
��������	

��������	�
�����
��	�����	�	���	�
������������	
������	����
����	�
���	�	�
�������	�

�����������������������������������������������������	��������

�������������������������������������������������������������������� ��!���""��
#�$�������%����$&��'��($����$�����$&�������	)	�*#(�+��,-����������������.��&��/	

0������������������1������������-����1�����������&
������������	
�����	����	�������������������������

��	������	�������
�� ������� ,������ #�$������� %����$&� �'�� ($���� $��� ��$&������ �	)	� *#(�+�� �����$�� �'�

��-����� $��� ������������� ,-���������������� .��&��/� *�����&��� ��� ���� ������&
��&&�����+	

�� 2�������3�&45�����#/����&�06��($����71����	
�� ������ ����8����� �3(06�� #�����&���� ��� ��&�$���� ���� ����&������ 7�������� (���9����

:��5�����/��71����	

�	����	���������
�������,������0������;���������������������7��1�������3�����<��������;������6����
#�$�������%����$&��'��($����$�����$&�������	)	�*#(�+�������$���'����-�����$��
�������������,-����������������.��&��/



Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 315 Modelica 2002, March 18−19, 2002

Formulation of dynamic optimization problems using Modelica
and their efficient solution

Rüdiger Franke
ABB Corporate Research

Wallstadter Str. 59
68526 Ladenburg, Germany

E-Mail: Ruediger.Franke@de.abb.com

Abstract

Dynamic optimization problems often arise in ad-
vanced model based control. For example in model
based predictive control and in the estimation of pro-
cess parameters or not measured process signals, the
underlying problems can be treated with optimization.

A process model formulated in Modelica [10] can be
used as a core part in the formulation of dynamic op-
timization problems. This allows an efficient engi-
neering of advanced control applications as simulation
models are reused for optimization.

The paper discusses, how different types of dynamic
optimization problems can be formulated based on a
nonlinear dynamic system model. Furthermore, the
efficient numerical solution of dynamic optimization
problems as large-scale nonlinear programming prob-
lems is outlined. The treatment of state constraints is
emphasized in this context. Possibilities for obtain-
ing model sensitivities as required by an optimization
solver are discussed.

However, the class of models that can be used for op-
timization in this way is limited, compared to all mod-
els that can be formulated in Modelica and used for
initial-value simulation. Specific requirements by op-
timization solvers are discussed together with features
of the Modelica language supporting their considera-
tion in model formulations.

The optimal startup of a power plant serves as a prac-
tical example.

1 Introduction

Dynamic optimization problems occur if parameters
and control inputs of a dynamic system shall be in-

fluenced so that a cost criterion is minimized sub-
ject to constraints. They are playing an increasingly
important role in control engineering and in process
engineering. Typical applications involving dynamic
optimization are e.g. nonlinear model predictive con-
trol (NMPC), data reconciliation, and integrated de-
sign and control of technical processes.

Higher requirements on the efficiency of industrial
processes, together with the availability of new mod-
eling and solution technologies, are causing a trend
towards the treatment of dynamic optimization prob-
lems for rigorous physical models. Unfortunately a
substantial effort is generally needed to formulate an
optimization model fulfilling both: high model accu-
racy and high solution efficiency.

This paper discusses the use of Modelica to formu-
late dynamic system models for optimization. A sub-
stantial reduction of the effort for model building is
achieved by reusing available simulation models for
optimization and by exploiting features of Modelica
for application specific model adaptation. The solu-
tion of dynamic optimization problems applying large-
scale nonlinear programming is outlined and require-
ments of state-of-the-art optimization solvers on the
model are discussed.

