Formulation, Interpretation and Application of Non Commutative Quantum Mechanics

F G Scholtz

National Institute for Theoretical Physics (NITheP) Stellenbosch University

Non-commutative Structures and Non-relativistic (super)symmetries, LMPT Tours 22 June 2010

Outline

- Formulation of non commutative quantum mechanics
 - Interpretation of non commutative quantum mechanics
- 3 Applications of non commutative quantum mechanics
 - Harmonic Oscillator
 - Spherical Well
 - Spectrum of the infinite spherical Well
 - Thermodynamics of a non commutative Fermi gas
 - Bound states of finite well
 - Scattering from a finite well

Path integral representation of transition amplitude

F G Scholtz

- Free particle
- Harmonic oscillator
- Conclusions

▲ @ ▶ ▲ 三 ▶ .

Formulation of non commutative quantum mechanics

Non commutative configuration space is defined by the commutation relations [x̂, ŷ] = iθ

F G Scholtz Formulation, Interpretation and Application of ...

Formulation of non commutative quantum mechanics

- Non commutative configuration space is defined by the commutation relations [x̂, ŷ] = iθ
- Defining annihilation and creation operators
 - $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y})$, $b^{\dagger} = \frac{1}{\sqrt{2\theta}}(\hat{x} i\hat{y})$ non commutative configuration space, \mathcal{H}_c , is isomorphic to boson Fock space

ヘロト ヘ戸ト ヘヨト ヘヨト

Formulation of non commutative quantum mechanics

- Non commutative configuration space is defined by the commutation relations [x̂, ŷ] = iθ
- Defining annihilation and creation operators $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y})$, $b^{\dagger} = \frac{1}{\sqrt{2\theta}}(\hat{x} - i\hat{y})$ non commutative configuration space, \mathcal{H}_c , is isomorphic to boson Fock space
- Hilbert space of the non commutative quantum system

$$\mathcal{H}_{\boldsymbol{q}} = \left\{\psi(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}): \psi(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}) \in \mathcal{B}\left(\mathcal{H}_{\boldsymbol{c}}
ight), \ \mathrm{tr}_{\mathrm{c}}(\psi^{\dagger}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}})\psi(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}})) < \infty
ight\}$$

・ロト ・同ト ・ヨト ・ヨト

Formulation of non commutative quantum mechanics

- Non commutative configuration space is defined by the commutation relations [x̂, ŷ] = iθ
- Defining annihilation and creation operators $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y})$, $b^{\dagger} = \frac{1}{\sqrt{2\theta}}(\hat{x} - i\hat{y})$ non commutative configuration space, \mathcal{H}_c , is isomorphic to boson Fock space
- Hilbert space of the non commutative quantum system

$$\mathcal{H}_{\boldsymbol{q}} = \left\{\psi(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}):\psi(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}})\in\mathcal{B}\left(\mathcal{H}_{\mathcal{C}}
ight),\ \mathrm{tr}_{\mathrm{c}}(\psi^{\dagger}(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}})\psi(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}))<\infty
ight\}$$

• This space has a natural inner product and norm

$$(\phi(\hat{x}_1, \hat{x}_2), \psi(\hat{x}_1, \hat{x}_2)) = \operatorname{tr}_c(\phi(\hat{x}_1, \hat{x}_2)^{\dagger}\psi(\hat{x}_1, \hat{x}_2)).$$

・ロト ・回ト ・ヨト ・ヨト

Formulation of non commutative quantum mechanics

- Non commutative configuration space is defined by the commutation relations [*x̂*, *ŷ*] = *i*θ
- Defining annihilation and creation operators $b = \frac{1}{\sqrt{2\theta}}(\hat{x} + i\hat{y})$, $b^{\dagger} = \frac{1}{\sqrt{2\theta}}(\hat{x} - i\hat{y})$ non commutative configuration space, \mathcal{H}_c , is isomorphic to boson Fock space
- Hilbert space of the non commutative quantum system

$$\mathcal{H}_{\boldsymbol{q}} = \left\{\psi(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}):\psi(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}})\in\mathcal{B}\left(\mathcal{H}_{\boldsymbol{c}}
ight),\ \mathrm{tr}_{\mathrm{c}}(\psi^{\dagger}(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}})\psi(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}))<\infty
ight\}$$

