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Two recursive and numerically stable matrix algorithms for modeling layered diffraction gratings, the S-matrix
algorithm and the R-matrix algorithm, are systematically presented in a form that is independent of the
underlying grating models, geometries, and mountings. Many implementation variants of the algorithms
are also presented. Their physical interpretations are given, and their numerical stabilities and efficiencies
are discussed in detail. The single most important criterion for achieving unconditional numerical stability
with both algorithms is to avoid the exponentially growing functions in every step of the matrix recursion.
From the viewpoint of numerical efficiency, the S-matrix algorithm is generally preferred to the R-matrix
algorithm, but exceptional cases are noted.  1996 Optical Society of America
1. INTRODUCTION

As research in the field of diffraction gratings advances
and the range of grating applications widens, the struc-
tures of gratings become more complicated than before.
One of many new types of gratings that are finding more
applications is layered gratings. For example, multi-
layer thin films were deposited onto photoresist surface-
relief gratings to make high-efficiency, all-dielectric
reflection gratings,1 and coating polycarbonate lamellar
gratings with a layer of MgF2 was proposed as a means
of making broadband antireflection structures.2 Per-
haps the most extreme cases of layered gratings are the
Bragg–Fresnel gratings for use in x-ray spectroscopy3 and
the photonic band-gap materials.4 On the other hand,
in some grating models even a grating that consists of a
single periodically corrugated surface is treated numeri-
cally as a layered structure. In this paper the term
layered gratings will be used broadly to refer to both
physically and numerically layered periodic structures.

All numerical methods for analyzing layered gratings
face a common difficulty associated with the exponential
functions of the spatial variable in the direction perpen-
dicular to the grating plane. This difficulty is indicative
of many problems of wave propagation and scattering in
layered systems, and it is exacerbated by the fact that
accurate numerical analysis of gratings usually requires
a large number of eigenmodes. Recently this numerical
difficulty has been overcome by many authors.4 – 15 First,
Pai and Awada5 presented a Bremmer series method,
based on the modal analysis with Fourier expansions, for
dielectric gratings of arbitrary profile and groove depth
in TE polarization. At the same time, DeSandre and
Elson6 presented an extinction-theorem analysis of
diffraction anomalies in multilayer-coated shallow grat-
ings by using the R-matrix propagation algorithm.
Later, Li7 applied the R-matrix algorithm to the classical
modal method and enabled the latter to treat gratings
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of arbitrary profile, depth, and permittivity. Chateau
and Hugonin8 proposed an algorithm, with the coupled-
wave method, to model surface relief and volume gratings
made of lossless and lossy dielectric materials. Montiel
and Nevière9 applied the R-matrix algorithm to the dif-
ferential method and thereby eliminated “the numerical
instabilities that have plagued the differential theory in
TM polarization during the past 20 years (Ref. 9, p. 3241).
Recently Li10 applied the R-matrix algorithm to the dif-
ferential formalism of Chandezon et al. (the C method)
and thus removed a formerly existing limitation of the
C method. The same goal was later achieved by Cotter
et al.11 using a scattering-matrix approach (S-matrix
algorithm). The S-matrix algorithm was also used by
Maystre4 in an electromagnetic study of photonic band
gaps by the integral method. Additionally, Li12 showed
that under certain conditions the S-matrix algorithm
(which, unfortunately, was referred to there as the
R-matrix algorithm) and the Bremmer series algorithm
are equivalent. Very recently Moharam et al.13 pre-
sented another stable algorithm, which they call the
enhanced transmission matrix approach. For references
concerning the applications of the S-matrix and R-matrix
algorithms to problems of wave propagation and scatter-
ing outside the field of diffraction gratings, the reader
may consult the reference list in Ref. 12.

Now there exist many stable numerical algorithms
and several variants of implementation, expressed with
different terminologies and applied to different grating
models. There are obvious similarities and subtle differ-
ences among these algorithms and their variants. Their
advantages and disadvantages, as well as interrelation-
ships, have not been addressed in the literature. The
purpose of this paper is to provide a systematic and
unified presentation of the S-matrix and R-matrix al-
gorithms, independent of the underlying grating models
(integral, differential, modal, etc.) being used and the in-
cidence conditions (TE, TM, or conical mount), and to
1996 Optical Society of America
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compare these two algorithms in terms of their physi-
cal interpretations, numerical stabilities, and numerical
efficiencies. Some results presented here have already
appeared in the literature, but many intricate details
are new.

The algorithmic structure of the S-matrix and R-matrix
algorithms is recursive, and the matrix dimension in the
recursion is independent of the number of layers. Mean-
while, there exist stable and nonrecursive algorithms, for
example, those in Refs. 14 and 15. In these algorithms
the field amplitudes in all layers are solved together from
a large linear system of equations whose matrix dimen-
sion is proportional to the number of the layers. The
nonrecursive algorithms and the recursive algorithm of
Moharam et al.,13 which has a structure different from
that of the S-matrix and R-matrix algorithms, are not
considered in this paper.

In what follows, first the framework is laid down, in
Section 2, for the development in the subsequent sections
by defining the notation and the basis functions. The
S-matrix algorithm and the R-matrix algorithm are pre-
sented in Sections 3 and 4, respectively. The presenta-
tions are arranged as parallel as possible for the two
algorithms to bring out their similarities. Several vari-
ants of the two algorithms are then given in Section 5.
In Section 6 the two algorithms are compared in terms
of their numerical stabilities and efficiencies. Finally, in
Section 7 some remarks are made that are specific to the
applications of the algorithms to several grating models.

2. BACKGROUND FRAMEWORK

A. Layer Abstraction
Figure 1 depicts a multilayer surface-relief grating. We
assume that the profiles of all medium interfaces have
the same periodicity in the x direction and that they are
invariant in the z direction. We say that two adjacent
interfaces are separable if a line y ­ constant can be
drawn between them without crossing either interface;
otherwise, we say that they are nonseparable. Thus the
bottom three interfaces in Fig. 1 are separable, and the
top three are not.

The S-matrix and R-matrix algorithms are applicable
to all grating models, but here the discussion will be re-
stricted to the classical modal method, the C method,
the coupled-wave method, and the differential method.
When it is not necessary to make the distinction, the first
three methods will be referred to collectively as the modal
methods, because they all rely on finding eigenmodes of
Maxwell’s equations. The classical modal method and
the coupled-wave method approximate a continuous pro-
file by a stack of lamellar gratings, as illustrated in the
triangular grating in Fig. 1. This numerical approxima-
tion effectively introduces a number of numerical layer
interfaces. The differential method does not use the
multilayer lamellar grating approximation, but for nu-
merical purposes it decomposes a grating profile into thin
horizontal slices, thus also creating numerical layer inter-
faces. If two adjacent medium interfaces have identical
functional form and amplitude, the C method does not
require any numerical layer interface; otherwise, one nu-
merical interface may be needed between the two medium
interfaces.16,17
We abstract a layered grating structure by a series of
parallel straight lines, each representing a real or numeri-
cal, straight or curved interface, depending on the profile
of the medium interface and the grating model being used
[see Fig. 2(a)]. For example, suppose that for the layered
grating shown in Fig. 1 we use the classical modal method
to treat the rectangular profile, the same method with a
three-layer approximation to treat the triangular profile,
the differential method with a three-slice decomposition to
treat the asymmetrical smooth profile, and the C method
to treat the top three profiles. Then, in Fig. 2(a), n ­ 15,
2 for the rectangular profile, 4 for the triangular profile,
4 for the asymmetrical smooth profile, and 6 for the top
three profiles. The permittivities in Fig. 2(a) may be ei-
ther constants or periodic functions of x, depending on the
spatial region and the grating model. Media 0 and n 1 1
are two semi-infinite homogeneous media. The dashed
line in medium 0 is a numerical interface. It can be ar-

Fig. 1. General layered grating. All periodic medium inter-
faces share a common period, but otherwise they are arbitrary.

