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Formulation of non commutative quantum mechanics

Non commutative configuration space is defined by the
commutation relations [x̂ , ŷ ] = iθ

Defining annihilation and creation operators
b = 1√

2θ
(x̂ + i ŷ) ,b† = 1√

2θ
(x̂ − i ŷ) non commutative

configuration space, Hc , is isomorphic to boson Fock
space
Hilbert space of the non commutative quantum system

Hq =
{
ψ(x̂ , ŷ) : ψ(x̂ , ŷ) ∈ B (Hc) , trc(ψ†(x̂ , ŷ)ψ(x̂ , ŷ)) <∞

}
This space has a natural inner product and norm

(φ(x̂1, x̂2), ψ(x̂1, x̂2)) = trc(φ(x̂1, x̂2)†ψ(x̂1, x̂2)).

We denote states in this space by |ψ)
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(x̂ − i ŷ) non commutative

configuration space, Hc , is isomorphic to boson Fock
space

Hilbert space of the non commutative quantum system

Hq =
{
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Formulation of non commutative quantum mechanics

The next step in building the quantum system is to find a
representation for the non-commutative Heisenberg
algebra on Hq . In two dimensions this reads[

xi ,pj
]

= i~δi,j ,
[
xi , xj

]
= iθεi,j

[
pi ,pj

]
= 0.

A unitary representation of this algebra in terms of
operators X̂i and P̂i acting on Hq is easily found to be

X̂iψ(x̂1, x̂2) = x̂iψ(x̂1, x̂2), P̂iψ(x̂1, x̂2) =
~
θ
εi,j [x̂j , ψ(x̂1, x̂2)],

i.e., the position acts by left multiplication and the
momentum adjointly.
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Formulation of non commutative quantum mechanics

It is also useful to introduce the following operators on Hq

B =
1√
2θ

(
X̂1 + i X̂2

)
, B‡ =

1√
2θ

(
X̂1 − i X̂2

)
,

P̂ = P̂1 + i P̂2, P̂‡ = P̂1 − i P̂2.

These operators act as follow

Bψ(x̂1, x̂2) = bψ(x̂1, x̂2),

B‡ψ(x̂1, x̂2) = b†ψ(x̂1, x̂2),

Pψ(x̂1, x̂2) = −i~
√

2
θ

[b, ψ(x̂1, x̂2)],

P‡ψ(x̂1, x̂2) = i~
√

2
θ

[b†, ψ(x̂1, x̂2)].
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Interpretation of non commutative quantum mechanics

The interpretation is as in usually quantum mechanics with
Hq representing the state space, i.e., physical observables
are represented by hermitian operators on Hq, a
measurement yields an eigenvalue, a, with probability
tr (ρπa) with ρ the density matrix and πa = |a)(a| the
projection on the eigenstate |a).

Position measurement is, however, different as we cannot
construct simultaneous eigenstates of X̂1 and X̂2.
However, we can give meaning to this in the sense of a
weak measurement.
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Position measurement in non commutative quantum
mechanics

First note that since position acts from the left it is natural
to introduce the following states in Hq: |z,n) ≡ |z〉〈n|, with
n labeling an arbitrary basis in Hc and |z〉 = e−z̄z/2ezb† |0〉
a coherent state.

These states satisfy

B|z,n) = z|z,n)

and are minimal uncertainty states.

Since B = 1√
2θ

(
X̂1 + i X̂2

)
, we naturally identify

z = x1 + ix2 with x1, x2 being the average x1, x2 positions.

