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ABSTRACT

This paper presents two algorithms for solving the discrete, quasi-static, small-displacement, linear elas-
tic, contact problem with Coulomb friction. The algorithms are adoptions of a Newton method for solving
B-di�erentiable equations and an interior point method for solving smooth, constrained equations. For the
application of the former method, the contact problem is formulated as a system of B-di�erentiable equations
involving the projection operator onto sets with simple structure; for the application of the latter method,
the contact problem is formulated as a system of smooth equations involving complementarity conditions
and with the non-negativity of variables treated as constraints. The two algorithms are numerically tested
for two-dimensional problems containing up to 100 contact nodes and up to 100 time increments. Results
show that at the present stage of development, the Newton method is superior both in robustness and speed.
Additional comparison is made with a commercial �nite element code. ? 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Problems involving contact and friction are among the most di�cult ones in mechanics and at the
same time of crucial practical importance in many engineering branches. The chief mathematical
di�culty lies in the severe contact non-linearities which are of such a nature that the natural �rst-
order constitutive laws of contact and friction phenomena are expressed by non-smooth multivalued
force–displacement or force–velocity relations. The present paper discusses the numerical solution
of these constitutive laws when used in conjunction with a model of a discrete linear elastic
structure. The problem may be seen as obtained by a formal �nite element discretization of a
continuous linear elastic body in contact with a frictional foundation. Such a formal �nite element
discretization is presented in the related paper,1 where some new existence results for the semi-
coercive version of the problem were established.
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146 P. W. CHRISTENSEN ET AL.

Due to the practical importance of frictional contact problems, a large number of algorithms for
the numerical solution of the related �nite element equations and inequalities have been presented
in the literature. Review papers that may be consulted for an extensive list of references are
References 2–4. See also the monographs by Kikuchi and Oden5 and Zhong.6 However, very few
of these algorithms are supported by any convergence theory and it should be realized that since
quasistatic friction problems are known to exhibit ‘catastrophic’ features such as non-existence and
non-uniqueness of solutions, see Reference 7, there is a substantial need for such results. Indeed,
users of commercial software frequently report numerical di�culties when attempting to solve
friction problems.
A large family of numerical methods that are based on sound mathematical principles and

easily amenable to rigorous analysis are the so-called Mathematical Programming (MP) methods;
see the review paper, Reference 3. These methods are based on reformulating the problem as
a previously recognized mathematical problem such as a Linear Complementarity Problem or a
�nite-dimensional Variational Inequality. Contact problems with friction are then entered as an
application of the �eld of MP and proven algorithms become available. The present paper is
mainly a continuation of this idea and takes into account some of the latest developments in the
MP �eld. In addition to being mathematically sound and rigorous, the MP methods are practically
very e�ective for solving frictional contact problems of a realistic nature, as can be seen from the
computational results reported in this and several accompanying papers.8–10 Furthermore, when
applied to problems which the ‘trial-and-error’ commercial codes can successfully solve (such
as the frictionless problems), the MP methods are highly competitive (a fact con�rmed by the
algorithms described in this paper). Further discussion on our experience in comparing with the
commercial code ABAQUS is given in the concluding remarks.
Two solution methods are presented, analysed, implemented and compared in this work. The �rst

method is related to a so-called augmented Lagrangian formulation of the contact problem with
friction, as was independently proposed by Alart and Curnier,11 Simo and Laursen12 and De Saxce
and Feng.13 See also References 9 and 14–16. This formulation has the same property as a penalty
formulation in that it reformulates the contact and friction conditions as a system of equations in
contrast to inequalities, but contrary to the penalty method it involves no approximation of the
original problem and is not subject to penalty sensitivity. However, a drawback (actually shared
by most penalty methods) is that the equation system is non-di�erentiable, and therefore, the
classical Newton method for smooth equations fails to be applicable. The present development
takes this fact as a point of departure and observes that the non-di�erentiable equation system in
question is B-di�erentiable. It then follows, as proved by Pang,17 that the systems can be solved
by an extended Newton method which involves solving in each iteration a possibly non-smooth
system and performing a line search which makes the method globally convergent. Furthermore,
we suggest how to simplify the formulation of Alart and Curnier in such a way that the system
is still B-di�erentiable. This approach is analysed and implemented in the present paper.
The second method treated in the paper is an interior point method proposed for dealing with

complementarity systems in Reference 18. Interior point methods have a well-documented e�ec-
tiveness for solving linear programs and monotone complementarity problems. Since frictional
contact problems may be seen as a particular type of complementarity problem, we have cho-
sen to investigate the application of a method of this type. It appears that this is the �rst time
such a method is applied to deformable-body contact problems. In Reference 19 the method in
Reference 18 was applied to a rigid-body contact problem. As in Reference 19, the method given
here is based on a reformulation of the friction problem as a system of smooth equations involving
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complementarity conditions and with the non-negativity of variables treated as constraints of the
equations. The formulation is dealt with in full detail for the two-dimensional case. Although a
similar treatment can be given for the three-dimensional case, our preliminary experience with the
application of the interior point method to the resulting formulation suggests that this approach
is not promising. Thus, a di�erent formulation is needed for solving the three-dimensional prob-
lems. The latter subject has been independently investigated and our �ndings will be published
separately.8

The rest of the paper is organized as follows. In the next section, the quasi-static, linear elastic,
small-displacement, contact problem with Coulomb friction is formulated. This is done in a spatially
discrete setting. A backward Euler time discretization is introduced to produce the time incremental
problems, which are solved by the two methods described in subsequent sections. In the numerical
examples, we solve a sequence of these incremental problems to produce physically interesting
solutions. Section 3 presents the B-di�erentiable Newton method and the interior point method and
summarize some theoretical properties of these methods. In Section 4, we reformulate the fric-
tional contact problem in a way such that the B-di�erentiable Newton method becomes applicable.
In Section 5, we reformulate this problem such that the interior point method becomes applica-
ble. Section 6 presents the numerical examples. In Section 7, we give conclusions concerning the
performance of the two methods.

2. SETTING OF THE PROBLEM

We consider a discrete or discretized frictional contact problem associated with a mechanical
structure such as a �nite element discretized elastic body or a naturally discrete structure such as a
truss. In the numerical examples in Section 6, a �nite element discretized plane linear elastic body
is considered. We refer to, e.g. Reference 5 for the mathematical relation between the continuous
problem and the discrete problem.
The basic problem is time evolutionary. In what follows, the given inputs, the unknown variables

and the de�ning equations of the problem are all stated with reference to a �xed but arbitrary
time instant.
The con�gurations of the mechanical structure will be represented by a vector u∈<nu of dis-

placements and the forces acting on it by a vector f∈<nu . A positive semi-de�nite sti�ness matrix
K ∈<nu × nu exists such that

f=Ku (1)

The structure is situated in a three-dimensional physical space where the components of u are
associated with the displacements of particular points of the structure, denoted as nodes. As-
suming that there are no partially constrained nodes, there will be a total of nu=3 such nodal
points. Among these nodal points is a subset of dimension nc that contains the nodes where con-
tact can occur (called contact nodes). At each contact node, we visualize a rigid obstacle and
associate with this obstacle a normal direction and two tangential directions. A vector of normal-
direction-displacements and two vectors of tangential-direction-displacements are then obtained
from u by means of kinematic transformation matrices Cn, Ct and Co each belonging to <nc × nu ,
i.e.

wn =Cnu∈<nc ; wt =Ctu∈<nc ; wo =Cou∈<nc (2)
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148 P. W. CHRISTENSEN ET AL.

