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Abstract

The formulation of optimal control problems governed by Cauchy-
Riemann equations is presented. A distributed control mechanism through
divergence and curl sources is considered with the boundary conditions
of mixed type. A Lagrange multiplier framework is introduced to char-
acterize the solution to Cauchy-Riemann optimal control problems as
the solution of an optimality system of four first-order partial differential
equations and two optimality conditions.

To solve the optimality system, staggered grids and multigrid meth-
ods are investigated. It results that staggered grids provide a natural
collocation of the optimization variables and second-order accurate solu-
tions are obtained. The proposed multigrid scheme is based on a coars-
ening by a factor of three that results in a nested hierarchy of staggered
grids. On these grids a distributed-Gauss-Seidel and gradient-based
smoothing scheme is employed.

Results of numerical experiments validate the proposed optimal con-
trol formulation and demonstrate the effectiveness of the staggered-grids
multigrid solution procedure.
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1 Introduction

Control of systems governed by partial differential equations (PDE) is becom-
ing a very important field of research in applied mathematics with industrial
applications. The purpose of control of PDE models is manifold and it ad-
dresses the need to define ways of how to optimally change and influence
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application systems to meet a desired target. The resulting problems require
to realize large-scale optimization strategies with increasing complexity and
this fact motivates the development of fast iterative schemes for optimization
purposes.

Within this research framework, first-order PDE models represent a much
less investigated subject despite of the fact that they constitute important
application models as Euler equations and Maxwell equations. We focus on
Cauchy-Riemann (CR) equations that are representative of elliptic first-order
PDE systems [2] and are a prototype model of all div-curl systems. In appli-
cations, our motivation to study CR equations is the fact that they govern the
velocity field of subsonic compressible inviscid flows [19, 22].

We formulate CR control problems based on the optimization framework
provided by the infinite-dimensional PDE optimal control theory [16, 17, 20].
In this framework, we consider a governing Cauchy-Riemann system with
mixed Dirichlet and Neumann boundary conditions. We choose a control mech-
anism of distributed type through div- and curl-source terms and a tracking
criterion defining the objective of the control and including the cost of its ac-
tion. Our optimal control problem is then formulated as the minimization of
the tracking objective under the constraint given by the CR equations.

While optimization with second-order partial differential equations has re-
ceived much attention [16, 20], much less is known on optimization problems of
the type considered in this paper; see [12] for a Galerkin-least-squares method
for solving first-order elliptic control problems. Our purpose is to discuss the
formulation of CR optimization problems and to present a multigrid strategy
to solve the corresponding optimality systems.

In the next two sections, we introduce the functional setting and formulate
a div-curl problem in two-dimensional domains. We discuss well-posedness
of the model problem illustrating existence and uniqueness of solutions to
the CR equations. In Section 4, we formulate Cauchy-Riemann optimal con-
trol problems and prove existence and uniqueness of optimal solutions. In
particular, we discuss the characterization of these solutions as solutions to
optimality systems consisting of four first-order PDE equations and two opti-
mality conditions. In Section 5, we present a second-order approximation to
the CR optimality system by staggered grids on non-uniform meshes. In our
approach, a natural collocation of the optimization variables is obtained thus
avoiding any interpolation of variables in the formulation of the discretized
CR optimality system. In Section 6, we illustrate our multigrid approach for
solving the optimality system. First, we notice that a coarsening by a factor
of three is advantageous to solve the optimality system on a staggered grid. In
fact, in contrast to the standard approach of using a factor of two also in com-
bination with staggered grids, in our scheme a nested hierarchy of staggered
grids is obtained that results in more accurate and easy to implement inter-
grid transfer operators. Further, we focus on the development of distributed
Gauss-Seidel relaxation schemes where the control functions are updated using
a gradient-based approach. The resulting smoothing scheme is embedded in
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a non-linear multigrid procedure which can also accommodate possible non-
linearities and constraints on the controls. In Section 7, we report results of
numerical experiments to validate our CR optimal control formulation and
the staggered-grid multigrid solution procedure. These results demonstrated
second-order accuracy of the optimal solutions and the ability of the multigrid
scheme to solve the optimality system for different optimization parameters
with mesh-independent convergence factors. A section of conclusion completes
this work.

2 Model Problem

We consider a computational domain Ω in R2 with (x, y) coordinates and
piecewise smooth boundary and n = (nx, ny) is the unit outward normal vec-
tor to the boundary. Referring to [1], the function space Hs(Ω) denotes the
Sobolev space of order s ≥ 0 of real valued functions defined on Ω. The space
Hs(Ω) is equipped with the Sobolev norm ‖ · ‖s and associated seminorm | · |s.
In particular, s = 0 signifies the L2(Ω) space and corresponding norm in-
duced by the L2(Ω) inner product (·, ·). A similar notation is used to denote
norms in the product spaces Hs(Ω) = Hs(Ω) ×Hs(Ω). The inner product in
L2(Ω) = L2(Ω)× L2(Ω) is also denoted by (·, ·).

Let f1, f2 ∈ L2(Ω), and P (f1, f2) denotes the following div-curl system in
two-dimensions

div w = f1 in Ω (1)

curl w = f2 in Ω, (2)

where w = (u, v) are the state variables, f = (f1, f2) are the divergence-source
and curl-source terms, and we have

div w := ∂xu+ ∂yv and curl w := ∂xv − ∂yu,

subject to the following boundary conditions

w × n = 0 on ΓD, (3)

w · n = 0 on ΓN = ∂Ω \ ΓD. (4)

That is, uny − v nx = 0 on ΓD and unx + v ny = 0 on ΓN . Here, ΓD and ΓN
denote Dirichlet and Neumann boundaries, respectively.

