverse for the two frames.

However the corresponding coordinates of the two frames that are collinear with the

velocity of their relative motion may be taken as ỹ and ỹ or z̃ and z̃; it is just a matter

of convention that they shall be taken as x̃ and x̃. A corollary of this conclusion is

that the LT and its inverse take on the forms of systems (100) and (101) or systems

(102) and (103) for every pair of frames in relative motion.

The natural orientation of the coordinate systems of two frames in relative mo-

tion for deriving the LT and its inverse isolated above is natural because it takes

into consideration the fact that the intrinsic motion at intrinsic speed, φvOP = φv,

of the intrinsic frame (φcγφt̃ , φx̃ ) relative to the intrinsic frame (φcγφt̃, φx̃ ) and

the converse intrinsic motion at intrinsic speed, φvPO = −φv, of the intrinsic frame

(φcγφt̃, φx̃ ) relative to the intrinsic frame (φcγφt̃, φx̃ ) take place along the intrin-

sic coordinates φx̃ and φx̃ respectively, which are both aligned along the singular

universal isotropic intrinsic space φρ. The intrinsic coordinates φx̃ and φx̃ and the

intrinsic speeds φvOP and φvPO, which are aligned along the singular straight line

universal isotropic intrinsic space φρ are then made manifest in coordinate x̃ and x̃
and velocities ~vOP and ~vPO that lie along a straight line along the collinear coordi-

nates x̃ and x̃ in Σ.

An arbitrary orientation in space of the coordinates systems (cγ t̃ , x̃ , ỹ , z̃) and

(cγ t̃ , x̃ , ỹ , z̃ ) of two frames in relative motion at a velocity ~v on the flat four-

dimensional spacetime (Σ , ct), for the purpose of deriving the LT and its inverse, in

which the coordinates x̃ and x̃ and the velocity ~v are not collinear, does not put into

consideration the relative intrinsic motion at intrinsic speed φv of the intrinsic frames

(φcγφt̃ , φx̃) and (φcγφt̃ , φx̃ ) in the underlying flat two-dimensional intrinsic space-

time (φρ , φcφt). Whereas it is the relative intrinsic motion of the intrinsic frames

in intrinsic spacetime that determines the observed relative motion of the frames in

spacetime. Such arbitrary orientation of coordinate systems of two fames in relative

motion is impossible. On the other hand, the collinearity of the coordinates x̃ and x̃,

which is inherent in the Lorentz transformation and its inverse in the familiar forms

of systems (102) and (103), is usually considered to be an assumption in the special

theory of relativity.

It is crucial to note that φSR involves extended intrinsic affine spacetime coordi-

nates φx̃ and φcγφt̃ and consequently SR involves extended four-dimensional affine

spacetime coordinates x̃, ỹ, z̃ and cγ t̃, (which are but limited to interiors of a local
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Lorentz frames in a gravitational field for motion within a gravitational field). The

only metric intrinsic spacetme involved in φSR is the little intrinsic metric spacetime

interval dφρ and φcφt contained within the gravitational-relativistic cum special-

relativistic intrinsic mass φm of the test particle in relative motion. Consequently

the only metric spacetime involved in SR is the little volume dΣ contained within

m moving in Σ and little interval of time dimension cdt contained within the the

symmetry-partner mass ε/c2 moving along the time dimension ct, of the particle in

relative motion. An implication of this is that the motion of a test particle in the

extended flat relativistic metric spacetime (Σ , ct) that evolves in the context of TGR

can neither alter the Lorentzian metric nor the label of (Σ , ct). In other words, the

extended flat spacetime (Σ , ct) of TGR does not transform into another extended

flat spacetime (Σ , ct) due to the relative motion of a particle or body in (Σ , ct) in

the context of SR.

Similarly it is due to the fact that the isotropic relativistic intrinsic space φρ and

the intrinsic gravitational speed φV ′g(φr′) that lies along φρ is naturally orientated

along radial directions from the centroid of every gravitational field source (spher-

ical or non-spherical) in the relativistic Euclidean 3-space Σ only that the outward

manifestation in Σ of φV ′g(φr′) namely, the gravitational velocity ~V ′g(r
′) is naturally

along radial directions from the centroid of every gravitational field source (spher-

ical or non-spherical) in Σ only, as shall be taken up fully elsewhere with further

development. Consequently ~V ′g(r
′) is radially towards the centroid of every grav-

itational field source, spherically-symmetric or not, as stated by system (4), and

GLLT and its inverse can take on the forms of systems (85) and (86) or systems

(88) and (89) or systems (91) and (92), in which the coordinates intervals r′dθ′ and

r′ sin θ′dϕ′ transform into the coordinate intervals rdθ and r sin θdϕ trivially only in

every gravitational field (spherical or non-spherical).

