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The formalism for a relativistic open-shell CCSD~T! method is presented and implemented in a
computer program,RELCCSD. The code can be used for calculations with 2- or 4-component
relativistic reference wave functions and allows a full inclusion of the spin–orbit coupling. The code
is interfaced to theMOLFDIR program system. We illustrate its use withab initio calculations of the
fine structure splittings of Cl, FO, ClO, O2

1 , and O2
2 . The triples correction is found to make a large

contribution to the Cl atom splitting, which is within 23 cm21, of the experimental value. The
molecular results are within 4 cm21 of the experimental values where these are available. The value
for FO is predicted to be219564 cm21, in good agreement with experiment. ©1996 American
Institute of Physics.@S0021-9606~96!01243-3#

I. INTRODUCTION

The spin–orbital singles and doubles coupled cluster
~CCSD! equations1–4 can be used in relativistic electronic
structure methods that use 2- or 4-component spinors as
1-particle basis functions. The starting point of such methods
is the Dirac–Coulomb–~Breit! Hamiltonian, which is either
used directly or transformed to a more convenient approxi-
mate Hamiltonian. We will not go into the details of the
different methods, but assume that a set of basis spinors is
found that can be identified as belonging to either the elec-
tronlike positive energy part of the spectrum, or to the
positronlike negative energy part. We will work in the no-
pair approximation, i.e., neglecting positron–electron pair
creation, so that the second quantized Hamiltonian assumes
the same form as in nonrelativistic theory,5

ĤNP5(
P,Q

ZQ
PÊP

Q1 1
4 (
P,Q,R,S

VRS
PQÊPQ

RS . ~1!

In this HamiltonianZQ
P5^QuhuP& andVRS

PQ5^RSiPQ&
represent the one-electron and antisymmetrized two-electron
integrals, respectively. TheÊP

Q and ÊPQ
RS operators are the

replacement operators as defined by Paldus.5 In this formu-
lation the nonrelativistic theory and various realizations of
the no-pair approximation only differ in the definition of the
scalar quantitiesZ andV.

In the nonrelativistic spin–orbital Hamiltonian the one-
electron functions can be written as a product of a spatial and
a spin part which means that the spin-integration can be per-
formed separately. This is also true for the so-called spin-free
relativistic approximations.6–8 Those approximations have
the advantage that one may treat electron correlation using

standard methods and computer codes after a transformation
to the molecular spinor basis. In cases where the spin–orbit
coupling effects are large it is desirable to include the spin–
orbit coupling terms as well. This can either be done by
adding a spin–orbit coupling operator to the spin-free Hamil-
tonian, or by using an implicitly coupled Hamiltonian like
the untransformed Dirac–Coulomb–~Breit! equation or the
two-component zeroth order regular approximation~ZORA!
equation.9–11 In both cases one will find that additional
classes of two-electron integrals have to be considered, since
the spin-integration can no longer be factored out. In general
the 2- or 4-component spinorsc are now written as a sum of
spin–orbitalsw in which the coefficients will assume com-
plex values,

cP~r ,h!5(
u

(
h

a,b

cu,h
P wu~r ,h!

5(
u

(
h

a,b

cu,h
P fu~r !sh~h!. ~2!

Based on this relation between spinors and spin–orbitals
all equations may be written in terms of spin–orbitals. In the
spin–orbit ~SO! configuration interaction~CI! type of
approach,12–15 for instance, the spin–orbit interaction is ne-
glected at the Hartree–Fock and CI levels, and an effective
spin–orbit operator is included afterwards to describe the
coupling between CI wave functions of different symmetries.

We assume that the spin–orbit interaction is already
taken into account at the Hartree–Fock level. The spinors are
true eigenfunctions of a spin-dependent Fock-operator and
the reference is written as a single spinor-determinant. The
last constraint makes the method different from relativistic
multireference approaches like the state-universal Fock space

a!Present address: Chemistry Department, Odense University, Campusvej
55, DK-5230 Odense M, Denmark.
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CC method of Ilyabaev and Kaldor,16 which has been ap-
plied to closed and open shell atoms.17

In a previous paper18 we have shown that for closed-
shell molecules that possess at least one twofold element of
symmetry, one can use a Kramers-restricted method to make
optimal use of the existing symmetry relations between the
amplitudes and integrals. In this paper we present the more
general, but computationally less efficient, unrestricted
scheme that allows us to treat single-reference open-shell
systems as well.