Fig. 2. Abstract layered grating structure, where the horizontal
lines represent either actual material interfaces or numerical
interfaces. The fields in each layer can be represented either
(a) as a superposition of upward- and downward-propagating
and decaying waves or (b) as a superposition of two sets of
orthogonally polarized eigenmodes.
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bitrarily close to interface 0. The thickness of layer p
will be denoted by hp.

B. Basis Functions
When a modal method is used to analyze layer p in
Fig. 2(a), the fields there are represented by superposi-
tions of the eigenmodes. We assume that the eigenmodes
in all layers share a common Floquet exponent, which is
determined by the incident plane wave. The eigenvalue
spectrum ss pd, having elements l

s pd
m , can be partitioned

such that ss pd ­ ss pd1 < ss pd2, where

ss pd6 ­ hls pd
m ; Re ls pd

m 1 Im ls pd
m _ 0, ls pd

m [ ss pdj .
(1)

In general, for any numerical truncation, ss pd1 and ss pd2

have the same number of elements. The dependence of
the eigenmodes on y, i.e., the y-dependent basis functions,
is given by expfil

s pd6
m yg, where l

s pd6
m [ ss pd6. (Here y

should be replaced by u if the C method is used; how-
ever, for simplicity we will ignore this minor difference.)
Thus we call an eigenmode corresponding to l

s pd1
m an up

wave, and that corresponding to l
s pd2
m a down wave. In

particular, in the two semi-infinite regions and the ho-
mogeneous regions between the separable medium inter-
faces, the eigenmodes are simply the Rayleigh modes. In
Fig. 2(a) the upward and downward arrows schematically
represent the up wave and down waves, and the boldface
letters u and d denote the column vectors whose elements
are the wave amplitudes. Once the eigenmodes are de-
termined everywhere, the grating problem reduces to a
problem of determining the mode amplitudes.

Alternatively, we can choose cossls pd1
m yd and sinsls pd1

m yd
as the basis functions, which is always possible because
l

s pd2
m ­ 2l

s pd1
m with the classical modal method and the

coupled-wave method and with the C method when the
grating profile is symmetrical. We use U and V to denote
the amplitudes of the modes that use this basis function
set. The physical meaning of these amplitudes is clear:
for example, if U is proportional to the z component of the
electric field, then V is proportional to the x components
of the magnetic field, as schematically shown in Fig. 2(b).
From a mathematical point of view, the derivative of a
U mode is a V mode, and vice versa. For the modal meth-
ods, both the exponential (or u–d) basis functions and the
trigonometrical (or U–V) basis functions can be used.

In the differential method, one does not seek the eigen-
solutions of Maxwell’s equations. Instead, one numeri-
cally integrates U from one interface to another, where U
is a column vector whose elements are the Fourier expan-
sion coefficients of the z component of the electromagnetic
fields. The numerical integration procedure gives the
values of U and V ­ dUydy as functions of y. Clearly,
the U–V basis functions described here correspond to
the U–V basis functions described in the preceding para-
graph. Thus the schematic diagram in Fig. 2(b) applies
to the differential method as well. It is possible to have
a set of u–d basis functions for the differential method
if suitable linear combinations are made.9 It is impor-
tant to realize that, although the basis functions for the
differential method do not have an explicit y dependence,
their y dependence is asymptotically the same as that of
the basis functions in the modal methods.
C. Boundary Conditions
In this subsection we affix the equation numbers of all
equations that apply only to the u–d basis functions
with a letter a, and those that apply only to the U–V
basis functions with a letter b. The same convention will
be used for the formulas of the S-matrix and R-matrix
algorithms in Sections 3, 4, and 5.

In the modal methods, when the boundary conditions
are matched along interface p, we generally get an equa-
tion of form

W s p11d

"
us p11ds yp 1 0d
ds p11ds yp 1 0d

#
­ W s pd

"
us pds yp 2 0d
ds pds yp 2 0d

#
, (2a)

where W s pd and W s p11d are square matrices. Further-
more, by virtue of the modal fields,"

us pds yp 2 0d
ds pds yp 2 0d

#
­ fs pd

"
us pds yp21 1 0d
ds pds yp21 1 0d

#
, (3a)

where

fs pd ­

24expsil
s pd1
m hpd 0
0 expsil

s pd2
m hpd

35 , (4a)

and the exponential functions represent diagonal matrices
(henceforth, all quantities with a subscript m represent
diagonal matrices). Thus we obtain a recursive relation
for the field amplitudes"

us p11ds yp 1 0d
ds p11ds yp 1 0d

#
­ t̃s pd

"
us pds yp21 1 0d
ds pds yp21 1 0d

#
, (5a)

where

t̃s pd ­ ts pdfspd , (6)

with

ts pd ­ W s p11d21W s pd . (7)

The matrices ts pd and t̃s pd can be fittingly called interface
and layer t matrices, respectively. Note that ts pd is of
order Os1d.18

If the U–V basis functions are used to match the bound-
ary conditions, we have, correspondingly,

W s p11d

"
U s p11ds yp 1 0d
V s p11ds yp 1 0d

#
­ W s pd

"
U s pds yp 2 0d
V s pds yp 2 0d

#
, s2bd"

U s pds yp 2 0d
V s pds yp 2 0d

#
­ fspd

"
U s pds yp21 1 0d
V s pds yp21 1 0d

#
, s3bd

fspd ­24 cossls pd
m hpd h

s pd
m sinsls pd

m hpd
2h

s pd21
m sinsls pd

m hpd cossls pd
m hpd

35 , s4bd"
U s p11ds yp 1 0d
V s p11ds yp 1 0d

#
­ t̃s pd

"
U s pds yp21 1 0d
V s pds yp21 1 0d

#
. s5bd

In Eq. (4b), h
s pd
m is a constant independent of hp, and for

simplicity the plus sign has been dropped from the su-
perscript of eigenvalue l

s pd1
m . Also, the same notation
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W, f, and t is used with the two different basis function
sets. This, however, is not a problem because the context
will tell to which basis the matrices are referring. From
now on, the amplitude vectors without an explicit argu-
ment stand for the vectors that are evaluated at the lower
bound of the layer. For example, us pd ; us pds yp21 1 0d.

At this point, it is most natural and mathematically
simplest to proceed with solving the grating problem by
the so-called T-matrix algorithm, which is obtained by re-
peated use of Eq. (5a) or Eq. (5b). However, it is well
known that the T-matrix algorithm, with either of the ba-
sis function sets, is numerically unstable when the total
layer thickness of the grating structure and the matrix
dimension are large.7 This numerical instability is gen-
erally attributed to the presence of the growing expo-
nential functions in the algorithm. Fundamentally, the
cause of instability is a classic one: loss of significant
digits when one is computing a small number by subtract-
ing two large numbers by a computer of finite precision.
Symbolically, it is a case of ` 2 ` ­ Os1d. It should be
emphasized that the numerical instability of the T-matrix
algorithm cannot be eased or removed by simply reduc-
ing the individual layer thicknesses without lowering the
total thickness, because the T-matrix algorithm accumu-
lates the magnitudes of the exponential functions as the
layer t matrices are multiplied together.