In the following, it is also convenient to consider a general three-dimensional
setting. In this case, we write (1) and (2) in a differential vector notation as
follows

∇ ·w = f1 in Ω (5)

∇×w +∇φ = f2 in Ω (6)

where w = (u, v, t) and φ is a scalar function that must be added to have a
well-defined set of four first-order partial differential equations [12]. Additional
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conditions of φ are required that depend on the boundary condition settings.
We postpone this discussion to the section on the optimal control formulation
where we show that φ is actually a zero function.

We consider boundary conditions of mixed type as follows

w × n = 0 on ΓD, (7)

w · n = 0 on ΓN = ∂Ω \ ΓD, (8)

where n = (nx, ny, nz). Notice that the three-dimensional setting reduces to
the two-dimensional case assuming that all variables do not depend on the
third z-coordinate in Ω ⊂ R3 and φ does not appear.

For more insight in the boundary condition formulation, consider a square
domain Ω = (0, 1)× (0, 1), where ΓD = (0, 1)× {0} and ΓN = ∂Ω \ ΓD. This
corresponds to the following

u = 0 on Γ1 = (0, 1)× {0}
u = 0 on Γ2 = {0} × (0, 1)

u = 0 on Γ3 = {1} × (0, 1)

v = 0 on Γ4 = (0, 1)× {1}

Interpreting w = (u, v) as a velocity vector field in Ω, we can see that the
Dirichlet boundary conditions correspond to the assignment of the tangen-
tial velocity on the boundary, while on the Neumann boundary the normal
component of the velocity is assigned.

It is not a restriction to consider homogeneous boundary conditions since a
non homogeneous problem can be converted to an homogeneous one; see [24].

3 Well-posedness of the model problem

To discuss well-posedness of the model problem (1)-(4), we remark that the
solution to the P (f1, f2) problem can be obtained as the sum of the solution
to the P (f1, 0) and the solution to the P (0, f2) problems.

Consider the problem P (f1, 0) and define the ‘potential function’ ϕ, such
that

∂xϕ = u, ∂yϕ = v in Ω.

Based on (1)-(4), we have that ϕ satisfies the following boundary value problem

∆ϕ = f1 in Ω,

ϕ = c on ΓD, (9)

∂ϕ

∂n
= 0 on ΓN ,

where c stands for a real constant. According to [11], a solution ϕ to this
problem exists inH2(Ω) and is unique. Therefore P (f1, 0) has a unique solution
w1 ∈ H1(Ω).
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Next, we consider the problem P (0, f2) and define the ‘stream function’ ψ
by

∂xψ = v, ∂yψ = −u in Ω.

From (1)-(4) it follows that ψ satisfies

∆ψ = f2 in Ω,
∂ψ

∂n
= 0 on ΓD, (10)

ψ = c on ΓN ,

where c stands for a real constant. It follows that there exist a unique solution
to (10) in H2(Ω). Therefore P (0, f2) has a unique solution w2 ∈ H1(Ω) and
hence P (f1, f2) has a unique solution w = w1 + w2 ∈ H1(Ω).

The setting of the potential and stream function problems show that P (f1, f2)
is not well-posed in the case of boundary conditions of a unique type. In fact in
the case of Neumann boundary conditions, w · n = 0 on ∂Ω, we have that the
problem is well posed only if the following compatibility condition is satisfied∫

Ω

f1dx = 0. (11)

In the case of Dirichlet boundary conditions, w × n = 0 on ∂Ω, we have that
the condition ∫

Ω

f2dx = 0 (12)

must be satisfied in order to have a well-defined problem.
For all well-posed CR problems that we have discussed, the following holds

‖w‖H1(Ω) ≤ c‖f‖L2(Ω) (13)

where c is a real constant. Moreover, the map

L2(Ω) 3 f 7→ w(f) ∈ H1(Ω),

defined by the unique solution of the div-curl system is continuous and Fréchet
differentiable [12].

4 Formulation of Cauchy - Riemann optimal

control problems

We consider the following CR optimal control problem

min J(u, v, f, g) :=
1

2
‖w −W‖2

L2(Ω) +
α

2
‖f‖2

L2(Ω) +
β

2
‖g‖2

L2(Ω), (14)

subject to (f, g) ∈ L2(Ω) and

div w = f (15)

curl w = g (16)
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and mixed boundary conditions given by

w × n = 0 on ΓD, (17)

w · n = 0 on ΓN = ∂Ω \ ΓD. (18)

We denote with W = (U, V ) ∈ L2(Ω) the target function and α, β > 0 are the
weights of the costs of the controls.

Notice that the objective function J is convex and the constraints are linear.
Thus existence of a unique solution to (14)-(18) and its characterization can be
shown based on classical techniques [16, 17, 20]. For this purpose, we consider
a three-dimensional setting and define the Lagrangian

L(u, v, p, q, φ, f, g) = J(u, v, f, g) + (∇·w− f, p) + (∇×w +∇φ−g,q). (19)

In this formulation, the unique solution to the optimal control problem satisfies
the extrema conditions for the Lagrangian, that are the first-order optimality
conditions. Therefore, we have to evaluate the Fréchet derivatives ∇pL, ∇qL,
∇uL, ∇vL, ∇φL, ∇fL, and ∇gL. We easily obtain

(∇pL, δp) = (∇ ·w − f, δp),
(∇qL, δq) = (∇×w +∇φ− g, δq),

(∇fL, δf) = (αf − p, δf),

(∇gL, δg) = (βg − q, δg).

We also have that

(∇φL, δφ) = (∇δφ,q) = −
∫

Ω

(∇ · q) δφ dx+

∫
∂Ω

δφ (q · n) ds. (20)

Next, consider the computation of (∇wL, δw). We have

(∇wL, δw) = (w −W, δw) + (∇ · δw, p) + (∇× δw,q)

= (w −W, δw)− (∇p, δw) +

∫
∂Ω

p (δw · n) ds

+ (∇× q, δw) +

∫
∂Ω

(q× n) · δw ds (21)

We are now ready to formulate the optimality conditions. First, we have

∇ ·w − f = 0,

∇×w +∇φ− g = 0,

αf − p = 0,

βg − q = 0.