• This space has a natural inner product and norm

$$(\phi(\hat{x}_1, \hat{x}_2), \psi(\hat{x}_1, \hat{x}_2)) = \operatorname{tr}_{c}(\phi(\hat{x}_1, \hat{x}_2)^{\dagger}\psi(\hat{x}_1, \hat{x}_2)).$$

• We denote states in this space by $|\psi)$

Formulation of non commutative quantum mechanics

 The next step in building the quantum system is to find a representation for the non-commutative Heisenberg algebra on H_q. In two dimensions this reads

$$[x_i, p_j] = i\hbar\delta_{i,j}, \quad [x_i, x_j] = i\theta\epsilon_{i,j} \quad [p_i, p_j] = 0.$$

Formulation of non commutative quantum mechanics

 The next step in building the quantum system is to find a representation for the non-commutative Heisenberg algebra on H_q. In two dimensions this reads

$$[x_i, p_j] = i\hbar\delta_{i,j}, \quad [x_i, x_j] = i\theta\epsilon_{i,j} \quad [p_i, p_j] = 0.$$

 A unitary representation of this algebra in terms of operators X_i and P_i acting on H_q is easily found to be

$$\hat{X}_i\psi(\hat{x}_1,\hat{x}_2)=\hat{x}_i\psi(\hat{x}_1,\hat{x}_2),\quad \hat{P}_i\psi(\hat{x}_1,\hat{x}_2)=\frac{\hbar}{\theta}\epsilon_{i,j}[\hat{x}_j,\psi(\hat{x}_1,\hat{x}_2)],$$

i.e., the position acts by left multiplication and the momentum adjointly.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Formulation of non commutative quantum mechanics

It is also useful to introduce the following operators on Hq

$$B = \frac{1}{\sqrt{2\theta}} \left(\hat{X}_1 + i\hat{X}_2 \right), \quad B^{\ddagger} = \frac{1}{\sqrt{2\theta}} \left(\hat{X}_1 - i\hat{X}_2 \right),$$
$$\hat{P} = \hat{P}_1 + i\hat{P}_2, \quad \hat{P}^{\ddagger} = \hat{P}_1 - i\hat{P}_2.$$

Formulation of non commutative quantum mechanics

It is also useful to introduce the following operators on Hq

$$B = \frac{1}{\sqrt{2\theta}} \left(\hat{X}_1 + i\hat{X}_2 \right), \quad B^{\ddagger} = \frac{1}{\sqrt{2\theta}} \left(\hat{X}_1 - i\hat{X}_2 \right),$$
$$\hat{P} = \hat{P}_1 + i\hat{P}_2, \quad \hat{P}^{\ddagger} = \hat{P}_1 - i\hat{P}_2.$$

These operators act as follow

Interpretation of non commutative quantum mechanics

 The interpretation is as in usually quantum mechanics with *H_q* representing the state space, i.e., physical observables are represented by hermitian operators on *H_q*, a measurement yields an eigenvalue, *a*, with probability tr (ρπ_a) with ρ the density matrix and π_a = |a)(a| the projection on the eigenstate |a).

Interpretation of non commutative quantum mechanics

- The interpretation is as in usually quantum mechanics with *H_q* representing the state space, i.e., physical observables are represented by hermitian operators on *H_q*, a measurement yields an eigenvalue, *a*, with probability tr (ρπ_a) with ρ the density matrix and π_a = |a)(a| the projection on the eigenstate |a).
- Position measurement is, however, different as we cannot construct simultaneous eigenstates of X₁ and X₂.
 However, we can give meaning to this in the sense of a weak measurement.

