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In a series of papers,Quesne andTkachuk (2006) presented aD+ 1-dimensional (�,��)-two-parameter Lorentz-covariant deformed
algebra which leads to a nonzero minimal measurable length. In this paper, the Lagrangian formulation of electrodynamics in a 3 +
1-dimensional spacetime described by Quesne-Tkachuk algebra is studied in the special case of �� = 2� up to the �rst order over the
deformation parameter �. It is demonstrated that at the classical level there is a similarity between electrodynamics in the presence
of a minimal measurable length (generalized electrodynamics) and Lee-Wick electrodynamics. We obtain the free space solutions
of the inhomogeneous Maxwell’s equations in the presence of a minimal length. 
ese solutions describe two vector particles (a
massless vector particle and a massive vector particle). We estimate two di�erent upper bounds on the isotropic minimal length.

e �rst upper bound is near to the electroweak length scale (ℓelectroweak ∼ 10−18m), while the second one is near to the length scale
for the strong interactions (ℓstrong ∼ 10−15m). 
e relationship between the Gaete-Spallucci nonlocal electrodynamics (2012) and
electrodynamics with a minimal length is investigated.

1. Introduction


e uni�cation between the general theory of relativity and
the standard model of particle physics is one of the most
important problems in theoretical physics [1]. 
is uni�ca-
tion predicts the existence of a minimal measurable length
on the order of the Planck length. Also, recent studies in
perturbative string theory and loop quantum gravity suggest
that there is a minimal length scale in nature [2].

Today we know that the existence of a minimal measur-
able length leads to an extended uncertainty principle. 
is
extended uncertainty principle can be written as

Δ�Δ� ≥ ℏ2 [1 + �1(
�ℏ )2(Δ�)2 + �2(
�ℏ )4(Δ�)4 + ⋅ ⋅ ⋅] ,
(1)

where 
� is the Planck length and ��, ∀� ∈ {1, 2, . . .}, are
positive numerical constants [3, 4]. If we keep only the �rst

two terms on the right-hand side of (1), we will obtain the
usual generalized uncertainty principle (GUP) as follows:

Δ�Δ� ≥ ℏ2 [1 + �1(
�ℏ )2(Δ�)2] . (2)

It is obvious that in (2), Δ� is always greater than (Δ�)min =√�1
�. Many physicists believe that reformulation of quan-
tum �eld theory in the presence of a minimal measurable
length leads to a divergence free quantum �eld theory [5–7].
In the recent years, reformulations of quantum mechanics,
gravity, and quantum �eld theory in the presence of a
minimal measurable length have been studied extensively
[4–18]. 
e �rst attempt to construct the electromagnetic
�eld in quantized spacetime was made by Snyder [19]. In a
previous work [14], we studied formulation of an electrostatic
�eld with a charge density in the presence of a minimal
length based on the Kempf algebra. In the present work,
we study formulation of electrodynamics with an external
source in the presence of a minimal measurable length based
on the Quesne-Tkachuk algebra. 
e organization of our
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paper is as follows. In Section 2, the � + 1-dimensional(�, ��)-two-parameter Lorentz-covariant deformed algebra
introduced by Quesne and Tkachuk is studied and it is
shown that the Quesne-Tkachuk algebra leads to a minimal
measurable length [20, 21]. In Section 3, the Lagrangian
formulation of electrodynamics with an external source in a3 + 1-dimensional spacetime described by Quesne-Tkachuk
algebra is introduced in the special case of �� = 2�, in which
the position operators commute to the �rst order in �. We
show that at the classical level there is a similarity between
electrodynamics in the presence of a minimal measurable
length and Lee-Wick electrodynamics. In Section 4, the free
space solutions of the inhomogeneousMaxwell’s equations in
the presence of a minimal measurable length are obtained.

ese solutions describe two di�erent particles, a massless
vector particle and a massive vector particle. In Section 5, we
obtain two di�erent upper bounds on the isotropic minimal
length. One of these upper bounds on the isotropic minimal
length is near to the electroweak length scale (ℓelectroweak ∼10−18m). 
e second upper bound on the isotropic minimal
length is near to the length scale for the strong interac-

tions (ℓstrong ∼ 10−15m). In Section 6, we investigate
the relation between electrodynamics in the presence of a
minimal measurable length and the concept of nonlocality in
electrodynamics. Our conclusions are presented in Section 7.
SI units are used throughout this paper.