Requiring (∇φL, δφ) = 0 for any δφ ∈ H1(Ω), the following equation must
hold

∇ · q = 0 in Ω. (22)
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Further, we require (∇wL, δw) = 0 for all δw ∈ H1(Ω) that satisfy the
homogeneous boundary conditions (17)-(18). Because δw · n = 0 on ΓN , we
must have

p = 0 on ΓD. (23)

Similarly, because δw × n = 0 on ΓD, we obtain

q = 0 on ΓN . (24)

Using this last result in (20), we obtain the following boundary condition,
δφ = 0 on ΓD. Moreover, taking the divergence of the curl equation gives
∆φ = 0 because from (22) we have ∇ · g = ∇ · q/β = 0. Therefore we obtain
φ = 0 in Ω.

As a result, we have the equation

∇× q−∇p+ w −W = 0 in Ω. (25)

Now, let us consider the two-dimensional case. We have that the first two
components of q = (q1, q2, q3) are differentiated with respect to z and therefore
they do not appear in (25). However, from (22) we have div (q1, q2) = 0, which
is satisfied by q1 = 0 and q2 = 0. For this reason and for notational convenience,
we take q = (0, 0,−q). It follows that

(∇× q, δw)− (∇p, δw) = −
∫

Ω

δu
∂q

∂y
dx+

∫
Ω

δv
∂q

∂x
dx−

∫
Ω

δu
∂p

∂x
dx−

∫
Ω

δv
∂p

∂y
dx.

In addition, we have (w −W, δw) = (u− U, δu) + (v − V, δv).
Thus we can write the adjoint div-curl system in two dimensions as follows

∂xp+ ∂yq = (u− U) in Ω (26)

∂xq − ∂yp = −(v − V ) in Ω (27)

with boundary conditions given by{
p = 0 on ΓD
q = 0 on ΓN

(28)

Summarizing, the solution of the Cauchy-Riemann optimal control problem
is characterized as the solution to the following CR optimality system

∂xu+ ∂yv = f in Ω
∂xv − ∂yu = g in Ω
uny − v nx = 0 on ΓD
unx + v ny = 0 on ΓN
∂xp+ ∂yq = (u− U) in Ω
∂xq − ∂yp = −(v − V ) in Ω

p = 0 on ΓD
q = 0 on ΓN

αf − p = 0 in Ω
βg + q = 0 in Ω

7



Theorem 1 Assume existence and uniqueness of solution to (15)-(18) and
define the gradients ∇f Ĵ(f, g) := α f − p and ∇gĴ(f, g) := β g + q, where p
and q are the solution to the adjoint CR system (26)-(28). Then the control
problem (14)-(18) has a unique solution in L2(Ω) if and only if ∇f Ĵ(f, g) = 0

and ∇gĴ(f, g) = 0. Therefore, the optimal solution is characterized as the
solution of the first-order optimality system.

Proof. Since the forward Cauchy-Riemann problem (15)-(18) has a unique
solution w = (u, v) for given f = (f, g), we denote this dependence by w =
w(f). Therefore, to discuss existence and characterization of the unique so-
lution to (14)-(18), we can introduce the so-called reduced cost functional Ĵ
([16, 17]) given by

Ĵ(f) = J(w(f), f), (29)

In fact, the optimal solution corresponds to the unique minimizer of Ĵ(f).
Recall that the map L2(Ω) 3 f 7→ w(f) ∈ H1(Ω) is affine and continuous and
Fréchet differentiable. Let us denote its first derivative at f in the direction
δf = (δf, δg) by w′(f) δf . It is characterized as the solution to

div (w′(f) δf) = δf (30)

curl (w′(f) δf) = δg (31)

subject to mixed boundary conditions. The second derivative of f 7→ w(f) is
zero, due to the linear dependence of the governing CR model on the controls.

Next, from (14) we find for the second derivative of f → Ĵ(f) the following

Ĵ ′′(f)(δf , δf) = ‖w′(f) δf‖2
L2(Ω) + α ‖δf‖2

L2(Ω) + β ‖δg‖2
L2(Ω),

and thus f → Ĵ(f) is uniformly convex. This implies existence of a unique solu-
tion f∗ to the optimization problem; we denote this solution with ∗. Moreover,
the minimum is characterized by Ĵ ′(f∗; δf) = 0 for all δf and consequently

Ĵ ′(f∗; δf) = (w∗−W,w′(f∗) δf)L2(Ω)+α(f ∗, δf)L2(Ω)+β(g∗, δg)L2(Ω) = 0, (32)

where w∗ = w(f∗). To remove w′ from this equation, we introduce the La-
grange variables (p∗, q∗) ∈ H1(Ω) as the unique solution to the adjoint equa-
tions (26)-(28). Since

(u∗ − U) = ∂xp
∗ + ∂yq

∗

−(v∗ − V ) = ∂xq
∗ − ∂yp∗,

we replace w∗ −W in (32) and using (30)-(31) with the the Gauss-Green
theorem [9], we obtain

Ĵ ′(f∗; δf) = −(p∗, δf)L2(Ω) + α(f ∗, δf)L2(Ω) + (q∗, δg)L2(Ω) + β(g∗, δg)L2(Ω)

= (α f ∗ − p∗, δf)L2(Ω) + (β g∗ + q∗, δg)L2(Ω) = 0, (33)

for all δf ∈ L2(Ω). Thus, we have obtained the gradient of the reduced cost
functional, ∇f Ĵ(f, g) := α f − p and ∇gĴ(f, g) := β g + q, and formally

∇Ĵ(f∗) = 0 constitutes the necessary and sufficient (because of convexity)
optimality condition for the CR optimal control problem.
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5 Discretization of the CR optimality system

In this section, we illustrate the discretization of the CR optimality system
by finite difference approximations on staggered grids [4]. This discretization
framework is typical in the approximation of first-order partial differential
systems [13]. We provide implementation details and notice the advantageous
collocation of the optimization variables.