・ロト ・ 同ト ・ ヨト ・ ヨト

Position measurement in non commutative quantum mechanics

• First note that since position acts from the left it is natural to introduce the following states in \mathcal{H}_q : $|z, n) \equiv |z\rangle\langle n|$, with n labeling an arbitrary basis in \mathcal{H}_c and $|z\rangle = e^{-\bar{z}z/2}e^{zb^{\dagger}}|0\rangle$ a coherent state.

(日)

Position measurement in non commutative quantum mechanics

- First note that since position acts from the left it is natural to introduce the following states in \mathcal{H}_q : $|z, n) \equiv |z\rangle\langle n|$, with n labeling an arbitrary basis in \mathcal{H}_c and $|z\rangle = e^{-\bar{z}z/2}e^{zb^{\dagger}}|0\rangle$ a coherent state.
- These states satisfy

$$B|z,n)=z|z,n)$$

and are minimal uncertainty states.

(日)

Position measurement in non commutative quantum mechanics

- First note that since position acts from the left it is natural to introduce the following states in \mathcal{H}_q : $|z, n) \equiv |z\rangle\langle n|$, with n labeling an arbitrary basis in \mathcal{H}_c and $|z\rangle = e^{-\bar{z}z/2}e^{zb^{\dagger}}|0\rangle$ a coherent state.
- These states satisfy

$$B|z,n)=z|z,n)$$

and are minimal uncertainty states.

• Since
$$B = \frac{1}{\sqrt{2\theta}} \left(\hat{X}_1 + i \hat{X}_2 \right)$$
, we naturally identify $z = x_1 + i x_2$ with x_1 , x_2 being the average x_1 , x_2 positions.

Position measurement in non commutative quantum mechanics

These states also have the property

$$1 = \int \frac{d^2z}{\pi} \sum_n |z, n| (z, n)$$

Position measurement in non commutative quantum mechanics

• These states also have the property

$$1 = \int \frac{d^2z}{\pi} \sum_n |z, n| (z, n|$$

We can thus use them to construct a POVM as

$$\pi_{z,n} = |z,n)(z,n|$$

Note that these operators are not orthogonal, which is why they constitute a POVM and not a PVM. In the language of POVM's the probability of finding the system in state z_{n} is then tr ($\rho \pi_{z,n}$) and we have to relax the von Neumann projection axiom.

Position measurement in non commutative quantum mechanics

 If we want to measure position, we are not interested in *n*, but rather the total probability of finding the particle and position *z*, irrespective of *n*. The POVM for this is

$$\pi_{z} = \sum_{n} |z, n\rangle(z, n| = |z, \bar{z}) e^{\overleftarrow{\partial_{\bar{z}} \partial_{\bar{z}}}}(z, \bar{z}| = |z, \bar{z}) \star (z, \bar{z}|.$$

with $|z, \overline{z}) = \frac{1}{\sqrt{2\pi\theta}} |z\rangle \langle z|$.

Position measurement in non commutative quantum mechanics

• If we want to measure position, we are not interested in *n*, but rather the total probability of finding the particle and position *z*, irrespective of *n*. The POVM for this is

$$\pi_{z} = \sum_{n} |z, n\rangle(z, n| = |z, \bar{z}) e^{\overleftarrow{\partial_{\bar{z}} \partial_{\bar{z}}}}(z, \bar{z}| = |z, \bar{z}) \star (z, \bar{z}|.$$

with $|z, \bar{z}) = \frac{1}{\sqrt{2\pi\theta}} |z\rangle \langle z|$.