After the long but important digression to establish the fact that the local Lorentz

transformation (LLT) and its inverse of SR can take on the forms of systems (100)

and (101) or systems (102) and (103) only within or outside a gravitational field,

for every pair of frames of reference in relative motion, and the gravitational local

Lorentz transformation and its inverse can take on the forms of systems (85) and

(86) or systems (88) and (89) or systems (91) and (92) in every gravitational field

(spherically symmetric or not), let us return to the subject of this sub-section, which

is writing the results of SR and combined SR and TGR on the flat four-dimensional

spacetime (Σ, ct) from the corresponding results of φSR and combined φSR and

φTGR on flat intrinsic spacetime (φρ, φcφt).
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Either system (100) or (101) or the explicit form in terms of the speed v (102) or

(103) leads to local Lorentz invariance (LLI) (of SR ) on the flat relativistic space-

time (Σ, ct) of TGR in a gravitational field. That is,

c2
γ t̃ 2 − x̃2 − ỹ2 − z̃2 = c2

γ t̃ 2 − x̃2 − ỹ2 − z̃2 (106)

This is the outward manifestations on the flat (Σ, ct) in the context of SR of the

intrinsic local Lorentz invariance (φLLI) (of φSR) (42) on flat (φρ, φcφt).
The Lorentz transformation (LLT) and its inverse of systems (100) and (101)

or system (102) and (103) and the LLI (106) they imply, obtain within every lo-

cal Lorentz frame in every gravitational field (spherically symmetric or not). The

LLI has thus been validated on the flat relativistic spacetime (Σ, ct) that evolved in

the context of TGR in every gravitational field, as shall also be re-done purely an-

alytically in the second part of this paper. It may be recalled that LLI remains an

assumption (without theoretical validation) but with abundant experimental support

in the general theory of relativity (GR) [10, 11, etc].

The intrinsic special-relativistic length contraction and intrinsic special-relativ-

istic time dilation formulae in the alternative forms of Eqs. (43a) and (43b) and

Eqs. (44a) and (44b) in the context of φSR on the flat relativistic intrinsic spacetime

(φρ, φcφt) of φTGR in a gravitational field, are made manifest outwardly (or phys-

ically) in special-relativistic length contraction and special-relativistic time dilation

formulae in the context of SR on the flat relativistic spacetime (Σ, ct) of TGR in

every gravitational field respectively as follows

x̃ = x̃ cosψd; ỹ = ỹ; and z̃ = z̃ (107a)

t̃ = t̃ secψd (107b)

or

x̃ = γd(v)−1 x̃ = (1 − v2/c2
γ)1/2 x̃; ỹ = ỹ; and z̃ = z̃ (108a)

t̃ = γd(v)t̃ = (1 − v2/c2
γ)−1/2 t̃ (108b)

The intrinsic gravitational-relativistic cum special-relativistic length contrac-

tion and intrinsic gravitational-relativistic cum special-relativistic time dilation for-

mulae on the flat relativistic intrinsic spacetime (φρ, φcφt) in the context of com-

bined φTGR and φSR, in the alternative forms of Eqs. (48a-b) and (50a-b), are

likewise made manifest outwardly on the flat four-dimensional spacetime (Σ, ct)
of TGR as gravitational-relativistic cum special-relativistic length contraction and
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gravitational-relativistic cum special-relativistic time dilation formulae in the con-

text of combined TGR and SR respectively as follows

x̃ = x̃ ′ cosψg(r
′) cosψd; ỹ = ỹ ′; z̃ = z̃ ′ (109a)

t̃ = t̃ ′ secψg(r
′) secψd (109b)

x̃ = γg(r
′)−1γd(v)−1 x̃ ′ = (1 −

V ′g(r
′)2

c2
g

)1/2(1 −
v2

c2
γ

)1/2 x̃ ′;

ỹ = ỹ ′; z̃ = z̃ ′ (110a)

t̃ = γg(r
′)γd(v)t̃ ′ = (1 −

V ′g(r
′)2

c2
g

)−1/2(1 −
v2

c2
γ

)−1/2 t̃ ′ (110b)

or

x̃ = γg(r
′)−1γd(v)−1 x̃ ′ = (1 −

2GM0a

r′c2
g

)1/2(1 −
v2

c2
γ

)1/2 x̃ ′;