II. THEORY

A. The CCSD equations

The starting point is the well known spin–orbital form of
the CCSD equations. We follow the formulation of Jayati-
laka and Lee,19 slightly rewritten to express all equations in
terms of the antisymmetrized integrals. This formulation is
already given in our previous paper18 but for completeness
we will give the equations here as well. Occupied spinors are
labeled byI , J, K, L while unoccupied spinors are labeled
by A, B, C, D. In the following formulae thet1 and t2
cluster amplitudes are represented by a capitalT. The CCSD
energy equation is written in the form,

ECCSD5(
I ,A

FA
I TI

A1 (
I,J
A,B

VAB
IJ t IJ

AB . ~3!

The amplitudes are determined by the equations,

FI
A22(

K,C
FC
KTK

ATI
C1(

C
HC
ATI

C2(
K

HI
KTK

A

1(
K,C

HC
K~TIK

AC1TK
ATI

C!1(
K,C

VIC
AKTK

C

1 (
K,C,D

VCD
AKt IK

CD2 (
K,L,C

VIC
KLtKL

AC50, ~4!

VIJ
AB1PABS (

C
GC
ATIJ

CB2(
K

VIJ
AKTK

BD 2PIJS (
K

GI
KTKJ

AB

2(
C

VIC
ABTJ

CD 1 (
K,L

AIJ
KLtKL

AB1 (
C,D

BCD
ABt IJ

CD

1PIJPABS (
K,C

HIC
AKTJK

BC2(
K,C

VIC
AKTJ

CTK
BD 50, ~5!

where the permutation operatorPPQ is used

PPQf ~P,Q!5 f ~P,Q!2 f ~Q,P! ~6!

and the intermediates are defined as

FP
Q5ZP

Q1(
K

VPK
QK , ~7!

t IJ
AB5TIJ

AB1TI
ATJ

B2TJ
ATI

B , ~8!

HC
A5FC

A2 (
K,L,D

VCD
KL tKL

AD , ~9!

HI
K5FI

K1 (
L,C,D

VCD
KL t IL

CD , ~10!

HC
K5FC

K1(
L,D

VCD
KL TL

D , ~11!

GC
A5HC

A2(
K

FC
KTK

A1(
K,D

VCD
AKTK

D , ~12!

GI
K5HI

K1(
C

FC
KTI

C1(
L,C

VIC
KLTL

C , ~13!

AIJ
KL5VIJ

KL1PIJS (
C

VIC
KLTJ

CD 1 (
C,D

VCD
KL t IJ

CD , ~14!

BCD
AB5VCD

AB2PABS (
K

VCD
AKTK

BD , ~15!

HIC
AK5VIC

AK1(
L

VIC
KLTL

A2(
D

VCD
AKTI

D

1(
LD

VCD
KL S 12 TIL

AD2TI
DTL

AD . ~16!

B. Perturbational triples corrections

The error made in truncating the coupled-cluster expan-
sion of the wave function to single and double excitations of
the reference can be reduced significantly by introducing a
perturbative estimate of the connected triple excitations. The
most popular of such schemes, CCSD~T!,20 has shown to
give reliable results even in cases where the single-reference
approach starts to break down.21,22 This method includes
terms up to fifth order in perturbation theory. It has ann7

dependency on the number of orbitals, which is one order
less than the full CCSDT model. Recently, Deegan and
Knowles23 published a new method, CCSD-T, that differs
from CCSD~T! by an additional fifth order perturbation term.
This method gives slightly better results for the test cases
that they presented. We have implemented both formalisms
and, since the extension is trivial, also the older CCSD1T
formalism24 that includes only fourth order terms. We write
the relevant equations, following Deegan and Knowles as

DE~T!52 (
I,J,K

(
A,B,C

WABC
IJK

~WABC
IJK 2YABC

IJK !

eABC
IJK , ~17!

whereW is defined as

WIJK
ABC5PIJKPABCS (

E
VIE
ABTJK

EC1(
L

VIJ
ALTKL

BCD ~18!

with PPQR the three-index permutation operator

PPQRf ~P,Q,R!5 f ~P,Q,R!1 f ~Q,R,P!1 f ~R,P,Q!.
~19!