2 Dynamic optimization problems

2.1 Nonlinear Dynamic System Model

Modelica allows the object oriented modeling of dy-
namic systems by differential and algebraic equations.
The object oriented Modelica model is typically trans-
lated to a mathematical system of differential and al-
gebraic equations prior to its treatment with numerical
solvers. Here it is assumed that the result of the model



Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 316 The Modelica Association

translation is a system of ordinary differential equa-
tions of the form

ẋ�t� � f�x�t��u�t��z�t��p� t�� (1)

f : IRnx � IRm� IRnz� IRnp �� IRnx

y�t� � g�x�t��u�t��z�t��p� t�� (2)

g : IRnx � IRm� IRnz � IRnp �� IRny

Model variables are internal continuous-time states
x � IRnx , control inputs u � IRm, disturbance inputs
z � IRnz , constant parameters p � IRnp , and model out-
puts y � IRny .

The model behavior is completely determined by the
system equations f and the output equations g, if initial
states x0 � x�t0�, external inputs u�t��z�t�� t � �t0� t f �,
and parameters p are given. The outputs y�t�� t � �t0� t f �
can then be obtained by solving the system of differ-
ential equations using initial-value simulation.

However, often some of the required information is not
explicitly known, but can be obtained by minimizing
a cost function. In many of those cases, a feasible so-
lution can be further specified by constraining model
variables. Optimization is a universal tool for treating
those inverse problems.

2.2 Estimation Problem

An example for an inverse problem is the estimation of
unknown parameters p and/or initial states x0 based on
measured inputs and outputs. The estimation problem
can be solved by minimizing a least squares criterion

nȳ

∑
i�1

�y�ti�� ȳ�ti��2 �min
x0�p

(3)

for the set of measurement data �ȳ�ti�� ti � �t0� t f �� i �
1� � � � �nȳ�.

2.3 Design Parameter Optimization Problem

Some model parameters might be free or given within
useful ranges, instead of with fixed values. Optimiza-
tion can be used to determine values for those un-
known parameters that minimize a criterion F�p� :
IRnp �� IR1

F�p��min
p

(4)

subject to parameter bounds pmin 	 p 	 pmax and re-
quired system outputs, e.g. y�t�
 ymin�t�� t � �t0� t f �.

2.4 Optimal Control Problem

The control inputs u�t�� t � �t0� t f � might be free to be
chosen so that a criterion

F0�t f �x�t f �� �
� t f

t0
f0�t�x�t��u�t��dt � min

x0�u�t�
� (5)

F0 : IR� IRnx �� IR�

f0 : IR� IRnx � IRnu �� IR�

is minimized subject to constraints on model inputs
umin�t�	 u�t�	 umax�t� and outputs ymin�t�	 y�t� 	
ymax�t�� t � �t0� t f �.

2.5 Discrete-Time Optimal Control Problem

In order to use a digital computer to solve dynamic op-
timization problems, continuous-time functions have
to be discretized. Here multistage control parameter-
ization is applied to formulate dynamic optimization
problems as discrete-time optimal control problems.

The time horizon �t0� t f � is divided into K stages with
t0 � t0 � t1 � �� � � tK � t f . The controls u�t� are de-
scribed in each interval �tk� tk�1�� k � 0� � � � �K � 1 as
function of the discrete-time input variables uk � IRm.
The unknown parameters p are converted to state vari-
ables with the state equation ṗ� 0 and with unknown
initial values p0 � p�t0�. They are described together
with the continuous-time model states x�t� with the
discrete-time state variables xk � IRn

�n� nx�np. The
state equation (1) is solved for the stage k with the ini-
tial values xk and the controls uk using a numerical
integration formula.

This results in the multistage optimization problem:

FK�xK� � ∑
k

f k0 �x
k
�uk� � min

uk�x0

� (6)

FK : IRn �� IR1
� f k0 : IRn� IRm �� IR1

with respect to the discrete-time system equations

xk�1 � fk�xk�uk�� (7)

fk : IRn� IRm �� IRn

and the additional constraints

ckmin 	 ck�xk�uk� 	 ckmax�

cKmin 	 cK�xK� 	 cKmax� (8)

ck : IRn� IRm �� IRmk �cK : IRn �� IRmK �



Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 317 Modelica 2002, March 18−19, 2002

Note that initial conditions of the system model are
formulated as general constraints (8) as well. Dis-
cretization formulae, known parameter values, and
predetermined disturbances are included into the
discrete-time functions FK , f k0 , fk, ck, and cK . The
discrete-time functions are assumed to be two times
continuously differentiable with respect to their vari-
ables.

