
Formulation and Evaluation Of Scheduling Techniques

For Control Flow Graphs

Maher Rahmouni Ahmed A. Jerraya

Laboratoire TIMA/lNPG,

46, Avenue Felix Viallet,

38031 Grenoble Cedex, France

Email:rahmouni@verdon.imag.fr

Abstract

This paper presents a theoretical basis for schedul-

ing approaches based on purely control-
ow graphs.

This formulation includes a control
ow graph model

based on a �nite discrete-time homogeneous Markov

chain suitable to repesent complex control structures.

A probabilistic �nite state machine is introduced to

model the resulting schedule and evalute the e�ec-

tiveness of the scheduling approaches for control
ow

graphs. The need of such models is imposed by the na-

ture of real time systems in which the control sequence

depends on external conditions.

1 Introduction

High level synthesis means going from a functional

speci�cation at the algorithmic level of a digital sys-

tem to a register transfer level structure. The �rst step

in high level synthesis is to derive an internal graph-

based representation equivalent to the algorithmic de-

scription for both data
ow and control
ow. We then

perform high level synthesis tasks such as schedul-

ing and allocation. The scheduling problem can be

described as determining in witch control step each

operation or set of operations is going to take place.

Most Scheduling algorithms use data
ow graphs[7],

this type of representation is well understood and

the corresponding scheduling called Data Flow Based

Scheduling(DFBS) is well formulated. The most pop-

ular DFBS techniques are List Scheduling[9] and Force

Directed Scheduling[6]. Data
ow graphs are the most

convenient represenations for behavioural descriptions

representing systems repeatedly performs a series of

operations on an in�nite data stream, but it's not suf-

�cient to represent designs in which the control se-

quence is based on external conditions. One of the

main interesting models which supports such proper-

ties is the Constraint Graph proposed by DeMicheli[1],

it consists of a polar hierarchical acyclic graph where

the vertices represent operations and the edges repre-

sent the dependencies among the operations. The hi-

erarchy supports procedure calls, conditional branch-

ing and loop iterartions. The sheduling algorithmused

within is the relative scheduling, the strengh of this ap-

proach is its capacity to treat operations with �xed as

well as unbounded delays. Its weakness is the hierar-

chy which makes it ine�cient to schedule accross loops

and conditional constructs. In these cases, purely con-

trol
ow graphs may be more e�cient. Thus, we

can have algorithms formed on (Control Flow Based

Scheduling(CFBS))[2, 3, 4, 5].

In this paper, we build a theorical basis to model all

CFBS algorithms. This basis contains a formulation

of these scheduling approaches and uses a probabilistic

model to compute a cost function allowing an evalua-

tion and comparison between the di�erent algorithms.

This paper is organized as follows. Section 2 de-

scribes the control
ow graph model and present the

basic concepts for CFBS. In Section 3, the formu-

lation of path based approaches according to these

concepts is done. In section 4, we use the control

ow model based on �nite discrete-time homogeneous

markov chains and the probabilistic FSM model to

evaluate the CFBS approaches. Conclusions and per-

spectives are given in section 5.

2 Basic Concepts and De�nitions

For the sake of clarity, we will take as an exam-

ple the algorithmic description of the computation of

the function ab mod n[11], given 0 � a; b � n, and

lg(n) � 15. This is shown in �gure 1(a).

2.1 Control
ow Graph

Control
ow graphs are the most suited repre-

sentation to model control design, which contain

many(possibly nested) loops, global exceptions, multi-

ple wait on events and procedure calls; in other words,

features that re
ect the inherent properties of con-

trollers.

De�nition 2-1:(Control
ow Graph)

A control
ow graph CFG is a graph G = (V;E),

where :

(i)V = fv1; : : : ; vng is a �nite set whose ele-

ments are nodes, and

(ii) E � V � V is a control
ow relation,

whose elements are directed sequence edges.

The CFG corresponding to the function ab mod n is

shown in �gure 1(b).

De�nition 2-2:(Graph node)

Nodes are of two classes:

� operation nodes such as assignments, logic, arith-

metic operations and procedure calls, represented

by the subset of V, Vo. For the example of �g-

ure 1,

V o = fv1; v2; v5; v7; v8; v9; v10; v12; v13g.