Y is defined differently for the three triples corrections. In
the simplest formulation, CCSD1T, Y is equal to zero. In
the CCSD~T! formalismY is defined as

YIJK
ABC5PIJKPABC~VIJ

ABTK
C1TIJ

ABFK
C!. ~20!
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In the CCSD-T formalismY is defined as

YIJK
ABC5PIJKPABC~TIJ

ABTK
C1 1

3 PIJTI
ATJ

BTK
C!e IJK

ABC . ~21!

eIJK
ABC is defined as the difference of spinor energies

e IJK
ABC5e I1eJ1eK2eA2eB2eC . ~22!

C. Restricted open shell zeroth order Hamiltonian

The choice of canonical or noncanonical spinors is im-
material for the form of the CCSD equations given above,
since we include possible nonzero off-diagonal Fock matrix
elements in the formalism. The particular choice of spinors
may, of course, still influence the results. For closed shells,
the obvious choice is to use canonical Hartree–Fock spinors.
In this case the spinors are related by time-reversal or Kram-
ers symmetry. This gives symmetry relations in the density
matrices and 2-electron integrals that may be utilized in the
Hartree–Fock self-consistent field procedure and the trans-
formation of the integrals to a molecular spinor basis. For
open shell systems one may choose to use a Kramers-
restricted formalism in which both components of a Kramers
pair are restricted to have the same fractional occupation.
This formalism is closely related to the ROHF scheme used
in nonrelativistic or scalar relativistic HF schemes. The ad-
vantage is that the same relations in the density and Fock-
matrices and 2-electron integrals hold as in the closed shell
case.

For the evaluation of the triples correction we need to
define the zeroth order Hamiltonian used in the perturbation
theory. In our formalism this is the diagonal operator

Ĥ05(
P

ePÊP
P . ~23!

The perturbation is consequently defined as

Ĥ15(
P,Q

UQ
PÊP

Q1 1
4 (
P,Q,R,S

VRS
PQÊPQ

RS . ~24!

The exact definition ofH0 andH1 is now dependent on
the choice of spinors~canonical spinors eliminate the matrix
U! and the value ofeP . This is of importance for the open
shell case where the Fock matrix will be nondiagonal and
different choices of Hartree–Fock schemes are possible.

It is important to note that ultimately the choice ofH0,
H1, and theeP quantities defines the perturbation theory that
is used to construct the1T, (T), and2T corrections for
connected triple excitations. There has been considerable
work over the last few years on single reference restricted
open-shell perturbation theories~e.g., see Refs. 25–28, and
references therein!, and without going in too much detail, it
has been shown that the characteristic most important for
developing a rapidly convergent open-shell perturbation
theory is that the orbital or spinor energieseP be different for
the occupied and unoccupied open-shell spin–orbitals or
spinors. For example, in the most successful nonrelativistic
restricted open-shell perturbation theories these differ by an
exchange integral. Most of these theories also have in com-
mon that a set of so-called semicanonical molecular orbitals

is defined which leaves the Fock matrix truly diagonal in the
occupied and virtual subspaces~this also has implications
regarding the orbital invariance of the perturbation energies,
see Ref. 29 for a detailed discussion!. Other recent studies
have investigated the effect of differenteP choices

30 and the
use of semicanonical orbitals31 on the CCSD~T! energies
from a numerical perspective. In agreement with previous
studies of restricted open-shell perturbation theories, Neo-
grády and Urban30 found perturbational triples corrections to
be better when using diagonal Fock matrix elementsFP

P, for
the eP quantities rather than orbital energies from the re-
stricted Hartree–Fock calculation. Both recent studies found
that the use of semicanonical orbitals had little effect on the
perturbational triples corrections. Therefore, in the present
study we choose theeP quantities to be the diagonal ele-
ments of the Fock matrix,FP

P, and the spinors to be the
Kramers-restricted open-shell Dirac–Hartree–Fock spinors.