Figure 1. Illustration of the kinematic transformation matrices given in (2) for one contact node in the two-dimensional
case

The subscripts n, t and o stand for normal, tangential and orthogonal, respectively. The rows
of the matrices Cn, Ct and Co are denoted Cin, Cit and Cio, respectively, for i=1; : : : ; nc. The
transformations given in (2) are illustrated in Figure 1.
Next, normal and tangential contact forces pn ∈<nc , pt ∈<nc and po ∈<nc , (negatively) work

conjugate to wn, wt and wo, respectively, are introduced together with a vector of prescribed forces
fext ∈<nu . It then holds that

f=− CTnpn − CTt pt − CTopo + fext (3)

where the superscript T denotes the transpose of a vector or matrix. As mentioned above, the basic
problem considered here is time evolutionary; i.e. even though it is not notationally made explicit,
the external force fext is time dependent, making the unknown vectors u, pn, pt and po also time
dependent. Furthermore, the friction law introduced below explicitly involves a time derivative.
The components of the vectors pn, pt , po, wn, wt and wo are denoted pin, pit , pio, win, wit and
wio, respectively, for i=1; : : : ; nc.
We turn attention to the contact and friction conditions. Speci�cally, the normal contact condi-

tions are stated in a complementarity form

wn6g; pn¿0; pTn (wn − g)= 0 (4)

where g∈<nc represents the initial contact gaps between contact nodes and rigid obstacles. We
note that (4) is equivalent to the variational inequality:

pn ∈<nc
+ : (wn − g)T(qn − pn)60; ∀qn ∈<nc

+ (5)

where <nc
+ is the non-negative orthant in <nc and qn is a ‘trial’ contact force.

As a condition relating to the tangential forces and displacements, we take Coulomb’s law of
friction which we state for each contact node. A convenient way of expressing this law for an
arbitrary i∈{1; : : : ; nc} is through the maximum dissipation principle in the form of a variational
inequality:

(pit ; pio)∈F(�ipin): ẇit(qit − pit) + ẇio(qio − pio)60; ∀(qit ; qio) ∈F(�ipin) (6)

where the superposed dot denotes time derivative, and

F()≡{(qit ; qio)∈<2: q2it + q2io62} for ∈<+
is a set of admissible tangential contact forces (with = �ipin) and �i¿0 is the friction coe�cient
at node i. Other forms of F() could also be considered, see Reference 1.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 145–173 (1998)



ALGORITHMS FOR FRICTIONAL CONTACT PROBLEMS 149

What has been formulated so far is the quasi-static contact problem with friction, i.e. for a
given load history � 7→fext(�), �∈ [0;T], where [0;T] is a given time interval, we want to �nd
the functions � 7→ u(�), � 7→pn(�), � 7→pt(�) and � 7→po(�) such that for each �∈ [0;T], the
tuple (u(�); pn(�); pt(�); po(�)) satis�es conditions (1)–(6). There are two distinct approaches
to compute these functions. One possibility was developed in References 20 and 21: it involves
introducing a piecewise linearization of the friction cone F(); the solution of such a problem
is piecewise linear in time. By reformulating the problem as a type of Linear Complementarity
Problem (LCP) involving time derivatives, it is possible to develop a principle pivoting algorithm to
compute the piecewise linear solution functions. Another approach, which is perhaps more obvious
and historically older, is to introduce a backward Euler time discretization of the time derivatives
ẇit and ẇio. This approach is more versatile; in particular, it is applicable when non-linearities
other than a non-linear friction law (like the one used here) are present, see e.g. Reference 9. We
adopt the time discretization approach in this work.
Let the time interval [0;T] be divided into sub-intervals and let us concentrate on one such

interval, [�‘; �‘+1]. At time �‘ the vectors u, pn, pt and po are assumed to be known. We use the
notation �u for the known displacement vector and a similar notation for the contact displacements,
i.e. �wn =Cn �u, �wt =Ct �u and �wo =Co �u; we omit the bar on these variables for the unknown variables
at time �‘+1. In particular, with wit and wio denoting the unknown tangential contact displacements
at time �‘+1 and using the backward Euler time discretization, the approximation for the time
derivatives become

ẇit(�‘+1)≈ wit − �wit

�‘+1 − �‘
; ẇio(�‘+1)≈ wio − �wio

�‘+1 − �‘
(7)

The variational inequality (6) may now be stated in a time discretized setting: �nd (pit ; pio)∈
F(�ipin) such that

(wit − �wit) (qit − pit) + (wio − �wio) (qio − pio)60; ∀(qit ; qio)∈F(�ipin) (8)

The discrete; time-incremental; three-dimensional; small-displacement; elastic-body frictional con-
tact problem is now given by (1)–(3) along with the constitutive laws (5) and (8). The numerical
solution of a sequence of these problems is the main focus of this paper. The theory is developed
for one particular increment, or time interval.

3. TWO SOLUTION METHODS: GENERAL DISCUSSION

Digressing from the discussion of the contact problem, we present two general solution methods for
systems of non-linear equations. Although equation solving is a classical subject in applied mathe-
matics, the methods presented herein are new entries into the �eld of mathematical programming.
The motivation for adopting these methods for solving the contact problems has been discussed
in the Introduction of this paper. Since these methods are quite new in the mechanics literature,
we summarize in this section the main features of the methods and their principal convergence
properties. In the next two sections, we will show how the contact problem can be cast in the
required forms to which the methods become applicable and we will present some convergence
results.
Let H :<n→<n be a given mapping from the �nite-dimensional Euclidean space <n into itself

and let 
 be a closed subset of <n. We consider the problem of solving the system of equations
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150 P. W. CHRISTENSEN ET AL.

with constraints, denoted CE (H;
):

H (z)= 0; z ∈
 (9)

The two methods to be described below di�er from the classical methods for solving smooth,
unconstrained systems of equations, such as those described in References 22 and 23, in two major
aspects. The B-di�erentiable Newton method, proposed in Reference 17, solves the unconstrained
equation (i.e., (9) with 
=<n) with H being a Bouligand di�erentiable function (as opposed
to a Fr�echet di�erentiable function in the classical case). The potential reduction interior point
method, proposed in Reference 18, solves the constrained equation (9) with H being a Fr�echet
di�erentiable function and 
 a proper subset of <n with a non-empty interior (as opposed to 

being <n in the classical case). Details of the methods follow. In the discussion below, we use
HN to denote the mapping associated with B-di�erentiable Newton method and HI to denote the
mapping associated with the interior-point method.

3.1. A B-di�erentiable Newton method

A function HN :<n→<n is said to be B-di�erentiable (B for Bouligand) at a point z ∈<n if HN
is Lipschitz continuous in a neighbourhood of z and directionally di�erentiable at z. The directional
derivative of HN at z along a direction d∈<n is denoted by the standard notation H ′

N(z;d) and
also called the B-derivative of HN at z along d. A B-di�erentiable function HN at a point need not
be F-di�erentiable there (F for Fr�echet). The fundamental di�erence between the B-di�erentiability
and (classical) F-di�erentiability is the absence of linearity in the directional derivative H ′

N(z;d)
in the second argument (although this derivative is, by its de�nition, still positively homogeneous
in d). If HN is F-di�erentiable at z with ∇HN(z) denoting the n× n Jacobian matrix at z, then
H ′
N(z;d)=∇HN(z)d. The function HN is said to be B-di�erentiable if it is B-di�erentiable at all
points in its domain.
The classical Gauss–Newton method22 for solving the smooth equation HN(z)= 0 has been

extended to solving a B-di�erentiable equation. In the classical method, HN is assumed to be
F-di�erentiable. At each iteration of the method, a system of linear equations, called the Newton
equation and obtained by linearizing the equation at the current iterate zk , is solved to obtain a
search direction dzk . This direction dzk provides descent for the merit function

�(z)≡ 1
2HN(z)

THN(z); z ∈<n (10)

a one-dimensional line search (typically of ‘Armijo type’) is performed on � starting at zk and
searching along dzk . The next iterate zk+1 is then obtained as the vector zk + �kdzk for a suitable
step length �k¿0 that yields su�cient decrease in � from its current value �(zk).
In essence, the extension of the classical Newton method to a B-di�erentiable equation consists

simply of the replacement of the linear Newton equation by an equation obtained from the use of
the B-derivative instead of the F-derivative. In general, the resulting ‘directional Newton equation’
(11) is no longer linear.
Below is a step-by-step description of the B-di�erentiable Newton method for solving the equa-

tion HN(z)= 0. For more details of the method and its justi�cation, see Reference 17.