2. Lorentz-Covariant Deformed Algebra with
a Minimal Observable Distance

Recently, Quesne and Tkachuk have introduced a Lorentz-
covariant deformed algebra which describes a � + 1-
dimensional quantized spacetime [20, 21]. 
e Quesne-
Tkachuk algebra in a�+1-dimensional spacetime is speci�ed
by the following generalized commutation relations:[��, ��] = −�ℏ [(1 − �����) ��� − ������] , (3)

[��, ��] = �ℏ2� − �� − (2� + ��) �����1 − ����� (���� − ����) ,
(4)[��, ��] = 0, (5)

where �,  , ! = 0, 1, 2, . . . , � and � and �� are two
nonnegative deformation parameters (�, �� ≥ 0). In the
above equations, � and �� are constant parameters with

dimension (momentum)−2. Also,�� and �� are position and
momentumoperators in the deformed space and��� = ��� =
diag(1, −1, −1, . . . , −1). In the special case where � = 3 and� = 0, the Quesne-Tkachuk algebra (3)–(5) reduces to the
Snyder algebra [22].

An immediate consequence of relation (3) is the appear-
ance of an isotropic minimal length which is given by

(Δ��)0 = ℏ√(��+��) [1−� ⟨(�0)2⟩], ∀� ∈ {1, 2, . . . , �} .
(6)

In [23], Tkachuk introduced a representation which satis�es
the generalized commutation relations (3)–(5) up to the �rst
order in deformation parameters � and ��.


e Tkachuk representation is given by

�� = %� − 2� − ��4 (%�&�&� + &�&�%�) ,
�� = (1 − ��2 &�&�)&�, (7)

where %� and &� = �ℏ(-/-%�) = �ℏ-� are position
and momentum operators in ordinary relativistic quantum
mechanics. In this study, we consider the special case of �� =2�, inwhich the position operators commute to the �rst order
in deformation parameter �, that is, [��, ��] = 0. In this
linear approximation, the Quesne-Tkachuk algebra becomes[��, ��] = −�ℏ [(1 − �����) ��� − 2�����] ,[��, ��] = 0,[��, ��] = 0. (8)


e following representations satisfy (8), in the �rst order in�: �� = %�,�� = (1 − �&�&�) &�. (9)

Note that the representations (7) and (9) coincide when �� =2�.
3. Lagrangian Formulation of

Electrodynamics with an External Source in
the Presence of a Minimal Length Based on
the Quesne-Tkachuk Algebra


e Lagrangian density for a massless vector �eld 5� =((1/6)7,A) with an external source 8� = (6!, J) in a 3 + 1-
dimensional spacetime is [24]

L = − 14�09��9�� − 8�5�, (10)

where 9�� = -�5� − -�5� is the electromagnetic �eld tensor.
In a 3 + 1-dimensional spacetime, the components of the
electromagnetic �eld tensor 9�� can be written as

9�� = ((((((
(

0 >�6 >	6 >
6−>�6 0 −?
 ?	
−>	6 ?
 0 −?�−>
6 −?	 ?� 0

))))))
)

. (11)
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e Euler-Lagrange equation for the vector �eld 5� is-L-5� − -�( -L- (-�5�)) = 0. (12)

If we substitute the Lagrangian density (10) in the Euler-
Lagrange equation (12), we will obtain the inhomogeneous
Maxwell’s equations as follows:-�9�� = �08�. (13)


e electromagnetic �eld tensor 9�� satis�es the Bianchi
identity -�9�� + -�9�� + -�9�� = 0. (14)