A more rigorous approach to the open-shell problem
would be to extend the open-shell Kramers-restricted formal-
ism to the CCSD level. In such an approach one forces the
amplitudes to display the same symmetry relations as are
present in the integrals, similar to what Jayatilaka and Lee32

have done for nonrelativistic restricted open-shell coupled
cluster theory. This will also lead to a more efficient formal-
ism because the number of independent amplitudes and inte-
grals can be reduced. Since the CCSD~T! step in the present
implementation takes only a fraction of the time of a com-
plete 4-component relativistic calculation, and the accuracy
of the present method is satisfactory, we have not yet ex-
plored this possibility in detail.

The CCSD code is interfaced to theMOLFDIR ~Ref. 33!
program system, where the spinors are obtained using differ-
ent Fock operators for closed and open shells
respectively.34,35At convergence the Fock matrices are given
by

FL
M5ZL

M1 (
K

closed

VLK
MK1 f(

V

open

VLV
MV , ~25a!

FT
U5ZT

U1 (
K

closed

VIK
UK1a f(

V

open

VTV
UV , ~25b!

FD
E5ZD

E1 (
K

closed

VDK
EK1 f(

V

open

VDV
EV , ~25c!

FL
T5FL

D5FT
D50. ~25d!

LabelsL, M , andK refer to closed shell spinors,U, T,
andV refer to open shell spinors, andD, E, andF refer to
virtual spinors. The open shell spinors have a fractional oc-
cupation f (0, f,1) and a is a coupling constantm(n
21)/n(m21) with m the number of open shell spinors and
n the number of open shell electrons. This formalism be-
comes Kramers-restricted if we apply the constraint that the
two components of a Kramers pair always belong to the
same space~closed, open or virtual!.

In this scheme the spinors are uniquely defined, provided
that there are no degeneracies among spinors with the same
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symmetry character. Different choices of the open and closed
shell subspaces do, however, influence the form of the
spinors and hence of the zeroth order Hamiltonian. In the
sample calculation section we consider different ways of cal-
culating of the spin–orbit splitting of the ClO molecule and
of the chlorine atom to assess the sensitivity of the method to
a particular SCF scheme and hence to a different choice of
spinors.

III. POINT GROUP SYMMETRY

In the formulas given above we did not yet consider use
of point group symmetry. This can be done using double
group theory via the so-called group-chain method.36 The
group-chain method considers only the highest Abelian sub-
groups of the full symmetry group at the CCSD~T! level,
while it takes full point group symmetry into account up to
the molecular integral transformation step. The advantage of
this method is that the formulas remain simple, while it still
takes some account of speed-ups due to higher point group
symmetry by creating real-valued integrals instead of the
generally complex-valued integrals.

We have spinors that are symmetry functions of the
highest Abelian double point group of the molecule. These
spinors are labeled by the irreducible representation~irrep! g
of the point group with an indexp running over functions
within this irrep. This labeling makes it possible to discard
matrix elements that are zero due to symmetry. 1-electron
matrix elements are only nonzero when both spinors are in
the same Abelian irrepg. 2-electron matrix elements are
nonzero when the direct product of the four irreps involved
is the totally symmetric irrep. Since the double groups have
complex valued irreps it is of importance whether a spinor is
used as a bra- or ket-function when calculating this direct
product.

Consider for example the point groupC4. This double
group has four ‘‘fermion’’ irreps8E1, 9E1, 8E2, and9E2 and
four ‘‘boson’’ irreps a, b, 8e, and 9e. The integral
^8E19E2u8E19E2& belongs to irrep (8E1^ 9E2)* ^ (8E1
^ 9E2)5b* ^b5b^b5a. It is therefore in general nonzero.
If we permute indices 2 and 3 we have the integral
^8E18E1u9E29E2&, which belongs to irrep (8E1^ 8E1)*
^ (9E2^ 9E2)58e* ^ 9e59e^ 9e5b. This integral is always
zero.