 Thus the probability of finding the particle at position z for a pure state ρ = |ψ)(ψ| is then

$$P(x_1, x_2) = (\psi | \pi_z | \psi) = \langle z | \psi^{\dagger} | z \rangle \star \langle z | \psi | z \rangle$$

・ロト ・同ト ・ヨト ・ヨト

Harmonic Oscillator Spherical Well

Applications: Harmonic Oscillator

• The Hamiltonian is

$$\hat{H} = rac{1}{2m}\hat{P}_1^2 + rac{1}{2m}\hat{P}_2^2 + rac{1}{2}m\omega^2\hat{X}_1^2 + rac{1}{2}m\omega^2\hat{X}_2^2,$$

ъ

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Harmonic Oscillator Spherical Well

Applications: Harmonic Oscillator

• The Hamiltonian is

$$\hat{H} = \frac{1}{2m}\hat{P}_1^2 + \frac{1}{2m}\hat{P}_2^2 + \frac{1}{2}m\omega^2\hat{X}_1^2 + \frac{1}{2}m\omega^2\hat{X}_2^2,$$

 Introducing creation and annihilation operators the Hamiltonian can be rewritten as

$$\hat{H} = \frac{\lambda_1}{2m} (2\hat{A}_1^{\ddagger}\hat{A}_1 + 1) + \frac{\lambda_2}{2m} (2\hat{A}_2^{\ddagger}\hat{A}_2 + 1),$$

with

$$\lambda_{1} = \frac{1}{2} \left(m^{2} \omega^{2} \theta + m \omega \sqrt{4\hbar^{2} + m^{2} \omega^{2} \theta^{2}} \right),$$

$$\lambda_{2} = \frac{1}{2} \left(-m^{2} \omega^{2} \theta + m \omega \sqrt{4\hbar^{2} + m^{2} \omega^{2} \theta^{2}} \right)$$

Harmonic Oscillator Spherical Well

Applications: Harmonic Oscillator

The ground state wave functions is found to be

$$\psi_0 = \boldsymbol{e}^{\frac{\alpha}{2\theta}(\hat{x}_1^2 + \hat{x}_2^2)},$$

with

$$\alpha = \ln\left(1 - \frac{\theta}{\hbar^2}\lambda_2\right) = -\ln\left(1 + \frac{\theta}{\hbar^2}\lambda_1\right).$$

Harmonic Oscillator Spherical Well

Applications: Harmonic Oscillator

The ground state wave functions is found to be

$$\psi_0 = \boldsymbol{e}^{\frac{\alpha}{2\theta}(\hat{x}_1^2 + \hat{x}_2^2)},$$

with

$$\alpha = \ln\left(1 - \frac{\theta}{\hbar^2}\lambda_2\right) = -\ln\left(1 + \frac{\theta}{\hbar^2}\lambda_1\right).$$

• Note that the two frequencies are not identically so that the spectrum is less degenerate than in the commutative oscillator. Indeed, one can show that A_1^{\ddagger} creates 1 unit of angular momentum, while A_2^{\ddagger} creates -1 unit of angular momentum and that the ground state has zero angular momentum. Thus one observes a breaking of time reversal.

Harmonic Oscillator Spherical Well

Applications: spherical Well

• The Hamiltonian for the spherical well reads

$$\hat{H}=\frac{P^2\psi}{2\mu}+(V_1P+V_2Q).$$

with

$$P = \sum_{n=0}^{M} |n\rangle \langle n|, \quad Q = \sum_{n=M+1}^{\infty} |n\rangle \langle n|.$$

The radius of the disc is given by $R^2 = \theta(2M + 1)$.

Harmonic Oscillator Spherical Well

Applications: Spectrum of the infinite spherical Well

• The energies of the infinite well for positive angular momentum is obtained as

$$L^m_{M+1}\left(rac{ heta k^2}{2}
ight)=0,\ m\geq 0,\quad k^2=rac{2\mu E}{\hbar^2},$$

and for negative angular momentum as

$$L^m_{M+m+1}\left(rac{ heta k^2}{2}
ight)=0,\ -M\leq m<0,\quad k^2=rac{2\mu E}{\hbar^2},$$

Note that the spectrum truncates at angular momentum -M.