Equation (14) leads to the homogeneousMaxwell’s equations.
Now, we obtain the Lagrangian density for electrodynamics
in the presence of a minimal observable distance based on
the Quesne-Tkachuk algebra. For this purpose, let us write
the Lagrangian density (10) by using the representations (9),
that is, %� E→ �� = %�,-� E→ ∇� := (1 + �ℏ2◻) -�, (15)

where ◻ := -�-� is the d’Alembertian operator. 
e result
reads

L = − 14�0 (∇�5� − ∇�5�) (∇�5� − ∇�5�) − 8�5�
= − 14�0 [(1 + �ℏ2◻) -�5� − (1 + �ℏ2◻) -�5�]× [(1 + �ℏ2◻) -�5� − (1 + �ℏ2◻) -�5�] − 8�5�= − 14�09��9�� − 14�0 (ℏ√2�)29��◻9��− 8�5� + O((ℏ√2�)4) .

(16)


e term −(1/4�0)(ℏ√2�)29��◻9�� in the above Lagrangian
can be considered as a minimal length e�ect.

If we neglect terms of order (ℏ√2�)4 and higher in (16),
we will obtain the following Lagrangian density:

L = − 14�09��9�� − 14�0 (ℏ√2�)29��◻9�� − 8�5�. (17)


e Lagrangian density (17) is similar to the Abelian Lee-
Wickmodel whichwas introduced by Lee andWick as a �nite
theory of quantum electrodynamics [25–29]. Equation (17)
can be written as follows:

L = − 14�09��9�� + 14�0 (ℏ√2�)2 (-�9��) (-�9��)+ -�M� − 8�5�, (18)

where M� := − 14�0 (ℏ√2�)29��-�9��. (19)

A�er dropping the total derivative term -�M�, the Lagrangian
density (18) will be equivalent to the following Lagrangian
density:

L = − 14�09��9�� + 14�0 (ℏ√2�)2 (-�9��) (-�9��) − 8�5�.
(20)

Using the Bianchi identity (14) and dropping the total
derivative terms, the expression (20) can also be written as
follows:

L = − 14�09��9�� + 12�0 �2 (-
9�
) (-�9��) − 8�5�, (21)

where � := ℏ√2�. Equation (21) is the Lagrangian density
originally introduced by Podolsky [30–33] and � is called
Podolsky’s characteristic length [34–38]. 
e Euler-Lagrange
equation for the Lagrangian density (20) is [39, 40]-L-5� − -�( -L- (-�5�)) + -
-�( -L- (-
-�5�)) = 0. (22)

If we substitute (20) into (22), we will obtain the inhomo-
geneous Maxwell’s equations in the presence of a minimal
observable distance as follows:-�9�� + (ℏ√2�)2◻-�9�� = �08�. (23)

It should be mentioned that (23) have been previously
obtained from a di�erent perspective by Kober [41]. Equa-
tions (14) and (23) can bewritten in the vector formas follows:∇ ⋅ E + (ℏ√2�)2◻ (∇ ⋅ E) = !N0 , (24)

∇ × E = −-B-O , (25)

∇ × B + (ℏ√2�)2◻(∇ × B − 162 -E-O ) = �0J + 162 -E-O , (26)

∇ ⋅ B = 0. (27)


e generalized Maxwell’s equations (24)–(27) have been
introduced earlier by Tkachuk in [23] with a di�erent
approach. In the limit ℏ√2� → 0, the generalized inhomo-
geneous Maxwell’s equations (24) and (26) become the usual
inhomogeneous Maxwell’s equations.