� branch nodes modelling conditional statements

such as If, Case and Conditional loops, repre-

sented by Vb. For the example of �gure 1,

V b = fv3; v4; v6; v11g.

Thus V = V o [V b

The operation nodes have only one successor, while

branch nodes have more than one successor.

De�nition 2-3:(Graph edge)

An edge represents the precedence relation between

two nodes vi and vj . An edge eij is weighted by a

condition Condij and a probability pij , meaning that

the operation represented by vj will be executed with a

probability pij if vi is executed and Condij is evaluted

to True. These assumptions mean that the Control

Flow Graph is a �nite, discrete-time, homogeneous

Markov chain[10]. For this reason the nodes have to

satisfy the following two properties:

Property 1: if vi is an operation node and vj is

an immediate successor of vi, i.e (vi; vj) 2 E then:

Condij = True and pij = 1.

This property assume that the probability of going

from the operation represented by vi, oi, to that rep-

resented by vj is independent from the operations ex-

ecuted before oi.

Property 2: if vi is a branch node, and (vi1; : : : ; vik)

are the k immediate successors of vi then:

(i) Condi;im^Condi;ih = 0, for all m;h 2 f1; : : : ; kg

and m 6= h, and
Pk

l=1 Condi;il = 1.

(ii)
Pk

m=1 pim = 1:

3

5

6

11

1

2

4

7

8

10

12

13

9

(a) (b)

1.0

1.0

0.0588

0.9412

0.5

0.5 1.0

0.5
0.5

1.0

0.5

1.0

1.0

1.0

1.0

(i <= 15)

(i > 15)

(odd(b))

 (even(b))
(s>n)

(a>n)

(a<=n)

(s<=n)

0.5

s:=0; i:=0;

 s:=s+a;

 i := i + 1;

 b := b div 2;

 a := a * 2;

write(s);

read(a,b,n);

while(i <= 15)

 begin

 if(odd(b)) then

 begin

 if(s>n) then s:=s-n;

 end;

 if (a>n) then a:=a-n;

 end;

--11, 12

--10

--9

--8

--6, 7

--5

--4

--3

--2

--1

--13

Figure 1: (a) Algoritmic description of ab mod n func-

tion. (b) CFG of the ab mod n function.

2.2 Control-
ow Based Scheduling

These type of approaches have appeared for the

problem of handling loops and conditional branches.

The DFBS approaches for treating this problem is to

schedule the innermost loop body and the correspond-

ing test expression �rst, and then to proceed outwards

treating the loop as a single node. Similarly, condi-

tional branches cause optional program paths. So, the

number of control steps may vary from one branch

to another, however it's �xed for each branch. The

DFBS approaches assume that all branches have the

same length as the longest path. Path-based schedul-

ing [2], remedies to all these problems considering all

program paths and exploiting optimization potential

concerning state assignement especially in conditional

branches. To ease path extraction and analysis, PBS

uses a CFG structure. As in the case of DFBS, CFBS

may be restricted by constraints. Some are inherent to

the implementation like the data dependencies, where

registers can be written only once per control step, or

I/O ports can be read or written only once per control

step. Others are user constraints which are speci�ed

explicitly often to indicate area and delay characteris-

tics of the target architecture.

Since CFBS are mainly Path-based approaches, we

have to de�ne scheduled paths from the CFG, and con-

struct the FSM corresponding to the resulting sched-

ule. Scheduled Paths represent implicitly a function

to be executed in one clock cycle at a given time from

the whole execution time of the description modelled

by the CFG. In other words, the CFG will be par-

tioned in a sequence of Scheduled Paths.

De�nition 2-4:(Scheduled Path)

Let G = (V;E) be a CFG, let (C1; : : : ; Cr) be a set

of constraints. A Scheduled Path SP is a sequence of

nodes (v1; : : : ; vn), extracted from the CFG and sat-

isfying all the constraints. If (C1; : : : ; Cr), the set of

constraints, � Ck(k=1;:::;r)(vi; vj) = 1 this means that

the constraint Ck is not satis�ed between nodes vi and

vj . Therefore, a scheduled Path has to satisfy the fol-

lowing property:

Property 3: for all vi; vj 2 SP , for all Ck(k=1;:::;r),

� Ck(vi; vj) = 0.

