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Formulation of Mindfulness States as a Network Optimization
Problem and an Attempt to Identify Key Brain Pathways Using
Digital Annealer
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SUMMARY Although intervention practices like mindfulness medita-
tion have proven effective in treating psychosis, there is no clarity on the
mechanism of information propagation in the brain. In this study, we for-
mulated a network optimization problem and searched for the optimal so-
lution using Digital Annealer developed by Fujitsu Ltd. This is inspired
by quantum computing and is effective in solving large-scale combinato-
rial optimization problems to find the information propagation pathway in
the brain that contributes to the realization of mindfulness. Specifically, we
defined the optimal network state as the state of the brain network that is
considered to be associated with the mindfulness state. We formulated the
problem into two network optimization problems—the minimum vertex-
cover problem and the maximum-flow problem—to search for the infor-
mation propagation pathway that is important for realizing the state. In the
minimum vertex-cover problem, we aimed to identify brain regions that are
important for the realization of the mindfulness state, and identified eight
regions, including four that were suggested to be consistent with previous
studies. We formulated the problem as a maximum-flow problem to iden-
tify the information propagation pathways in the brain that contribute to the
activation of these four identified regions. As a result, approximately 30%
of the connections in the brain network structure of this study were identi-
fied, and the pathway with the highest flow rate was considered to charac-
terize the bottom-up emotion regulation during mindfulness. The findings
of this study could be useful for more direct interventions in the context
of mindfulness, which are being investigated by neurofeedback and other
methods. This is because existing studies have not clarified the information
propagation pathways that contribute to the realization of the brain network
states that characterize mindfulness states. In addition, this approach may
be useful as a methodology to identify information propagation pathways in
the brain that contribute to the realization of higher-order human cognitive
activities, such as mindfulness, within large-scale brain networks.
key words: mindfulness states, minimum vertex-cover problems,
maximum-flow problems, digital annealer
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1. Introduction

In this section, we first explain the background of the re-
search in Sect. 1.1 and the purpose and possibilities of the
research in Sect. 1.2. Finally, the flow of this paper is ex-
plained in Sect. 1.3.

1.1 Theoretical Background

1.1.1 Previous Research on Mindfulness and Issues

Interventions including mindfulness meditation and short-
term intensive programs, such as mindfulness-based stress
reduction (MBSR), have been reported to have therapeu-
tic effects on psychosis, including depression and social
anxiety [1], [2]. Mindfulness meditation, such as Zen and
Vipassana, inspired by Eastern meditation techniques, in-
volve becoming aware of the ever-changing perceptual field
and paying attention to the present moment with an at-
titude of accepting its perceptual content without judg-
ment [3]. The practice of mindfulness involves, in various
ways, controlling the focus of attention, suppressing elabo-
rate thoughts, and re-directing or disengaging attention af-
ter a lapse [4]. The state of mindfulness achieved through
mindfulness meditation is mostly defined as “paying atten-
tion in a particular way: on purpose, in the present moment,
and non-judgmentally” (p.4, [5]). Although the mindful-
ness state has attracted attention because of its effects, the
mechanism of information propagation in the brain that re-
alizes the mindfulness state is unclear. Many basic studies
have been conducted accordingly in recent years. Most of
the neuroscientific findings that have studied emotion reg-
ulation through mindfulness meditation are based on fMRI
(e.g., [6] see above), diffusion tensor imaging (e.g., [7]), and
voxel-based morphometric techniques (e.g., [8]). In addi-
tion, in recent years, many review articles have systemati-
cally summarized existing neuroscientific findings, such as
those presented above [9], [10]. Tang et al. have found that
the anterior cingulate cortex (ACC) and striatum of the basal
ganglia are involved in attentional control; that the multiple
frontal regions, limbic regions, and the striatum are involved
in emotional control; and that the insula, medial prefrontal
cortex (mPFC), and posterior cingulate cortex are involved
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in self-awareness. The striatum as well as the insula, medial
prefrontal cortex (mPFC), posterior cingulate cortex (PCC),
and precuneus are involved in self-awareness [9]. Accord-
ing to Young et al., the caudate nucleus and several frontal
regions are involved in attentional control, and the ACC and
insula are involved in self-awareness. In particular, the most
consistent finding in their study was the activation of the in-
sula, which is associated with self-awareness [10].

The aforementioned studies have led to a better under-
standing of the individual brain regions involved in mind-
fulness. However, a wide range of brain regions could pos-
sibly be involved in mindfulness states. In addition, since
the complex mental state of mindfulness is thought to be
supported by changes in large-scale brain networks, future
studies should consider comparing not only the intensity of
activation in single brain regions, but also the analysis of
complex networks [9]. Therefore, it has been pointed out
that future research should focus on the interaction of mul-
tiple brain regions and the dynamics of their information
propagation, rather than on specific brain regions [9]. Farb
et al. reported enhanced functional connectivity between the
right insula-left dlPFC and attenuated functional connec-
tivity between the right insula-left vmPFC through MBSR
training [11]. Tang et al. also investigated whether 11 h
of integrative body mind training (IBMT) could change the
phase characteristics of the anterior cingulate cortex of the
brain functional network [7]. They suggested that the net-
work properties of the resting anterior cingulate cortex were
altered by brief meditation. Furthermore, Sharp et al. in-
vestigated changes in structural neuroplasticity within brain
network structures after 70 minutes of mindfulness medi-
tation training and reported an increase in structural con-
nectivity in the right insular cortex (e.g., between the in-
sula and OFC, between the insula and olfactory entorhinal
cortex) [12]. Mooneyham et al. described the characteris-
tics of the brain networks involved in mindfulness—the de-
fault mode network (DMN), the salience network (SN), and
the central executive network (CEN). They summarized the
findings related to changes in functional connectivity (FC)
within and between these networks [4]. They then reported
two of the most reliable findings: increased intra-network
FC between the default network regions of the PCC and
vmPFC, and increased inter-network FC between the dlPFC
(executive) and insular cortex (attention).