ỹ = ỹ ′; z̃ = z̃ ′ (111a)

t̃ = γg(r
′)γd(v)t̃ ′ = (1 −

2GM0a

r′c2
g

)−1/2(1 −
v2

c2
γ

)−1/2 t̃ ′ (111b)

The affine spacetime coordinates with prime label cγ t̃ ′ , x̃ ′ , ỹ ′ and z̃ ′ are those

of the particle’s frame in the context of the primed special theory of relativity (SR′),

involving the motion of the rest mass m0 of the particle relative to the observer,

within a local Lorentz frame at radial distance r′ from the center of the rest mass M0

of the gravitational field source, in the proper Euclidean 3-space Σ′ of the flat proper

(or classical) spacetime (Σ′, ct′) (in Fig. 11 of [6]), which evolved in the context of

absolute intrinsic gravity/absolute gravity (φAG/AG) – assuming relative gravity

was still absent – at the first stage of evolutions of spacetime/intrinsic spactime and

parameters/intrinsic parameters in a gravitational field. The coordinates cγ t̃ , x̃ , ỹ
and z̃ are those of the observer’s frame in the context of the unprimed special theory

of relativity (SR), involving the motion of the gravitational-relativistic mass m of the

particle relative to the observer, within a local Lorentz frame at radial distance r from

the center of the gravitational-relativistic mass M of the gravitational field source, in

the relativistic Euclidean 3-space Σ of the flat relativistic spacetime (Σ, ct) of TGR

in Fig. 1, which evolved at the second stage of evolutions of spacetime/intrinsic

spactime and parameters/intrinsic parameters in a gravitational field.
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However while the resultant time dilation formula in the context of combined

TGR and SR of Eq. (109b), (110b) or (111b) is valid for an arbitrary orientation

of the coordinates of 3-space x̃ , ỹ and z̃ of the observer’s frame relative to a radial

direction from the center of the mass M of the gravitational field source in Σ, within

a local Lorentz frame, the resultant length contraction formula (109a), (110a) or

(111a) is valid for the particular orientation of the spatial coordinates in which x̃
along which motion of the particle relative to the observer occurs, lies along a radial

direction from the center of M.

In a situation where the coordinate x̃ along which the motion of the particle

relative to the observer occurs does not lie along a radial direction from the center

of the gravitational field source M in Σ, on the other hand, the length contraction

formula (109a), (110a) or (111a) must be modified appropriately. If, for instance,

the coordinates x̃ and ỹ are orientated perpendicular to a radial direction from the

center of M, while the coordinate z̃ lies along a radial direction from the center of

M within a local Lorentz frame for a give moment, then the proper (or classical)

coordinate x̃ ′ will suffer special-relativistic contraction solely, the proper (or clas-

sical) coordinate z̃ ′ will suffer gravitational-relativistic contraction solely, while the

proper (or classical) coordinate ỹ ′ will suffer no contraction for that moment. Then

system (109a), (110a) or (111a) must be modified accordingly for this situation. For

instance system (111a) must be modified as follows

x̃ = (1 −
v2

c2
γ

)1/2 x̃ ′; ỹ = ỹ ′; z̃ = (1 −
2GM0a

r′c2
g

)1/2z̃ ′ (112)

while Eq. (111b) remains unchanged.

The outward manifestations in the context of SR on the flat four-dimensional

gravitational-relativistic spacetime (Σ, ct), of the intrinsic local Lorentz transforma-

tion and its inverse in terms of the little gravitational-relativistic intrinsic metric

spacetime interval (dφρ, φcdφt) contained within the gravitational-relativistic in-

trinsic mass (φm, φε/φc2) of the particle and the little gravitational-relativistic cum

special-relativistic intrinsic metric spacetime interval (dφρ, φcdφt) contained within

the gravitational-relativistic cum special-relativistic mass intrinsic (φm, φε/φc2) of

the particle, in the alternative forms of systems (51) and (52) and systems (53) and

677A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.



Vol. 1(3B) : Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

(54) in the context of φSR are the following

dx = dx secψd − cdt tanψd; dy = dy; dz = dz;

(w.r.t. 3 − observer Peter in Σ)

cdt = cdt secψd − dx tanψd;

(w.r.t. 1 − observer P̃eter in ct)







































(113)

and
dx = dx secψd + cdt tanψd; dy = dy; dz = dz;

(w.r.t. 1 − observer P̃eter in ct)

cdt = cdt secψd + dx tanψd;

(w.r.t. 3 − observer Peter in Σ)







































(114)

or
dx = γd(v)(dx − vdt ); dy = dy; dz = dz;

(w.r.t. 3 − observer Peter in Σ)

dt = γd(v)(dt −
v

c2
γ

dx );