We can now rewrite our equations in symmetry-reduced
form.37 For brevity we will not repeat all equations in this
form but give some representative examples. The energy ex-
pression becomes

ECCSD5(
g

(
i ,a

Fa
i ~g!Ti

a~g!

1(
g

(
g j

(
gb

(
i j ,ab

Vab
i j ~gb ,g j ,g!Ti j

ab~gb ,g j ,g!.

~26!

In the second term we only need to sum overgj and gb ,
sincegi and ga are fixed by the constraintsg i ^ g j5g and

ga^ gb5g. For the same reason we omit the redundant la-
belsgi andga in the matricesV andT. The third term in the
update ofT1 @Eq. ~4!# is written as

Ti
a~g!5(

c
Hc
a~g!Ti

c~g!. ~27!

The fourth term in the update ofT2 @Eq. ~5!# is written as

Ti j
ab~gb ,g j ,g!5(

g i
(
kl

Ai j
kl~g j ,g l ,g!tkl

ab~g l ,gb ,g!.

~28!

For the 4-index arrays different symmetry-orderings are pos-
sible. For the update in Eq.~28! it is most convenient to
combine both thei and j and thek and l indices into the
compound indicesi j andkl. For other terms other orderings
of the arrays are preferable. For instance in the evaluation of
the last term in theT1 update@Eq. ~4!# we write

Ti
a~g!5(

gckl
(
kl,c

Vic
kl~g,gckl ,g!tkl

ac~gckl ,g,g!. ~29!

In this casegi andga are equal tog.
In general we can distinguish four different types of or-

dering in the 4-index arrays, symbolically written as~3:1! or
(gpqr ,gs), ~1:3! or (gp ,gqrs), ~2:2!1 or (gpq ,g rs) and~2:2!2
or (gpr ,gqs). A block gpqr is hereby further subdivided ei-
ther as (gpq ,g r) or as (gp ,gqr). For the two-index com-
pound indices one can often use triangular indicespq(p.q)
because of the permutation symmetryXPQRS52XQPRS that
most of the intermediate arrays possess.

IV. IMPLEMENTATION

The algorithm sketched above has been implemented in
the FORTRAN codeRELCCSD. Prerequisites are a list of inte-
grals over molecular 4-spinors and the multiplication table of
the Abelian double group of the system.

Integrals are symmetry-packed and sorted into the six
types~^ooioo&, ^voioo&, ^vvioo&, ^voivo&, ^vvivo& and
^vvivv& with o5occupied,v5virtual! before the iterative
process is started. This is at present done using a built-in
interface to theMOLFDIR integral transformation codes which
gives a Kramers-unique list of integrals. The^vvivv& array
is in general too large to fit in central memory. TheT2 update
that involves this class of integral is therefore written to
work with fixed-size batches of integrals. The same is done
in the CCSD step with the contributions from the second-
largest class, thê vvivo& integrals. The final minimal
memory requirements of the CCSD step are of the order of
six times theT2 amplitude vector and of four times this vec-
tor plus the length of thêvvivo& array in the CCSD~T!
step.

As standard order, according to which the integrals are
stored on disk, we have chosen~2:2!1. Terms that are more
efficiently evaluated in other orderings are treated using an
in-core sort before and after the actual matrix-multiplication.
Since these sorts are of ordern4 at most, they are of vanish-
ing importance in the cpu-performance of the program when
the system treated becomes larger.
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The crucial steps in the algorithm are the evaluations of
formulas~9!–~16! and ~18!, ~20!, and~21!. We have imple-
mented these using the BLAS routines XGEMM, XGEMV,
XAXPY, and XDOT with X5S, D, C, or G for single/double
precision and real/complex arithmetic. In theFORTRAN code
we use no explicit real or complex arithmetic but pass point-
ers to arrays that may contain either real or complex data.
Only when the routines XGEMM, etc. are called the distinc-
tion between complex/real single/double precision is made
and the appropriate BLAS routine is called. At the higher
level we only need to calculate the correct sizes of the arrays
in terms of 8-byte real words. This present implementation
makes it possible to run the same source code on 32 and 64
bit machines and use complex or real arithmetic depending
on the appropriate double point group.