The trend that suggests the need to map human cog-
nitive activity to the state of the network, rather than to
the neural activity of local brain regions, is not limited to
mindfulness. There have been studies that consider brain
networks within the field of complex networks; these stud-
ies analyzed the importance of influential nodes in the net-
work, such as hub regions, as well as the state and struc-
tural characteristics of the network that characterize certain
states (see, e.g., [13] for more details). For example, com-
plex symptoms of the psyche, including illusions and delu-
sions, are framed in terms of a breakdown in the interaction
between regions within the network and in the network’s
widespread integration processes (e.g., [14]). In particu-

lar, the “disconnection hypothesis” in schizophrenia sug-
gests that abnormalities in the regulation of synaptic plas-
ticity by the ascending modulatory neurotransmitter sys-
tem lead to the failure of functional integration of scat-
tered neural systems [15]. In addition, the relationship be-
tween brain regions and cognitive functions is probably not
one-to-one, but many-to-many, except for the sensory and
motor regions [16]. Thus, human cognitive activity, espe-
cially higher-order cognitive activity, such as mindfulness,
in which multiple cognitive functions interact, requires the
conjoint functioning of brain regions that work together as
a large network [17], and Olaf states that “cognitive activ-
ity is a networked phenomenon.” (p.190, [18]). Olaf sug-
gested that even in the same network state, different com-
plex functions are achieved by different combinations of el-
ements in the network at different times under varying in-
put or task conditions [18]. Therefore, it is necessary to ad-
dress the question of what kind of information propagation
is involved in the realization of the state of the brain net-
work corresponding to the mindfulness state. To address
this problem, it has been pointed out that it is difficult to
clarify the dynamics of information propagation in large-
scale brain networks using existing experimental methods,
and that computational modeling is important [19].

1.1.2 Our Approaches and Related Theory

In light of the above background, computer simulations
have been used to investigate the propagation of informa-
tion within the network structure of the brain based on our
knowledge of multiple brain regions affected by mindful-
ness [20]. In this study, mindfulness meditation was rep-
resented as a change in the parameters of a computational
model that specifies the propagation of information in the
brain, and qualitative changes in the behavior of each brain
region were observed by simulation [20]. We observed a
behavior consistent with that reported in previous studies,
suggesting that the mindfulness state may be realized by a
state in which bottom-up information processing is domi-
nant in the brain [20]. In addition, Nakamura et al. found
that the brain regions that are activated by the propagation
of information are those with the highest input and output
in the brain network structure, and as a result, the brain net-
work structure realized by mindfulness meditation is a state
in which information is propagated to more brain regions in
the network structure [21]. It is noted that the state of being
consciously aware of one’s own perceived sensory stimuli
(meta-awareness) is important for mindfulness. The pro-
cessing that rises to consciousness corresponds to a state in
which information is propagated to a wide range of regions
in the brain, e.g., in global neural workspace theory [22].
From this, we consider the possibility that the propagation
of information to more brain regions may realize the meta-
awareness that characterizes mindfulness.

Accordingly, we clarified how the mindfulness state
is realized in the brain and how it corresponds to the state
of the network structure in the brain, which has only been



NAKAMURA et al.: FORMULATION OF MINDFULNESS STATES AS A NETWORK OPTIMIZATION PROBLEM AND AN ATTEMPT
1971

partially identified in existing studies. On the other hand,
as mentioned earlier, mindfulness is associated with the in-
volvement of many brain regions; however, the identity of
the important brain regions are still unclear. In addition,
although Nakamura et al. discussed the mechanism of in-
formation propagation in the brain, it is still challenging
to identify the information propagation pathways that con-
tribute to the realization of a mindfulness state. To identify
these pathways it is necessary to investigate options among
the combinations of pathways in a large-scale network struc-
ture, and a high-power/ high-capacity computational envi-
ronment is required for this purpose.

1.2 Purpose and Significance of This Study

Based on the above, we attempt to clarify what states of
the brain network structure realize the state of mindfulness,
formulate it as a network optimization problem, and iden-
tify the information propagation pathways in the brain net-
work structure that contribute to its realization. It should
be noted that we do not formulate our research in terms of
how the brain achieves the optimal network state at “com-
putational level.” [23]. We only formulate the search for
brain regions and pathways that are important in the net-
work structure when the optimal network state is realized.
Fujitsu Ltd.’s Digital Annealer (DA) is used to search for so-
lutions to network optimization problems. Digital Annealer
are made of digital circuits and can handle large problems
with up to 8192 all-bit interconnections [24].

The significance of this study is as follows. This
study’s research approach is academically significant. Al-
though this study focuses on mindfulness, this research ap-
proach is significant as a framework for identifying the state
of brain networks that correspond to higher-order cogni-
tive activities in humans and the information propagation
pathways that contribute to their realization, independent of
mindfulness. Peterson et al. point out that human higher-
order cognitive activities cannot be explained by individual
brain regions alone and require the interaction of multiple
brain regions that collaborate as a large-scale network [17].
Therefore, human higher-order cognitive activity can be
mapped as the state of a brain network realized by the in-
teraction of multiple brain regions. The identification of
information propagation pathways that contribute to the re-
alization of such a state will lead to the elucidation of the
mechanism of realization of higher-order cognitive lighten-
ing in humans. In such cases, there are many combinations
of important brain regions and important information prop-
agation pathways, such as the number of regions in a large-
scale brain network structure and the number of possible
pathways between regions. Therefore, the use of DA as a
methodology to search for solutions is an important factor
in the success of this approach.

The results obtained from this research approach may
be used to examine direct intervention and treatment meth-
ods for mental disorders. A recent review by Rabipour and
Raz suggests that neurofeedback may be effective for cogni-

tive function and psychiatric disorders [25], and early stud-
ies have already shown efficacy for attention deficit disor-
ders. Such mental disorders are known as pathologies in
which interactions between domains are disrupted [14], as
described in Sect. 1.1. The information on the pathways ob-
tained from this study’s methodological approach to identi-
fying exploratory information flow from within a large net-
work structure of higher-order human cognitive activity may
be useful for direct intervention methods and treatment of
mental disorders that can be associated with the above in-
teractions between domains. Furthermore, in mindfulness,
more direct interventions, such as neurofeedback, are now
being tested to support people in deepening their meditation
in recent years. However, many of the brain regions that are
significantly activated during mindfulness are located deep
within the brain. If the pathways of information propaga-
tion in the brain, that contribute to the realization of a state
of mindfulness, are clarified through this research, it may
be possible to identify brain regions that are involved during
mindfulness. These regions are closer to the surface of the
brain and contribute to the activation/deactivation of brain
regions located in deeper layers.