3. S-MATRIX ALGORITHM
The S-matrix algorithm uses the exponential basis func-
tions. For any 0 # p # n, it seeks a stack S matrix, S s pd,
that links the waves in layer p 1 1 and medium 0 in this
way: "

us p11d

ds0d

#
­ S s pd

"
us0d

ds p11d

#
. (8a)

Before moving on, it is important to describe the physical
meaning of the S matrix. For this purpose we rewrite
S s pd in a two-by-two block form:

"
us p11d

ds0d

#
­

24T
s pd
uu R

s pd
ud

R
s pd
du T

s pd
dd

35"
us 0d

ds p11d

#
. (9a)

The significance of the subscripts u and d becomes evident
once the reader mentally carries out the matrix-vector
multiplication on the right-hand side of the equation. As
a rule in this paper, the use of subscripts u and d is
an automatic indication that the submatrix belongs to a
matrix in the S-matrix algorithm. The choice of letters
R and T, instead of S, makes the physical meanings of the
four submatrices of S s pd self-explanatory. For example,
T

s pd
uu and R

s pd
ud are the transmission matrix and reflection

matrix that give the upward wave amplitudes in layer
p 1 1 resulting from the transmission of the upward
incident waves in medium 0 and from the reflection of
the incident downward waves in layer p 1 1, respectively,
by the whole stack below layer p 1 1. Alternatively, the
first p layers of the layered grating can be viewed as a
linear four-terminal network. Matrix S s pd operates on
the two sets of inputs to generate the two sets of outputs,
as shown schematically in Fig. 3(a).
Fig. 3. Schematic diagrams for alternative interpretations of
(a) the S matrix and (b) the R matrix. In Fig. 3(a), I and O
stand for inputs to and outputs from the system represented
by the square box. In Fig. 3(b), i and v stand for currents
and voltages at the terminals of the circuit represented by the
square box.

To link the waves in two adjacent layers, we can define
an interface s matrix, ss pd, and a layer s matrix, s̃s pd, as
follows:"

us p11ds yp 1 0d
ds pds yp 2 0d

#
­ ss pd

"
us pds yp 2 0d

ds p11ds yp 1 0d

#
, (10a)"

us p11d

ds pd

#
­ s̃s pd

"
us pd

ds p11d

#
, s11ad

or "
us p11d

ds pd

#
­

24t̃
s pd
uu r̃

s pd
ud

r̃
s pd
du t̃

s pd
dd

35"
us pd

ds p11d

#
. (12a)

The physical interpretations of ss pd and s̃s pd are similar
to that of S s pd. Note that t̃

s pd
uu and t̃

s pd
dd , because of the

notation of their subscripts, cannot be confused with the
t matrix defined in Section 2. The layer s matrix is re-
lated to the interface s matrix by

s̃s pd ­

"
1 0
0 exps2il

s pd2
m hpd

#
ss pd

24expsil
s pd1
m hpd 0
0 1

35 ,

(13a)

and the interface s matrix is in turn related to the inter-
face t matrix by

ss pd ­

24t
s pd
11 2 t

s pd
12 t

s pd21
22 t

s pd
21 t

s pd
12 t

s pd21
22

2t
s pd21
22 t

s pd
21 t

s pd21
22

35 . (14a)

Note that all four entries in Eq. (14a) contain the inverse
of submatrix t

s pd
22 . For this reason we call t

s pd
22 the pivotal

submatrix.
From Eqs. (8a) and (11a), the set of recursion formulas

for the stack S matrix are

T s pd
uu ­ t̃s pd

uu

h
1 2 R

s p21d
ud r̃

s pd
du

i 21
T s p21d

uu ,

R
s pd
ud ­ r̃

s pd
ud 1 t̃s pd

uu R
s p21d
ud

h
1 2 r̃

s pd
du R

s p21d
ud

i
21

t̃
s pd
dd ,

R
s pd
du ­ R

s p21d
du 1 T

s p21d
dd r̃

s pd
du

h
1 2 R

s p21d
ud r̃

s pd
du

i 21
T s p21d

uu ,

T
s pd
dd ­ T

s p21d
dd

h
1 2 r̃

s pd
du R

s p21d
ud

i
21

t̃
s pd
dd . (15a)
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The S-matrix recursion can be initialized by setting

S s21d ­

"
1 0
0 1

#
, (16a)

or, equivalently, by setting S s0d ­ ss0d.
The form of the factors enclosed by the square brack-

ets in Eq. (15a) is such that the inverse matrices can be
readily expanded, at least formally, into a geometrical se-
ries in terms of the product of the two reflection matrices.
This fact naturally gives rise to the multiple-reflection in-
terpretation of the S-matrix recursion formulas.12 (It is
quite unfortunate that in Ref. 12 the S-matrix algorithm
was incorrectly called the R-matrix algorithm.) Because
of the elegant form of the inverse matrices, Eqs. (15a) will
be called the normalized S-matrix recursion formulas.

Equations (8a)–(16a) constitute the basic ingredients
of the S-matrix algorithm. In most grating problems the
quantities of interest are the field amplitudes leaving the
grating structure in the two outer media, i.e., usn11d and
ds0d. They are simply given by"

us n11d

ds0d

#
­

24T snd
uu R snd

ud

R snd
du T snd

dd

35"
us0d

ds n11d

#
. (17a)

In particular, if there are no incident waves in medium
0 sus0d ­ 0d,

us n11d ­ R snd
ud dsn11d,

ds0d ­ T snd
dd dsn11d. (18a)

The numerical stability of the S-matrix algorithm
is rooted in the construction of the layer s matrix.
The problem-causing, growing exponential function,
expsil

s pd2
m hpd, that was originally in the t̃ matrix, is

now inverted in Eq. (13a). Since ss pd is of order Os1d, so
is s̃s pd. Furthermore, the submatrices of s̃s pd appear in
the recursion formulas only as additive or multiplicative
terms. Thus the S matrices remain of order Os1d, and
the numerical stability of the algorithm is ensured.