Consider a sequence of grids {Ωh}h>0 defined by

Ωh = {x = (xi, yj) ∈ R2 : xi = i hx, yj = j hy, i, j ∈ Z} ∩ Ω.

We assume that Ω is a rectangular domain and that the values of hx and hy are
chosen such that the boundaries of Ω coincide with grid lines. On staggered
grids, variables may be placed on cell vertices, cell centers, and cell edges that
can be horizontal and vertical. We denote these sets of grid points with Ωs

h,
s ∈ {v, c, eh, ev} with the obvious meaning of the alphabetic index. Notice
that within the same set the grid points are spaced with hx and hy intervals
in the x- and y-direction, respectively.

For grid functions vh and wh defined on the same set Ωs
h, we introduce the

discrete L2-scalar product

(vh, wh)L2
h(Ωs

h) = hx hy
∑
x∈Ωs

h

vh(x)wh(x),

with associated norm ‖vh‖L2
h(Ωs

h) = (vh, vh)
1/2

L2
h(Ωs

h)
. We require as well the dis-

crete H1-norm given by

‖vh‖H1
h(Ωs

h) =
(
‖vh‖2

L2
h(Ωs

h) + ‖∂hxvh‖2
L2
h(Ωs

h) + ‖∂hy vh‖2
L2
h(Ωs

h)

)1/2

,

where ∂hx and ∂hy denote the following difference quotients in the x- and y-
direction, respectively. We have

∂hxv(x, y) =
v(x+ hx, y)− v(x, y)

hx
∂hy v(x, y) =

v(x, y + hy)− v(x, y)

hy
.

Here vh is extended by 0 on grid points outside of Ω; see [15]. The spaces
L2
h(Ω

s
h) and H1

h(Ωs
h) consist of the sets of grid functions vh defined on Ωs

h

endowed with ‖vh‖L2
h(Ωs

h), respectively ‖vh‖H1
h(Ωs

h), as norm. In the following,

we denote with Uh, Vh, Ph, and Qh the space of the grid functions uh, vh, ph,
and qh, that approximate the state and adjoint variables, respectively.

We first discuss the discretization of the Cauchy – Riemann state model.
In the staggered grid the variable u is defined on Ωev

h while v is defined on Ωeh
h ;

see Figure 1.
We consider a unique set of grid indices (i, j), i = 1, . . . , Nx + 1, j =

1, . . . , Ny that index all grid points including the boundaries in a lexicographic
order starting from the lowest-left corner i = 1, j = 1. The vertices coordinates
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are given by xi = (i − 1)hx and yj = (j − 1)hy. With vi+1/2,j+1/2 we mean
the discrete counterpart to v(xi + hx/2, yj + hy/2). The set of CR equations
is given by

ui+1,j − ui,j
hx

+
vi+1/2,j+1/2 − vi+1/2,j−1/2

hy
= fi+1/2,j, on Ωc

h (34)

vi+1/2,j+1/2 − vi−1/2,j+1/2

hx
− ui,j+1 − ui,j

hy
= gi,j+1/2, on Ωv

h (35)

where the divergence equation (34) is centered at all internal cell centers and
the curl equation is centered at all internal cell vertices. With this discretiza-
tion, second-order accurate solutions are obtained [10].

Next, we notice that the optimality conditions α f − p = 0 and β g+ q = 0
suggest that the staggered grid for the adjoint CR system should be such that
p, similarly to f , is defined on Ωc

h, and q, similarly to g, is defined on Ωv
h. In

this way, we implement a direct coupling between state, adjoint, and control
variables without the need of interpolation. Therefore, we have the discrete
adjoint CR system as follows

pi+1/2,j − pi−1/2,j

hx
+
qi,j+1/2 − qi,j−1/2

hy
= (u− U)i,j, on Ωev

h (36)

qi+1,j+1/2 − qi,j+1/2

hx
−
pi+1/2,j+1 − pi+1/2,j

hy
= −(v − V )i+1/2,j+1/2, on Ωeh

h(37)

In Figure 1, we depict the staggered grid for the optimality system, includ-
ing the allocation of all variables. Notice that with our approach based on the
optimality conditions, the variables f , p, and the variables g, q, share the same
location and as a by-product they are appropriately located on the boundaries
in order to implement the boundary conditions.

Summarizing, the discrete Cauchy – Riemann optimality system results as
follows

ui+1,j−ui,j
hx

+
vi+1/2,j+1/2−vi+1/2,j−1/2

hy
= fi+1/2,j, on Ωc

h
vi+1/2,j+1/2−vi−1/2,j+1/2

hx
− ui,j+1−ui,j

hy
= gi,j+1/2, on Ωv

h
pi+1/2,j−pi−1/2,j

hx
+

qi,j+1/2−qi,j−1/2

hy
= (u− U)i,j, on Ωev

h
qi+1,j+1/2−qi,j+1/2

hx
− pi+1/2,j+1−pi+1/2,j

hy
= −(v − V )i+1/2,j+1/2, on Ωeh

h

α fi+1/2,j − pi+1/2,j = 0 in Ωc
h

β gi,j+1/2 + qi,j+1/2 = 0 in Ωv
h,

(38)

with the following boundary conditions

ui,j = 0 for i = 1, . . . , Nx + 1, j = 1; i = 1, Nx + 1, j = 1, . . . , Ny

vi+1/2,j+1/2 = 0 for i = 1, . . . , Nx, j = Ny

pi+1/2,j = 0 for i = 1, . . . , Nx, j = 1
qi,j+1/2 = 0 for i = 2, . . . , Nx, j = Ny; i = 1, Nx + 1, j = 1, . . . , Ny − 1.

(39)
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Figure 1: Staggered grid for the CR optimality system.

Notice that following [6, 10], it is possible to prove second-order accuracy of
the solution to the optimality system. To solve (38)-(39), in the next sections
we discuss a multigrid framework that allows to demonstrate second-order
accurate approximation.