Description of Algorithm BN

Step 1 (Initialization). Let �, � and ” be given scalars with �∈ (0; 1), �∈ (0; 12 ) and ”¿0
small. Set k =0. Let zk be given.
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Step 2 (Direction generation). Solve the directional Newton equation to obtain the direction
dzk :

HN(zk) + H ′
N(z

k ; dzk)= 0 (11)

Step 3 (Step size determination). Let �k ≡ �mk , where mk is the smallest non-negative integer
m for which the following decrease criterion holds:

�(zk + �m dzk)6(1− 2��m)�(zk) (12)

Set zk+1≡ zk + �k dzk .
Step 4 (Termination check). If �(zk+1)6”, terminate with zk+1 as an approximate zero of HN.

Otherwise, return to Step 2 with k← k + 1.

The following theorem is a global convergence result for the above algorithm. It summarizes
the limiting properties of an in�nite sequence of iterates {zk} produced by the algorithm. See
Reference 17 for a proof and expanded discussion of this theorem; in particular, some detailed
treatment is given in the reference concerning the application of the algorithm for solving com-
plementarity problems and variational inequalities. The concepts of the strong F-derivative and
quadratic convergence used in the theorem are well known and can be found, e.g. in Reference 22.

Theorem 1. Let HN :<n→<n be a B-di�erentiable function. Suppose that the directional New-
ton equation (11) is always solvable. Let z∞ be an accumulation point of the sequence {zk}
produced by the B-di�erentiable Newton method. The following two statements hold:

(a) If � has a strong F-derivative at z∞ and there exist a neighbourhood N of z∞ and a
positive scalar c such that for all z ∈N and all v∈<n; ‖H ′

N(z; v)‖¿c‖v‖; then HN(z∞)= 0.
(b) If z∞ is the limit of {zk}; HN has a strong F-derivative at z∞; the Jacobian matrix
∇HN(z∞) is non-singular; the step size �k =1 for all k su�ciently large; and there exist a
neighbourhood N ′ and a positive scalar c′ such that for all z and z′ in N ′ and all v∈<n

with unit length;

‖H ′
N(z; v)− H ′

N(z
′; v)‖6c′ ‖z − z′‖

then {zk} converges to z∞ Q-quadratically; i.e.

lim sup
k→∞

‖zk+1 − z∞‖
‖zk − z∞‖2 ¡∞

Certain de�ciencies, both theoretical and practical, exist in the above algorithm and its con-
vergence result. In applications to complementarity problems (of which the one arising from the
contact problem described in Section 2 is a special case), these de�ciencies have been remedied
by various improved algorithms. Indeed, there has been a urry of recent advances in solution
methods for complementarity problems, all of which are potentially applicable for solving the
contact problem; see Reference 24. In this paper, we focus our attention on the above basic
B-di�erentiable Newton method and the interior point method to be described next; the former
because of its direct applicability to contact problem formulations of the ‘augmented Lagrangian’
type (see Section 4) and the latter because of its well-documented e�ectiveness for solving linear
programs and monotone complementarity problems.
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The main practical de�ciency is that (11) is generally not a linear equation system, and in
large-scale problems this may limit the e�ectiveness. However, numerical tests show that for the
frictional contact problems treated in this paper, (11) can be substituted for a related linear system
of equations without e�ecting the convergence of the method, see Section 4.
There is a principal de�ciency associated with the above convergence theorem; namely, the

assumed F-di�erentiability of HN at the limit vector z∞. Although several modi�ed Newton meth-
ods for non-smooth equations developed subsequently to Reference 17 (such as those presented
in References 25 and 26) have resolved this theoretical de�ciency, our experience with the basic
B-di�erentiable Newton method as described above suggests that this method is well suited for
solving the contact problem; as seen from the numerical results in Section 6. Thus we have not
attempted to adopt any of the more advanced non-smooth Newton methods in our study.
As a related development, we mention two recent papers by Leung et al.27 and Chen et al.28

These authors propose smoothing techniques for the non-smooth equations; the resulting smoothed
equations are then solved by the classical damped Newton method. It turns out that a great deal of
research e�orts in the complementarity community has in recent years been devoted to smoothing
methods (see e.g. References 29–31); it would be interesting to investigate how some of the
latter research can bene�t the numerical solution of the contact problems. Such an investigation is
beyond the scope of this paper.

3.2. An interior point method

Motivated by the popularity of the family of interior point methods in the mathematical pro-
gramming community, we become interested in applying one such method for solving the contact
problem described in Section 2. In what follows, we will describe the potential reduction interior
point method proposed in Reference 18 for solving the constrained equation (9). Parallel to the
notation HN used in the previous subsection, we use HI for the mapping H in this subsection. The
blanket assumptions are as follows:

(A1) 
 is a closed subset of <n with a non-empty interior, denoted int(
); HI is continuously
di�erentiable in int(
);
(A2) HI is partitioned as

HI(z)=

(
F(z)

G(z)

)

where F :<n→<n1 and G :<n→<n2 with n1 + n2 = n, such that


++≡{z ∈
: G(z)¿0}= {z ∈ int(
): G(z)¿0} 6= ∅

(A3) the Jacobian matrix ∇HI(z) is non-singular for all z ∈
++.
Before giving the details of the interior point method, we summarize the essential ideas behind

it. Initiated at a vector in the set 
++, the method generates a sequence of vectors lying in this
set. At each iteration, a perturbed Newton equation is set up at the current iterate zk ∈
++; the
goal of the perturbation is to facilitate the membership of the next iterate in 
++. It turns out that
the solution obtained from the perturbed Newton equation is a descent direction for the following
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merit function: for a given scalar �¿n2,

 (z)≡ � log(F(z)TF(z) + eTG(z))−
n2∑
i=1
logGi(z) for z ∈
++ (13)

where e is the n2-vector of all ones. The next iterate zk+1 is obtained as the vector zk +
�kdzk for a suitable step length �k¿0 that yields su�cient decrease in  from its current value
 (zk).
Below is a step-by-step description of the potential reduction interior point method for solv-

ing the constrained equation (9). For more details of the method and its justi�cation, see Ref-
erence 18.

Description of Algorithm IP

Step 1 (Initialization). Let scalars �¿n2; �; �̂∈ (0; 1); ��∈ [0; 1); �¿0; and �∈ (0; 1) be given.
Choose any z0 ∈
++ and �0 ∈ [0; ��]. Set k =0.
Step 2 (Direction generation). Solve the system of linear equations:

∇HI(zk) dz=− HI(zk) +

(
0

�k�ke

)
(14)

where �k = eTG(zk)=n2, to obtain the search direction dzk .
Step 3 (Step size determination). Determine the scalar

�k ≡ sup{�: zk + �′ dzk ∈
++ for all �′ ∈ (0; �)}

set �′k ≡ min(�̂�k ; �). Let mk be the smallest non-negative integer m such that

 (zk + �′k�
m dzk)−  (zk)6− ��′k�

m(1− �k)(�− n2)

Set zk+1≡ zk + �′k�
mk dzk .

Step 4 (Termination check). Terminate if �(zk+1)6”. Otherwise, pick any �k+1 ∈ [0; ��] and
return to Step 2 with k← k + 1.

Note that the function �, constructed from the B-di�erentiable function used in the Newton
method, is used in the termination check. This is in order to make numerical comparisons between
the two methods compatible.
The convergence of the above iterative algorithm is summarized in the following theorem. This

result contains a rate of convergence of a sequence of iterates produced by the algorithm; for the
complete proof of this theorem, see Reference 32.

Theorem 2. Under assumptions (A1)–(A3), let {zk} be an in�nite sequence generated by the
above algorithm. The following statements hold:

(1) the sequence of iterates {zk} is well de�ned and contained in 
++;
(2) the sequence {HI(zk)} is bounded and every accumulation point of {zk}; if it exists; is a

solution of the constrained equation (9);
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(3) if in addition;
(A4) for all scalars �¿�¿0 and ¿0; the level set below is bounded;

{z ∈
: ‖F(z)‖6; �e6G(z)6�e}
then limk→∞ HI(zk)= 0.

Finally; assume that limk→∞ �k =0. If z∞ is an accumulation point of {zk} and HI is continu-
ously di�erentiable near z∞ with ∇HI(z∞) non-singular; then {zk} converges to z∞ superlinearly;
i.e.

lim
k→∞

‖zk+1 − z∞‖
‖zk − z∞‖ =0

if and only if limk→∞ �k =1.