4. R-MATRIX ALGORITHM
The R-matrix algorithm uses the trigonometrical basis
functions. For any 0 # p # n, it seeks a stack R matrix,
R s pd, that links the fields in layer p 1 1 and medium 0
in this way: "

U s p11d

U s0d

#
­ R s pd

"
V s p11d

V s0d

#
. (8b)

The R matrix can be physically interpreted as field
impedance or field admittance (the ratio of the tangential
component of the E field to the tangential component of
the H field or its inverse). For example, in TE polariza-
tion, because U and V correspond to the E and H fields,
respectively, R s pd plays the role of field impedance. An
alternative interpretation of Eq. (8b) can be made, with
the aid of Fig. 3(b), in terms of currents and voltages in
an electrical circuit. Here, if U is identified with the
voltages and V with the currents, or vice versa, then R s pd

is the electrical impedance or admittance. The concept
of impedance has been used previously in modeling grat-
ings that contain multiple planar interfaces but only one
periodically modulated interface.19

To link the fields in two adjacent layers, we can define
an interface r matrix, rs pd, and a layer r matrix, r̃s pd, as
follows:"

U s p11ds yp 1 0d
U s pds yp 2 0d

#
­ rs pd

"
V s p11ds yp 1 0d
V s pds yp 2 0d

#
, (10b)"

U s p11d

U s pd

#
­ r̃s pd

"
V s p11d

V s pd

#
. s11bd

The layer r matrix is related to the interface r matrix by

r̃
s pd
11 ­ r

s pd
11 2 r

s pd
12 z s pdr

s pd
21 ,

r̃
s pd
12 ­ r

s pd
12 z s pdhs pd

m csc
h

ls pd
m hp

i
,

r̃
s pd
21 ­ hs pd

m csc
h

ls pd
m hp

i
z s pdr

s pd
21 ,

r̃
s pd
22 ­ hs pd

m cot
h

ls pd
m hp

i
2 hs pd

m csc
h

ls pd
m hp

i
3 z s pdhs pd

m csc
h

ls pd
m hp

i
, (13b)

where

z s pd ­
h

r
s pd
22 1 hs pd

m cotsls pd
m hpd

i 21
. (13b0 )

For a proof of Eq. (13b), see Appendix A. Here we have
excluded the possibility that accidentally l

s pd
m hp ­ lp,

where l is an integer. The interface r matrix is in turn
related to the interface t matrix by

rs pd ­

24t
s pd
11 t

s pd21
21 t

s pd
12 2 t

s pd
11 t

s pd21
21 t

s pd
22

t
s pd21
21 2t

s pd21
21 t

s pd
22

35 . (14b)

From Eqs. (13b) and (14b) it is clear that r̃s pd is of order
Os1d. Alternatively, we can use the layer t matrix to
express the layer r matrix:

r̃s pd ­

24t̃
s pd
11 t̃

s pd21
21 t̃

s pd
12 2 t̃

s pd
11 t̃

s pd21
21 t̃

s pd
22

t̃
s pd21
21 2t̃

s pd21
21 t̃

s pd
22

35 . (14b0 )

In Eqs. (14b) and (14b0 ) t
s pd
21 and t̃

s pd
21 are the pivotal sub-

matrices. In some cases it is possible that t
s pd
21 ; 0, but

then t̃
s pd
21 fi 0. In fact, such a case can be utilized bene-

ficially (see Appendix B).
From Eqs. (8b) and (11b) the set of recursion formulas

for the stack R matrix are

R
s pd
11 ­ r̃

s pd
11 2 r̃

s pd
12 Z s pdr̃

s pd
21 ,

R
s pd
12 ­ r̃

s pd
12 Z s pdR

s p21d
12 ,

R
s pd
21 ­ 2R

s p21d
21 Z s pdr̃

s pd
21 ,

R
s pd
22 ­ R

s p21d
22 1 R

s p21d
21 Z s pdR

s p21d
12 , (15b)

where

Z s pd ­ sr̃s pd
22 2 R

s p21d
11 d21. (15b0 )

The R-matrix recursion can be initialized by setting

R s0d ­ r̃s0d. (16b)

Unlike their counterparts in the S-matrix algorithm,
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Eqs. (15b) do not readily subject themselves to an intui-
tive physical interpretation. Nonetheless, to preserve
the formal symmetry between the two algorithms, we
shall call Eqs. (15b) the normalized R-matrix recursion
formulas.

Starting with Eq. (16b), repeated use of Eqs. (15b) until
p ­ n leads to"

U sn11d

U s0d

#
­

24R s nd
11 R s nd

12

R s nd
21 R s nd

22

35"
V sn11d

V s0d

#
. (17b)

Suppose that U s0d ­ us0d 1 ds0d, V s0d ­ us0d 2 ds0d, U sn11d ­
usn11d 1 dsn11d, and V sn11d ­ usn11d 2 dsn11d, which is al-
ways possible by definition. Then from Eq. (17b) we get
the linear system that determines the out-going diffrac-
tion amplitudes in the top and bottom media:241 2 R s nd

11 R s nd
12

2R s nd
21 1 1 R s nd

22

35"
us n11d

ds0d

#

­

2421 2 R s nd
11 R s nd

12

2R s nd
21 21 1 R s nd

22

35"
ds n11d

us0d

#
. (18b)

The R-matrix algorithm is also immune to the numeri-
cal difficulties associated with growing exponential func-
tions. This is because the submatrices of r̃s pd are all of
order Os1d, and they appear in the recursion formulas
Eqs. (15b) and (15b0 ) only as additive and multiplicative
terms. The former fact is evident when Eq. (13b) is used
to construct the layer r matrices. It is not so obvious
if Eqs. (14b0 ) are used, however; in fact, in this case the
R-matrix algorithm is only conditionally stable.

It can be shown that Eq. (14b0 ) and Eqs. (13b) are
algebraically equivalent. Therefore the submatrix r̃

s pd
12 ,

as given by Eq. (14b0 ), should be mathematically pro-
portional to cscsls pd

m hpd, which tends to 0 as m ! ` and
hp ! `. On the other hand, the first term of r̃

s pd
12 in

Eq. (14b0 ) is t̃
s pd
12 ­ t

s pd
11 h

s pd
m sinfls pd

m hpg 1 t
s pd
12 cosfls pd

m hpg,
which tends to `. Thus the second term of r̃

s pd
12 must also

tend to ` as m ! ` and hp ! `. Clearly this mathe-
matical arrangement presents a serious numerical prob-
lem. When the absolute values of the imaginary parts
of l

s pd
m hp are large, the numerically calculated matrix ele-

ments of r̃
s pd
12 by Eq. (14b0 ) may not be small, as a result

of round-off errors. Let Ls pd be the maximum of the ab-
solute values of the imaginary parts of all eigenvalues for
a given matrix truncation. As a rule of thumb, when
expfLs pdhpg , 1015, the numerical problem described
above begins to arise (double precision is assumed here).
To avoid the problem one has to choose the layer thick-
ness so that expfLs pdhpg ,, 1015. Therefore the R-matrix
algorithm is conditionally stable when Eq. (14b0 ) is used.
Fortunately, unlike the T-matrix algorithm, here the mag-
nitudes of the exponential functions do not accumulate.
Therefore lowering the individual layer thickness is an
effective remedy for the numerical instability caused by
the use of Eq. (14b0 ).

5. VARIANTS OF IMPLEMENTATION

A. Variation in Matrix Manipulation
In Sections 3 and 4 the S-matrix and R-matrix algorithms
were systematically presented. The presentation took
three steps: the definitions and derivations of the layer
t matrices, the layer s (or r) matrices, and the stack S
(or R) matrices. Although from a theoretical point of
view the introduction of the layer t matrices and the
layer s (or r) matrices has made the presentation system-
atic, from a practical point of view the use of one of the
two kinds of layer matrices can be eliminated, as demon-
strated below.