(w.r.t. 1 − observer P̃eter in ct)











































(115)

and
dx = γd(v)(dx + vdt); dy = dy; dz = dz;

(w.r.t. 1 − observer P̃eter in ct)

dt = γd(v)(dt +
v

c2
γ

dx);

(w.r.t. 3 − observer Peter in Σ)











































(116)

The metric spacetime coordinate intervals dx , dy , dz and cdt in systems (113)

– (116) are the dimensions of the gravitational-relativistic mass (m , ε/c2) of the

particle that evolved on the flat relativistic spacetime (Σ, ct) in the context of TGR,

while dx , dy , dx and cdt are the dimensions of the gravitational-relativistic cum

special-relativistic mass (m , ε/c2) that evolved on (Σ, ct) in the context of combined

TGR and SR.

The special-relativistic length contraction and special-relativistic time dilation

formulae implied by systems (113) and (114) and systems (115) and (116), are the

outward manifestations of Eqs. (56a-b) and Eqs. (57a-b) in the context of φSR, given

as follows

dx = dx cosψd; dy = dy; dz = dz; (117a)

dt = dt secψd (117b)
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and

dx = γd(v)−1dx; = (1 −
v2

c2
γ

)1/2dx; dy = dy; dz = dz; (118a)

dt = γd(v)dt; = (1 −
v2

c2
γ

)−1/2dt (118b)

Only the dimension dx of the particle (or object), a box, say, along which its motion

relative to the observer occurs, suffers special-relativistic contraction relative to the

observer according to system (117a) or (118a).

The intrinsic special-relativistic cum gravitational-relativistic length contrac-

tion and special-relativistic cum gravitational-relativistic time dilation of the lit-

tle proper intrinsic metric spacetime interval (dφρ , φcdφt) contained within the

special-relativistic cum gravitational-relativistic intrinsic mass (φm , φε/φc2) of the

particle or object on the flat relativistic intrinsic spacetime (φρ , φcφt), in the context

of combined φTGR and φSR, given in the alternative forms of Eqs. (58a-b), (59a-

b) and (60a-b), are likewise made manifest on the flat four-dimensional relativistic

spacetime (Σ, ct) in the context of combined TGR and SR respectively as follows

dx = dx′ cosψg(r
′) cosψd; dy = dy′; dz = dz′; (119a)

dt = dt′ secψg(r
′) secψd (119b)

or

dx = γg(r
′)−1γd(v)−1dx′;

= (1 −
V ′g(r

′)2

c2
g

)1/2(1 −
v2

c2
γ

)1/2dx′; dy = dy′; dz = dz′; (120a)

dt = γg(r
′)γd(v)dt′;

= (1 −
V ′g(r

′)2

c2
g

)−1/2(1 −
v2

c2
γ

)−1/2dt′ (120b)

or

dx = γg(r
′)−1γd(v)−1dx′;

= (1 −
2GM0a

r′c2
g

)1/2(1 −
v2

c2
γ

)1/2dx′; dy = dy′; dz = dz′; (121a)

dt = γg(r
′)γd(v)dt′;

= (1 −
2GM0a

r′c2
g

)−1/2(1 −
v2

c2
γ

)−1/2dt′ (121b)
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Again the length contraction formulae of the dimensions of the particle or ob-

ject of system (119a), (120a) or (121a) is valid in a situation where its dimension

dx, along which its motion relative to the observer occurs within a local Lorentz

frame, is orientated along a radial direction from the center of the mass M of the

gravitational field source in Σ. Otherwise systems (119a), (120a) and (121a) must

be modified appropriately.

The intrinsic mass relation (74) or (75), the intrinsic total energy expression (76)

and the intrinsic kinetic energy relation (77), derived graphically in the context of

φSR on the flat relativistic intrinsic spacetime (φρ , φcφt) in a gravitational field ear-

lier, are made manifest in mass relation, total energy expression and kinetic energy

relation on the flat relativistic spacetime (Σ, ct) in the context of SR in a gravitational

field respectively as follows

m = γd(v)m = m secψd = m(1 −
v2

c2
γ

)−1/2, (122)

m2c4
γ − m2c2

γv
2 = m2c4

γ (123)

and

T = mc2
γ(γd(v) − 1)

= mc2
γ

(

(1 − v2/c2
γ)−1/2 − 1

)

(124)

The intrinsic mass relation in the context of combined φTGR and φSR derived

graphically in sub-sections 2.2 and 3.2 and presented in the alternative forms of