4. FORMULATION AS A B-DIFFERENTIABLE SYSTEM

Originating in the �eld of non-linear programming,33–35 the augmented Lagrangian approach was
independently developed for frictional contact problems by Alart and Curnier,11 De Saxce and
Feng13 and Simo and Laursen.12 Other references include References 3, 14 and 15. In Str�omberg9

such a formulation is used for solving fretting problems. The essential idea of the original aug-
mented Lagrangian approach for solving inequality constrained optimization problems is to penalize
the inequality constraints by using an augmented Lagrangian term in the objective function, thus
obtaining an ‘equivalent’ equality constrained optimization formulation for the given inequality
constrained problem. A di�culty arises when this approach is extended to frictional contact prob-
lems. This is due to the absence of a natural minimization principle associated with these problems.
The authors of the cited references have circumvented the di�culties with various proposals to deal
with the inequality constraints in the frictional contact problems. In particular, Alart and Curnier11

stated a ‘quasi’-minimization problem where pin in F(�ipin) is kept �xed.
The present formulation is strongly related to, and indeed initially inspired by, the paper by

Alart and Curnier.11 However, our formulation contains certain simpli�cations of the formulation
of that paper and the derivation is based directly on the Euclidean projector, without relying on any
auxiliary minimization principle and=or other indirect techniques. Furthermore, as �rst observed in
References 3 and 14, augmented Lagrangian-like formulations of the frictional contact problem
lead to a system of B-di�erentiable equations.
In what follows, we shall present the system of B-di�erentiable equations that describe the

contact problem stated in Section 2. As in References 3, 9 and 14, our derivation below is based
directly on the Euclidean projector.
Firstly, equations (1) and (3) are put together to yield

Ku+ CTnpn + CTt pt + CTopo =fext (15)

Next, the variational inequality (5) is rewritten in an obvious manner as: for any scalar r¿0

min(pn ; r(g− Cnu))= 0 (16)

where the minimum operator is applied componentwise to its two arguments. When writing (8) as
an equation we have to take care of the fact that (8) is de�ned only for pin¿0. One possibility
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to deal with this is to replace pin with (pin + r(Cinu − gi))+, which is justi�ed because (16) is
equivalent to

pin = (pin + r(Cinu− gi))+ (17)

where x+≡ max(0; x) for any vector x. Alternatively, we could also use (pin)+ as a substitute for
pin in (8). Using this latter substitution, we write for i=1; : : : ; nc,

Fi≡F(�i(pin)+)= {(qit ; qio)∈<2: q2it + q2io6(�i(pin)+)2}
Let �i denote the Euclidean projector onto the planar disk Fi. We then obtain the following
equivalent formulation of (8) as a non-smooth equation: for any r¿0,

(pit ; pio) = �i(pit(r); pio(r))

=



(pit(r); pio(r)) if (pit(r); pio(r))∈Fi

�i(pin)+√
(pit(r))2 + (pio(r))2

(pit(r); pio(r)) if (pit(r); pio(r)) 6∈Fi

or more compactly,

(pit ; pio)= min

(
�i (pin)+√

(pit(r))2 + (pio(r))2
; 1

)
(pit(r); pio(r)) (18)

where 0=0 is de�ned to be 1 in the last expression, and

pit(r)≡pit + r (Citu− �wit) and pio(r)≡pio + r (Ciou− �wio)

More generally, one can, of course, write down (16) and (18) using a possibly distinct ri¿0 for
each contact node i=1; : : : ; nc. This fact is used when the method is implemented, see Section 6.1.
However, here we consider the settings of (16) and (18) with just one scalar r¿0 for simplicity.
Concatenating the equations (15), (16) and (18), we de�ne the following function for any �xed r¿0,

HN(u; pt ; po; pn)≡




Ku+ CTnpn + CTt pt + CTopo − fext

−min(pn ; r (g− Cnu))(
−
(

pit

pio

)
+�i

(
pit(r)

pio(r)

))i= nc

i=1




(19)

The B-di�erentiability of this function follows from two observations. One, the min function
is clearly B-di�erentiable with an obvious B-derivative; two, the projection map �i is also
B-di�erentiable, by (18); see also Reference 9, Appendix. There are two essential di�erences
in this formulation as compared to that of Alart and Curnier.11 The �rst one is the use of (pin)+
instead of (pin+r (Cinu−gi))+. The second is that we do not substitute (17) and (18) into the �rst
line of (19). Each of these modi�cations simpli�es the formulation but still keeps the property of
B-di�erentiability. For frictionless contact problems the substitution of (17) into (19) is preferable
if one also normalizes (16) with the penalty term r, since then the Newton equation (11) possesses
symmetric qualities. However, for problems including friction this step is fruitless since in this
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case it will not produce symmetry. Also, it turns out that without the substitution, the �rst line of
(19) is linear for all iterations. This is numerically desirable when factoring the matrix related to
H̃

′
N(z; dz), de�ned below.
Letting z denote the generic tuple (u; pt ; po; pn), we will in what follows give an expression for

the directional derivative H ′
N(z; dz), where dz denotes the direction vector (du; dpt ; dpo; dpn). For

this purpose, we introduce the following index sets which are motivated by the two min functions
in (16) and (18):

I¡ = {i: pin + r (Cinu− gi)¡0}
I= = {i: pin + r (Cinu− gi)= 0}
I¿ = {i: pin + r (Cinu− gi)¿0}
J = {i: pin¡0}
J¡ = {i: pin¿0; (pit(r))2 + (pio(r))2¡(�ipin)2}
J= = {i: pin¿0; (pit(r))2 + (pio(r))2 = (�ipin)2}
J¿ = {i: pin¿0; (pit(r))2 + (pio(r))2¿(�ipin)2}
K+ = {i: pin = 0¡ (pit(r))2 + (pio(r))2}
K0 = {i: pin =pit(r)=pio(r)= 0}

We then have

H ′
N(z; dz)=




K du+ CTn dpn + CTt dpt + CTo dpo

(−dpin)i∈I¡

(−min(dpin ;−rCin du))i∈I=

(rCin du)i∈I¿(
−dpit

−dpio

)
i∈J(

rCit du

rCio du

)
i∈J¡[

r

(
Cit du

Cio du

)
+ �r

i

(
pit(r)

pio(r)

)]
i∈J=[

−
(
dpit

dpio

)
+

�i dpin√
(pit(r))2 + (pio(r))2

(
pit(r)

pio(r)

)
+ Rr

i

(
dpit + rCit du

dpio + rCio du

)]
i∈J¿[

−
(
dpit

dpio

)
+

�i(dpin)+√
(pit(r))2 + (pio(r))2

(
pit(r)

pio(r)

)]
i∈K+[

−
(
dpit

dpio

)
+min

(
�i(dpin)+√

(dpit(r))2 + (dpio(r))2
; 1

)(
dpit + rCit du

dpio + rCio du

)]
i∈K0



(20)
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where for i∈J¿,

Rr
i ≡

�ipin(
(pit(r))2 + (pio(r))2

)3=2
(

(pio(r))2 −pit(r)pio(r)

−pit(r)pio(r) (pit(r))2

)

and for i∈J=,

�r
i ≡

1
�ipin

min
(
�i dpin − pit(r) (dpit + rCit du) + pio(r) (dpio + rCio du)

�ipin
; 0
)

As indicated in Section 3, a drawback of the B-di�erentiable Newton method is that (11) is
generally not a linear equation. However, as seen from the above, in this particular application,
H ′
N(z; dz) and then also (11), is, nevertheless, linear in dz if I= ∪ J= ∪K+ ∪K0 is empty.
Since these index sets are de�ned by equalities, they can be expected to be empty in the large
majority of practical iterations; this phenomenon is indeed observed in the numerical experiments
performed below. As a matter of fact, a modi�cation of the B-di�erentiable Newton method could
be developed (for contact problems in particular and complementarity problems in general) in
which one only generates iterates that are F-di�erentiable points of the aggregate mapping HN; see
Reference 36. For our purpose, such a modi�cation is not necessary. Speci�cally, we have chosen
to implement the Newton method by using a substitute for the directional derivative in (20) as
given below:

H̃
′
N(z; dz)≡




K du+ CTn dpn + CTt dpt + CTo dpo
(−dpin)i∈I¡∪I=

(rCin du)i∈I¿( −dpit

−dpio

)
i∈J∪K+∪K0(

rCit du
rCio du

)
i∈J¡∪J=[

−
(
dpit

dpio

)
+

�i dpin√
(pit(r))2 + (pio(r))2

(
pit(r)
pio(r)

)
+ Rr

i

(
dpit + rCit du

dpio + rCio du

)]
i∈J¿



(21)

and solve instead of (11) the linear equation

HN(zk) + H̃
′
N(z

k ; dzk)= 0 (22)

This modi�cation of the algorithm has never caused any convergence di�culties. A similar expe-
rience is con�rmed by the comments in Alart and Curnier.11

It appears that the expression (20) for the directional derivative H ′
N(z

k ; dz) has not previously
been given in the literature; its derivation is not entirely trivial. The term involving Rr

i disappears
in two-dimensional contact problems; moreover, the expression (21) simpli�es substantially for
these problems. These simpli�cations are included in the implementation of the BN algorithm for
solving two-dimensional contact problems to be reported in the last section.
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5. CONSTRAINED EQUATION FORMULATION

The idea of using an interior point method for solving frictional contact problems occurs more
recently than the augmented Lagrangian approach. In Reference 19, the interior point method
described in Section 3.2 is applied to a rigid-body frictional contact problem. In this rigid-body
application, a four-sided pyramid is employed to approximate the quadratic friction cone and the
resulting approximated contact model is solved by the interior point method. In what follows,
we explain how a two-dimensional equivalence of the contact problem described in Section 2 can
be cast as a constrained equation solvable by the interior point method. The reason why we focus
only on two-dimensional problems is because there has been some signi�cant numerical di�culties
with the application of the interior-point method for solving three-dimensional problems. We have
investigated a separate approach for the latter problems.8

For two-dimensional problems, the time discretized form of Coulomb’s law may be expressed as

pit ∈F2d(�ipin): (wit − �wit) (qit − pit)60; ∀qit ∈F2d(�ipin)

F2d() ≡ {qit ∈<: |qit|6} for ∈<+ (23)

This discretized maximum dissipation principle is satis�ed if and only if there exist slack variables
s+i and s−i and multipliers �+i and �−i such that for all i=1; : : : ; nc,

s+i − �ipin + pit = 0

s−i − �ipin − pit = 0

wit − �wit = �+i − �−i (24)

s+i �
+
i = 0; s−i �−i =0

s+i ; s
−
i ; �+i ; �

−
i ¿ 0

In what follows, we write a ◦ b to denote the Hadamard product of the two vectors a and b;
i.e. a ◦ b is the vector whose components are equal to the product of the corresponding components
of a and b. Introducing slacks vn for the inequality:

Cnu− g60

and aggregating equations (2), (4), (15) and (24), we de�ne the set


≡<nu×<nc×<6nc+
and the mapping

HI(u; pt ; pn ; vn ; s; �)≡




Ku+ CTt pt + CTnpn − fext

vn + Cnu− g

−Ctu+ LTt �+ �wt

s− �Lnpn + Ltpt

pn ◦ vn
� ◦ s




(25)
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Here, �=diag(�1; : : : ; �nc ; �1; : : : ; �nc),

Ln =

(
I

I

)
; Lt =

(
I

−I

)

where I ∈<nc×nc is the identity matrix, and s ≡ (s±) and � ≡ (�±). Clearly, the contact problem
is equivalent to the constrained equation (9) with the pair (
; HI) de�ned above.
One can make some interesting comparisons between the two mappings (19) and (25). In the

former mapping, the inequalities of the contact problem are cast in terms of the non-smooth
functions min and �i. In the latter mapping, the inequalities of the contact problem are converted
into equations with the introduction of slack variables; the complementarity conditions are retained
with the use of the Hadamard product; and the non-negativity of variables are treated as explicit
constraints. As we have mentioned before, there are many other ways of dealing with inequalities
and complementarity conditions; all of these are applicable to the contact problem. It would be
much beyond the scope of this work to investigate each of these alternative ways. Our hope is
that the present study will provide the foundation and inspire further research into the numerical
solution of frictional contact problems by complementarity methods.
There are two particularly interesting partitions associated with this mapping HI. One partition

has

F(u; pt ; pn ; vn ; s; �)≡




Ku+ CTt pt + CTnpn − fext

vn + Cnu− g

−Ctu+ LTt �+ �wt


 (26)

and

G(u; pt ; pn ; vn ; s; �)≡




s− �Lnpn + Ltpt

pn ◦ vn
� ◦ s


 (27)

Associated with this partition, we have


++ = {(u; pt ; pn ; vn ; s; �)∈<nu×<nc×<6nc++: s− �Lnpn + Ltpt¿0} (28)

For this partition, it is easy to obtain an initial tuple z0 ≡ (u0; p0t ; p0n ; v0n ; s0; �0) belonging to 
++
as required by Algorithm IP.
The other partition has

F̃(u; pt ; pn ; vn ; s; �)≡




Ku+ CTt pt + CTnpn − fext

vn + Cnu− g

−Ctu+ LTt �+ �wt

s− �Lnpn + Ltpt




(29)
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and

G̃(u; pt ; pn ; vn ; s; �)≡
(

pn ◦ vn
� ◦ s

)
(30)

Associated with the latter partitioning, we have


̃++≡<nu×<nc×<6nc++ (31)

For this partition, it is trivial to obtain an initial tuple z0 ≡ (u0; p0t ; p0n ; v0n ; s0; �0) belonging to 
̃++
as required by Algorithm IP. Note that 
++ is a subset of 
̃++.
The di�erence between these the partitions (F;G) versus (F̃ ; G̃) is that in the former partition

(F;G), there is a restriction on the friction constraint (s−�Lnpn +Ltpt¿0); whereas in the latter
partition (F̃ ; G̃), there is no restriction on this constraint. In both cases, the iterates produced by
the interior point algorithm are allowed to lie outside of the friction cone; only the limit points of
the iterates, if they exist, will satisfy this cone constraint.
Specializing Theorem 2 to the CE (HI;
) with the partition (F;G) given by (26) and (27),

we can state a convergence result of Algorithm IP applied to the two-dimensional contact problem.
It is trivial to see that assumptions (A1) and (A2) hold. By postulating that (A3) also holds,
we have the following convergence result.

Theorem 3. Let K be a symmetric positive-semide�nite matrix. Assume that the Jacobian
matrix ∇HI(u; pt ; pn ; vn ; s; �); where HI is de�ned by (25), is non-singular for all tuples (u; pt ; pn ;
vn ; s; �)∈
++; where 
++ is given by (28). If the following two conditions hold :
(a) [Ku=0; Cnu60]⇒ u=0; and
(b) the matrix [CTn CTt ] has linearly independent columns;

then the interior point algorithm; when applied to the partition (F;G) given by (26) and (27),
generates a well-de�ned sequence

{(uk ; pk
t ; p

k
n ; v

k
n ; s

k ; �k)}⊂
++
with the property that

lim
k→∞

HI(uk ; pk
t ; p

k
n ; v

k
n ; s

k ; �k)= 0

Proof. See the appendix.

6. NUMERICAL EXAMPLES

The algorithms presented in the previous sections are implemented for a two-dimensional isotropic
linear elastic body under the plane strain assumption. In order to compare the numerical perfor-
mance of the two methods, two problems are considered which are solved using di�erent numbers
of time increments, di�erent numbers of contact nodes and di�erent friction coe�cients.
The �rst problem is a punch pressed into an elastic half-plane. The elastic half-plane is approxi-

mated by a �nite element mesh according to Figure 2. The second problem, shown in Figure 3, is a
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Figure 2. Finite element mesh of the half-plane. The potential contact surface is zoomed in. The location of the punch is
represented by the cylinder of radius R=100m. Notice, that the punch is not made to scale with the �nite element mesh

as the length of the potential contact surface is 0·1m

unilaterally constrained elastic block which is �xed at one part of its boundary and subjected to
prescribed forces. In both problems, the geometries are approximated by four-noded bilinear dis-
placement �nite elements with Young’s modulus taken to be 210GPa and Poisson’s ratio equals
0·3. The contact stresses are obtained from the contact forces in the same way as in Reference 20,
i.e.