1.3 Flow of This Paper

The flow of this paper is described below. The methodol-
ogy of this study is described in Sect. 2. Next, in Sect. 3,
we explain how we specified the network structure that is
the subject of this study. In Sect. 4, we describe the brain
network states to which the mindfulness state is thought to
correspond (henceforth, the optimal network state). We also
describe in Sect. 5 the Quadratic Unconstrained Binary Op-
timization (QUBO) model handled by the digital annealer
used to find solutions to the optimization problems in this
study. Then, based on the contents of Sects. 3 and 4, the for-
mulation of the network optimization problem is explained
in 6. In Sect. 7, we describe how we search for solutions
using DA, outline the simulations we perform in this study,
and describe the criteria for adopting the results. In Sect. 8,
simulation results and discussions are presented. In Sect. 9,
we benchmark the execution time of our simulation. Finally,
the problem of this study is discussed in Sect. 10, and the
conclusion is presented in Sect. 11.

2. Methodology

In this section, we describe the flow of the research and anal-
ysis process. Figure 1 shows the flow of this research. In this
study, we first define the optimal network state in which the
mindfulness state can be associated with the network struc-
ture in the brain (see Sect. 3, Sect. 4). Then, we formulate
the network optimization problem, which is a type of com-
binatorial optimization problem, by identifying the informa-
tion propagation paths in the brain network structure that
contribute to the realization of the state. Specifically, we
formulate the problem in the following steps (see Sect. 6).
To determine the endpoint information necessary for the for-
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Fig. 1 Formulation of Information Propagation Pathfinding for Network
Optimization and Solution Search Using Digital Annealer

mulation of the pathway problem, the brain regions that are
important for the realization of the optimal network state
are first identified (Step 1), and the information propagation
pathways that are important for the activation/deactivation
of the activities in the identified regions are determined us-
ing the identified regions as endpoints (Step 2). The purpose
of Step 1 is twofold. The first is to confirm the validity of
the state, clarified as the optimal network state. We assume
that most of the brain regions to be identified are those that
have been suggested to be involved in the mindfulness state
in existing studies. The optimal network state defined in this
study may be one of the brain network structures that real-
izes the mindfulness state if the results are consistent with
previous studies, as expected. The second step is to identify
the regions that are structurally important for the realization
of the optimal network state, even though existing studies
suggest the involvement of a wide range of regions in the
realization of the mindfulness state [9]. This research aims
to identify the information propagation pathways that are
important for the realization of mindfulness states by formu-
lating and discovering solutions to the network optimization
problem in the above two steps.

The problem is converted to quadratic unconstrained
binary optimization (QUBO) (e.g., [26], [27]) for computa-
tion using Digital Annealer. For the solution search, we use
Digital Annealer inspired by quantum computing. In this
study, as a benchmark, we used a computer with 24 Xeon
cores and 64GB of memory to compute the same problem,
and compared the computation time with that of Digital An-
nealer.

3. Network Structure Targeted in This Study

To explain higher-order human cognitive activities, such as
mindfulness, it is necessary to understand the structure and
mechanisms of neurobiological networks at a macroscopic
level, rather than at a microscopic level, such as synapses

and neurons [17]. Therefore, in this study, the elements of
our network model were chosen according to brain parcella-
tions based on cytoarchitecture. We did not model individ-
ual neurons, but represented each brain region using a single
state variable. Specifically, we defined each region within
the cortex as Brodmann area (BA). The other regions were
defined as neural populations at the mesoscopic level [28].
In this study, we constructed a network structure with 64
regions as nodes. Table 1 shows the brain regions and the
upper categories encompassing each area which constitute
the structural network of our study. The selection criteria
for 64 regions of the brain are as follows.

1). Regions described by [9], [10], [29], who reviewed
cognitive neuroscience studies on mindfulness and
mind-wandering.

2). Other brain regions not pointed out in 1), but belong-
ing to the category, except for areas lacking input and
output.

3). Each brain region pointed out in anatomical find-
ings [30]–[33] as having a projective relationship to
each region in 1). The issues present in the above find-
ings, which this study used to define the connection
between the regions, are specified in Sect. 10.

In this study, brain regions constitute structural network
nodes, and the connecting pathways constitute structural
network edges. We ignored the nature of the connections
between regions and created a connection matrix that was 1,
if there was a projection relation from one region to another,
and 0, if otherwise.

4. Defining the Optimal Network State

As mentioned in Sect. 1.1.2, mindfulness corresponds to a
state in which information is propagated to the brain regions
in a larger network structure. In addition, as described in
Sect. 3, the brain network structure targeted in this study is
defined around brain regions related to the state of mindful-
ness. From this point of view, we define the optimal network
state to which the mindfulness state is considered to corre-
spond as “the state in which information is propagated to all
brain regions in the network structure at a certain point in
time.” Figure 3 shows the optimal network state for a net-
work structure with seven nodes. For example, Fig. 3 (A)
shows that at a certain point in time, node A in the network
structure will propagate information to the four red nodes
via its output. Thus, the activation of nodes A, B, and C
at a certain point in time, as shown in Fig. 3 (B), results in a
state in which information is propagated to all brain regions,
including A, B, and C. In other words, the meaning of infor-
mation propagation in the graph is defined as the state in
which at least one node that projects to a certain node (brain
region) is adopted.

5. Digital Annealer

DA by Fujitsu Ltd. [24] aims to solve a combinatorial opti-
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Fig. 2 Network structure. The nodes comprising the network (see Table 1) are described. The orange
nodes are regions belonging to the cerebral cortex. Abbreviations: somatosensory = somatosensory area
(BA1,2,3). premotor = PM (BA6). V1 = primary visual cortex (BA17). V2 = secondary visual cortex
(BA18). Wernicke = Wernicke’s area (BA22). parahippocampal = parahippocampal gyrus (BA36).
entorhinal = entorhinal cortex (BA34). fusiform = fusiform gyrus (BA37). SMG = supramarginal gyrus
(BA40). Broca = Broca’s area (BA44, 45). The gray node is a region belonging to the hippocampus.
Abbreviation: Dendate = the dentate gyrus. The green node is a region belonging to the thalamus.
Abbreviation: midline = midline nuclear group. intramedial = intramedial nuclear group. reticular
= thalamic reticular nucleus The red region belongs to the amygdala. Abbreviation: basolateral =
basolateral nucleus corticomedial = the corticomedial nucleus. central = central amygdaloid nucleus
The purple region belongs to pons. Abbreviation: pontine = pontine nuclei locus = locus coeruleus
parabrachial = parabrachial nuclei. The yellow region belongs to the basal ganglia. Abbreviation:
subthalamic = the subthalamic nucleus. globus = globus pallidus caudate = caudate nucleus substantia
= substantia nigra. NAcc = Nucleus accumbens The edges in the network are described in the text. The
red links indicate excitatory projections. Blue links indicate inhibitory projections.