2.6 Large-Scale Nonlinear Programming
Problem

Discrete-time optimal control problems can be treated
as structured large-scale nonlinear optimization prob-
lems. This has the main advantage that recently devel-
oped methods for large-scale nonlinear optimization
can be applied to their efficient solution [11, 4].

The discrete-time control and state variables for all
stages k are collected to one large vector of optimiza-
tion variables

v�

�
������������

x0

u0

x1

u1

...
xK�1

uK�1

xK

�
������������

� (9)

One specific feature of the optimization approach dis-
cussed here is that the discrete-time state variables at
all stages are treated as optimization variables as well,
even though they are determined by initial conditions
and the control parameters. This leads to a signifi-
cant increase of the size of the optimization problem.
However, the consideration of states as constrained
optimization variables generally improves robustness
and efficiency of the solution. For instance trajectory
constraints can be formulated directly on the discrete-
time state variables. Furthermore the separation of the
overall problem into multiple stages often leads to a
reduction of the required number of nonlinear itera-
tions. The computational overhead is relatively low if
the number of state variables nx is not too high, com-
pared to the number of control variables nu and and if
the sparse multistage structure of the large-scale non-
linear optimization problem is exploited appropriately.

3 Solving nonlinear dynamic system
models for optimization

Sequential Quadratic Programming (SQP) is gener-
ally considered as the most efficient numerical method
available nowadays to solve nonlinear optimization
problems [12]. This quasi Newton method treats non-
linear optimization problems by solving a sequence
of local linear-quadratic approximations. The La-
grangian of the optimization problem is approximated
quadratically, typically by applying a numerical up-
date formula. Constraints are approximated linearly.

The differential equations (1) used to model a dynamic
system together with the integration formulae deter-
mine the equality constraints (7) of the discrete-time
optimal control problem. Accordingly the initial value
problem

ẋ�t� � f�x�t��u�uk� t��z�t��p�xk�� t�� (10)

t � �tk� tk�1�� x�tk� � Ik�xk��

has to be solved for each stage k � 0� � � � �K � 1
in each nonlinear optimization iteration to evalu-
ate the discrete-time system functions fk�xk�uk��k �
0� � � � �K�1.

Furthermore the discrete-time sensitivities

dfk�xk�uk�
d�xk�uk�

(11)

are needed to obtain local linear approximations of the
nonlinear system model. Often it turns out that the de-
termination of these sensitivities is the most time con-
suming part when solving dynamic optimization prob-
lems.

A straightforward approach for obtaining the sensitiv-
ities is to numerically differentiate the system model
together with the integration formula. This is nor-
mally done by performing multiple initial value simu-
lations for perturbed control variables uk and discrete-
time states xk (e.g. when using Matlab optimization
routines together with a Simulink model). However,
major drawbacks of this approach are low numerical
efficiency and accuracy.

More robust and efficient results can be obtained when
solving continuous-time sensitivity equations together
with the differential model equations. In approach
discussed here the continuous-time sensitivities are
needed with respect to the optimization variables

q�

�
xk

uk

�
� (12)



Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 318 The Modelica Association

The required sensitivities are

si�t� �
dx�t�
dqi

� i� 1� � � � �n�m� (13)

They are defined by the sensitivity equations

ṡi�t� �
∂f

∂x�t�
si�t��

∂f
∂qi

� t � �tk� tk�1� (14)

with the initial conditions

si�tk� �
dIk�xk�
dqi

� (15)

See e.g. [9] for an extension of the famous DASSL
integration algorithm with sensitivities.