We de�ne for each Scheduled path four parameters:

� a header which is the �rst node of that path v1,

we note Header(SP).

� a successor, which is the immediate successor of

the last node in SP, and we note Succ(P).

� a condition CondSP

� a probabiliy ProbSP

Since the CFG is a �nite discrete-time homgeneous

Markov chain, the condition (probability) enabling

the execution of SP , CondP (ProbP) is derived

by logically ANDing (multiplying) the conditions

(probabilities) on the control-
ow edges leading from

Header(SP) to Succ(SP). Then the following property:

Property 4: Let SP = (vi; : : : ; vj), then the con-

dition CondSP enabling the execution of SP with a

probability ProbSP are derived as:

� CondP (SP) = ^(i=1;:::;n�1);(j=i+1)Cond(vi; vj)

^Cond(vn; Succ(SP))

� ProbP (SP) =
Qn�1

i=1 p(vi; vi+1)�p(vn; Succ(SP))

De�nition 2-5:(CFG Headers)

For each CFG, we de�ne the set of Headers H(G),

which represent the set of all the headers of scheduled

Paths.

H(G) = fvi 2 V j9SP � V; vi = Header(SP)g

Scheduling produces a �nite state machine FSM, the

FSM is modelled either by a Moore or a Meally au-

tomata.

De�nition 2-6:(Control-
ow Scheduling)

Let 	 = (S; I;O; f; g) be a transition-based FSM,

a schedule of a CFG G = (V;E) is a mapping:

� : H(G) �! S

vi 7�! s(ti)
Where:

� I(ti) = fi1(ti); : : : ; iM (ti)g

= fCondP (SPik)(k=1;:::;M) such that

Header(SPik) = vig.

� O(ti) = fo1(ti); : : : ; oR(ti)g =

fSP such that Header(SP) = vig.

� f(s(ti); ik(ti)) = �(vj) such that

vj = Succ(SPik)(k=1;:::;M).

� g(s(ti); ik(tn)) = SPik; (k = 1; : : : ; R).

The control
ow based scheduling consists of merg-

ing all the scheduled paths with he same header into

the same state, and a transition is made between two

states Si represented by vi and Sj represented by vj if

and only if there is a scheduled path having as Header,

vi, and as successor, Succ(SP) = vj. Then if the ma-

chine is currently in cycle step s(ti) and it's presented

an input condition CondP (SP), then it will change its

control step to f(s(tn); I(tn)), and output the result

of execution of all the operations in SP.

2.3 cost function

Data dependent loops in control
ow graphs intro-

duce a major problem for the cost function of the

scheduling result, this is due to the unknown num-

ber of iterations for each loop. The number of states

or transitions generated by the schedule do not re
ect

the real total execution time of an algorithm. So, we

will use a probabilistic �nite state machine to repre-

sent the resulting schedule.

De�nition 2-7:(Probabilistic Finite State Ma-

chine)

a probabilistic FSM 	 = (S; I;O; f; g; �) is an FSM

with a probabilistic state transition function � de�ned

as:

�(s(tk); s(tl)) =
Pj

m=i Prob(SPm)

such that fSPi; : : : ; SPjg is the set of scheduled paths

having as entry state s(tk) and as destination s(tl).