mization problem at high speed with digital circuits inspired
by quantum computing. DA can search for the minimum
value of the energy function of a QUBO model. DA can only
adopt the input of the QUBO model, as shown in Eq. (1):

E = −1
2

∑

i

∑

j�i

Wi, j xix j −
∑

i

bixi − c, (1)

where W, b, and c are the inputs of DA, and xi ∈ 0, 1 is
a bit. Weight matrix W reflects the quadratic coefficients of
the model, while vectors b and c represent linear coefficients
and a constant, respectively. The value of c, the elements in
W, and the elements of b must be integers. DA calculates
the global minimum value of E and outputs the value of all

bits xi when E reaches a minimum. To utilize DA, we have
to transform our defined objective function into a QUBO
model and to derive three necessary inputs: weight matrix
W, vector b, and constant c of DA in Eq. (1). Therefore, in
the following, we formulate the network optimization prob-
lem as a form of QUBO.

6. Formulation as a Network Optimization Problem

As described in Sect. 2, this study is formulated as a network
optimization problem in two steps to find the information
propagation pathways in the brain that contribute to the re-
alization of a mindfulness state. We formulate a network op-
timization problem in two steps. In Step 1, we formulate the
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Table 1 Brain regions that are included in our structural network. Abbreviation: BA = Brodmann
area. PA = the parietal association area. FEF = frontal eie field OFC = orbitofrontal cortex. MI =
middle insula PI = posterior insula ITG = inferior temporal gyrus.

Category Included brain region
Cerebral Cortex somatosensory area (BA1, 2, 3), primary motor area (BA4), PA (BA5, 7), PM (BA6), FEF (BA8), dlPFC (BA9, 46), OFC (BA11, 12)

insula (AI, MI, PI; BA13, 14), primary visual cortex(BA17), secondary visual cortex (BA18), visual association area (BA19), ITG
(BA20), Wernicke’s area (BA22), PCC (BA23, 31), mPFC (BA10, 24, 25, 32), ACC (BA24, 32), enthorhinal cortex (BA34), parahi-
ppocampal gyrus (BA36), fusiform gyrus (BA37), temporal pole (BA38), angular gyrus (BA39), supramarginal gyrus (BA40), prim-
ary, auditory area (BA41, 42), primary gustatory area (BA43), Broca’s area (BA44, 45), Inferior frontal gyrus (BA47), BA52

The thalamus anterodorsal nucleus (AD), anteroventral nucleus (AV), anteromedial nucleus (AM), dorsomadial nucleus (DM), midline nuclear gr-
oup, intramedial nuclear group, lateral dorsal nucleus (LD), lateral posterior (LP) nucleus, ventral anterior nucleus (VA), ventral pos-
terior nucleus (VL), ventral posterolateral nucleus (VPL), ventral posteromedial nucleus (VPM), lateral geniculate body(LGB), med-
ial, geniculate body (MGB), pulvinar, thalamic reticular nucleus

Hippocampus CA1, CA2, CA3, dentate gyrus
Hypothalamus Mammillary body, suprachiasmatic nucleus, dorsomedial hypothalamic nucleus (DMH)
Basal ganglia subthalamic nucleus, putamen, globus pallidus, caudate nucleus, substantia nigra, Nucleus accumbens
Amygdala Basolateral nucleus, corticomedial nucleus, central amygdaloid nucleus
Pons Pontine nuclei, locus coeruleus, parabrachial nuclei

Fig. 3 Optimal network state in a network structure consisting of seven
nodes. (A) Information is propagated through node A to four nodes. (B)
As in (A), information is propagated to all brain regions, including nodes
A, B, and C themselves, via nodes A, B, and C. Red nodes: Nodes where
information is propagated via nodes A, B, and C (nodes A, B, and C them-
selves are included). Red edge: The edge through which information is
propagated through nodes A, B, and C. Black edge: Edge that is not tra-
versed when the information of all nodes is propagated through nodes A, B
and C.

minimum vertex cover problem to find the brain regions that
are structurally important for the realization of the optimal
network state within the target network structure described
in Sect. 3 and Sect. 4 (see Sect. 6.1). Then, in Step 2, the in-
formation propagation pathways in the brain that contribute
to the activation of the brain regions identified in Step 1 are
identified and formulated as a maximum-flow problem (see
Sect. 6.2).

6.1 Step1: Minimum Vertex-Cover Problem

The minimum vertex cover problem is originally a type of
network optimization problem for undirected graphs, which
is to find a point coverage of minimum size such that the
set of vertices in an undirected graph covers all edges when
all edges from those vertices are collected. In this study, we
formulated the minimum vertex cover problem in directed
graphs as a problem of investigating the minimum number
of nodes required to achieve the optimal network state in
the network structure of this study, and the location of those
nodes. The problem is to find the minimum number of nodes
required to achieve the optimal network state in the network
structure.

In the following sections, the objective function and
constraints are described in Sect. 6.1.1, and the transforma-

tion to QUBO, which is necessary to find the optimal solu-
tion by Digital Annealer, is described in Sect. 6.1.2.

6.1.1 Objective Function and Constraints

We formulated the minimum vertex cover problem with the
objective function (Eq. (2)) and constraints (Eq. (3)) as fol-
lows:

min
N∑

i=1

xi (2)

∑

j∈Λi

x j ≥ 1 (3)

First, we explain Eq. (2). The variable xi is a binary vari-
able (xi ∈ 0, 1), which indicates whether the region Ri is
adopted. i = 1, . . . ,N is the region number assigned to each
brain region, and N indicates the number of brain regions in
this study. In this paper, the number of regions is 64. Equa-
tion (2) expresses the objective function of minimizing the
number of brain regions to be selected. Next, we explain
Eq. (3). Λi is a set of region numbers projected to the re-
gion Ri.

∑
j∈Λi

x j indicates the total value of the variables x j

for the regions to be input to the region Ri. In other words,
Eq. (3) expresses the constraint that for any brain region Ri

in the brain network structure, it has input from at least one
of the regions Rj that project to region Ri. Here, we de-
fine the propagation of information by the fact that a path is
adopted from one node to another in this study. Equations 2
and 3 are combined to formulate the problem of identifying
the brain regions that are important for information propa-
gation to all brain regions.