The remaining task is to provide the partial deriva-
tives of the model equations (10) as required by the
sensitivity equations (14). They can be obtained with
the help of algorithmic, or automatic, differentiation
of the model equations [6]. Alternatively the model
equations can also be differentiated numerically. This
leads to a comparable simpler implementation at the
cost of less accuracy and robustness. Good experi-
ences have been made with both: application of algo-
rithmic differentiation using ADOL-C and numerical
differentiation of a model implemented as Simulink S-
function. It turns out that numeric differentiation of
the model equations alone gives more robust results
than differentiating the model together with the inte-
gration formula numerically. This is especially true
for a variable step size integration algorithm that takes
different steps in subsequent runs when differentiating
model equations and integration formula together nu-
merically.

As the simulation code is generated by a model trans-
lation tool from a Modelica specification, one would
wish for the future that a Modelica translator like Dy-
mola generates required sensitivity equations together
with the model equations. This would considerably
simplify the treatment of dynamic optimization prob-
lems.

4 Requirements on dynamic system
models used for optimization

Especially the exploitation of model sensitivities and
the treatment as multistage problem are important for

an efficient solution of dynamic optimization prob-
lems. However, both techniques do also imply require-
ments on the optimized model.

The main advantage of the exploitation of sensitivi-
ties is that the superior performance of state-of-the-
art nonlinear optimization algorithms can be utilized.
This is especially important for problems with a high
number of unknown parameters, e.g. to describe a
complex control trajectory. However, the model must
be smooth with respect to the optimization variables.
This means that the values of model variables or their
derivatives may not jump (e.g. caused by a state event
or by discontinuous functions like absolute value, re-
spectively). From the point of view of optimization,
state events have to be formulated as integer vari-
ables. This leads to mixed integer nonlinear optimiza-
tion problems that require a significantly higher solu-
tion effort than smooth nonlinear optimization prob-
lems. Fortunately in many cases discrete events can
be circumvented, e.g. a diode can be modeled ideally
utilizing a state event or approximately with a smooth
non-linear function. Furthermore it might be sufficient
to formulate an optimization problem for a restricted
range of the validity of the overall model by intro-
ducing constraints on optimization variables. For in-
stance a flow model expressing flow reversal with a
state event might be restricted to only exhibit flow into
one direction when used in a dynamic optimization.

It is important to note that the model must not be
smooth with respect to time. This means that time
events, or more generally speaking a sequence of
events with fixed switching structure, can easily be in-
corporated into the dynamic optimization problem. In
fact mixed integer nonlinear optimization solvers of-
ten exploit this feature and treat a problem with state
events on two levels: integer variables are modified
on an upper level, while for each set of fixed integer
variables the resulting nonlinear optimization problem
with fixed switching structure is solved on a lower
level.

Besides the exploitation of sensitivities, the treatment
as multistage problem offers following advantages:

� improved treatment of state trajectory constraints,
because sampled values of the state variables are
optimization variables,

� non-linearities do only occur within stages in-
volving only discrete-time variables at specific
discrete time points (often leading to a reduction
of non-linear iterations),



Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 319 Modelica 2002, March 18−19, 2002

� the time consuming sensitivity analysis can be
performed in parallel for all stages because the
initial states for each stage are optimization vari-
ables.

The price that has to be paid for these features is that
not only sensitivities with respect to the free param-
eters are required, but also with respect to the initial
states of each stage. That is why the number of uncon-
strained state variables should not be too high, com-
pared to the number of optimized control inputs or
model parameters, as otherwise the expensive calcula-
tion of sensitivities for these states does not pay off.
Fortunately this practical requirement of low model
complexity is not specific to dynamic optimization, but
is generally known from control applications. If for
instance the dynamic optimization shall be performed
on-line starting at a transient initial state, the availabil-
ity of measurement data for estimating the initial state
often restricts the allowed model complexity too.