Harmonic Oscillator Spherical Well

Applications: Spectrum of the infinite spherical Well

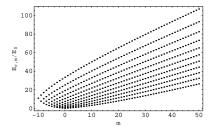


Figure: Spectrum of the infinite non commutative well

< < >> < </>

Harmonic Oscillator Spherical Well

Applications: Thermodynamics of a non commutative Fermi gas

• From the spectrum we may expect strong differences in the thermodynamics of a Fermi gas at high enough densities:

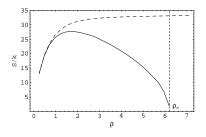


Figure: Entropy of fermi gas as a function of density

Harmonic Oscillator Spherical Well

Applications: Bound states of a finite well

• For a finite well one can study the bound states:

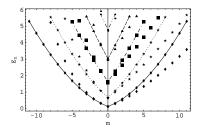


Figure: Commutative and non-commutative bound state energies for a finite well. Connected symbols are the commutative energies and unconnected ones indicate the non-commutative energies.

< 🗇 🕨

Harmonic Oscillator Spherical Well

Applications: Scattering from a finite well

• One can also study scattering and compute phase shifts:

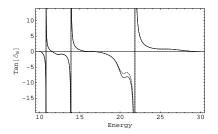


Figure: Tangent of the phase shift in the m=4 channel of a finite without here a shift in the m=4 channel of a shift in the m=4 ch

F G Scholtz Formulation, Interpretation and Application of ...

< < >> < </>

Free particle Harmonic oscillator

Path integral representation of transition amplitude

Use the completeness relations

$$\int d^2 p |p)(p| = 1_Q, \quad \int 2\theta dz d\bar{z} |z, \bar{z}) \star (z, \bar{z}| = 1_Q,$$

with

$$|p
angle=\sqrt{rac{ heta}{2\pi\hbar^2}}e^{i\sqrt{rac{ heta}{2\hbar^2}}(ar{p}b+
ho b^\dagger)}, \quad |z,ar{z})=rac{1}{\sqrt{2\pi heta}}|z
angle\langle z|.$$

(< ∃) < ∃)</p>

Free particle Harmonic oscillator

Path integral representation of transition amplitude

• The overlaps

$$(z,ar{z}|oldsymbol{
ho})=rac{1}{\sqrt{2\pi\hbar^2}}oldsymbol{e}^{-rac{ heta}{4\hbar^2}ar{
ho}
ho}oldsymbol{e}^{i\sqrt{rac{ heta}{2\hbar^2}}(oldsymbol{
ho}ar{z}+ar{
ho}z)}.$$

Free particle Harmonic oscillator

Path integral representation of transition amplitude

The overlaps

$$(z, \bar{z}|p) = rac{1}{\sqrt{2\pi\hbar^2}}e^{-rac{ heta}{4\hbar^2}ar{p}p}e^{i\sqrt{rac{ heta}{2\hbar^2}}(par{z}+ar{p}z)}.$$

• The transition amplitude is

$$(z_f, t_f | z_0, t_0) = N \exp\left(-\vec{\partial}_{z_f} \vec{\partial}_{\bar{z}_0}\right) \int \mathcal{D} z \mathcal{D} \bar{z} \exp\left(\frac{i}{\hbar} S\right)$$

Free particle Harmonic oscillator

Path integral representation of transition amplitude

The overlaps

$$(z,ar{z}|oldsymbol{
ho})=rac{1}{\sqrt{2\pi\hbar^2}}e^{-rac{ heta}{4\hbar^2}ar{
ho}
ho}e^{i\sqrt{rac{ heta}{2\hbar^2}}(
hoar{z}+ar{
ho}z)}.$$

• The transition amplitude is

$$(z_f, t_f | z_0, t_0) = N \exp\left(-\vec{\partial}_{z_f} \vec{\partial}_{\overline{z}_0}\right) \int \mathcal{D} z \mathcal{D} \overline{z} \exp\left(\frac{i}{\hbar}S\right)$$