The S-matrix recursion can be accomplished by use
of the t matrices directly, without the layer s matrices.
From Eqs. (5a), (6), and (9a) we can easily derive a set of
nonnormalized S-matrix recursion formulas by using the
interface t matrix:

T s pd
uu ­

h
t

s pd
11 2 R

s pd
ud t

s pd
21

i
f

s pd
1 T s p21d

uu ,

R
s pd
ud ­

h
t

s pd
12 1 t

s pd
11 Vs pd

i h
t

s pd
22 1 t

s pd
21 Vs pd

i 21
,

R
s pd
du ­ R

s p21d
du 2 T

s pd
dd t

s pd
21 f

s pd
1 T s p21d

uu ,

T
s pd
dd ­ T

s p21d
dd fspd21

2

h
t

s pd
22 1 t

s pd
21 Vs pd

i 21
, (19a)

where

Vs pd ­ f
spd
1 R

s p21d
ud fspd21

2 , (19a0 )

and f
spd
6 are the two diagonal submatrices in Eq. (4a). Of

course, Eqs. (19a) and (15a) are algebraically equivalent.
Note that the above equations have been written in terms
of the interface t matrices, instead of the layer t matrices,
and the appearance of f

spd
6 has been arranged properly

so that there are no exponentially growing functions in
the formulas. This measure avoids possible numerical
overflow and ensures numerical stability of the S-matrix
algorithm.

If we set f
spd
6 ­ 1 in Eqs. (19a) and (19a0 ) and replace

all interface t submatrices by layer t submatrices, we ob-
tain the nonnormalized S-matrix recursion formulas by
using the layer t matrix:

T s pd
uu ­

h
t̃

s pd
11 2 R

s pd
ud t̃

s pd
21

i
T s p21d

uu ,

R
s pd
ud ­

h
t̃

s pd
12 1 t̃

s pd
11 R

s p21d
ud

ih
t̃

s pd
22 1 t̃

s pd
21 R

s p21d
ud

i 21
,

R
s pd
du ­ R

s p21d
du 2 T

s pd
dd t̃

s pd
21 T s p21d

uu ,

T
s pd
dd ­ T

s p21d
dd

h
t̃

s pd
22 1 t̃

s pd
21 R

s p21d
ud

i 21
. (20a)

The use of this set of recursion formulas should be avoided
whenever possible, because the matrix to be inverted is a
sum of an exponentially growing matrix and an exponen-
tially decaying matrix.

The R-matrix recursion can also be accomplished with
use of the t matrices directly, without the layer r matrices.
From Eqs. (5b), (6), and (8b) we can easily derive a set of
nonnormalized R-matrix recursion formulas by using the
layer t matrix:

R
s pd
11 ­

h
t̃

s pd
12 1 t̃

s pd
11 R

s p21d
11

ih
t̃

s pd
22 1 t̃

s pd
21 R

s p21d
11

i
21

,

R
s pd
12 ­

h
t̃

s pd
11 2 R

s pd
11 t̃

s pd
21

i
R

s p21d
12 ,

R
s pd
21 ­ R

s p21d
21

h
t̃

s pd
22 1 t̃

s pd
21 R

s p21d
11

i 21
,

R
s pd
22 ­ R

s p21d
22 2 R

s pd
21 t̃

s pd
21 R

s p21d
12 . (20b)

Since Eqs. (20b) are algebraically equivalent to Eqs. (15b),
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the R matrices obtained this way are mathematically of
order Os1d. Numerically, however, devastating round-off
errors could occur if the numerical layer thicknesses are
set too high. The reason is the same as the one given at
the end of Section 4 for the possible numerical instability
resulting from the use of Eq. (14b0 ). Specifically, the
expression of R

s pd
12 in Eqs. (20b) is of type ` 2 ` ­ Os1d.

Thus Eqs. (20b) also give a conditional stable implemen-
tation of the R-matrix algorithm. The unconditional
"

auu aud

adu add

#
p

"
buu bud

bdu bdd

#
­

"
buus1 2 audbdud21auu bud 1 buuauds1 2 bduaudd21bdd

adu 1 addbdus1 2 audbdud21auu adds1 2 bduaudd21bdd

#
, s23ad
stable, nonnormalized R-matrix recursion formulas ob-
tained by using the interface t matrix are given in
Appendix C.

We recall that in Subsection 2.C we formally derived
the layer t matrix from the boundary equation, Eq. (2a) or
Eq. (2b). In fact, in at least two important cases Eq. (5a)
or Eq. (5b) is obtained without the aid of Eq. (2a) or
Eq. (2b). The first case is the classical modal method in
which matrix ts pd is obtained directly by projecting the
functional boundary equations onto a natural basis func-
tion set,7 and the second case is the differential method
in which matrix t̃s pd is obtained from a numerical inte-
gration procedure.9 In these cases the use of the non-
normalized recursion formulas may be beneficial because
they require fewer matrix operations.

In the C method and the coupled-wave method the
boundary equations (2a) or (2b) are an integral step of
the numerical treatment. In this case we can bypass the
t matrix and derive the s (or r) matrix directly from
the boundary equations. Writing the two W matrices in
Eq. (2a) in a two-by-two form, and rearranging the terms
slightly, we have

24W
s p11d
11 2W

s pd
12

W
s p11d
21 2W

s pd
22

35"
us p11ds yp 1 0d
ds pds yp 2 0d

#

­

24W
s pd
11 2W

s p11d
12

W
s pd
21 2W

s p11d
22

35"
us pds yp 2 0

ds p11ds yp 1 0d

#
. (21a)

Therefore from Eq. (10a),

ss pd ­

24W
s p11d
11 2W

s pd
12

W
s p11d
21 2W

s pd
22

352124W
s pd
11 2W

s p11d
12

W
s pd
21 2W

s p11d
22

35 . (22a)

The layer s matrix, s̃s pd, then follows immediately from
Eq. (13a). Similarly the interface r matrix, rs pd, can be
derived directly from boundary equation (2b); i.e.,

rs pd ­

24W
s p11d
11 2W

s pd
11

W
s p11d
21 2W

s pd
21

3521242W
s p11d
12 W

s pd
12

2W
s p11d
22 W

s pd
22

35 . (22b)

The layer r matrix, r̃s pd, then follows immediately from
Eq. (13b).
B. Variation in Recursion Order
The S-matrix and R-matrix recursions do not have to be
performed in the order indicated in Sections 3 and 4. In
other words, one does not have to start the calculation
from medium 0 and work step by step up to medium
n 1 1. For the normalized recursions this point can be
best illustrated by the use of Redheffer’s start product.20

Let a, b, and c be 2N 3 2N matrices. Then the star
product of a and b, in the S-matrix algorithm, is defined as
where aud, bud, etc., are N 3 N submatrices. Similarly,
we define the star product of a and b in the R-matrix
algorithm as"

a11 a12

a21 a22

#
?

"
b11 b12

b21 b22

#

­

"
b11 2 b12sb22 2 a11d21b21 b12sb22 2 a11d21a12

2a21sb22 2 a11d21b21 a22 1 a21sb22 2 a11d21a12

#
.

(23b)

It can be shown that the star multiplications are associa-
tive, i.e., that

a p sb p cd ­ sa p bd p c , (24a)

a ? sb ? cd ­ sa ? bd ? c . (24b)

In the remainder of this section, for simplicity, I will
mention only the S-matrix recursion. The results for the
R-matrix recursion can be obtained by obvious substitu-
tions.