6 A multigrid framework

We develop a multigrid scheme to solve the optimality system (38)-(39) defined
on staggered grids as the one depicted in Figure 1 (coarsest grid). Our work
extends previous developments on multigrid methods for CR systems [4, 7, 18]
to the case of CR optimality systems. This development faces some difficulties
due to the nature of the staggered grids and of the structure of the coupled
forward and adjoint CR equations.

Concerning the grid, we anticipate the fact that a multigrid scheme uses
different discretization grids on which the differential problem is represented.
Usually, such grids are obtained by refining a starting coarse grid, as the one
depicted in Figure 1. This refinement process consists in, e.g., halving the
mesh size in some or all directions [21]. However, this procedure results in a
non-nested hierarchy of grids such that the same type of variables are placed on
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different spatial coordinates corresponding to different levels of the hierarchy.
This fact is well known and requires additional effort in the construction of the
required intergrid transfer operators; see [4, 18]. To alleviate these difficulties
and recover the advantages of a nested sequence of grids, we notice that starting
from the given coarse grid a nested sequence of grids is obtained by tripling the
mesh size. This remark seems novel in the staggered-grid context and it has
important consequences in the development of multigrid schemes on staggered
grids. See [8] for a coarsening strategy by a factor of three in the context of
cell-centered discretizations of second-order PDE systems.

Another important concern in the development of multigrid schemes is the
construction of appropriate smoothers. This is also a challenging problem with
staggered grids and first-order PDEs because there is no one-to-one correspon-
dence between variables and equations. That is, there is no one-to-one corre-
spondence between residual of equations and variable updates in a smoothing
process. To address this difficulty, different block smoothing strategies have
been suggested as the distributed relaxation proposed in [4] and the coupled
relaxation first proposed in [23] for solving the Navier-Stokes equations on
staggered grids; see [18] for a review. Concerning iterative schemes to solve
(38)-(39), our experience with coupled relaxation has been less successful while
we have developed an appropriate smoothing scheme based on the distributed
relaxation strategy.

In the following, we illustrate our smoothing scheme and the other com-
ponents of our multigrid method. We define a sequence of nested grids (also
referred to as levels) Ωk of mesh size hxk = hx1/3

(k−1) and hyk = hy1/3
(k−1),

k = 1, . . . , L, where k = L is the finest level and hx1 and hy1 are the mesh sizes
of the coarsest grid in the x and y direction, respectively. In the following, de-
note all operators and functions defined on Ωk in terms of the index k. Notice
that with this setting a variable φk−1

IJ at the grid point (I, J) of the coarse grid
Ωk−1 has the same spatial placement as the variable φkij at the grid point (i, j)
of the fine grid Ωk as follows

• uk−1
IJ corresponds to ukij, with i = 3I − 2 and j = 3J − 2;

• vk−1
I+1/2, J+1/2 corresponds to vki+1/2, j+1/2, with i = 3I − 1 and j = 3J − 1;

• pk−1
I+1/2, J corresponds to pki+1/2, j, with i = 3I − 1 and j = 3J − 2;

• qk−1
I, J+1/2 corresponds to qki, j+1/2, with i = 3I − 2 and j = 3J − 1.

6.1 A distributed Gauss-Seidel scheme

Most pointwise iterative schemes are based on a one-to-one correspondence
between equations and unknowns. That is, a step of the iteration on a single
(grid-point) variable is defined with the purpose to satisfy the algebraic equa-
tion associated to that variable. Such one-to-one correspondence is natural in
second-order elliptic problems but not on first-order systems. For this reason
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distributive relaxation [4] was proposed, that aims at satisfying at each step
the set of discrete equations by distributing changes to several unknowns.

As discussed in [4], to derive a natural distributive scheme we note that nei-
ther the divergence equation nor the curl equations are elliptic by themselves.
However, combining them by differentiation one can obtain two Poisson equa-
tions to which a classical Gauss-Seidel scheme can be applied. By reverse
engineering this procedure, one arrives at a distributed relaxation applied di-
rectly to the div-curl equations. However, in the case of systems of coupled
div-curl systems this reverse engineering approach is difficult to apply because
of the many different stencils involved and the fact that the coupling between
the corresponding ’elliptic problems’ appears through convective terms. For
this reason, we decide to formulate a distributed relaxation technique which
applies sequentially to the forward and adjoint div-curl equations and updates
the control variables through a gradient step. See [3] for a similar procedure
to solve second-order PDE control problems.

Let (uh, vh, ph, qh, fh, gh) be the current approximation to the numerical
solution. We define an update to this approximation by an sequence of iterative
steps.

We start with the update of the control functions. For this purpose, we
perform a gradient update, that is,

fh := fh − t∇f Ĵ(fh, gh)

gh := gh − t∇gĴ(fh, gh)

where ∇f Ĵ(fh, gh) = αfh − ph and ∇gĴ(fh, gh) = βgh + qh are the gradients
in the control spaces and t ∈ (0, 1] is the steplegth used in the gradient up-
date. Numerical experience shows that the choice t = 1 always provides good
convergence rates.

Next, we implement the iterative step for the divergence equation defined
at the cell center (i+ 1/2, j), i = 1, . . . , Nx, j = 2, . . . , Ny, where we compute
the following ‘dynamic’ residual [4]. We have

rh1 = fh − ∂hxuh − ∂hy vh. (40)

We call r1 a dynamic residual because it is the residual at the cell center just
before the update step. This step is as follows

ui+1,j = ui+1,j + hxh
2
y δ1

ui,j = ui,j − hxh2
y δ1

vi+1/2,j+1/2 = vi+1/2,j+1/2 + hyh
2
x δ1

vi+1/2,j−1/2 = vi+1/2,j−1/2 − hyh2
x δ1

where

δ1 =
1

2(h2
x + h2

y)
rh1 .
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With this distributed update, we have that the residual (40) becomes zero
while the residuals of the curl equation at all vertices remain unchanged. In
the case where one of the updates at the boundaries are not allowed because
of boundary conditions, we need to modify δ1 as follows

δ1 =
1

2(h2
x + h2

y)− d
rh1

where d ∈ {h2
x, h

2
y, h

2
x + h2

y} depending upon which boundary is touched. That
is, d = h2

y whenever one of the u updates is not performed and d = h2
x if one

of the v updates is not performed. We have d = h2
x +h2

y in the case when both
u and v are not updated at the boundary (corner).