5 Modelica features supporting the
formulation of optimization models

One mathematical model can hardly fulfill all require-
ments that are caused by different applications. That
is why it is considered important that a modeling lan-
guage supports a flexible model management allowing
to build different mathematical models describing the
same dynamic system depending on requirements by
specific applications.

5.1 Separation of model interface and model
implementation

A well known object-oriented technique is to separate
interface definition and implementation. This tech-
nique is also well supported by the object oriented
modeling language Modelica. An interface can be de-
fined as partial model:

partial model ShellModel
// interface definitions

end ShellModel;

Different implementations can be based on the same
interface, e.g. an ideal model with exact switching be-
havior:

model IdealModel
extends ShellModel;
// implementation using
// state events

end IdealModel;

and alternatively a smooth model:

model SmoothModel
extends ShellModel;
// alternative
// implementation using
// smooth non-linear function

end SmoothModel;

Further implementations can for instance provide
models of different complexity, e.g. introducing dif-
ferent numbers of state variables.

Modelica supports the redeclaration of submodels.
Exploiting this features, a system model defined for
one application, say a real-time simulation, can be
adapted to fulfill the requirements of an other appli-
cation, say a dynamic optimization.

5.2 Model containing multiple implementa-
tions

Alternatively to defining different models for different
formulations, one model can also provide multiple im-
plementations. One possibility is to use the Modelica
built-in operator analysisType():

model UniversalModel
// interface definitions

equation
if analysisType() == "dynamic"

// implementation using
// state events

else if analysisType() == "linear"
// implementation using
// smooth non-linear function

end;
end UniversalModel;

The model translation tool picks out the appropriate
implementation depending on the analysis type. Anal-
ysis type linear means that the continuous part of the
model shall be transformed in a linear system. This
implies that the model should be formulated in an ap-
propriate way allowing linearization at given operating
points.



Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 320 The Modelica Association

Furnace

Pump Drum Superheater 1

Condense Water

Spray Water

Superheater 2 Pipe Valve

Header 1 Header 2

Figure 1: Flowsheet of a boiler model describing the generation of superheated steam.

5.3 Attributes of predefined types

The predefined Modelica type Real defines several
attributes that are important for the formulation of op-
timization models. These are:

nominal The nominal attribute should be used to
scale optimization variables (control inputs, un-
known parameters, model states).

stateSelect This attribute is useful to guide the
model translator to select specific states that will
become optimization variables.

Furthermore the attributes min and max could be uti-
lized to formulate bounds on model variables and con-
straints. However, it should be noted that Modelica is
not intended to be an optimization modeling language.
The primary intention of the attributes min and max is
to restrict the range a model is valid for, not to define
constraints like operational bounds.

Generally Modelica should not be seen as a modeling
language to define a whole optimization problem, in-
cluding optimization criterion and constraints. Instead
Modelica is considered a powerful language to define
the dynamic system model in a dynamic optimization
problem.

6 Example

The optimal startup of a boiler for the generation of su-
perheated steam in a coal fired power plant is discussed
as example. The optimal control problem is to obtain
a new operating point as fast and efficient as possible
considering constraints on the thermal stress on thick
walled parts, see [8]. Main new challenges, compared
to approaches known so far, e.g. [7], are to formulate
a nonlinear dynamic process model that is capable to
accurately predict the behaviour over a wide range of
operation, including cold start, to be open for flexible
adaptation of the model to specific power plants, and
to solve the optimal control problem considering con-
straints on multiple thermal stresses that may become
active in different situations.

The process model is formulated in the object-oriented
modeling language Modelica. This allows the flexible
composition of a process model from sub-models for
typical components. Figure 1 shows an example flow-
sheet. Submodels are a feedwater pump, an evapora-
tor, two superheaters, a long pipe, and a high pressure
bypass valve. Further submodels cover the furnace.
The phenomenon of condense water is modeled in a
separate submodel that is attached to the first super-
heater. A spray water inlet is placed between the two



Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 321 Modelica 2002, March 18−19, 2002

superheaters. Thick walled parts are outlet headers of
the superheaters and the boiler drum. The model com-
ponents are based on the ThermoFluid model library
[15]. The ThermoFluid library implements, besides
others, the IAPWS Industrial Formulation IF 97 stan-
dard for the thermodynamic properties of water and
steam, enabling accurate and efficient models. The
reuse of this model library is considered crucial for an
effortable model development concentrating on appli-
cation specific phenomena.