In terms of star products, the S-matrix algorithm can
be succinctly expressed as

S snd ­ h· · · fss̃s0d p s̃s1dd p s̃s2dg p · · ·j p s̃snd. (25a)

However, because of the associativity of the star multipli-
cation, the product can be regrouped as follows:

S snd ­ s̃s0d p h· · · p fs̃sn22d p ss̃sn21d p s̃snddg · · ·j . (26a)

Equation (26a) describes the S-matrix recursion in the
reverse order, starting from medium n 1 1 and moving
downward to medium 0.

The associativity of the S-matrix recursion can be used
advantageously to save computation effort or to increase
computation speed. Suppose that a large number of cal-
culations are to be carried out for a grating with a vary-
ing parameter that affects only the jth layer, for fixed j.
Then the S-matrix recursion can be performed like this:

S snd ­ fs̃s0d p · · · p s̃s j21dg p s̃s j d p fs̃s j21d p · · · p s̃sndg , (27a)

where the two recursions inside the square brackets are
performed just once and then are used repeatedly to form
a star product with the changing s̃s j d. If the grating cal-
culation is done on a computer capable of parallel pro-
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cessing, then the s̃ matrices can be grouped pairwise to
increase the computation speed.

6. COMPARISONS
Having systematically addressed the S-matrix and
R-matrix algorithms and their variants, we are now
ready to make some comparisons. As mentioned in Sec-
tions 3 and 4, the S matrices are related to the physical
concept of reflection and transmission, and the R ma-
trices are related to the physical concept of impedance
and admittance. Furthermore, the normalized S-matrix
recursion formulas can be readily interpreted in terms of
multiple reflections, but the R-matrix recursion formulas
and the nonnormalized S-matrix recursion formulas are
not easily interpreted in physical terms. In what follows
we compare the numerical stabilities and efficiencies of
the two algorithms.

A. Numerical Stabilities
Both the S-matrix and R-matrix algorithms are inher-
ently stable because the S matrices and the R matrices
are both mathematically of order Os1d. However, there
are subtle numerical differences between them. In gen-
eral the S-matrix algorithm is much easier to work with
than the R matrix algorithm.

The implementation of the S-matrix algorithm is mostly
worry free (but see Subsection 7.D), thanks to its use of
the exponential basis functions. All s and S matrices are
of order Os1d, not only mathematically but also numer-
ically [we assume that Eqs. (20a) are not used]. Thus
there is no limit in layer thickness. The possibility of
numerical overflow associated with the exponential func-
tions is eliminated because only the decreasing exponen-
tial functions are evaluated. Underflow can happen, but
it is not a problem for most compilers. Additionally, the
occurrence of l

s pd
m hp ­ lp is not a problem at all.

The implementation of the R-matrix algorithm requires
special treatment. Although all r and R matrices are of
order Os1d mathematically, they may not be so numeri-
cally. When the factorization of the layer t matrix into
the product of the interface t matrix and the diagonal ma-
trix f is possible, one should use Eqs. (C1) and (C2) below
to perform the nonnormalized recursion or use Eqs. (13b)
to compute r̃s pd if the normalized recursion is to be used.
When the factorization is impossible, as is the case for
the differential method, the numerical layer thicknesses
should be kept sufficiently low that the computation of
r̃

s pd
12 by Eq. (14b0 ) or of R

s pd
12 by Eq. (20b) will not suffer

significant loss of accuracy. There is also a minor tech-
nical complication. Functions cot and csc that admit a
complex argument are not intrinsic functions in most com-
pilers. Thus the programmer has to write cot and csc as
user-defined functions, using either the sine and cosine
functions or the exponential functions. In doing so, care
has to be taken to avoid overflow. In principle, the ac-
cidental occurrence of l

s pd
m hp ­ lp is a problem for the

R-matrix algorithm. In practice, it is highly unlikely
that the equality holds for l fi 0 with high precision;
therefore the singularity never poses serious numerical
problems. Of course, one should judicially avoid hp ­ 0,
which is an uninteresting case, anyway.
B. Numerical Efficiencies
In this subsection we consider the numerical efficiencies
of different variants of the S-matrix and R-matrix algo-
rithms. More specifically, we estimate the number of al-
gebraic operations that each variant takes to compute the
outgoing diffraction amplitudes usn11d and ds0d, assuming
that the W matrices in the boundary equations have been
obtained.

As is evident from the presentations in Sections 3 and
4, after the S-matrix recursion is completed, usn11d and
ds0d are readily given in a solved form. However, with the
R-matrix algorithm the completion of the R-matrix recur-
sion only gives a system of linear equations that has yet
to be solved to yield usn11d and ds0d. This initial compari-
son is already in favor of the S-matrix algorithm.

We now take a closer look at the structure of the ma-
trix recursion formulas. We say that a subset of the four
submatrices of S s pd is a closed set with respect to the
S-matrix recursion if every element of the set is deter-
mined by the elements in the same set. Thus S s pd has
four closed proper subsets:

hR s pd
ud j, hR s pd

ud , T
s pd
dd j, hR s pd

ud , T s pd
uu j ,

hR s pd
ud , T s pd

uu , T
s pd
dd j . (28a)

If there are incident plane waves in both media 0 and
n 1 1, then from Eq. (17a) the S-matrix recursion of
all four submatrices has to be performed. Suppose that
us0d ­ 0; then only the recursion of hR s pd

ud , T
s pd
dd j is neces-

sary if both usn11d and ds0d are needed, and only the recur-
sion of R

s pd
ud is necessary if only usn11d is needed. We call

the recursions above the full, half, and quarter S-matrix
recursions, respectively.

Similarly, R s pd also has four closed proper subsets:

hR s pd
11 j, hR s pd

11 , R
s pd
12 j, hR s pd

11 , R
s pd
21 j,

hR s pd
11 , R

s pd
12 , R

s pd
21 j . (28b)

With the R-matrix algorithm, if both usn11d and ds0d are
needed, the full matrix recursion has to be performed even
when us0d ­ 0. If ds0d is not needed and us0d ­ 0, then
quarter R-matrix recursion with R

s pd
11 is possible, but the

R matrix has to be initialized by

R s21d ­

"
1 0
0 21

#
. (29b)

With this initialization, R
s pd
12 ­ R

s pd
21 ­ 0 and R

s pd
22 ­ 21

for all p.
Finally, we shall provide operation counts per grat-

ing layer for the variants of the two recursive matrix al-
gorithms that have been presented in this paper. The
operation counts will be given in units of flops.21 The
counts do not include the effort in assembling the W ma-
trices and in solving the final linear system to yield usn11d

and ds0d. For convenience, we shall consider only the
operations that are proportional to N3, where N is the
truncation order, the dimension of the submatrices. The
method of counting is based on well-established rules21:
suppose that A, B, and C are N 3 N nonsparse matri-
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ces; then AB 1 C, A21, and A21B 1 C take N3, N3, and
(4/3)N3 flops, respectively.

The results are summarized in Table 1 where imple-
mentation variants of the S-matrix and R-matrix algo-
rithms that have been described in Sections 3, 4, and 5 are
represented symbolically. For example, W ---... t ----... S
represents the variant of the S-matrix algorithm that
uses Eq. (7) to compute the interface t matrix and then
uses Eqs. (19a) to perform the S-matrix recursion. The
broken arrows indicate that in some grating models the
t matrices are obtained without using the W matrices.
In this case, (32/3)N3 flops should be subtracted from
the operation counts in Table 1. The subheadings of
the last three columns stand for full-, half-, and quarter-
matrix recursions, respectively. Since the half-matrix
recursion of the R matrices serves no useful purpose, the
corresponding operation counts are not given. Clearly,
algorithms 2a and 3a are the most efficient, assuming
that we start with the W matrices.