The update step for the curl equation at (i, j + 1/2), i = 2, . . . , Nx, j =
1, . . . , Ny − 1, is made in a similar way. Consider the dynamic residual

rh2 = gh + ∂hyu
h − ∂hxvh, (41)

at (i, j + 1/2) before the update. Define

δ2 =
1

2(h2
x + h2

y)
rh2 .

The update step for the curl equation is given by

ui,j+1 = ui,j+1 − hyh2
x δ2

ui,j = ui,j + hyh
2
x δ2

vi+1/2,j+1/2 = vi+1/2,j+1/2 + hxh
2
y δ2

vi−1/2,j+1/2 = vi−1/2,j+1/2 − hxh2
y δ2

This distributed update is such that the residuals of the divergence equation
at all centers remains unchanged while the residual (41) at (x, y) becomes zero.
Also in the relaxation of the curl equation, the term δ2 becomes

δ2 =
1

2(h2
x + h2

y)− d
rh2 ,

where d ∈ {h2
x, h

2
y, h

2
x + h2

y} depending upon which boundary is touched. That
is, d = h2

x whenever one of the u updates is not performed and d = h2
y if one

of the v updates is not performed. We have d = h2
x +h2

y in the case when both
u and v are not updated at the boundary.

Next, we discuss the distributed relaxation for the adjoint system. We
consider the adjoint divergence equation defined at (i, j), i = 2, . . . , Nx, j =
2, . . . , Ny, where the following ‘dynamic’ residual is computed

rh3 = (u− U)h − ∂hxph − ∂hy qh. (42)
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Based on this dynamic residual, we have the following relaxation step for the
first equation of the adjoint system

pi+1/2,j = pi+1/2,j + hxh
2
y δ3

pi−1/2,j = pi−1/2,j − hxh2
y δ3

qi,j+1/2 = qi,j+1/2 + hyh
2
x δ3

qi,j−1/2 = qi,j−1/2 − hyh2
x δ3

where the term δ3 is given by

δ3 =
1

2(h2
x + h2

y)− d
rh3 ,

where d is defined as in the forward divergence equation.
The adjoint curl equation is defined at (i + 1/2, j + 1/2), i = 1, . . . , Nx,

j = 1, . . . , Ny − 1, we compute the corresponding residual as follows

rh4 = −(v − V )h − ∂hxqh + ∂hy p
h. (43)

The distributed relaxation results in the following update step for the second
equation of the adjoint system

pi+1/2,j+1 = pi+1/2,j+1 − hyh2
x δ4

pi+1/2,j = pi+1/2,j + hyh
2
x δ4

qi+1,j+1/2 = qi+1,j+1/2 + hxh
2
y δ4

qi,j+1/2 = qi,j+1/2 − hxh2
y δ4

where the term δ4 is given by

δ4 =
1

2(h2
x + h2

y)− d
rh4 ,

where d is defined as in the forward curl equation.
The above steps update the controls, the state variables, and the adjoint

variables.
Notice that all relaxation steps can be performed in any ordering and we

choose lexicographic ordering. The effectiveness of the smoothing procedure
could be improved by applying a linesearch to determine the steplength t in
the controls update at each grid point where the controls are defined. However,
this computation would make the smoothing step very CPU expensive.

6.2 Inter-grid transfer operators

It is well known [14] that since the governing equations are only first-order dif-
ferential equations, it is admissible to have a coarse-to-fine first-order piecewise
interpolation. Indeed, higher-order interpolation is advantageous but difficult
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to implement in a non-nested staggered grid. On the other hand, using a
coarsening by a factor of three, a nested staggered grid is obtained and the
implementation of bilinear interpolation results easier.

In order to illustrate the interpolation procedure, consider the space Uk of
uk : Ωev

k → R, k = 1, . . . , L. Among two grids Ωk and Ωk−1, we define a pro-
longation operator, Ikk−1 : Uk−1 → Uk, that is consistent with the assumption
of bilinear finite elements on each rectangular partition of the discretization.
That is, on each rectangular partition [xI , xI+1] × [yJ , yJ+1] of Ωk−1, define
sx = xI+1 − xI and sy = yJ+1 − yJ , and the piecewise bilinear function which
interpolates u is given by

ũ(x, y) =
(xI+1 − x)(yJ+1 − y)

sx sy
uIJ +

(x− xI)(yJ+1 − y)

sx sy
uI+1 J

+
(xI+1 − x)(y − yJ)

sx sy
uI J+1 +

(x− xI)(y − yJ)

sx sy
uI+1 J+1.

Notice that the prolongation of u on a nested coarse-grid point at one of
the vertices of the rectangle of reference gives the value of u on the fine grid
corresponding to that grid point location.

In order to transfer residuals and solution functions from the fine to the
coarse grids, we use the straight injection operator Ik−1

k : Uk → Uk−1. The
same operators apply also to the other function spaces.

6.3 The multigrid algorithm

The multigrid algorithm presented in this section is based on the full approx-
imation storage (FAS) framework. This is a natural choice in the treatment
of optimization problems [5], because the state, the adjoint, and the control
functions, and not their errors, are available at all levels. This is essential
when solving nonlinear problems and control problems with constraints on the
control.