• The action *S* is given by

$$S = \int_{t_0}^{t_f} dt \left[\frac{\theta}{2} \dot{\bar{z}}(t) (\frac{1}{2m} - \frac{i\theta}{2\hbar} \partial_t)^{-1} \dot{z}(t) - V(\bar{z}(t), z(t)) \right]$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Free particle Harmonic oscillator

Path Integral: Free particle

• Equation of motion for the free particle is $K\ddot{z}_c(t) = 0$; $K = (\frac{1}{2m} - \frac{i\theta}{2\hbar}\partial_t)^{-1}$. This operator has trivial kernel so that the equation of motion is equivalent to $\ddot{z} = 0$ with solution $z_c(t) = z_0 + \frac{z_t - z_0}{T}(t - t_0)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Free particle Harmonic oscillator

Path Integral: Free particle

- Equation of motion for the free particle is $K\ddot{z}_c(t) = 0$; $K = (\frac{1}{2m} \frac{i\theta}{2\hbar}\partial_t)^{-1}$. This operator has trivial kernel so that the equation of motion is equivalent to $\ddot{z} = 0$ with solution $z_c(t) = z_0 + \frac{z_t z_0}{T}(t t_0)$
- Substituting the above solution in the path integral and acting with the boundary operator yields

$$(z_f, t_f | z_0, t_0) = N \exp \left[-\frac{m}{2(i\hbar T + m\theta)} (\vec{x}_f - \vec{x}_0)^2 \right]$$

・ロト ・同ト ・ヨト ・ヨト

Free particle Harmonic oscillator

Path Integral: Free particle

- Equation of motion for the free particle is $K\ddot{z}_c(t) = 0$; $K = (\frac{1}{2m} \frac{i\theta}{2\hbar}\partial_t)^{-1}$. This operator has trivial kernel so that the equation of motion is equivalent to $\ddot{z} = 0$ with solution $z_c(t) = z_0 + \frac{z_t z_0}{T}(t t_0)$
- Substituting the above solution in the path integral and acting with the boundary operator yields

$$(z_f, t_f | z_0, t_0) = N \exp \left[-\frac{m}{2(i\hbar T + m\theta)} (\vec{x}_f - \vec{x}_0)^2 \right]$$

• The constant can be determined as $N = \frac{m}{2\pi(\theta m + i\hbar T)}$

イロト 不得 とくほ とくほう

Free particle Harmonic oscillator

Path Integral: Harmonic oscillator

• The equation of motion for the harmonic oscillator is $K\ddot{z}_c(t) + 2m\omega^2 z_c(t) = 0$

F G Scholtz Formulation, Interpretation and Application of ...

イロト イポト イヨト イヨト

Free particle Harmonic oscillator

Path Integral: Harmonic oscillator

- The equation of motion for the harmonic oscillator is $K\ddot{z}_c(t) + 2m\omega^2 z_c(t) = 0$
- Making the ansatz $z_c(t) = e^{i\gamma t}$ yields the frequencies

$$\gamma_{\pm} = \frac{1}{2\hbar} (m\omega^2\theta \pm \omega\sqrt{m^2\omega^2\theta^2 + 4\hbar^2}).$$

イロト イポト イヨト イヨト

Free particle Harmonic oscillator

Path Integral: Harmonic oscillator

- The equation of motion for the harmonic oscillator is $K\ddot{z}_c(t) + 2m\omega^2 z_c(t) = 0$
- Making the ansatz $z_c(t) = e^{i\gamma t}$ yields the frequencies

$$\gamma_{\pm} = \frac{1}{2\hbar} (m\omega^2\theta \pm \omega\sqrt{m^2\omega^2\theta^2 + 4\hbar^2}).$$

• Noting that the one frequency is positive and the other negative, we can write the general classical solution as $z_c(t) = a_+e^{i\omega_+t} + a_-e^{-i\omega_-t}$, which reflects time reversal symmetry breaking.