The implementation of water and steam properties in
the ThermoFluid library is accomplished by partial
derivatives allowing the flexible selection of state vari-
ables, see also the model development in [1]. In the
example discussed here, mainly temperatures are se-
lected as state variables, besides pressures and mass
flow rates. This simplifies the treatment of constraints
on thermal stresses.

Controlled inputs are the fuel flow rate, the amount of
spray water, and the position of the outlet valve. Model
outputs are pressure, temperature and mass flow rate
of generated steam as well as three observed thermal
stresses.

The Dymola tool is applied to generate a mathemat-
ical system of differential and algebraic equations
as required for an efficient numerical solution. Af-
ter collecting all submodels from the used model li-
braries, the overall differential-algebraic equation sys-
tem (DAE) contains 636 variables and equations. This
DAE is converted to a system of ordinary differential
equations (ODE) with 11 dynamic state variables and
is compiled to a Simulink S-function.

Note that the dynamic optimization method discussed
here requires the mathematical model in the same form
as simulation solvers do. This means that no optimiza-
tion specific extensions are required to the Dymola
model translator. The S-function is directly used to
treat dynamic optimization problems, in our case the
estimation of model parameters and the optimal boiler
startup. Sensitivities are obtained by numerical differ-
entiation of the model.

The optimal boiler startup problem is formulated for
60 time intervals. The control trajectories are param-
eterized piecewise linear. The resulting large-scale
nonlinear optimization problem has 1034 optimization
variables, 854 equality constraints, and 1212 inequal-
ity constraints. Its solution with the HQP solver takes
about 3 minutes on a PC with Pentium III 850 MHz
processor.

Figure 2 shows optimization results. The optimization
solver has to obtain three trajectories for the controlled
inputs so that the optimization criterion is minimized
subject to the constraints on thermal stresses and the
required new operating point. It can be seen that
first the constraints on thermal stress of superheater 2
(dTSH2) and drum (dTD) are active. Later on, when
the condense water has been evaporated, the thermal
stress of superheater 1 (dTSH1) is becoming active be-
tween 750 s and 1900 s. Generally the constraints are
limiting the amount of fuel (qm�F ) that can be fed into
the boiler. Starting from 1500 s, spray water (qm�AW )
is utilized to reduce the thermal stress on superheater
2. The thermal stress of the drum is becoming active
again. The high pressure bypass valve (YHPB) is pri-
marily used to control the steam flow rate (qm�Steam),
but it influences other process variables like steam
pressure (pSteam) and steam temperatures (TSteam) as
well. The required new operating point is reached af-
ter about 2500 s.

Such an optimization can be used as core routine of
a nonlinear model based controller (NMPC). In this
way startup cost savings of about 10% can be reached,
compared to a traditional control strategy.

7 Conclusions

The general principle of Modelica of separating
the model specification from the numerical solution
method allows the reuse of simulation models for opti-
mization. Furthermore, the object-oriented features of
the Modelica language and the availability of model
libraries greatly simplify the development of rigorous
physical models for complex dynamic systems.

Nonlinear dynamic optimization problems can be
treated efficiently as discrete-time optimal control
problems and solved numerically by applying large-
scale nonlinear optimization methods, see also [3].
This is especially true for problems with state con-
straints. The HQP dynamic optimization solver has
been integrated with the Dymola modeling and simu-
lation software using Matlab and Simulink as integra-
tion platform [13, 14, 2, 5].

The optimal startup of a power plant is discussed as
example. The system model is formulated based on the
ThermoFluid model library [15]. The reuse of model
libraries is considered crucial for an effortable model
development concentrating on specific phenomena of
an application.



Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 322 The Modelica Association

The example demonstrates the main strengths of
model based predictive control: the treatment of multi-
input multi-output problems and the consideration of
state constraints. For reasons of efficiency, it is impor-
tant to carefully select state variables during the mod-
eling process. The treatment of state variables as opti-
mization variables simplifies the consideration of state
trajectory constraints and allows a more robust and ef-
ficient solution of the dynamic optimization problem,
even though the problem size increases.

For the future it appears desirable that a model trans-
lation tool generates required sensitivity equations in
addition to the model differential equations. Model
libraries might provide alternative sub-models for spe-
cific phenomena, e.g. description of sudden changes
with discrete events or with an approximate non-linear
function. These sub-models could then be exchanged
with each other depending on the intended application
and requirements by the solution method.

References

[1] K.J. Åström and R.D. Bell. Drum-boiler dynam-
ics. Automatica, 36:363–378, 2000.

[2] Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory. http://www.dynasim.se.

[3] R. Franke. Integrated dynamic modeling and op-
timization of systems with seasonal heat storage,
volume 394 of Fortschritt-Berichte VDI, Reihe 6
(in German). VDI-Verlag, Düsseldorf, 1998.

[4] R. Franke and E. Arnold. Applying new numer-
ical algorithms to the solution of discrete-time
optimal control problems. In K. Warwick and
M. Kárný, editors, Computer-Intensive Methods
in Control and Signal Processing: The Curse of
Dimensionality, pages 105–118. Birkhäuser Ver-
lag, Basel, 1997.

[5] R. Franke, E. Arnold, and H. Linke. HQP: a
solver for nonlinearly constrained large-scale op-
timization. http://hqp.sourceforge.net.

[6] A. Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentia-
tion, volume 19 of Frontiers in Applied Mathe-
matics. SIAM, Philadelphia, 1992.

[7] P. Kallappa, Michael S. Holmes, and Asok
Ray. Life-extending control of fossil fuel power
plants. Automatica, 33(6):1101–1118, 1997.

[8] Klaus Krüger, Manfred Rode, and Rüdiger
Franke. Optimal control for fast boiler start-up
based on a nonlinear model and considering the
thermal stress on thick-walled components. In
Proceedings of the IEEE Conference on Control
Applications. Mexico City, September 2001.

[9] T. Maly and L.R. Petzold. Numerical meth-
ods and software for sensitivity analysis of
differential-algebraic systems. Applied Numer-
ical Mathematics, 20:57–79, 1996.

[10] Modelica Association. Modelica: Mod-
eling of Complex Physical Systems.
http://www.modelica.org.

[11] Walter Murray. Sequential quadratic pro-
gramming methods for large-scale problems.
Computational Optimization and Applications,
7(1):127–142, 1997.

[12] P. Spellucci. Numerische Verfahren der nicht-
linearen Optimierung. Birkhäuser Verlag, Basel,
1993.

[13] The MathWorks, Inc. MATLAB:
the language of technical computing.
http://www.mathworks.com.

[14] The MathWorks, Inc. Simulink: for
model-based and system level design.
http://www.mathworks.com.

[15] Hubertus Tummescheit, Jonas Eborn, and
Falko Jens Wagner. Development of a Model-
ica base library for modeling of thermo-hydraulic
systems. In Proceedings of the 1st Modelica
Workshop 2000. Lund, Sweden, 2000.



Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 323 Modelica 2002, March 18−19, 2002

Figure 2: Results for the optimal boiler startup problem. The upper plots show the controlled inputs fuel
flow rate qm�F�%, flow rate of spray water qm�AW��kg�s�, and position of high pressure bypass valve YHPB.
Below process variables characterizing the generated steam are plotted: qm�Steam/kg/s, pSteam/MPa, Tm�Steam�

ÆC.
Furthermore three thermal stresses dT /K are shown.