To illustrate the multigrid method, consider the optimality system (38)-(39)
at the discretization level k for the unknown variables Φk = (uk, vk, pk, qk, fk, gk).
We write this system with a compact notation as follows

Ak(Φk) = Fk. (44)

Denote with Φ
(l)
k = Sk (Φ

(l−1)
k , Fk), the result of our smoothing scheme given

in Section 6.1. Suppose that we apply m1-times this iteration to (44) starting

with the current approximation Φ
(0)
k to obtain the approximate solution Φ̃k =

Φ
(m1)
k .

It is clear that the desired correction ek to Φ̃k is defined by Ak(Φ̃k+ek) = Fk.
This correction can be defined as the solution to

Ak(Φ̃k + ek)− Ak(Φ̃k) = rk, (45)

where rk = Fk − Ak(Φ̃k) is the residual associated to Φ̃k.
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Next, we represent the problem (45) on the coarser grid Ωk−1. To represent
Φ̃k + ek on this coarse grid we write

Φk−1 := Ik−1
k Φ̃k + ek−1. (46)

We have that Ik−1
k Φ̃k and Φ̃k should represent the same function on different

grids. We can think of representing ek by a coarse function ek−1 because ek is
smooth due to the action of Sk.

Now to formulate (45) on the coarse grid replace Ak(·) by Ak−1(·), Φ̃k by
Ik−1
k Φ̃k, and rk by restriction Ik−1

k rk = Ik−1
k (Fk−Ak(Φ̃k)). We get the following

(FAS) equation

Ak−1(Φk−1) = Ik−1
k (Fk − Ak(Φ̃k)) + Ak−1(Ik−1

k Φ̃k). (47)

This equation is also written in the form Ak−1(Φk−1) = Ik−1
k Fk + τ k−1

k where

τ k−1
k = Ak−1(Ik−1

k Φ̃k)− Ik−1
k Ak(Φ̃k).

The term τ k−1
k is the fine-to-coarse defect or residual correction such that at

convergence the solution to (47) coincides with the fine grid solution in the
sense that Φk−1 = Ik−1

k Φk. With Φk−1 obtained solving (47) and from (46) we
have

ek−1 = Φk−1 − Ik−1
k Φ̃k.

Therefore we can obtain a correction to the fine-grid approximation as follows

Φk = Φ̃k + Ikk−1(Φk−1 − Ik−1
k Φ̃k). (48)

where Ikk−1 is the coarse-to-fine interpolation operator. To damp possible high-
frequency errors arising through the entire coarse-grid correction process, the
correction step (48) is followed by m2-times smoothing iteration.

The procedure just described corresponds to one multigrid cycle that is
repeated iteratively until a given tolerance of the numerical approximation is
obtained. This multigrid cycle is summarized in the following algorithm.

Algorithm 2 Multigrid MG(m1,m2) method for solving Ak(Φk) = Fk.

1. If k = 1 solve Ak(Φk) = Fk exactly.

2. Pre-smoothing steps on the fine grid: Φ
(l)
k = Sk(Φ

(l−1)
k , Fk), l = 1, . . . ,m1;

3. Computation of the residual: rk = Fk − Ak(Φ(m1)
k );

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set Φk−1 = Ik−1
k Φ

(m1)
k ;

6. Set Fk−1 = rk−1 + Ak−1(Φk−1)

7. Call m times MG(m1,m2) to solve Ak−1(Φk−1) = Fk−1;
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8. Coarse-grid correction: Φ
(m1+1)
k = Φ

(m1)
k + Ikk−1(Φk−1 − Ik−1

k Φ
(m1)
k );

9. Post-smoothing steps on the fine grid: Φ
(l)
k = Sk(Φ

(l−1)
k , Fk), l = m1 +

2, . . . ,m1 +m2 + 1;

Notice that we can perform m two-grid iterations at each working level. For
m = 1 we have a V -cycle and for m = 2 we have a W -cycle; m is called the
cycle index [21].

7 Numerical experiments

In this section, we present a numerical investigation of the proposed CR opti-
mal control formulation using staggered-grid discretization and the multigrid
solution process. For this purpose, we consider a setting for which the ex-
act solution is available. This fact allows us to evaluate the accuracy of the
discretization scheme used.

Consider the CR optimal control problem (14) − (18) on the rectangular
domain Ω = (0, 1) × (0, 3/2) depicted in Figure 1, where ΓD = (0, 1) × {0}
and ΓN = ∂Ω \ ΓD. An exact solution to this problem is obtained with the
following setting. Take

f(x, y) := 0

g(x, y) := −2π sin(πx) cos(πy)

U(x, y) := (1 + 2βπ2) sin(πx) sin(πy)

V (x, y) := (1 + 2βπ2) cos(πx) cos(πy)

With this choice, the exact solution is given by

u(x, y) = sin(πx) sin(πy)

v(x, y) = cos(πx) cos(πy)

p(x, y) = 0

q(x, y) = 2βπ sin(πx) cos(πy)

The boundary conditions for the forward problem are given by

u = 0 on ΓD = (0, 1)× {0}
u = 0 on Γ1 = {0} × (0, 3/2)

u = 0 on Γ2 = {1} × (0, 3/2)

v = 0 on Γ3 = (0, 1)× {3/2}

and for adjoint system we have

p = 0 on ΓD = (0, 1)× {0}
q = 0 on Γ1 = {0} × (0, 3/2)

q = 0 on Γ2 = {1} × (0, 3/2)

q = 0 on Γ3 = (0, 1)× {3/2}.
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To validate the accuracy of the discretization scheme, we use our multigrid
method to solve the discrete optimality system (38)-(39) with the data given
by the exact solution above. In all experiments, we employ W -cycles and
m1 = m2 = 2. We find it advantageous to choose t = 1. Moreover, in the
multigrid scheme we implement a stopping criteria with a given tolerance on
the norm of the gradients as follows

‖α fh − ph‖L2 ≤ 10−8 and ‖β gh + qh‖L2 ≤ 10−8.