�n =Mpn ; �t =Mpt (32)

where �n and �t are the normal and tangential contact stresses, respectively, and M is a diagonal
matrix consisting of the inverse of the integration weights of the numerical integration rule used.
The integration rule used in both problems is the trapezoidal rule.
Although the quasi-static frictional contact problem stated in Section 2 involves solving for

the whole displacement vector at each time increment, it is clear that only the part of the vector
corresponding to displacements of the contact nodes has to be found in order to solve the frictional
contact problem. This fact has been utilized in the implementations of the algorithms and it is
accomplished by �rst decomposing the equilibrium equations in (1) and (3) in the following way:(

Kc; c Kc; r

Kr; c Kr; r

)(
uc

ur

)
=

(
fextc − �CTnpn − �CTt pt

fextr

)
(33)
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Figure 3. Elastic block subjected to line loads Q1 and Q2 given in MN=m

where subscript c represents subvectors formed from elements related to contact nodes and r
represents all the other values. Matrices �Cn ; �C t ∈<nc×2nc are formed from Cn and Ct by deleting
the zero columns corresponding to non-contact nodes. Then, by use of static condensation, one
obtains the following equilibrium equation by eliminating ur:

(Kc; c − Kc; rK−1
r; r Kr; c)uc =fextc − Kc; rK−1

r; r f
ext
r − �CTnpn − �CTt pt (34)

which corresponds to the nodes of the potential contact surface. In both algorithms, equation (34)
is derived in the initialization step. After convergence in each time step, if this is of interest, the
total displacement vector can easily be obtained from

ur =K−1
r; r (f

ext
r − Kr; cuc) (35)

6.1. Algorithm BN: Implementation

The algorithm is implemented in Fortran 77 on an HP 9000 Model 712 work station using a
double precision arithmetic. The essential step of the algorithm is to �nd the search direction,
i.e. solving equation (22) with HN(zk) and H̃

′
N(z

k ; dzk) given by (19) and (21), respectively. This
step is achieved by a lower and upper factorization of the matrix associated with the linear equation
(22). We note that this factorization must be made each time (22) is solved, since H̃

′
N(z

k ; dzk)
given by (21) depends on the iterate zk .
The stability of the algorithm is achieved by the line search procedure in Step 3. The parameters

entered into this routine are set to �=0·9 and �=0·1. It has been found that the performance of
the line search procedure turns out well with these settings for general problems. The line search
is not sensitive to moderate changes of these values. However, it is of major importance to de�ne
an additional upper bound on the integer m in this step such that the line search is aborted if
�m gets numerically too small. Otherwise, it is very likely that the algorithm will stall. In our
implementation, this upper bound is set to 22, i.e. �m never becomes smaller than 0·1.
Concerning the termination check, ” is set equal to 10−2 in �(zk+1)6”. This value is most

clearly su�cient to get an accurate solution. Typical values of �(zk+1) during iterations are be-
tween 1015 and 10−15, see Figure 5.
The remaining parameters to be set in the algorithm are the penalty terms ri, i=1; : : : ; nc,

appearing in the tribological laws given by (16) and (18). In this work, each ri is set equal
to 1012M−1

ii , where M−1
ii is the weighting factors discussed in (32). However, ri can be chosen
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in a range between 109M−1
ii and 1013M−1

ii without any major di�erences in performance of the
algorithm. If ri are set to smaller values, then there might be convergence di�culties. On the
contrary, if ri are set to larger values, then the algorithm might be unstable.
Furthermore, the starting point for each time increment j is taken to be the solution point from

the previous time increment j−1. The starting point for the �rst time increment is the same as for
the interior point method, see below. However, the performance of the algorithm does not depend
strongly on this choice, unlike the interior point method, but this point is chosen in order to get
a fair comparison between the two methods.

6.2. Algorithm IP: Implementation

The algorithm is implemented in Fortran 90 on a DEC Alpha 200 Model 4=100 work station
using double arithmetic precision. MATLAB’s sparse matrix solver is invoked when solving the
linear system of equations (14). We have thus far not taken advantage of the fact that most of
the components of ∇HI are the same for all iterations. Initial testing of the algorithm showed
that the partition (F;G) gave slower convergence than the (F̃ ; G̃) partition. The latter partition is
therefore used in the examples to follow. The following constants are used by the algorithm:

�=10n2; �0 = �=1·0; �= �=0·5; �̂=0·9999995

where n2 equals 3nc. The performance of the algorithm does not rely heavily on the setting of
these parameters. However, the performance is sensitive to the updating of the centring parameter
�, which will be described in the following subsections.
The starting point for the �rst increment is in all examples

p0in = l; p0it = 0; v0in = 1·0 ∀i; : : : ; nc
u0i = 0; s0i = 1·0; �0i = 1·0 ∀i; : : : ; 2nc

where l is the length of the elements on the potential contact surface. The input data and the
unknowns are scaled in such a way that the forces are calculated in mega-newton and the dis-
placements in 10−5 m, respectively.
We have used two di�erent methods for choosing the starting point for the subsequent incre-

ments. In the �rst method we use the solution at increment j−1 as starting point for increment j.
The second method uses a safe starting point which is not close to the boundary of 
++:

p0( j)in =

{
0·1max(p( j−1)n ) if max(p( j−1)n )¿10−1

10−2 otherwise

v0( j)in =

{
0·1max(v( j−1)n ) if max(v( j−1)n )¿1

0·1 otherwise

s0( j)i =

{
0·1max(s( j−1)) if max(s( j−1))¿10−1

10−2 otherwise
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�0( j)i =

{
0·1max(�( j−1)) if max(�( j−1))¿1

0·1 otherwise

p0( j)it =p( j−1)it

u0( j)i = u( j−1)i

where, e.g. p( j−1)n denotes the pn vector at the �nal solution of increment j − 1. When using the
solution at increment j − 1 as starting point for increment j, the line search is aborted whenever
�′k�

mk is lower than 0·01. If this extra condition is not added, there is a major risk that the
algorithm will stall. The termination rule used is the same as that for the Newton method, see the
subsection above. If the error norm �(zk+1) is smaller than 103, then the line search involved is
not performed.

6.3. A punch problem

In this problem, a rigid cylinder of radius 100m is pressed a total distance of 0·1mm into an
elastic half-plane. The indentation is divided into either 1, 5, 20 or 100 time steps. 880 elements
are used in the discretization of the approximation of the half-plane which has dimension 1×1m2,
see Figure 2. The potential contact surface is 0·1m of length and the number of potential contact
nodes is 31. The friction coe�cients �i are taken to be the same for all contact nodes and the
common values are 0·1, 0·4 or 0·8. Figure 4 shows the �nal contact stresses with �=0·4 using
various number of time increments. Note that the solution is quite sensitive to the number of load
increments. The solutions show close agreement with those in Reference 37.
For the interior point method, the centering parameter � is updated according to

�k+1 =

{
0·5�k if �(zk+1)¿105

0·1�k otherwise
(36)

The reason for choosing low � values and skipping the line search for small errors is that we want
to speed up the process by enforcing (almost) pure Newton steps near the solution.
In Table I, the number of iterations and line searches for the Newton method (BN) and the

interior point method (IP) are given for di�erent cases of increments and friction coe�cients. The
notations safe and prev. refer to the di�erent choices of starting points as described above. In the
table, nle denotes the average number of linear equations solved per increment and nls denotes
the average number of line searches per increment. For all problems studied, nls equals zero for
the interior point method when using the safe starting point. In Figure 5, the error norm �(zk+1)
is plotted versus the number of iterations for the two methods.
From Table I, it is evident that nle is always lower for the Newton method. Furthermore, nle

decreases for BN when � increases, at least for 10 increments or higher. This probably depends
on the fact that the Newton method generally converges more rapidly if the sticking area is large.
Concerning the interior point method, nle is reasonably constant using the safe method for di�erent
numbers of increments, whereas for the prev. point strategy, nle decreases using larger numbers
of increments.
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Figure 4. Normal (dotted line) and tangential (solid line) contact stresses in MN=m after full indentation for various
numbers of time increments with �=0·4. The co-ordinate x is de�ned in Figure 2