Some machine-specific code was written to increase the
performance on CRAY-J932 and C90 computers. This ver-
sion of the code uses dynamical allocation of memory and
reduces I/O by keeping integrals in core memory when pos-
sible.

V. SAMPLE CALCULATIONS

We present some calculations based on the Dirac–
Coulomb–Gaunt Hamiltonian to illustrate the use of the for-
malism derived above. This Hamiltonian includes all terms
to ordera2 which contribute to the spin–orbit splitting, i.e.,
in terms of the Breit–Pauli Hamiltonian, the spin-own-orbit
and spin-other-orbit terms are included as well as all the
spin–spin terms. The inclusion of these terms has been found

necessary to obtain quantitative predictions of spin–orbit
splittings for light atoms. The basis sets employed were
based on the aug-cc-pVTZ sets from Dunning and
co-workers,38–40 extended and recontracted to account for
the relativistic change in the orbitals.41,42 The relativistic
contraction coefficients for the oxygen basis set were not
published previously and are obtained using a modified
version43 of GRASP.44 To describe the relativistic contrac-
tion of the 2p1/2 spinor of oxygen one extra tightp-function
with exponent 196.388 225 0 was added before recontracting
Dunning’s basis.

A. ClO

The ClO radical is an example of a molecule with a
spin–orbit split ground state. Since the spin–orbit splitting in
chlorine is considerably larger than in oxygen it is of impor-
tance where the open shell electron is mainly located. The
accuracy with which this location is determined will depend
on how well the method used describes the electron affinities
of the constituent atoms, and since these are poorly described
at the SCF level of theory, we expect electron correlation to
be important for the calculation of the fine-structure-splitting
in ClO.

To study the influence of the choice of SCF procedure
we use two schemes to generate the spinors. In scheme a we
use different sets of spinors for the two components of the
2P ground state. We generate spinors for the2P3/2 state by
including thep1/2* spinors in the closed shell space and giv-
ing the p3/2* spinors a fractional occupation of 1/2. In the

TABLE I. Total energies~hartrees! and fine structure splitting~FSS, cm21! of the2P ground state of ClO. The
ClO bond length used is 2.9662a0 ~Ref. 46!.

Method

2 sets of spinors~scheme a! 1 set of spinors~scheme b!

E ~2P1/2! E ~2P3/2! FSS E ~2P1/2! E ~2P3/2! FSS

Reference 2535.683 377 2535.684 403 2225.2 2535.682 425 2535.683 454 2225.9
CCSD 2536.115 396 2536.116 775 2302.6 2536.115 305 2536.116 688 2303.5
CCSD1T 2536.136 619 2536.138 061 2316.4 2536.138 095 2536.136 644 2318.5
CCSD~T! 2536.134 477 2536.135 902 2312.6 2536.134 516 2536.135 939 2312.4
CCSD-T 2536.134 337 2536.135 770 2314.5 2536.134 401 2536.135 838 2315.3

Expt.a 2318 2318

aReference 46.

TABLE II. Total energies~hartrees! and fine structure splittings~FSS, cm21! of the 2P state of the chlorine
atom. Cl is treated as a 7 valence electron atom.

2 sets of spinors~scheme a! 1 set of spinors~scheme b!

E ~2P1/2! E ~2P3/2! FSS E ~2P1/2! E ~2P3/2! FSS

Reference 2460.813 946 2460.817 928 2873.7 2460.813 862 2460.817 912 2888.9
CCSD 2461.005 285 2461.008 986 2812.3 2461.005 173 2461.008 937 2826.1
CCSD1T 2461.011 536 2461.015 456 2860.4 2461.011 416 2461.015 405 2875.6
CCSD~T! 2461.011 596 2461.015 453 2846.6 2461.011 477 2461.015 403 2861.5
CCSD-T 2461.011 601 2461.015 453 2845.4 2461.011 483 2461.015 403 2860.3

Expt.a 2882.4 2882.4

aReference 47.
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same fashion we generate a set of spinors for the2P1/2 state
by making the opposite choice; we include thep3/2* in the
closed shell space and place thep1/2* in the open shell. In
scheme b we generate a common set of spinors for both
states by including bothp1/2* and thep3/2* spinors in the open
shell space with a fractional occupation of 3/4.