6.1.2 Transforming to the QUBO Model

We first convert the inequality constraint condition in Eq. (3)
from the previous section into an equality constraint using
the slack variable sk. Then, we formulate the minimum
vertex-cover problem, which is defined by the Hamiltonian
of the constraints and the objective function described in
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Eq. (2) and Eq. (3) of the previous section.

Fv = Av
N∑

i=1

xi + Bv
N∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j∈Λi

x j −
N(Λi)−1∑

k=1

sk − 1

⎞⎟⎟⎟⎟⎟⎟⎠
2

, . (4)

The terms in Av
∑N

i=1 xi expresses the objective function of

Eq. (2), and the term in Bv
∑N

i=1

(∑
j∈Λi

x j −∑N(Λi)−1
k=1 sk − 1

)2
expresses the inequality constraint of Eq. (3) using the slack
variable. It is expressed as an equality constraint using sk,
which means slack variable.

∑N(Λi)−1
k=1 sk means that for each

brain region, there are N(Λi)−1 binary variables sk are slack
variables. The total number of all slack variables is 224. In
other words, they are generated to mean the same state as the
equality-transformed state of the inequality constraint using
the slack variables shown in Eq. (3). The Av and Bv in each
term are the coefficients.

6.2 Step2: Maximum-Flow Problem

The brain regions identified by the minimum vertex cover
problem represent the minimum number of brain regions
necessary for the realization of the optimal network state.
Although many brain regions are involved in the mindful-
ness state, the brain regions identified in this study are con-
sidered to be the brain regions that are more important for
the realization of the resulting state in the brain network
structure (see Sect. 1.1). Mindfulness meditation as a means
of realizing a mindfulness state can be regarded as a form
of attentional training directing attention to one’s own sen-
sory information. The optimal network state was achieved
when more input flowed into the identified brain regions. In
this study, we attempted to identify the information propaga-
tion pathways that contributed to the realization of a mind-
fulness state by formulating a maximum-flow problem, in
which the flow rate was increased in the brain regions iden-
tified by the minimum vertex-cover problem. The starting-
point was from some thalamic nuclei through which sen-
sory information passed (i.e., LD, LP, VPL, VPM, MGB,
and LGB) [30], [34]. The maximum-flow problem attempts
to maximize the flow rate between the start and end points
of a network when there is a limit (capacity) to the flow rate
through each branch of the network.

In this study, we considered the flow rate and capacity
as processing resources devoted to information propagation
in the brain. In the nervous system, the firing of neurons de-
pends on metabolic resources (oxygen and glucose) carried
by the blood flow, and there are limited metabolic resources
that can be used at any given time [35]. Therefore, it may be
reasonable to set a capacity for the flow rate between each
brain region. On the other hand, since this study constructs
the network structure at a mesoscopic level and specifies the
projection relations between brain regions, it is difficult to
map the flow rate to the entity of the nervous system, and
in this sense, there is an interpretability issue. In addition,
when formulating this as a maximum-flow problem in this
study, it is important to note that the constraints described in

Eq. (6) are insufficient to formulate the conservation of input
and output quantities (see Sect. 10).

In the following sections, the objective function and
constraints are described in Sect. 6.2.1, and the transforma-
tion to QUBO, which is necessary to find the optimal solu-
tion by Digital Annealer, is described in Sect. 6.2.2.

6.2.1 Objective Function and Constraints

We formulated the maximum-flow problem with the objec-
tive function (Eq. (5)) and constraints (Eq. (6)) as follows:

max
C∑

j=1

yig j (5)

∑

i, j�s,t

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i∈∂+(v)

y ji −
∑

i∈∂−(v)

yi j

⎞⎟⎟⎟⎟⎟⎟⎠
2

= 0 (6)

First, yi j represents the flow rate from region Ri to region
Rj. It is a binary variable (yi j ∈ 0, 1), meaning that the flow
rate from region Ri to region Rj should be adopted. i, j =
1, . . . ,N denotes the region number assigned to each brain
region. The variable C refers to the capacity of the path-
way between each brain region. It is thought that

∑C
j=1 yi j

expresses the amount of processing resources allocated
from region Ri to region Rj. Next, we explain Eq. (5). yig j

is a variable that represents the flow rate from region Ri to
the brain region Rg j identified by the minimum vertex cover
problem. In this paper, we refer to Rg j as the “target re-
gion.” In other words, yig j is a binary variable that indi-
cates whether the flow from region Ri to the target region
Rg j should be adopted or not. Equation (5) expresses the
objective function for maximizing the flow rate to the target
region Rg j . Next, we explain Eq. (6). where s, t denote the
region number of the starting point and the region number of
the ending point, respectively. i ∈ ∂+(v) indicates the region
number where the input to region Ri is located, and i ∈ ∂−(v)
is the region number where the output from region Ri is lo-
cated. Then, Eq. (6) expresses the constraint for any region
Ri in the brain network structure except the start and end
points, the flow rate

∑
i∈∂+(v) y ji flowing into the region and

the flow rate
∑

i∈∂−(v) y ji flowing out of the region conserved.

6.2.2 Transforming to the QUBO Model

Similar to the minimum vertex-cover problem, the objective
function and constraints of (5) and (6) above were converted
to the QUBO form.

Fm = Am

C∑

j=1

yig j + Bm

∑

i, j�s,t

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i∈∂+(v)

y ji −
∑

i∈∂−(v)

yi j

⎞⎟⎟⎟⎟⎟⎟⎠
2

, (7)

The term in −Am
∑C

j=1 yig j represents the objective func-

tion of Eq. (5), and the term in Bm
∑

i, j�s,t

(∑
i∈∂+(v) y ji−

∑
i∈∂−(v) yi j

)2
expresses the constraints of Eq. (6). The Am

and Bm in each term are the coefficients.
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7. Optimal Solution Search Using DA

We use DA to search for the optimal solution to the net-
work optimization problem formulated in Sect. 6. DA re-
peats for a number of iterations to minimize the energy of
the model, thus finding the compensation parameters as cor-
responding binaries. Algorithms of the calculation in DA
are described in [24] (for implementation, refer to the DA
webservice [36]. The iteration was set by the convergence
of the solution, and the number of runs was set to 50 to com-
pare the computation time on the benchmark for both the
minimum vertex coverage and maximum flow problems.