イロト 不得 とくほ とくほう

Free particle Harmonic oscillator

Path Integral: Harmonic oscillator

Substituting into the action and acting with the boundary operator yields (z_f, t_f|z₀, t₀) = N exp (Z[†]ΛZ) where Z[†] = (z₀^{*}, z_f^{*}) and Λ is the 2 × 2 matrix

$$\Lambda = \frac{m\theta}{m\theta Q_{12} - \hbar} \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} + \frac{m\theta\omega_+\omega_-}{\hbar} & Q_{22} \end{pmatrix}.$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Free particle Harmonic oscillator

Path Integral: Harmonic oscillator

• Substituting into the action and acting with the boundary operator yields $(z_f, t_f | z_0, t_0) = N \exp(Z^{\dagger} \Lambda Z)$ where $Z^{\dagger} = (z_0^*, z_f^*)$ and Λ is the 2 × 2 matrix

$$\Lambda = \frac{m\theta}{m\theta Q_{12} - \hbar} \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} + \frac{m\theta\omega_+\omega_-}{\hbar} & Q_{22} \end{pmatrix}.$$

Q is the matrix

$$Q = \begin{pmatrix} -\frac{\omega_- + \omega_+ e^{iT(\omega_- + \omega_+)}}{1 - e^{iT(\omega_- + \omega_+)}} & \frac{\omega_- + \omega_+}{e^{-iT\omega_+} - e^{iT\omega_-}} \\ \frac{\omega_- + \omega_+}{e^{-iT\omega_-} - e^{iT\omega_+}} & -\frac{\omega_+ + \omega_- e^{iT(\omega_- + \omega_+)}}{1 - e^{iT(\omega_- + \omega_+)}} \end{pmatrix}.$$

イロト イポト イヨト イヨト

Free particle Harmonic oscillator

Path Integral: Harmonic oscillator

• The normalization can be fixed by studying the time evolution of the harmonic oscillator ground state

$$N = \frac{1}{2\pi} \left[\frac{m\omega_{-}}{\hbar} - \left(1 + \frac{m\omega_{-}\theta}{\hbar} \right) \frac{mQ_{11}}{m\theta Q_{12} - \hbar} \right] e^{-\frac{i\pi}{2}(\omega_{-} + \omega_{+})}$$

Conclusions

 Non commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.

▲ ■ ▶ ▲ ■ ▶

Conclusions

- Non commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- Within this framework simple systems such as the harmonic oscillator and well can readily be solved and the energies of bound states and phase shifts can be computed.

< /₽> < ∃>

Conclusions

- Non commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- Within this framework simple systems such as the harmonic oscillator and well can readily be solved and the energies of bound states and phase shifts can be computed.
- The thermodynamics of a non commutative Fermi gas deviates strongly from that of the commutative gas at high densities. In particular the entropy is non extensive.

ヘロト ヘアト ヘヨト

Conclusions

- Non commutative quantum mechanics can be formulated and interpreted within the normal axioms of quantum mechanics. The only generalization required is the notion of weak measurements.
- Within this framework simple systems such as the harmonic oscillator and well can readily be solved and the energies of bound states and phase shifts can be computed.
- The thermodynamics of a non commutative Fermi gas deviates strongly from that of the commutative gas at high densities. In particular the entropy is non extensive.
- We have found that the non commutative path integral is non local in time and time reversal is broken.

Conclusions

 The propagator for the free particle and harmonic oscillator can be computed explicitly.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.⊒...>

Conclusions

- The propagator for the free particle and harmonic oscillator can be computed explicitly.
- Collaborators: B Chakraborty (S N Bose), S Vaidya (Indian Institute of Science), J Govaerts (Univ Louvain), N Thom (Stellenbosch Univ), C Rohwer (Stell Univ) and A Hafver (Stell Univ).

A (1) > A (1) > A