The 1s-spinors of O and the 1s, 2s, 2p spinors of Cl
were frozen after the SCF step, giving an active space of 13
electrons in the correlation calculation. The results for both
schemes are given in Table I.

From the results in Table I it is evident that a SCF treat-
ment alone is insufficient to obtain a reliable fine-structure-
splitting for this molecule, and even the CCSD treatment
falls short of experiment by 15 cm21. We also see that the
particular choice of SCF occupation is not very important for
the CCSD result. The most complete level of theory, the
CCSD-T level, yields a fine-structure-splitting that is 3 cm21

smaller than the experimental value of2318 cm21.
We can compare with the previous theoretical work by

Koseki, Schmidt, and Gordon.45 They used effective one-
electron one-center spin–orbit operators that were calibrated
against known fine-structure-splittings. They find2255.65
cm21 using the MCSCF/6-31G(d,p) method and2258.96
cm21 with the MCSCF/MC-311G(d,p) method. This rather
large discrepancy with the experimental value may be due to
either the limited electron correlation included in the
MCSCF method or the one-electron one-center approxima-
tions.

B. Cl atom

For the Cl atom we again test the influence of the SCF-
procedure on the results. We have 5 3p electrons that give
rise to a spin–orbit split2P ground state. The spinors are
split into a set of two 3p1/2 spinors and a set of four 3p3/2

spinors. In scheme a, where we use two sets of spinors, we
generate spinors for the2P3/2 state by including the 3p1/2
spinors in the closed shell space and giving the 3p3/2 spinors
a fractional occupation of 3/4. In the same way we generate
spinors for the2P1/2 state by making the opposite choice; we
include the 3p3/2 in the closed shell space and give the open
shell 3p1/2 spinors a fractional occupation of 1/2. In scheme
b we generate a common set of spinors for both states by
including both 3p1/2 and the 3p3/2 spinors in the open shell
space and giving them a fractional occupation of 5/6. The
1s,2s,2p spinors of Cl were frozen after the SCF step, giving
an active space of 7 electrons in the correlation calculation.
The results for both schemes are given in Table II.

We see that the particular choice of SCF occupation now
influences the result significantly. It is also clear that al-
though the reference FSS value is close to the experimental
value, correlation effects are large. Inclusion of only single
and double excitations as is done in the CCSD model is
insufficient in this case. Higher order corrections are very
important and their omission results in significant errors in
the splitting. The most important correlating configurations
come from a single excitation from the 3s into the 3d shell
with recoupling of the 3p electrons, which is partly balanced
by the triple excitation term. In Cl we can isolate the effect
of this 3s–3d excitation by freezing the 3s electrons and
treating the atom as a 5 valence electron system~Table III!.
This reduces the effect of correlation dramatically. In this
case the difference between schemes a and b is also much
smaller. The large effect of higher order excitations is not as
apparent in ClO, because the recoupling of the 3p shell is no
longer possible due to the molecular environment.

This illustrates the limitations of the method. Results
may vary slightly according to the choice of spinor genera-
tion method. In cases where the spin–orbit splitting is rela-

TABLE III. Total energies~hartrees! and fine structure splittings~FSS, cm21! of the 2P state of the chlorine
atom. Cl is treated as a 5 valence electron atom.

2 sets of spinors~scheme a! 1 set of spinors~scheme b!

E ~2P1/2! E ~2P3/2! FSS E ~2P1/2! E ~2P3/2! FSS

Reference 2460.813 946 2460.817 928 2873.7 2460.813 862 2460.817 912 2888.9
CCSD 2460.925 752 2460.929 763 2880.4 2460.925 658 2460.929 723 2892.1
CCSD1T 2460.929 423 2460.933 415 2876.3 2460.929 322 2460.933 373 2889.0
CCSD~T! 2460.929 418 2460.933 410 2876.1 2460.929 319 2460.933 368 2888.6
CCSD-T 2460.929 421 2460.933 413 2876.1 2460.929 323 2460.933 370 2888.7

Expt.a 2882.4 2882.4

aReference 47.