7. REMARKS

A. Algorithm of Chateau and Hugonin
It is easy to see that the algorithm proposed by Chateau
and Hugonin,8 except for the notational differences, is
algorithm 2a in Table 1 for the special case in which us0d ­
0. It is one of the most efficient variants of the general
S-matrix algorithm, but it can be slightly improved. In
Ref. 8 each of the three factors of the layer t matrix
[see Eqs. (6) and (7)] is passed through the recursion
formula separately. So the operation count, including
the inversion of W s p11d, is (50/3)N3 for the half-recursion.
In comparison, the use of product t ­ W s p11d21W s pd in
Eq. (19a) costs 15N3 flops.

B. R-Matrix Algorithm and Differential Method
For the differential method it is natural to use the
R-matrix algorithm because here the U –V basis is the
natural basis. The factorization of the layer t matrices
is unavailable in the differential method, so the applica-
tion of the R-matrix starts with the layer t matrices. As
explained in Sections 4 and 5, use of the t̃ matrix in the
R-matrix algorithm makes the stability of the algorithm
conditional. Although the modal methods were assumed
when we analyzed the cause of numerical instability
of Eq. (14b0 ), the conclusion applies to the differential
method as well, because the basis functions are asymp-
Table 1. Operation Counts (in N3 Flops) per Grating Layer for
Different Variants of the S-Matrix and R-Matrix Algorithms

Operation Counts

Algorithm Number Algorithm Stability Full Half Quarter

1a W ---... t ----... s ----... s̃ ----... S Unconditional 76/3 20 19
2a W ---... t ----... S Unconditional 19 15 14
3a W ----... s ----... s̃ ----... S Unconditional 64/3 16 15
4a W ---... t̃ ----... S Conditional 19 15 14
1b W ---... t ----... r ----... r̃ ----... R Unconditional 25 — 21
2b W ---... t ----... R Unconditional 23 — 15
3b W ----... r ----... r̃ ----... R Unconditional 21 — 17
4b W ---... t̃ ----... r̃----... R Conditional 21 — 17
5b W ---... t̃ ----... R Conditional 19 — 14
totically the same in the two cases. The first few rows of
Tables 1, 2, and 3 in Ref. 9 clearly indicate that if the nu-
merical layer thicknesses are not kept low, the R-matrix
algorithm fails when applied to the differential method.

The R-matrix algorithm that is used in Ref. 9 is
algorithm 4b in Table 1 of this paper, which takes
(31/3)N3 flops per layer for the full-matrix recursion.
It can be improved slightly by using algorithm 5b, which
takes (25/3)N3 flops per layer. Instead, if the u–d ba-
sis functions and algorithm 4a are used, significant im-
provement can be achieved. The operation count for the
S-matrix algorithm is only (13/3)N3 flops per layer for
the half-matrix recursion. Furthermore, the extra work
of solving the final system of linear equations, Eq. (17b),
is avoided.

C. R-Matrix Algorithm and Classical Modal Method
In the classical modal method,7 thanks to the orthogonal-
ity of the modal functions and the fact that the pivotal
submatrix t

s pd
21 ; 0, not only are the t matrices obtained

analytically without the W matrices, but the r matri-
ces can also be determined analytically from the t matri-
ces without numerical inversion of the pivotal submatrix.
The result is the most efficient variant of the R-matrix
algorithm, which can be symbolized simply as r̃ ----... R.
Only one of the four submatrices of r̃s pd takes N3 flops to
construct; the rest involve only N2 processes. Thus the
overall operation counts are only (22/3)N3 and (10/3)N3

per layer for the full- and quarter-matrix recursions,
respectively.

D. S-Matrix Algorithm and Classical Modal Method
The S-matrix algorithm can be applied to the classi-
cal modal method, the most efficient variant being algo-
rithm 2a of Table 1. The combination of the S-matrix
algorithm and the classical modal method has a peculiar
problem, which I shall describe below.

In the classical modal method, the t matrices that use
the exponential basis functions can also be obtained ana-
lytically without the W matrices, but the s matrices in
general cannot. Without going into any detail, suffice it
to say that the elements of ts pd at a numerical interface
are all of the formZ

c
s p11d
l sxdfpsxdc s pd

n sxddx , (30)

where the integration is over one grating period, c
s p11d
l
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and c
s pd
n are modal functions in layers p 1 1 and p, re-

spectively, and fp is a function that depends only on the
permittivity distribution of the two layers. In what fol-
lows, we consider the evaluation of Eq. (30) under a spe-
cific set of conditions: (1) the permittivity distributions
in two adjacent layers are symmetrical with respect to
the origin of the x axis, (2) the grating is in the first-order
Littrow mount, and (3) N ­ 2M 1 1, where M is a natu-
ral number. Under condition (1), fp is a symmetrical
function. Under condition (2), c

s p11d
l and c

s pd
n are either

symmetrical or antisymmetrical functions. Thus if inte-
gers l and n correspond to modal functions of different
parities, the corresponding t matrix element is identi-
cally zero. In the classical modal method, one normally
indexes the eigenvalues in the order of increasing absolute
values. Let N

s pd
e and N

s pd
o be the numbers of even and

odd eigenvalues, respectively. Numerical experiments
show that, under condition (2) and for a given truncation
order N ­ N

s pd
e 1 N

s pd
o , N

s pd
e and N

s pd
o never differ by

more than 1. Thus under condition (3), either N
s pd
e ­ M

and N
s pd
o ­ M 1 1, or N

s pd
e ­ M 1 1 and N

s pd
o ­ M . It

can be easily shown that if N
s pd
e fi N

s p11d
e then all sub-

matrices of ts pd, in particular the pivotal submatrix t
s pd
22 ,

are mathematically singular. Numerically, the condi-
tion N

s pd
e fi N

s p11d
e does often occur; therefore algorithm

1a of Table 1 cannot be applied to the classical modal
method when conditions (1), (2), and (3) are met simul-
taneously. It can be verified numerically that the ma-
trix sum that is to be inverted in Eqs. (19a) sometimes
becomes numerically ill-conditioned under the above
three conditions; therefore algorithm 2a fails too, even
though it does not involve the inversion of the pivotal
submatrix t

s pd
22 .

Fortunately, the singular matrix problem described
above can be easily avoided by the use of an even trun-
cation order. If N ­ 2M, then the characteristics of
the eigenvalue distribution automatically guarantee that
N

s pd
e ­ N

s pd
o ­ M .

Another interesting difference between the R-matrix
algorithm and the S-matrix algorithm, as they are applied
to the classical modal method, is that the law of energy
conservation (in the case of dielectric gratings) is satisfied
automatically by the former, but it is satisfied only with
increasing truncation orders by the latter.