De�nition 2-8: (Expected number of Clock Cy-

cles Of aSchedule)

Let 	 = (S; I;O; f; g; �) be the probabilistic FSM re-

sulting from the Schedule. The expected number of

clock cycles needed to execute the correponding input

behavioural description is: [Xsch =
Pn

i=1Xi where

Xi is the random variable representing the expected

number of times the state s(ti) is executed during an

execution of the behavioural description. Computing

Xi, 8i 2 (1; : : : ; n) is equivalent to resolve the follow-

ing set of linear equations:

X1 = 1

Xi =
P

Xj :�(s(tj); s(ti))

8j such that a transition exist between s(tj) and s(ti)

3 Formulation of CFBS Approaches

Around Path-based Scheduling[2], many heuristics

are derived, to consitute a new generation of schedul-

ing techniques oriented toward control-
ow. The

most well-known are Dynamic Loop Scheduling [3],

Loop Directed Scheduling[5] and Pipeline Path-based

Scheduling[4]. These approaches comes to resolve

problems related to the initial path-based approach,

such as its exponential complexity, or to add more ef-

�ciency to the way that loops are handled.

3.1 Path Based Scheduling

In this approach, the CFG is made acyclic by re-

moving the feedback edges in loops, and saving the

�rst and the last nodes of a loop. The second step is

the computation of all paths, starting from the �rst

node of the Acyclic CFG and then all �rst nodes of

loops. Then each path is scheduled independently

with respect to the constraints using a clique cover-

ing method. This step consists of partitionning each

path on a set of scheduled paths. Finally, the �nite

state machine is built.

De�nition 3-1: (Path) Let G = (V;E) an Acyclic

CFG, A Path P is a sequence of nodes (v1; : : : ; vn),

where:

(i) v1 is either the �rst node of the graph or the

�rst node of a loop.

(ii) vn is a node with no successor.

Each path P = (v1; : : : ; vn) will be scheduled in-

dependentlty, and a set of constraints fC1; : : : ; Crg

are computed for each path. A constraint Ck cor-

reponds to an Interval ICk = fvi; vi+1; : : : ; vjg, Such

that 1 < i < j � n, this means that constraint Ck is

violated between nodes vi�1 and vj .

Figure 2 shows the acyclic CFG and the set of paths

from the CFG example of �gure 1. to simplify, the

only constraint considered is data dependency.

De�nition 3-2: (Scheduled Path)

Let P = (v1; : : : ; vn) a path, Let C1; : : : ; Cr a set

of constraints. A Scheduled path SP (in Path-based

Scheduling) is a sequence of nodes (vi; vi+1; : : : ; vj)

where:

(i) 1 � i < j � n.

(ii) 9 fCm; : : : ; Ckg such that

Succ(SP) 2 ICm \ ICm+1 \ : : :\ ICk

Since feedback edges are removed, Scheduled paths

satisfying the following conditions will be added:

�8 SP = (vi; vi+1; : : : ; vj) such as 9 vl 2 SP ,

i � l � j and vl is the last node of a loop.

A scheduled path SP 0 = (vi; : : : ; vl) is added to the set

of scheduled paths.

�Succ(SP 0) = vf such as vf is the �rst node of the loop.

The scheduled paths and the FSM for path based

scheduling are shown in �gure 2(c) and �gure 2(d).

3,4,5,8

1,2

9,10,13

11,12

 9,10
6,7,8

1.0

0.5

0.471

0.471

0.5

0.5

0.5

S1

S2

S3

S4

2 4

5

4 13 7

8

9

10

8

9

10

12

10

9

8

11

331 3 6 6 11 11

3

3

11

11

6

3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

3

13

3

4

8

9

10

11

3

4

8

9

10

11

12

3

4

5

6

8

9

10

11

3

4

5

6

8

9

10

11

12

3

4

5

6

7

8

9

10

11

3

4

5

6

7

8

9

10

11

12

3

13

3

4

8

9

10

11

3

4

8

9

10

11

12

3

4

5

6

8

9

10

11

3

4

5

6

8

9

10

11

12

3

4

5

6

7

8

9

10

11

3

4

5

6

7

8

9

10

11

12

3

5

6

11

1

2

4

7

8

10

12

13

9

1.0

1.0

0.0588

0.9412

0.5

0.5 1.0

0.5
0.5

1.0

0.5

1.0

1.0

1.0

(i <= 15)

(i > 15)

(odd(b))

 (even(b))
(s>n)

(a>n)

(a<=n)

(s<=n)

0.5

(a) (b)

(c) (d)

Figure 2: (a) Acyclic CFG, (b) Paths, (c) Scheduled

Paths, (d) FSM for Path Based Scheduling

3.2 Dynamic Loop Scheduling

DLS uses a CFG, by keeping all loop feedback edges

in the control-
ow graph, thereby allowing the parallel

execution of parts of successive loop iterations. DLS

interrupts the generation of paths on the
y , in other

words, the generation of a current path is stopped if a

constraint is violated. This reduce the complexity of

the number of generated paths.