We performed simulations by varying the values of the
QUBO coefficients (Av, Bv, Am, Bm) for each optimization
problem in an exploratory manner. The obtained candidate
solutions were checked to determine whether they were fea-
sible (the constraint condition was satisfied when the value
of the energy function was minimized) or optimal (the ob-
jective function was minimized when the value of the energy
function was minimized). The coefficients were adopted
when they were the most feasible and optimal solutions. Al-
though there were multiple optimal solutions for both prob-
lems, the brain regions and information propagation path-
ways selected in the multiple optimal solutions tended to
identify a common region or pathway. Therefore, the opti-
mal solution that is most consistent with existing research is
selected as the result and discussed in the following sections.

8. Results and Discussion

In this section, the results and discussion of the minimum
vertex cover problem tackled in Step 1 and the maximum-

Fig. 4 Simulation results for Minimum Vertex-Cover Problem. The horizontal axis shows the number
of simulation runs. The vertical axis is the optimal solution adopted in one simulation. The search for
the optimal solution is performed for iteration in a single simulation, and the points plotted as values
indicate the minimum value when iteration are turned. The figure reveals the results after 50 runs, and
the number of times it was run at each iteration. Av is the coefficient of the objective function (first term)
in Eq. (4), and Bv is the coefficient on the constraints (second term) in Eq. (4). (1) Value of the objective
function Fv in Eq. (4). (2) Value of energy function E in Eq. (1). The minimum value of each is circled
in red in the top dotted line of the plot. The number of variables defined by the formulation was 286.

flow problem tackled in Step 2 are presented in Sect. 8.1 and
Sect. 8.2, respectively. Finally, a comprehensive discussion
based on the results of both network optimization problems
is provided in Sect. 8.3.

8.1 Results and Discussion of Minimum Vertex-Cover
Problem

In this section, we describe the results of annealing runs for
the minimum vertex cover problem. When the energy func-
tion in Eq. (1) was minimized (Emin = 6960), there existed a
feasible solution with the minimum objective function. Fig-
ure 4 plots the value of the energy function and the value of
the objective function after searching for a solution by an-
nealing for the number of runs under the condition of QUBO
at Av = 870 and Bv = 850 of Eq. (4). The minimum value
is plotted in red and indicated by a dotted line. The value
of the objective function is 8, which means that eight brain
regions were selected as the minimum number of brain re-
gions necessary for the propagation of information to all
brain regions in this problem. The selected brain regions
are the primary somatosensory area, the dorsolateral pre-
frontal cortex (dlPFC), orbitofrontal cortex (OFC), anterior
insula (AI), middle insula (MI), subthalamic nucleus, thala-
mic reticular nucleus, and intramedial nuclear group. Of the
above eight brain regions, AI, MI, OFC, and dlPFC were the
brain regions suggested to be activated during mindfulness
(e.g., [9], [10]). Since the results of identifying brain regions
important for achieving the state of mindfulness as a mini-
mum vertex coverage problem are consistent with existing
studies, we consider the optimal network state described in
Sect. 4 to be valid in this study.
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Fig. 5 Simulation results of Maximum-Flow Problem when the endpoint is set to AI. The horizontal
axis shows the number of simulation runs. The vertical axis is the optimal solution adopted in one
simulation. The search for the optimal solution is performed for iteration in a single simulation, and the
points plotted as values indicate the minimum value when iteration are turned. The figure shows the
results after 50 runs, the number of times it was run this time. Am refers to the coefficient of the objective
function (first term) in Eq. (7), and Bm is the coefficient on the constraints (second term) in Eq. (7). (1)
Value of the objective function Fm in Eq. (7). (2) Value of energy function E in Eq. (1). The minimum
value of each is circled in red in the top dotted line of the plot. The number of variables defined by the
formulation was 1305.

8.2 Results and Discussion of Maximum-Flow Problem

In this study, among the brain regions identified in Sect. 8.1,
we used four target brain regions, AI, MI, OFC, and dlPFC,
and determined the pathways and flow rates between each
brain region identified to maximize the amount of input to
each brain region. The reason for limiting the endpoints here
to four of the eight regions identified in the minimum vertex
coverage problem is that information propagation pathways
that activate the identified regions as endpoints will achieve
a state of mindfulness. Therefore, we focused on four re-
gions that have already been suggested to be significantly
activated in the mindfulness state in previous studies (e.g.,
[9], [10]).

In the following sections, we mainly discuss the results
with the AI as the endpoint, by using Sect. 8.2.1 to explain
the results with the AI as the endpoint and Sect. 8.2.2 to ex-
plain the results with the other regions as the endpoints. This
is because AI is the area where the most suggestive consid-
erations can be made for the information propagation path-
ways that contribute to the realization of a state of mind-
fulness. Existing research suggests AI as the area most in-
volved with the state of mindfulness [10].

8.2.1 Results and Discussion When AI is Used as the End-
point

In this section, we describe the results of annealing for
Am = −500 and Bm = 2300 in Eq. (7) when the endpoint
is AI when C is set to 5. This means that there is a binary
variable yi j for capacity C = 5 for the pathway between
each brain region. The determination of the value of C was

done in an exploratory manner, checking the consistency of
the obtained results with existing previous studies and the
execution time. For the maximum flow problem, the num-
ber of binary variables required is 261 × C. The maximum
number of variables in a problem that can be handled by a
digital annealer is 8192. While checking the resulting paths
and flow rates between regions against existing studies, we
have included the results for C = 5 as a value of capacity
that prevents the number of variables from becoming larger
than necessary. When C = 5, the number of binary variables
is 1305. In the following sections, we report the results of
one of the multiple optimal solutions obtained. However,
it should be noted that the results reported in the following
sections show the same trend for other solutions that existed
multiple times within the number of runs.

As a result of the simulation, when the energy func-
tion of Eq. (5) is minimized (Emin = −23500), there are
several feasible solutions with a minimum objective func-
tion. Figure 5 plots the value of the energy function and the
value of the objective function after searching for a solution
by annealing for the number of runs under the condition of
QUBO at Am = −500 and Bm = 2300 in Eq. (7) when the
target region is AI. The minimum value is plotted in red and
indicated by a dotted line. The minimum value of the ob-
jective function is -47, which is an average of 60% of the
maximum flow rate (number of paths × number of capaci-
ties, C) in the target area, AI. Table 2 shows the coupling
between each region employed when C = 5, Am = −500
and Bm = 2300 in Eq. (7) and the flow Cemp are allocated
between each region (the flow actually employed within the
capacity C = 5). Figure 6 visualizes the information shown
in Table 2 in a network structure.