Eqs. (78), (79) and (80) are made manifest on the flat four-dimensional relativistic

spacetime (Σ, ct) in the context of combined TGR and SR in the following alterna-

tive forms

m = m0γg(r
′)−2γd(v)

= m0 cos2 ψg(r
′) secψd (125)

= m0(1 −
V ′g(r

′)2

c2
g

)(1 −
v2

c2
γ

)−1/2 (126)

= m0(1 −
2GM0a

r′c2
g

)(1 −
v2

c2
γ

)−1/2 (127)

The mass m is the gravitational-relativistic cum special-relativistic mass in the con-

text of combined TGR and SR.
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The intrinsic gravitational-relativistic cum special-relativistic kinetic energy in

the context of combined φTGR and φSR presented in the forms of Eqs¿ (80) – (82)

are likewise made manifest on flat four-dimensional relativistic spacetime (Σ, ct) in

the context of combined TGR and SR respectively as follows

T = m0c2
γ cos2 ψg(r

′)[secψd − 1] (128)

= m0c2
γ(1 −

V ′g(r
′)2

c2
g

)[(1 −
v2

c2
γ

)−1/2 − 1] (129)

= m0c2
γ(1 −

2GM0a

r′c2
g

)[(1 −
v2

c2
γ

)−1/2 − 1] (130)

The kinetic energy T is the gravitational-relativistic cum special-relativistic kinetic

energy in the context of combined TGR and SR.

Finally the intrinsic total energy expression (76) on the flat relativistic intrinsic

spacetime (φρ , φcφt) in the context of combined φTGR and φSR is made manifest

in total energy expression on the flat relativistic spacetime (Σ, ct) in the context of

combined TGR and SR as follows

m 2c4
γ − m 2c2

γv
2 = m2c4

γ (131)

where m is given by Eq. (126) or (127) in the context of TGR+SR and m is given

by Eq. (97), (98) or (99) in the context of TGR. By using Eq. (126) or (127) and

Eq. (97), (98) or ((99) in Eq. (131) we have

m̃2c4
γ − m̃2c2

γv
2 = m2

0c4
γ (132)

where m̃ = γd(v)m0 is the special-relativistic mass expression (usually written as

m = γm0) in the context of the primed special theory of relativity (SR′) on flat

proper spacetime (Σ′, ct′) in the absence of relative gravity, with the geometry of

Fig. 11 of [6], at the first stage of evolutions of spacetime/intrinsic spacetime and

parameters/intrinsic parameters in a gravitational field of arbitrary strength.

The effect of gravitational relativity (that is, the effect of TGR) cancels out in the

gravitational-relativistic cum special-relativistic expression (131), thereby making

the pure special-relativistic expression (132) to remain unchanged with position in

a gravitational field.

Every result of TGR, SR and combined TGR and SR on the flat relativistic

spacetime (Σ, ct) of TGR has its corresponding results in the context of φTGR, φSR

and combined φTGR and φSR on the flat relativistic intrinsic spacetime (φρ , φcφt)
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of φTGR in a gravitational field, where most of the results of TGR, SR and combined

TGR and SR can be obtained by simply removing the symbol φ from the results of

φTGR, φSR and combined φTGR, φSR. There is certainly a graphical approach to

TGR, SR and combined TGR and SR via the graphical approach to φTGR, φSR and

combined φTGR and φSR, as developed in this first part of this paper.

The fact that TGR, SR and TGR+SR, etc, on the flat four-dimensional rela-

tivistic spacetime (Σ, ct) of TGR are outward (or physical) manifestations of φTGR,

φSR, φTGR+φSR, etc, on the flat relativistic intrinsic spacetime (φρ , φcφt) of φTGR

in a gravitational field, establishes a notion that non-observable intrinsic physics in

intrinsic spacetime determines the observed physics in spacetime. The formal es-

tablishment of this notion at this point in the present theory is crucial, because it

(the notion) authenticates one of the background philosophical stand-point of the

present theory, that the domain of physics transcends the domain of experience.

There are actually two possible approaches to each of TGR, SR and combined

TGR and SR on the flat four-dimensional relativistic spacetime (Σ, ct) of TGR in a

gravitational field namely,

1. The graphical approach to TGR, SR and combined TGR and SR via the graph-

ical approach to φTGR, φSR and combined φTGR and φSR, as developed in

this first part of this paper, and

2. An analytical approach to TGR, SR and combined TGR and SR on the flat

four-dimensional spacetime (Σ, ct) of TGR, to be developed in the second part

of this paper, to complement the graphical approach. However the analytical

approach to SR, which has been developed by Einstein in 1905, shall not be

repeated.
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