Table I. Execution statistics for the punch problem

�=0·1 �=0·4 �=0·8

BN IP BN IP BN IP

safe prev. safe prev. safe prev.

inc. nle nls nle nle nls nle nls nle nle nls nle nls nle nle nls

1 5·0 7·0 13·0 13·0 0·0 6·0 8·0 13·0 13·0 0·0 5·0 7·0 14·0 14·0 0·0
2 6·5 23·5 13·0 47·5 0·0 6·0 23·0 14·5 58·5 0·0 6·5 24·0 12·5 58·0 0·0
5 6·6 29·4 13·8 40·0 0·0 6·2 29·4 13·2 45·6 0·0 6·4 32·2 12·6 44·0 0·0
10 6·3 35·5 14·0 30·4 0·0 6·0 36·2 12·9 31·9 0·0 5·9 41·4 12·3 33·1 0·0
20 6·5 32·0 15·0 19·3 0·0 5·4 32·6 13·8 21·8 0·0 4·2 33·5 11·9 23·1 0·0
50 5·9 34·6 16·1 13·7 0·0 4·8 35·0 14·7 11·7 0·0 3·7 34·7 12·4 14·5 0·1
100 5·1 25·2 16·9 7·5 0·0 4·3 24·6 15·6 6·5 0·0 2·7 23·3 12·5 7·4 0·2
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Figure 5. The error norm �(zk+1) plotted versus the number of iterations for IP and BN, when inc.= 1 and �=0·4.
The solid line refers to IP and the dotted one to BN

6.4. An elastic block problem

Figure 3 shows an elastic block of dimension 1×1m2 which is �xed to a wall, unilaterally
constrained to a frictional foundation and subjected to varying line loads. The block is initially at
a distance 0·01mm from the rigid foundation. The line loads Q1 and Q2 vary according to the
history scheme showed in Figure 3.
This problem is solved using di�erent numbers of time increments, di�erent friction coe�cients

and di�erent numbers of �nite elements. The number of increments, inc., during one load path
is either 1, 5, 10, 20 or 50. There are two load paths, see Figure 3. The friction coe�cients
�i are again taken to be the same for all contact nodes and the common values are 0·1, 0·4 or
0·8. Furthermore, the elastic block is discretized by 5×5, 10×10, 20×20, 50×50 or 100×100
elements. Since the whole bottom part of the elastic block is de�ned as the potential contact
surface, the number of contact nodes nc is consequently either 5, 10, 20, 50 or 100. In Figure 6,
the contact stresses, both when Q1 is maximal (a) and at the end of the loading history (b), are
shown.
Concerning the interior point method, the same updating scheme for � as in the previous example

is used for the safe starting point. However, for the other choice of starting point, the method
needs to use a more conservative strategy in order to achieve convergence;

�k+1 =

{
0·95�k if �(zk+1)¿105

0·1�k otherwise

For the �rst increment, though, (36) is used. Unfortunately, although this strategy ensures con-
vergence, it is exceedingly slow for certain increments; sometimes over 200 iterations. Therefore,
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Figure 6. Normal (dotted line) and tangential (solid line) contact stresses when (a) Q1 = 10MN=m and (b) Q1 is decreased
to zero for the case nc = 50, inc.= 50 and �=0·4. The coordinate x is de�ned in Figure 3

Figure 7. Number of iterations for IP and BN when nc = 50, inc.= 20 and �=0·4. The dotted line refers to the prev.,
the dashdotted one to the safe starting points in IP and the solid one to BN

whenever the number of iterations reaches 30 we revert back to the safe starting point. In Figure 7,
the number of iterations using di�erent starting point strategies for the interior point method are
plotted together with the number of iterations using the Newton method.
Figure 7 shows that the number of iterations of prev. IP changes radically for di�erent incre-

ments, in a range between 2 and 48. One should also keep in mind that prev. IP is switched over
to safe IP when the number of iterations exceeds 30. The safe IP and the BN produce a more
stable behavior. The number of iterations is in a range between 11 and 18 for the safe IP and
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Table II. Execution statistics for the elastic block problem

�=0·1 �=0·4 �=0·8
BN IP BN IP BN IP

safe prev. safe prev. safe prev.

nc inc. nle nls nle nle nls nle nls nle nle nls nle nls nle nle nls

1 4·0 36·0 9·0 26·5 0·0 4·0 35·5 9·0 18·5 0·0 4·0 32·0 10·5 19·0 0·0
5 2·4 7·7 9·9 13·3 1·4 2·1 6·6 9·9 12·7 0·8 2·2 8·1 10·8 14·7 1·9

5 10 1·8 4·3 9·2 9·8 0·2 1·7 3·8 9·8 8·2 1·1 1·9 6·3 9·6 8·7 0·3
20 1·5 2·7 9·2 6·6 0·4 1·4 3·0 10·5 5·2 0·4 1·5 3·7 9·5 6·6 1·0
50 1·2 1·3 10·0 3·4 0·2 1·2 1·2 11·3 3·4 0·3 1·2 1·7 9·7 3·2 0·1
1 4·0 36·0 10·0 25·5 2·5 4·5 36·5 11·5 27·0 3·0 3·5 29·5 12·0 22·5 2·5
5 2·8 14·6 10·4 14·2 0·7 2·6 8·7 10·7 16·5 1·3 2·7 10·5 11·1 16·3 0·4

10 10 2·2 9·0 9·8 15·2 1·4 2·0 6·6 10·7 13·4 1·2 2·2 10·4 10·7 11·3 0·8
20 1·7 5·3 9·7 10·9 1·4 1·6 5·1 11·4 7·3 0·3 1·8 6·6 10·5 8·3 0·6
50 1·3 1·8 10·5 4·6 0·3 1·2 1·8 12·0 3·6 0·2 1·3 3·0 11·0 4·8 0·6
1 4·0 36·0 12·0 27·0 0·0 6·0 38·5 14·0 22·0 0·0 6·0 52·5 13·5 22·0 0·0
5 4·2 31·3 11·0 26·5 2·9 3·5 20·9 13·2 17·1 1·1 3·4 19·7 12·2 23·6 2·1

20 10 3·0 15·9 10·6 16·7 0·6 2·8 18·0 13·2 17·1 1·1 2·7 15·4 12·1 18·0 1·2
20 2·2 9·0 10·5 12·9 0·7 2·1 13·0 13·7 11·6 1·0 2·1 12·1 12·0 12·2 0·9
50 1·6 3·2 11·1 7·8 0·6 1·5 4·7 14·8 6·5 0·4 1·6 5·7 12·2 5·8 0·1
1 5·0 37·0 14·5 29·5 0·0 6·0 38·0 15·5 31·0 0·0 7·0 45·5 14·5 30·0 2·0
5 6·2 65·5 12·9 33·9 3·4 5·1 53·0 13·7 32·6 2·5 4·5 36·1 13·8 36·6 3·3

50 10 5·0 47·4 12·2 27·5 2·6 4·2 38·5 14·1 28·0 2·3 3·8 23·4 12·7 27·0 2·3
20 3·6 30·4 12·0 21·9 2·0 3·3 25·8 14·3 24·3 2·3 2·8 19·7 12·7 22·9 2·2
50 2·3 13·0 12·0 13·7 0·7 2·3 13·3 15·2 15·1 0·9 2·0 11·3 12·8 12·3 0·8
1 6·0 21·0 14·5 29·5 0·0 7·0 27·0 17·0 32·0 0·0 8·5 32·5 17·0 33·0 2·0
5 7·5 85·9 13·4 42·0 4·2 7·1 75·2 15·8 37·6 3·2 6·3 54·8 15·1 44·0 3·8