The regions in the path from the start point to the end
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Fig. 6 Network obtained for the maximum flow problem when AI is used as an endpoint. The blue
nodes indicate the starting region and the red node indicate the ending region. Please refer to the caption
of Fig. 2, as the abbreviations for the areas listed in the nodes are the same as in Fig. 2. The thickness of
the edges refers to the magnitude of the flow rate employed. See Table 2 for the flow rate specifically
employed to join each region.

Table 2 The pathways and flow that contribute to maximizing the flow rate to the AI. The identified
pathways between brain regions are decomposed by capacity and displayed as “input area-output area”
See Table 1 for brain region names.

flow: Cemp Connections between brain regions in the identified pathways
Cemp = 5 Broca-MI, MI-BA38, PI-AI, MI-BA20, PCC-PI, BA41-PI, Wernicke-MI, OFC-AI, BA20-PI, pulvinar-BA19, ACC-AI

Broca-AI, VPL-PI, AG-Broca, PA-MI, somatosensory-MI, MI-Wernicke, PA-PI, VPL-MI, VPL-somatosensory, PI-OFC
BA19-AG, MI-PCC, somatosensory-AI, PI-AG, VPM-somatosensory

Cemp = 4 V2-BA19, LGB-V1, MGB-BA41, PI-enthorhinal, BA38-AI, dlPFC-AI, OFC-dlPFC, LP-ACC, enthorhinal-AI, MI-AI
V1-V2

Cemp = 3 enthorhinal-MI, BA20-MI, MI-OFC, SMG-PI, BA20-AI, LD-PA, PI-somatosensory, AG-SMG, pulvinar-BA20, MI-ent-
horhinal, PI-ACC, MI-VA, PI-dlPFC, pulvinar-PA, MI-Broca, ACC-FEF, FEF-AI

Cemp = 2 VA-FEF, BA19-BA20, somatosensory-PA, central-OFC, AG-PI, BA38-MI, dlPFC-central, BA19-Broca, MI-ACC, FEF-
MI

Cemp = 1 MI-BA41, somatosensory-PI, LP-PA, PI-MI, PI-BA38, PM-MI, PI-PA, OFC-MI, ACC-PI, VA-PM, dlPFC-MI, PI-BA20

point were an average of 50% of the brain regions in the en-
tire network structure. The identified pathways from start to
end contained an average of 26.9% of all connections in the
network structure. The overall trend suggests that, among
the pathways that contribute to the maximum amount of in-
put to AI after sensory information is transmitted through
mindfulness meditation, significant flow volume is allocated
to the connections in the pathways where sensory informa-
tion is transmitted bottom-up, including the sensory cortex
and thalamus.

Especially, we found that in the context of flow (pro-
cessing resources devoted to neural activity) devoted to each
brain region in the pathway from start to finish, a large

amount of flow was devoted to PI-AI connections (see Ta-
ble 2), and a relatively large amount was devoted to connec-
tivity relationships, especially between brain regions con-
taining AI. Previous studies have suggested that changes
in functional connectivity in the brain through mindfulness
meditation include increases between the posterior and an-
terior insulae [4]. In addition, mindfulness meditation has
been shown to increase structural connectivity in the right
insular cortex (e.g., between the insular cortex and the OFC,
and between the insular cortex and the olfactory entorhinal
cortex) [12]. Accordingly, these results show a trend similar
to existing studies.

Among the pathways from the start point to the end
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point identified by the maximum-flow problem, those with
particularly high flow rates devoted to the connections be-
tween each brain region in the pathway include “VPL-
PI-enthorhinal-MI-BA38-AI” and “VPL-PI-somatosensory-
PA-MI-OFC-AI.” These pathways are known to enhance
functional connectivity [4] and structural connectivity [12]
between brain regions partially through mindfulness med-
itation in previous studies, including connections between
the PI-olfactory cortex, insula and OFC, but as a whole are
pathways that contribute significantly to maximizing AI ac-
tivity. In addition, brain regions in the cerebral cortex con-
tribute to AI activation through PI and MI in the insular cor-
tex, suggesting that PI, MI, and AI play important roles in
information processing in the brain during the mindfulness
state. Although it is difficult to identify the different func-
tional roles of the insular cortex in the realization of mind-
fulness states in the present study, previous studies suggest
that the PI constitutes the primary interoceptive region and
its receptive field, while the AI is involved in the integration
of internal and external signals (e.g., [37]).

8.2.2 Results and Discussion When Other Brain Regions
are Used as Endpoints

In addition to the above, we also determined the pathways
and flow rates that contribute to the maximization of the
flow rate to the target region in other brain regions identified
by the minimum vertex-cover problem, such as MI, OFC,
and dlPFC, which have been shown to be significantly acti-
vated during mindfulness. The results are shown in Fig. 5.
On an average, 60% of the maximum flow to each brain
region was observed, and an average of 30% of the path-
ways and an average of 50% of the regions in the network
structure were identified. In particular, the dlPFC results
showed that the identified pathways from the beginning to
the end of the network were characterized by the involve-
ment of the sensory cortex and insular cortex. In addition,
the connections between brain regions with high flow rates
in the identified pathways included the primary system sen-
sory cortex-MI and AI-basolateral nucleus of the amygdala.
Although previous studies have shown that the dlPFC itself
is a brain region that is closely related to top-down atten-
tion control (e.g., [38]) top-down emotion regulation, and
bottom-up emotion regulation (e.g., [29]). In this study,
we found that the dlPFC was not associated with top-down
emotion regulation in mindfulness meditation participants.
Increased activity in the amygdala has also been reported
during mindfulness [29]. In the present study, we consid-
ered the possibility that the activation of the dlPFC during
mindfulness meditation was achieved by a state in which the
activity of the sensory cortex and insular cortex was domi-
nant. In addition, the results are consistent with an increase
in the activity of the amygdala, since, as mentioned above,
significant flow volume is devoted to the AI-amygdala flow.

8.3 General Discussion

In this study, the search for information propagation paths
that contribute to the realization of the optimal network state
(i.e., to the state of the target network structure), which is
considered to correspond to the mindfulness state, was for-
mulated using two network optimization problems: the min-
imum vertex-cover problem and the maximum-flow prob-
lem. The simulation was performed by annealing using Dig-
ital Annealer, which is a powerful tool for large-scale com-
binatorial optimization problems, to achieve a realistic sim-
ulation in a short time.

As a result, eight brain regions were identified in the
minimum vertex-cover problem, including brain regions
that have been suggested to be significantly activated in the
mindfulness state in a previous study. The results include
four regions suggested by previous research to be signifi-
cantly activated in the mindfulness state, and we consider
the possibility that their activation may result in the optimal
network state defined in this study.