De�nition 3-3: (Scheduled Path)

Let G=(V,E) a CFG and C1; : : : ; Cr a set of con-

straints. A scheduled path SP (In Dynamic Loop

Scheduling) is a sequence of nodes (vi; vi+1; : : : ; vj)

where:

�9 vl; Cm such that i � l � j and Cm(vl; vj+1) = 1.

This approach schedule paths As Late As Possible.

Figure 3 shows the scheduled paths and the FSM for

DLS.

1 11

12

3

4

1111

12

3

13

11

12

3

4

8

9

11 11

10

3

13

3

4

3

4

8

9

11

5

4

5

4 13

10

9

8

11

33 3

6
6

7

8

9

10

8

9

10

6 6

11

11

10

6 11

5

5

2

3

10

S1 S2

S6

S5

11,12,3
 8,9,10

1,2
3,4,5,8

9,10,13

5

10

9,10
6,7,8

4,5,13
0.471

0.471

1.0

1.0

0.235

1.0

0.235

0.235

0.5 0.5

S4

S3

0.235

(a)

(b)

Figure 3: (a) Paths and successors, (b) FSM for the

Dynamic Loop Scheduling

3.3 Pipeline Path-based Scheduling

Pipelined Path-based Scheduling (PPS)[4] is an-

other transformed path-based approach. It's main

strength is the opimisation of loops, since loops are

usually the most time critical part of an application.

It considers that a given loop will be executed 0, 1

or 2 or more times. If there are no loops, the paths

are generated in accordance with the PBS approach.

This algorithmdi�ers from the original path-based ap-

proach in the way of computing paths. It starts from

the �srt node in the control
ow graph and ended with

a node with no successor. In the presence of a loop, it

generates a set of paths where the loop is unrolled one

time or twice. Figure 4(a) shows one possible path

in which the loop is executed twice. The subscripts

correspond to the loop iteration from which the node

3 0

3 1

3 2

3

12
11

3
13

11
12
3

13

11

6

3
4
5

11

11

3
4
8
9

10

11

3

2
1

13
3

6

4
5

3

11

4
8
9

10

3

11

7
8
9

10

6

11

8
9

10

6

S2

S1

1.0

1,2

1.0

3,4,5,8
9,10,13

11,12,3,4,5

8,9,10,13

6,7,8
9,10

0.471

0.235

0.471

0.235

S4 S3

0.471

2

1

8
9
10
11

8
9
10
11

13

12

P

(a) (b) (c)

Figure 4: (a) One path and cuts, (b) Paths after cuts,

(c)FSM for PPS.

is taken. Thus, 30 is node 3 for zero loop iterations

(the loop condition is false), 31 is node 3 of the �rst

iteration of the loop and node 32 is node 3 of the sec-

ond iteration. The scheduled paths and the FSM for

PPS are shown in �gure 4. More details about this

approach can be found in[4].

4 Evaluation and Comparaison Of

CFBS Algorithms

PBS generates an As Fast As Possible (AFAP)

schedule for a description containing many di�erent

possible execution paths. This is achieved through a

complex clique covering technique that identi�es the

minimum number of cuts necessary for all paths in

order to satisfy the constraints (user-imposed or data-

dependent). This approach however, tends to be sub-

optimal when the input description contains many

loops. The problem is related to the fact that, in Cam-

posano's approach, all loop feedback edges are broken

and thus no advantage can be taken of the fact that

di�erent loop iterations can be pipelined. DLS at-

tempt to overcome this problem by leaving loop feed-

back edges intact. However,their approach is rather

simplistic as they only consider one iteration. In ad-

dition, they do not cut the generated paths in an op-

timal way as they use an As Late As Possible (ALAP)