F G Scholtz Formulation, Interpretation and Application of ...
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Position measurement in non commutative quantum
mechanics

These states also have the property

1 =

∫
d2z
π

∑
n

|z,n)(z,n|

We can thus use them to construct a POVM as

πz,n = |z,n)(z,n|

Note that these operators are not orthogonal, which is why
they constitute a POVM and not a PVM. In the language of
POVM’s the probability of finding the system in state |z,n)
is then tr (ρπz,n) and we have to relax the von Neumann
projection axiom.
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Position measurement in non commutative quantum
mechanics

If we want to measure position, we are not interested in n,
but rather the total probability of finding the particle and
position z, irrespective of n. The POVM for this is

πz =
∑

n

|z,n)(z,n| = |z, z̄)e
←
∂z̄
→
∂z (z, z̄| = |z, z̄) ? (z, z̄|.

with |z, z̄) = 1√
2πθ
|z〉〈z|.

Thus the probability of finding the particle at position z for
a pure state ρ = |ψ)(ψ| is then

P(x1, x2) = (ψ|πz |ψ) = 〈z|ψ†|z〉 ? 〈z|ψ|z〉

F G Scholtz Formulation, Interpretation and Application of ...
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Harmonic Oscillator
Spherical Well

Applications: Harmonic Oscillator

The Hamiltonian is

Ĥ =
1

2m
P̂2

1 +
1

2m
P̂2

2 +
1
2

mω2X̂ 2
1 +

1
2

mω2X̂ 2
2 ,

Introducing creation and annihilation operators the
Hamiltonian can be rewritten as

Ĥ =
λ1

2m
(2Â‡1Â1 + 1) +

λ2

2m
(2Â‡2Â2 + 1),

with

λ1 =
1
2

(
m2ω2θ + mω

√
4~2 + m2ω2θ2

)
,

λ2 =
1
2

(
−m2ω2θ + mω

√
4~2 + m2ω2θ2

)
(1)
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Harmonic Oscillator
Spherical Well

Applications: Harmonic Oscillator

The ground state wave functions is found to be

ψ0 = e
α
2θ (x̂2

1 +x̂2
2 ),

with

α = ln
(

1− θ

~2λ2

)
= − ln

(
1 +

θ

~2λ1

)
.

Note that the two frequencies are not identically so that the
spectrum is less degenerate than in the commutative
oscillator. Indeed, one can show that A‡1 creates 1 unit of
angular momentum, while A‡2 creates -1 unit of angular
momentum and that the ground state has zero angular
momentum. Thus one observes a breaking of time
reversal.
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Spherical Well

Applications: spherical Well

The Hamiltonian for the spherical well reads

Ĥ =
P2ψ

2µ
+ (V1P + V2Q).

with

P =
M∑

n=0

|n〉〈n|, Q =
∞∑

n=M+1

|n〉〈n|.

The radius of the disc is given by R2 = θ(2M + 1).

F G Scholtz Formulation, Interpretation and Application of ...
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Harmonic Oscillator
Spherical Well

Applications: Spectrum of the infinite spherical Well

The energies of the infinite well for positive angular
momentum is obtained as

Lm
M+1

(
θk2

2

)
= 0, m ≥ 0, k2 =

2µE
~2 ,

and for negative angular momentum as

Lm
M+m+1

(
θk2

2

)
= 0, −M ≤ m < 0, k2 =

2µE
~2 ,

Note that the spectrum truncates at angular momentum
−M.
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Applications: Spectrum of the infinite spherical Well
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Figure: Spectrum of the infinite non commutative well
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Spherical Well

Applications: Thermodynamics of a non commutative
Fermi gas

From the spectrum we may expect strong differences in the
thermodynamics of a Fermi gas at high enough densities:

0 1 2 3 4 5 6 7
ρ�

5

10

15

20

25

30

35

S
�
k
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Figure: Entropy of fermi gas as a function of density
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Spherical Well

Applications: Bound states of a finite well

For a finite well one can study the bound states:

-10 -5 0 5 10
m

0

1

2

3

4

5

6

E
n

Figure: Commutative and non-commutative bound state
energies for a finite well. Connected symbols are the
commutative energies and unconnected ones indicate the
non-commutative energies.
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Harmonic Oscillator
Spherical Well