4. Free Space Solutions of the Generalized
Inhomogeneous Maxwell’s Equations

In this section, we obtain the plane wave solutions of the
generalized inhomogeneous Maxwell’s equations (23) in a3 + 1-dimensional spacetime.
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In free space (! = 0, J = 0), (23) can be written as

-�9�� + (ℏ√2�)2◻-�9�� = 0. (28)

In the Lorentz gauge (-�5� = 0), the �eld equations (28)
become

◻5� + (ℏ√2�)2◻◻5� = 0. (29)

Now, we try to �nd a plane wave solution of (29) as follows:5� (%) = 5P−(�/ℏ)�⋅�Q� (&) , (30)

where Q�(&) is the polarization four-vector and 5 is a
normalization constant. In the above equation &� = (>/6, p)
is themomentum four-vector. If we substitute (30) in (29), we
will obtain

&2 (1 − �2ℏ2&2) = 0, (31)

where &2 = &�&� = (>/6)2 − p2.
Equation (31) leads to the following energy-momentum

relations: >2 = 62p2, (32)>2 = R2eff64 + 62p2, (33)

where

Reff := ℏ�6 . (34)

Equation (32) describes a massless vector particle whereas
(33) describes amassive vector particle with the e�ectivemassReff.

5. Upper Bound Estimation of the Minimal
Length in Generalized Electrodynamics

Substituting �� = 2� into (6) and remembering � = ℏ√2�,
we have

(Δ��)0 = √(� + 22 ) �2 [1 + O (�2)], ∀� ∈ {1, 2, . . . , �} .
(35)

If we neglect terms of order �4 andhigher in (35), the isotropic
minimal length in a 3 + 1-dimensional spacetime becomes

(Δ��)0 ≃ √102 �, ∀� ∈ {1, 2, 3} . (36)

Now we are ready to estimate the upper bounds on the
isotropic minimal length in generalized electrodynamics.

5.1. Upper Bound on the Isotropic Minimal Length Based on
the Anomalous Magnetic Moment of the Electron. In a series
of papers, Accioly and coworkers [27, 29, 34] have estimated
an upper bound on Podolsky’s characteristic length � by
computing the anomalous magnetic moment of the electron
in the framework of Podolsky’s electrodynamics. 
is upper
bound on � is [27, 29, 34]� ≤ 4.7 × 10−18m. (37)

Inserting (37) into (34) and (36), we �nd

Reff ≥ 41.8GeV62 , (38)

(Δ��)0 ≤ 7.4 × 10−18m. (39)

5.2. Upper Bound on the Isotropic Minimal Length Based
on the Ground State Energy of the Hydrogen Atom. In [37],
Cuzinatto and coworkers have studied the in�uence of
Podolsky’s electrostatic potential on the ground state energy
of the hydrogen atom. In their study, the upper limit on � is� ≤ 5.56 × 10−15m. (40)

Inserting (40) into (34) and (36), we �nd

Reff ≥ 35.51MeV62 , (41)

(Δ��)0 ≤ 8.79 × 10−15m. (42)

It should be noted that the upper bound (42) is about three
orders of magnitude larger than the upper bound (39) that is,(Δ��)0 Ground State Energy of the Hydrogen Atom∼ 103(Δ��)0 Anomalous Magnetic Moment of the Electron

, (43)

while the lower bound (41) is about three orders ofmagnitude
smaller than the lower bound (38) that is,Reff—Ground State Energy of the Hydrogen Atom∼ 10−3Reff—Anomalous Magnetic Moment of the Electron . (44)

6. Relationship between Nonlocal
Electrodynamics and Electrodynamics in
the Presence of a Minimal Length

In a series of papers, Smailagic and Spallucci [42–44] have
introduced an approach to formulate noncommutative quan-
tum �eld theory. Using the Smailagic-Spallucci approach,
Gaete and Spallucci introduced a nonlocal Lagrangian den-
sity for the vector �eld 5� with an external source 8� as
follows:

L = − 14�09�� exp (\◻) 9�� − 8�5�, (45)
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where \ is a constant parameter with dimensions of (length)2
[45]. We assume that the function exp(\◻) in (45) can be
expanded in a power series as follows:

exp (\◻) = ∞∑
�=0

\�
! ◻�, (46)

where ◻� denotes the ◻ operator applied 
 times [46].
If we insert (46) into (45), we will obtain the following

Lagrangian density:

L = − 14�09��9�� − 14�0 \9��◻9��− 14�0 ∞∑�=2 \�
! 9��◻�9�� − 8�5�. (47)

A�er neglecting terms of order \2 and higher in (47), we
obtain

L = − 14�09��9�� − 14�0 \9��◻9�� − 8�5�. (48)

A comparison between (17) and (48) shows that there is an
equivalence between the Gaete-Spallucci electrodynamics to
the �rst order in \ and the Lee-Wick electrodynamics (or
electrodynamics in the presence of a minimal length). 
e
relationship between the noncommutative parameter \ in
(48) and � = ℏ√2� in (17) is� = √\. (49)

Inserting equation (49) into (34) and (36), we �ndReff = ℏ√\6 ,(Δ��)0 ≃ √10\2 , ∀� ∈ {1, 2, 3} . (50)

Using (40) in (49), we obtain the following upper bound for
the noncommutative parameter \:\Ground State Energy of the Hydrogen Atom ≤ 3.09 × 10−29m2.

(51)


e above upper bound on the noncommutative parameter\, that is, 3.09 × 10−29m2, is near to the neutron-proton
scattering cross section (10−25 cm2) [47]. It is necessary to
note that the electrodynamics in the presence of a minimal
observable distance is only correct to the �rst order in
the deformation parameter �, while the Gaete-Spallucci
electrodynamics is valid to all orders in the noncommutative
parameter \.
7. Conclusions

Heisenberg believed that every theory of elementary particles
should contain a minimal observable distance of the mag-

nitude ℓ0 ∼ 10−13 cm [47–50]. He hoped that the intro-
duction of a minimal length would eliminate divergences

that appear in quantum electrodynamics. Today we know
that every theory of quantum gravity predicts the existence
of a minimal measurable length which leads to a GUP.
An immediate consequence of the GUP is a generalization
of position and derivative operators according to (15) for�� = 2�. It was shown that the Lagrangian formulation of
electrodynamics with an external source in the presence of
a minimal measurable length leads to the inhomogeneous
fourth-order �eld equations. We demonstrated the similarity
between electrodynamics in the presence of aminimal length
and Lee-Wick electrodynamics. We have shown that the free
space solutions of the inhomogeneous Maxwell’s equations
in the presence of a minimal length describe two particles,
a massless vector particle and a massive vector particle with
the e�ective mass Reff = ℏ/�6. Now, let us compare the
upper bounds on the isotropic minimal length in this paper
with the results of [47–51]. 
e upper limit on the isotropic
minimal length in (39) is near to the electroweak length scale(ℓelectroweak ∼ 10−18m) [51], while the upper limit (42) is
near to the minimal observable distance which was proposed
by Heisenberg (ℓ0 ∼ 10−13 cm) [47–50]. It is interesting
to note that the lower bound on the e�ective mass Reff in
(38), that is, 41.8(GeV/62), is of the same order of magnitude

as the mass of the `± and a0 vector bosons (b� =80.425 ± 0.038(GeV/62), b
 = 91.1876 ± 0.0021(GeV/62))
[52]. Finally, we have investigated the relationship between
the Gaete-Spallucci nonlocal electrodynamics and electrody-
namics with a minimal length.

Note Added. A�er this work was completed, we became aware
of an interesting article by Maziashvili and Megrelidze [53],
in which the authors study the electromagnetic �eld in the
presence of a momentum cuto�. For their discussion, they
use the following modi�ed Heisenberg algebra:

[��, ��] = �ℏ( 2�P2√1 + 4�P2 − 1d�� + 2�����),
[��, ��] = 0,[��, ��] = 0,

(52)

where �, f = 1, 2, 3 and � is a deformation parameter [54].
In our work we have formulated electrodynamics in the
framework of Quesne-Tkachuk algebra which is a Lorentz-
covariant deformed algebra whereas the authors of [53] have
studied electrodynamics in the framework of (52) algebra
which is not a Lorentz-covariant algebra.
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