scheduling technique to do this. Nevertheless, results

published for these algorithms show that by treating

loops more e�ciently, improvements on the original

path-based approach can be made, even taking into

consideration the fact that the path cuts are not op-

timal. PPS bene�t from the advantages o�ered by

these two approaches. It uses a clique covering tech-

nique to cut the paths in an optimal fashion while

at the same time, using a new technique for pipelining

loop iterations in order to identify any parallelism that

may exist beyond loop boundaries. Figure 5 shows the

11

6 14 33.5

42.18

PPS

DLS

PBS 4

Algorithm State Transition

8

4

Clock_Cycle

32.55

Figure 5: Results for the ab mod n algorithm

di�erent results for the three approaches, PBS, DLS

and PPS. State means the number of states, Transi-

tion the number of transitions and Clock Cycle the ex-

pected number of clock cycles needed to execute the

algorithm. When looking at the FSMs produced by

PBS and DLS, we see that the one produced by DLS

is more complex and contains more states than that

of PBS. Nevertheless, using DLS we kept 8 clock cy-

cles for the entire execution of the ab mod n algorithm.

This due to the fact that PBS will always take at least

two states to execute the loop. However, under certain

conditions, DLS can take one state(S4).By combining

the advantages of both approaches, PPS minimizes

cuts the number of states and tansitions. Moreover,

by unrolling loops it can minimize the number of clock

cycles.

5 Conclusion

In this paper, we have presented a de�nition of Con-

trol Flow Based Scheduling and a formulation of pop-

ular approaches. This formulation includes a CFG

model based on the �nite discrete-time homegeneous

markov chain and the probabilistic FSM correspond-

ing to the scheduling result, and a cost function used

to compare these algorithms which perform schedul-

ing of data dependent loops. These concepts give us

the opportunity to derive other CFBS heuristics, by

generating di�erently scheduled paths. Our perspec-

tives concentrate on the migration of Data
ow based

optimization techniques applied within Control
ow

Based approaches.

References

[1] D.C.Ku, G. DeMicheli, "Relative Scheduling

under timing constraints", IEEE Trans. on

CAD/ICAS May 1992.

[2] R. Camposano, "Path-Based Scheduling for Syn-

thesis", IEEE T. CAD, Vol 10(1), pp85-93, Jan-

uary 1991.

[3] K. O'Brien, M. Rahmouni, A.A.Jerraya, " A

VHDL-Based Scheduling Algorithm for Control-

Flow Dominated Design", 6th Intl. Workshop On

High-Level Synthesis, California, November 1992.

[4] M. Rahmouni, A.A.Jerraya, "PPS: A Pipeline

Path-Based Scheduler", Proc. European Design

and Test Conference'95, March 1995.

[5] S. Bhatacharya, S. Dey, F. Brglez, "Perfor-

mance Analysis and Optimization of Schedules

for Conditional and Loop Intensive Speci�ca-

tions", 31st Design Automation Conference, pp.

491-496, 1994.

[6] P.G Paulin, J.P Knight, "Force-Directed Schedul-

ing for te behavioral Synthesis of ASIC's", IEEE

Trans. on computer-Aided Design, vol. 8, no.6,

June 1989.

[7] L. Stock, "Architectural Synthesis and Optimiza-

tion of Digital Systems", Ph D Thesis, 1991.

[8] P. Michel, U. Lauther, P. Duzy, "The Synthesis

Approach to Digital System Design", Kluwer Aca-

demic Publishers, 1992.

[9] Pangrle,B.M. and D.D Gasjki, "Slicer: a state

synthesizer for intelligent silicon compilation",

Digest of the IEEE International Conference on

Computer Aided Design 1987, pp. 42-45, 1987.

[10] K.S. Trivedi, "Probabiliy and Satistics with Re-

liability, Queuing, and Computer Science Appli-

cations", Prentice Hall, Englewood Cli�s, N.J.,

1982.

[11] Howard Trickey, "Compiling Pascal Programs

into Silicon", Ph D Thesis, Department of Com-

puter Science, Stanford University, July 1985.