E. Other Possibilities
The essence of the R-matrix and S-matrix algorithms is
to avoid the presence of the growing exponential functions
in the matrix manipulations. In this spirit, several other
stable algorithms have recently been presented in the
literature. For example, Montiel and Nevière9 presented
an algorithm that they called the R 0-matrix algorithm.
In view of the current paper, it can be considered an
S-matrix algorithm that uses the U –V basis functions.
In Ref. 10 the R-matrix algorithm was used with the
exponential basis functions (maybe it can be called the
S 0-matrix algorithm?). The scattering-matrix approach
of Cotter et al.11 is essentially algorithm 2a of Table 1,
except that their t matrix is the inverse of the t matrix
in this paper. Clearly there are many other possibilities,
but it is pointless to enumerate all of them.
8. SUMMARY
The mathematical formulations of the S-matrix and
R-matrix algorithms have been systematically presented.
The presentation is given in a unified fashion, indepen-
dent of underlying grating models, grating geometries,
and grating mountings. The physical interpretations of
the algorithms are illustrated. In addition, many vari-
ants of the algorithms are presented and their numerical
stabilities and efficiencies analyzed.

The S-matrix and R-matrix algorithms are inherently
stable because they avoid the appearance of the expo-
nentially growing submatrices in the recursion formulas.
However, to further ensure that the algorithms be uncon-
ditionally stable, effort should be made to avoid the expo-
nentially growing submatrices in the intermediate steps,
i.e., in the calculation of the layer s or r submatrices.
Whenever the factorization, as given in Eq. (6), of the
layer t matrix is possible, the interface t matrix should
be used directly in the constructions of layer s (or r) ma-
trix or in the nonnormalized S-matrix (or R-matrix) re-
cursion. When factorization is impossible, the S-matrix
and R-matrix algorithms are stable under the condition
that the layer thicknesses and the truncation order be
kept low, as quantified at the end of Section 4.

The comparative study of the two matrix algorithms
presented here seems to favor the S-matrix algorithm.
The physical interpretation of the S matrix in terms of re-
flections and transmissions is more intuitive than that of
the R matrix in terms of the impedance and admittance.
The exponential basis functions adopted by the S-matrix
algorithm are numerically much easier to handle than the
trigonometrical basis functions adopted by the R matrix
algorithm. Based on the operation counts, the S-matrix
algorithm is more efficient than the R-matrix algorithm.

Many implementation variants of the algorithms are
presented in this paper. The variants that use all in-
termediate matrices, algorithms 1a and 1b in Table 1,
are the least efficient ones. They have only pedagogical
value. The variants that bypass some of the interme-
diate matrices, for example, algorithms 2a, 3a, and 2b,
are the most efficient ones. However, as exemplified in
Section 7, which algorithm and variant are more efficient
often depends on the grating model being used. It is the
hope of the author that the information provided here will
enable the reader to apply the most efficient algorithm to
the grating model at his or her disposal.

APPENDIX A
To derive Eq. (13b), let us imagine that layer p is a sum
of two layers. the first layer has zero thickness, with
the layer t and r matrices given by Eqs. (7) and (14b),
respectively. The second layer has thickness hp, but it
does not cross a material boundary. Its equivalent layer
t matrix is just fspd, given by Eq. (4b). Denoting the
equivalent layer r matrix corresponding to fs pd by r̂s pd,
from Eq. (14b) we have

r̂s pd ­

242h
s pd
m cotsls pd

m hpd h
s pd
m cscsls pd

m hpd

2h
s pd
m cscsls pd

m hpd h
s pd
m cotsls pd

m hpd

35 . (A1)

Equations (15b) can be viewed as a set of rules that
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combine matrix r̃s pd in relation"
U s p11d

U s pd

#
­ r̃s pd

"
V s p11d

V s pd

#
(A2)

and matrix R s p21d in relation"
U s pd

U s0d

#
­ R s p21d

"
V s pd

V s0d

#
(A3)

to obtain matrix R s pd in relation"
U s p11d

U s0d

#
­ R s pd

"
V s p11d

V s0d

#
. (A4)

Here we have"
U s p11ds yp 1 0d
U s pds yp 2 0d

#
­ rs pd

"
V s p11ds yp 1 0d
V s pds yp 2 0d

#
, (A5)"

U s pds yp 2 0d
U s pds yp21 1 0d

#
­ r̂s pd

"
V s pds yp 2 0d

V s pds yp21 1 0d

#
, (A6)

and what we want is the matrix in"
U s p11ds yp 1 0d
U s pds yp21 1 0d

#
­ r̃s pd

"
V s p11ds yp 1 0d
V s pds yp21 1 0d

#
. (A7)

Through comparison of Eqs. (A2)–(A4) with Eqs. (A5)–
(A7), it is evident that the two sets of equations have
identical algebraic structures. Therefore Eqs. (13b) can
be obtained from Eqs. (15b) provided that rs pd, r̂s pd, and
r̃s pd are identified with r̃s pd, R s p21d, and R s pd, respectively.

APPENDIX B
When t

s pd
21 ; 0, which happens in the classical modal

method, Eq. (14b) cannot be used to compute rs pd, but in
this case for sure t

s pd
22 6; 0. Suppose that t

s pd
22 is nonsingu-

lar and l
s pd
m hp fi lp, then Eq. (14b0 ) can be used to derive

the layer r matrix. After some simple algebra, we have

r̃s pd ­24fts pd
12 2 t

s pd
11 h

s pd
m cotsls pd

m hpdgts pd21
22 t

s pd
11 h

s pd
m cscsls pd

m hpd

2h
s pd
m cscsls pd

m hpdts pd21
22 h

s pd
m cotsls pd

m hpd

35 .

(B1)

This expression of r̃s pd, like Eqs. (13b), contains no expo-
nentially growing functions, and therefore is suitable for
the unconditionally stable R-matrix recursion.

APPENDIX C
Similarly to the treatment in Appendix A, we consider
that each of the two factors in Eq. (6) corresponds to a
layer, one with zero thickness and the other with the full
thickness hp. Substituting fspd for t̃s pd in Eqs. (20b), and
making some simple algebraic rearrangement, we obtain
an intermediate R matrix, R̂ s pd, which is given by

R̂
s pd
11 ­ 2 hs pd

m cotsls pd
m hpd 1 hs pd

m cscsls pd
m hpd

3 vs pdhs pd
m cscsls pd

m hpd ,

R̂
s pd
12 ­ hs pd

m cscsls pd
m hpdvs pdR

s p21d
12 ,

R̂
s pd
21 ­ R

s p21d
21 vs pdhs pd

m cscsls pd
m hpd ,

R̂
s pd
22 ­ R

s p21d
22 1 R

s p21d
21 vs pdR

s p21d
12 , (C1)

where

vs pd ­ fhs pd
m cotsls pd

m hpd 2 R
s p21d
11 g21. (C10 )

Clearly, all submatrices of R̂ s pd are of order Os1d and
numerically stable. To complete the nonnormalized
R-matrix recursion using the interface t matrix, we need
only to use Eqs. (20b) again, this time replacing R s p21d

by R̂ s pd and t̃s pd by ts pd. The result is

R
s pd
11 ­

h
t

s pd
12 1 t

s pd
11 R̂

s pd
11

ih
t

s pd
22 1 t

s pd
21 R̂

s pd
11

i
21

,

R
s pd
12 ­

h
t

s pd
11 2 R

s pd
11 t

s pd
21

i
R̂

s pd
12 ,

R
s pd
21 ­ R̂

s pd
21

h
t

s pd
22 1 t

s pd
21 R̂

s pd
11

i 21
,

R
s pd
22 ­ R̂

s pd
22 2 R

s pd
21 t

s pd
21 R̂

s pd
12 . (C2)
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