In the Tables 1 - 5, we report results of experiments to validate the accuracy
of our staggered-grids discretization scheme. For this purpose, the L2-norm of
solution errors are given corresponding to different meshes and different values
of the optimization parameters α and β. We obtain second-order accuracy of
the numerical solution. In fact, as we refine the mesh by a factor of three, we
have a reduction of the norm of the errors of a factor 32.

Table 1: L2-norm of errors with α = β = 1.

Nx ×Ny ‖u− uh‖L2 ‖v − vh‖L2 ‖p− ph‖L2 ‖q − qh‖L2

6× 5 3.41E-02 3.41E-02 6.84E-02 9.94E-02
18× 14 3.71E-03 3.71E-03 7.36E-03 1.10E-02
54× 41 4.11E-04 4.11E-04 8.14E-04 1.23E-03

162× 122 4.57E-05 4.57E-05 9.04E-05 1.36E-04

Table 2: L2-norm of errors with α = β = 10−1.

Nx ×Ny ‖u− uh‖L2 ‖v − vh‖L2 ‖p− ph‖L2 ‖q − qh‖L2

6 × 5 2.34E-02 2.34E-02 6.73E-03 3.41E-03
18 × 14 2.58E-03 2.58E-03 7.34E-04 3.97E-04
54 × 41 2.87E-04 2.87E-04 8.14E-05 4.44E-05

162 × 122 3.18E-05 3.18E-05 9.04E-06 4.93E-06

Table 3: L2-norm of errors with α = β = 10−2.

Nx ×Ny ‖u− uh‖L2 ‖v − vh‖L2 ‖p− ph‖L2 ‖q − qh‖L2

6 × 5 5.64E-03 5.64E-03 6.54E-04 7.42E-04
18 × 14 6.39E-04 6.39E-04 7.32E-05 8.19E-05
54 × 41 7.11E-05 7.11E-05 8.14E-06 9.09E-06

162 × 122 7.89E-06 7.89E-06 9.04E-07 1.00E-06
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Table 4: L2-norm of errors with α = β = 10−3.

Nx ×Ny ‖u− uh‖L2 ‖v − vh‖L2 ‖p− ph‖L2 ‖q − qh‖L2

6 × 5 6.57E-04 6.57E-04 6.49E-05 1.05E-04
18 × 14 7.50E-05 7.50E-05 7.31E-06 1.17E-05
54 × 41 8.33E-06 8.33E-06 8.14E-07 1.30E-06

162 × 122 9.07E-07 9.05E-07 9.04E-08 1.37E-07

Table 5: L2-norm of errors with α = β = 10−4.

Nx ×Ny ‖u− uh‖L2 ‖v − vh‖L2 ‖p− ph‖L2 ‖q − qh‖L2

6 × 5 6.68E-05 6.68E-05 6.48E-06 1.08E-05
18 × 14 7.61E-06 7.61E-06 7.31E-07 1.21E-06
54 × 41 8.26E-07 8.84E-07 8.14E-08 1.27E-07

162 × 122 2.05E-07 1.11E-07 9.05E-09 6.16E-09

In Table 6, we report the observed values of the asymptotic convergence
factors of the multigrid scheme for different meshes and different values of the
optimization parameters. We obtain multigrid convergence factors that are
independent on the mesh size. However, these convergence factors are less
competitive compared to textbook multigrid Poisson efficiency. Notice that
the observed convergence performance deteriorates taking smaller values of
the optimization parameters.

Table 6: Convergence factors ρu, ρv, ρp, ρq for u, v, p, q, respectively.

α = β Nx ×Ny ρu ρv ρp ρq
10−1 54 × 41 3.04E-01 3.49E-01 3.26E-01 3.04E-01

162 × 122 2.89E-01 3.35E-01 2.85E-01 2.89E-01
10−2 54 × 41 5.49E-01 6.19E-01 5.37E-01 5.49E-01

162 × 122 5.08E-01 5.86E-01 4.89E-01 5.08E-01
10−3 54 × 41 6.28E-01 6.59E-01 6.44E-01 6.28E-01

162 × 122 5.88E-01 6.74E-01 5.82E-01 5.88E-01
10−4 54 × 41 6.31E-01 6.55E-01 6.48E-01 6.31E-01

162 × 122 5.98E-01 6.71E-01 5.95E-01 5.98E-01

In Table 7, we report tracking errors for different values of the optimization
parameters. We obtain better tracking for smaller values of these parameters.
Notice that the improvement in tracking is less sensitive to the value of α
because in this case the exact solution for the corresponding control function
is zero.
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Table 7: L2-norm of the tracking errors.

α β ‖u− U‖L2 ‖u− V ‖L2

10−1 10−1 1.21E-00 1.21E-00
10−3 1.22E-02 1.20E-02
10−5 3.35E-04 8.79E-05

10−3 10−1 1.21E-00 1.21E-00
10−3 1.21E-02 1.21E-02
10−5 2.85E-04 1.56E-04

10−5 10−1 1.21E-00 1.21E-00
10−3 1.21E-02 1.21E-02
10−5 2.83E-04 1.58E-04

8 Conclusion

The investigation of distributed optimal control problems governed by Cauchy-
Riemann equations was presented. In particular, existence and uniqueness of
optimal solutions was proved. To compute these solutions, an optimality sys-
tem of four first-order partial differential equations and two optimality condi-
tions was formulated. In order to solve the optimality system, staggered grids
and multigrid methods were developed. The multigrid scheme was based on a
coarsening by a factor of three that resulted in a nested hierarchy of staggered
grids. A smoothing algorithm consisting of a distributed-Gauss-Seidel scheme
and a gradient-based control update was employed.

Results of numerical experiments demonstrated second-order accuracy of
the optimality solutions and the ability of the multigrid scheme to solve the op-
timality system for different optimization parameters with mesh-independent
convergence factors. We noticed that these convergence factors are not typical
textbook multigrid. In fact, due to the tripling of the mesh size the spectrum
of ’high-frequencies’ that must be damped by the smoothing iteration is much
larger and thus a less efficient scheme was obtained.
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