TABLE IV. Total energies~hartrees! and fine structure splitting~FSS,
cm21! of the2Pg ground state of O2

2 . The O–O distance used is 2.5511a0.

Reference CCSD CCSD~T! CCSD-T

E ~2P1/2! 2149.727 333 2150.228 232 2150.252 157 2150.251 569
E ~2P3/2! 2149.728 167 2150.228 965 2150.252 874 2150.252 286

FSS 2183.0 2161.0 2157.4 2157.5

TABLE V. Total energies~hartrees! and fine structure splitting~FSS, cm21!
of the 2Pg ground state of O2

1 . The O–O distance used is 2.1097a0.

Reference CCSD CCSD~T! CCSD-T

E ~2P1/2! 2149.315 097 2149.775 451 2149.798 452 2149.797 866
E ~2P3/2! 2149.314 086 2149.774 538 2149.797 552 2149.796 965

FSS 221.8 200.4 197.6 197.7
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tively small, the best choice appears to use one set of spinors
for the different spin–orbit components, as has been found in
numerical atomic calculations. This is computationally
favourable, since one needs only one SCF calculation and
4-index transformation. The reference splitting is also usu-
ally somewhat better due to the more balanced treatment of
the different components. We will use scheme b for the next
set of calculations on O2

1 , O2
2 , and FO.

C. O2
1 and O2

2

The positive and negative ions of the oxygen molecule
have a spin–orbit split2P ground state. We did the same
type of calculations as described above for ClO with a va-
lence space of 11 active electrons and 13 active electrons for
O2

1 and O2
2 , respectively. The results are given in Tables IV

and V.
The CCSD~T! and CCSD-T values are both in good

agreement with the experimental value of2160 cm21 for O2
2

and 197.3 cm21 for O2
1 . Electron correlation in both cases

reduces the splitting.

D. FO

The FO molecule has the same valence electron configu-
ration as ClO. Taking the average of the CCSD~T! and
CCSD-T values and rounding to the nearest whole number,
we calculate the FSS for FO to be2195 cm21. Since the
CCSD-T result should have a similar accuracy as found for
the calculations on ClO and O2

2 and also because the corre-
lation contribution is considerably smaller for FO relative to
ClO and O2

2 , we believe that this will be accurate to64
cm21 ~see Table VI!. The experimental value48 of
2193.80~97! confirms the accuracy of the method.

We can compare with previous theoretical work by Ko-
seki, Schmidt, and Gordon,45 who used effective one-
electron one-center spin–orbit operators that were calibrated
against known fine-structure-splittings. They find2187.90
cm21 using the MCSCF/6-31G(d,p) method, which is in
reasonable agreement with our best value of2195 cm21.
Their approximate scheme usually gives results that are
within 20% of the experimental value, which is consistent
with our findings.

It is interesting to note that for all the molecules studied,
the effect of the triples correction on the FSS was a shift in
the same direction as the CCSD correlation correction, but
for the Cl atom the corrections were in opposite directions.

The special nature of the atomic correlation problem in the
Cl atom that affects the triples correction has been pointed
out already.

VI. CONCLUSIONS

An unrestricted coupled-cluster formalism is presented
for use in relativistic spin-dependent molecular calculations.
The method has been implemented and interfaced to the
MOLFDIR program system. Double group theory is used to
reduce computational requirements. The present implemen-
tation makes it possible to perform CCSD~T! calculations for
molecular systems using the full 4-component Dirac–
Coulomb–Gaunt Hamiltonian. This provides a scheme in
which the accuracy is mainly dependent on the quality and
size of the basis sets that can be used instead of on the
approximations made in the treatment of relativity.

The predicted fine structure splittings in Cl, ClO, FO,
O2

1 , and O2
2 are within a few wave numbers from the experi-

mental values. This gives confidence that this method may
give reliable predictions of the fine structure splittings of
similar compounds for which experimental data are not
available.
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