100 10 6·6 81·7 13·2 43·9 3·4 6·2 60·7 15·3 36·0 3·8 5·1 48·8 14·0 37·0 4·0
20 5·2 61·3 13·2 29·0 2·6 4·5 40·4 15·2 28·7 2·3 3·9 35·8 14·2 29·6 3·5
50 3·3 28·6 12·9 20·4 1·6 3·2 25·2 16·1 22·5 1·9 2·7 18·5 14·1 20·7 2·8

between 2 and 11 for the BN method. Table II summarizes the execution statistics of running
the interior point method and the Newton method for this problem using the di�erent cases of
time increments, contact nodes and friction coe�cients. It should be said that for this example
the frictional behaviour is modeled satisfactorily with just 5 increments using nc = 5; 10; 20, and
20 increments using nc = 50; 100. Keeping this in mind, it is obvious that the prev. IP works
worst of the three methods. Then, comparing the safe IP and the BN, it is evident that the BN
always has the lowest value on nle. In addition, the linear equation system, which is solved, is
of order 4nc×4nc for the BN and 9nc×9nc for the IP method. That is, for BN the number of
iterations is smaller than that of IP, as well as the computational e�ort for each iteration. Thus,
in general for the class of two-dimensional frictional problems considered in this work, it is quite
evident that numerically the B-di�erentiable Newton method is to be preferred to the interior point
method.
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One additional remark: the computational e�ort in each iteration of the IP method can be
signi�cantly reduced by carrying out some careful linear algebraic calculations; these have not
been done in this implementation of the method. Nevertheless, the small number of iterations of
BN suggests that even with an advanced implementation of IP, it would be quite unlikely for
the latter method to surpass the former method for solving the two-dimensional frictional contact
problems reported herein.

7. CONCLUDING REMARKS

In this work a Newton method (BN) and an interior point method (IP) have been suggested
for solving two-dimensional contact problems with Coulomb friction. The algorithms have been
investigated numerically for two problems using di�erent coe�cients of friction, di�erent numbers
of contact nodes and di�erent numbers of time increments. We have found that:

The number of iterations is generally lower for BN.
The cost of each iteration is lower for BN (less than half of the number of variables compared
with IP).
BN is robust. When for IP, the solution at increment j−1 is used as starting point for increment
j, the algorithm may be very sensitive to di�erent scalings of the equations and di�erent updating
schemes of the centring parameter.

However, if the safe starting point is used in IP, we get about the same number of iterations
for all increments. This number is fairly moderate and does not seem to increase that much when
the size of the problem increases. Therefore, we cannot rule out the possibility that for problems
with a huge number of potential contact nodes, IP might need less iterations than BN (at least for
a one-incremental problem).
The BN algorithm has been applied to three-dimensional friction problems and is working

well also; see References 8 and 10. A three-dimensional version of the interior point algorithm
has also been studied. However, some major changes have had to be made in order to get the
algorithm to work. In fact, for the case when some normal contact forces are zero, the algo-
rithm converges extremely slowly (if at all). In Reference 8, we establish that the equations
used in BN are semismooth, and develop a potential reduction Newton method for solving these
equations.
We have felt that it could be of importance to compare from a practical point of view the

methods presented in this paper with methods presented in commercial �nite element programs.
As an example we have chosen ABAQUS version 5.3, where one can �nd contact elements
of penalty type and of Lagrangian type. It turned out that only one element, i.e. the GAPUNI
element, handle initial gaps correctly so that solutions could be compared. The GAPUNI el-
ement is of Lagrangian type and treats the unilateral constraints by a trial and error
strategy.
For frictionless contact problems, BN is comparable in CPU-time with the GAPUNI element

for the particular problem treated. For frictional contact problems, a straightforward comparison of
CPU-time is not appropriate because ABAQUS treats Coulomb friction by a heuristic approach;
speci�cally, when solving for a time increment, the friction force is determined from the solution
for the previous increment, i.e. an explicit time discretization approach is attempted. Thus, if
we consider CPU-time per increment, then ABAQUS is expected to be faster than, for instance, BN.
However, the solutions using ABAQUS with few increments are generally wrong. Consequently,
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for problems where the history of contact stresses is important, one can not rely on ABAQUS to
yield correct answers as e�ectively as the MP algorithms; for these problems, the BN algorithm
is the most reliable and at least for small friction coe�cients, where the implicit discreteization
enables large increments, it is also the fastest. As an example of a class of problems where the
full load history is of great importance, we mention wear problems for which the sliding history
strongly a�ects the total amount of wear. Finally, in comparing algorithms, one should keep in
mind the issue of robustness. The MP methods described in the present paper are supported by
provable convergence results; as mentioned in the introduction, such a sound theoretical basis is
lacking in the vast majority of methods for solving frictional contact problems discussed in the
literature.

APPENDIX

Proof of Theorem 3

According to Theorem 2, it su�ces to verify condition (A4). Assume for the sake of contra-
diction that for some scalars �¿�¿0 and ¿0, there exists an in�nite sequence

{z�≡ (u�; p�
t ; p

�
n ; v

�
n ; s

�; ��)}⊂


satisfying for each �,

‖F(z�)‖6; �e6G(z�)6�e

and

lim
�→∞ ‖z

�‖=∞

We write for each �,

H�
u ≡Ku� + CTt p

�
t + CTnp

�
n − fext

H�
n ≡ v�n + Cnu� − g

}
(37)

H�
t ≡Ctu� − �wt − LTt �

�

H�
f ≡ s� − �Lnp�

n + Ltp�
t

}
(38)

By condition (b) and the boundedness of {H�
u}, it follows that there exist positive constants � and

L such that for all �,

‖(p�
t ; p

�
n)‖6L (�+ ‖u�‖) (39)

Multiplying the �rst equation in (38) by (p�
t )
T and the second equation by (��)T, and adding,

we obtain for each �,

(p�
t )
T(Ctu� − �wt) + (s�)T�� − �(��)TLnp�

n = (p
�
t )
TH�

t + (�
�)TH�

f
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Since

�e¿G(z�)≡




H�
f

p�
n ◦ v�n

�� ◦ s�


¿�e

and p�
n and �� are positive, we deduce

(p�
t )
T(Ctu� − �wt)¿(p�

t )
TH�

t − 2�nc (40)

Multiplying the �rst equation in (37) by (u�)T and the second equation by (p�
n)
T and subtracting,

we obtain

(u�)TH�
u − (p�

n)
TH�

n = (u
�)TKu� + (p�

t )
TCtu� − (fext)Tu� + (p�

n)
T(−v�n + g)

We claim that the sequence {u�} must be bounded. Otherwise, by this last expression, (40), and
(39), it can be shown that any accumulation point u∞ of the normalized sequence {u�=‖u�‖}
must satisfy: (i) u∞ 6=0, (ii) (u∞)TKu∞=0, and (iii) Cnu∞60. By the symmetry and posi-
tive semide�niteness of K , such a vector u∞ provides a contradiction to assumption (a). Conse-
quently, {u�} is bounded. By (39), so is {(p�

t ; p
�
n)}. Moreover the second equation in (38) implies

that {s�} is also bounded. Since {H�
n} is bounded, it follows from the second equation in (37)

that {v�
n} is bounded.

It remains to show that {��} is bounded. Suppose that for some index i, {�+;�
i } is unbounded.

Without loss of generality, we may assume that {�+;�
i } tends to ∞ as �→∞. Then it follows

from the �rst equation in (38) that {�−;�
i } also tends to ∞ as �→∞. The fact that {s±;�

i �±;�
i } is

bounded implies s±;�
i → 0 as �→∞. Since H±;�

if ¿0 by the de�nition of the partition (F;G), the
last equation in (38) implies that p�

in → 0. But this is impossible because p�
inv

�
in¿�¿0 for all �

and {v�in} is bounded. Consequently, {��} is bounded.
In summary, we have shown that the sequence {z�} is bounded. But this is a contradiction.

Consequently (A4) holds and the theorem is proved.

Remark. The fact that H�
f is kept positive in the algorithm, as dictated by the set 
++ in (28),

is an essential element in the above proof. At this time, we do not have an analogous convergence
result for the partition (F̃ ; G̃) which does not impose this positivity condition.
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