Applications: Scattering from a finite well

One can also study scattering and compute phase shifts:
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Figure: Tangent of the phase shift in the m=4 channel of a finite well.
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Path integral representation of transition amplitude

Use the completeness relations∫
d2p |p)(p| = 1Q ,

∫
2θdzdz̄ |z, z̄) ? (z, z̄| = 1Q,

with

|p) =

√
θ

2π~2 ei
√

θ

2~2 (p̄b+pb†)
, |z, z̄) =

1√
2πθ
|z〉〈z|.
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Path integral representation of transition amplitude

The overlaps

(z, z̄|p) =
1√

2π~2
e−

θ

4~2 p̄pei
√

θ

2~2 (pz̄+p̄z)
.

The transition amplitude is

(zf , tf |z0, t0) = N exp
(
−~∂zf

~∂z̄0

)∫
DzDz̄ exp(

i
~

S)

The action S is given by

S =

∫ tf

t0
dt
[
θ

2
˙̄z(t)(

1
2m
− iθ

2~
∂t )
−1ż(t)− V (z̄(t), z(t))

]
.
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Path Integral: Free particle

Equation of motion for the free particle is
K z̈c(t) = 0 ; K = ( 1

2m −
iθ
2~∂t )

−1. This operator has
trivial kernel so that the equation of motion is equivalent to
z̈ = 0 with solution zc(t) = z0 + zf−z0

T (t − t0)

Substituting the above solution in the path integral and
acting with the boundary operator yields

(zf , tf |z0, t0) = N exp
[
− m

2(i~T + mθ)
(~xf − ~x0)2

]
The constant can be determined as N = m

2π(θm+i~T )
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Path Integral: Harmonic oscillator

The equation of motion for the harmonic oscillator is
K z̈c(t) + 2mω2zc(t) = 0

Making the ansatz zc(t) = eiγt yields the frequencies

γ± =
1
2~

(mω2θ ± ω
√

m2ω2θ2 + 4~2).

Noting that the one frequency is positive and the other
negative, we can write the general classical solution as
zc(t) = a+eiω+t + a−e−iω−t , which reflects time reversal
symmetry breaking.
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Path Integral: Harmonic oscillator

Substituting into the action and acting with the boundary
operator yields (zf , tf |z0, t0) = N exp

(
Z †ΛZ

)
where

Z † =
(
z∗0 , z

∗
f

)
and Λ is the 2× 2 matrix

Λ =
mθ

mθQ12 − ~

(
Q11 Q12

Q21 + mθω+ω−
~ Q22

)
.

Q is the matrix

Q =

 −ω−+ω+eiT (ω−+ω+)

1−eiT (ω−+ω+)

ω−+ω+

e−iTω+−eiTω−

ω−+ω+

e−iTω−−eiTω+
−ω++ω−eiT (ω−+ω+)

1−eiT (ω−+ω+)

 .
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Path Integral: Harmonic oscillator

The normalization can be fixed by studying the time
evolution of the harmonic oscillator ground state

N =
1

2π

[
mω−
~
−
(

1 +
mω−θ

~

)
mQ11

mθQ12 − ~

]
e−

iT
2 (ω−+ω+)
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Conclusions

Non commutative quantum mechanics can be formulated
and interpreted within the normal axioms of quantum
mechanics. The only generalization required is the notion
of weak measurements.

Within this framework simple systems such as the
harmonic oscillator and well can readily be solved and the
energies of bound states and phase shifts can be
computed.
The thermodynamics of a non commutative Fermi gas
deviates strongly from that of the commutative gas at high
densities. In particular the entropy is non extensive.
We have found that the non commutative path integral is
non local in time and time reversal is broken.
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Conclusions

The propagator for the free particle and harmonic oscillator
can be computed explicitly.

Collaborators: B Chakraborty (S N Bose), S Vaidya (Indian
Institute of Science), J Govaerts (Univ Louvain), N Thom
(Stellenbosch Univ), C Rohwer (Stell Univ) and A Hafver
(Stell Univ).
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