Then, in the maximum flow problem, based on the
results in the minimum vertex coverage problem, a path-
way was identified that included connections between brain
regions where existing research suggested enhanced func-
tional and structural connections within partial networks.
The results for AI suggest that brain regions in the cerebral
cortex contribute to the activation of AI, while PI and MI in
the insular cortex contribute to the activation of AI. Further,
results suggest that PI, MI, and AI play important roles in
information processing in the brain during the mindfulness
state. In addition, as for the activation of the dlPFC, sig-
nificant flow volumes are allocated to the AI-amygdala and
other areas when the maximum flow into the dlPFC is real-
ized, suggesting that the activation of the dlPFC is a result
of bottom-up emotional control by mindfulness meditation.

Here, we discuss the challenges that exist in the results
obtained from the formulation of the maximum-flow prob-
lem and the results of this study. As can be seen from Fig. 5,
multiple optimal solutions were obtained within the num-
ber of runs, which means that there may be multiple pat-
terns of information propagation in the brain that lead to the
same result. It remains to be determined which result is the
most valid. Another issue is that among the identified routes,
there are multiple routes from the starting point to the end
point. In other words, regarding formulation in this study, it
is difficult to uniquely consider the path from the start point
to the end point, which contributes to the realization of the
optimal network state.

On the other hand, it is rare to uniquely identify the
information propagation path that contributes to the real-
ization of an object. This holds true for those that can be
viewed as a network-like phenomenon, such as a mindful-
ness state. The results of the present study are significant in
that the partial information propagation pathways, that are
important for the state of a particular brain network struc-
ture, were realized from the pathways and regions in the vast
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network structure of the brain. This was done in a manner
that was consistent with the findings of previous studies. In
the future, the obtained findings will contribute to basic re-
search on the realization mechanism of the mindfulness state
by mapping each information propagation pathway and the
role of information propagation between regions.

9. Comparison of Computation Time by Benchmark

We used a computer with Intel 24 Xeon cores and 64GB of
memory as a benchmark to compute the problem, and com-
pared the computation time with that of Digital Annealer for
two network optimization problems considered in this study.
In this section, we will refer to a computer with 24 Xeon
cores and 64GB of memory as the baseline. Specifically,
the minimum vertex cover problem was transformed into an
energy function and annealed under the QUBO of Eq. (4)
(Av = 870, Bv = 850), where the eight brain regions de-
scribed in Sect. 8.1 were chosen. The maximum-flow prob-
lem was transformed into an energy function and annealed
under the QUBO of Eq. (7) (Am = −500, Bm = 2300) de-
scribed in Sect. 8.2. The number of runs was 50, and the
iteration was unified at 106.

We can see that the minimum vertex-cover problem can
be solved by Digital Annealer in about 44.18 minutes in the
baseline and 3.47 seconds in the runtime environment us-
ing Digital Annealer, which is more than 700 times faster
than baseline. For the maximum-flow problem, the baseline
time was 3.77 hours, and the execution time with Digital
Annealer was 4.27 seconds, indicating that Digital Annealer
could solve the problem more than 3000 times faster than
the baseline. The network structure used in this study, which
consists of 64 brain regions, is not a network structure for
the entire brain, and is smaller than the nodes and possible
pathways across the entire brain. Thus, significant execution
time will likely be required to obtain the optimal solution to
the problem at the baseline. In the future, when the identifi-
cation of important brain regions and important information
propagation paths in a larger-scale brain network structure is
exploratively combined and solved as an optimal problem,
the search for optimal solutions using Digital Annealer will
be effective.

10. Limitations and Future Works

Several issues for future research exist in this study. The
first issue is the challenge that exists in the network struc-
ture of this study. The neuroanatomy textbook adopted in
this study [30]–[32] does not provide a clear methodology
for obtaining individual findings. These findings may in-
clude morphological information on the structure of indi-
vidual neurons and nerve fiber projections, as well as infor-
mation from diffusion-weighted imaging, which has limited
image resolution. At the same time, morphological find-
ings on neuronal structures and nerve fiber projections, for
example, may be obtained from the brains of non-human
primates. It is not clear whether all the findings in the neu-

roanatomy textbook used in this study are related to con-
nectivity in the human brain. Another strong assumption
is whether the projective relationships described in the neu-
roanatomy textbooks in this study, including morphologi-
cal findings, are projective relationships between individual
cells. In that case, these projective relationships are also
true for relationships between regions. The source and des-
tination regions indicated by the terms used in the multiple
findings employed in this study may not be the same as the
actual extent to which the projection relations exist. There-
fore, the neuroscientific validity of the connections adopted
in this study remains questionable.

The second issue is the definition of the optimal net-
work state. We defined the optimal network state as “the
state in which information propagates to all brain regions in
the target network structure at a certain point in time.” This
helps simplify the problem. The optimal network state in
this study assumes a mapping between the static network
state and the mindfulness state at a certain point in time.
The possibility of mapping the dynamic network state to the
mindfulness state, and the question of what kind of brain
network structure is associated with mindfulness state in the
first place, needs to be clarified in more detail through fur-
ther neuroimaging studies in humans. In the present study,
there is a possibility that the optimal network state corre-
sponds to the mindfulness state, in that the resulting brain
regions selected and the connections between brain regions
included in the pathway are consistent with previous studies.

The third issue is the neuro-scientific relevance of the
constraints in the maximum flow problem. In this study,
flow rate and capacity are regarded as processing resources
allocated to information propagation in the brain, and a con-
servation law of input-output quantity is established in the
constraint condition described in Eq. (6). It is considered
necessary to improve this constraint condition in the future
in a way that is more in line with the propagation of in-
formation in the nervous system. On the other hand, since
this study constructs the network structure at the mesoscopic
level and specifies the projection relationship between brain
regions, it is difficult to map the flow rate to the entity of the
nervous system, and in this sense, there is an interpretability
issue.

The fourth issue is a challenge that exists in the simu-
lation results obtained. The results show that there are mul-
tiple optimal solutions for both problems. This result means
that the optimal solution obtained in this study may have
fallen into the local optimal solution. In contrast, the results
obtained in the present study are consistent with those of
previous studies in identifying regions and pathways, sug-
gesting that the present study may be effective as an ex-
ploratory approach to identify the information flow in the
brain network that contributes to the realization of the target
state (mindfulness state in the present study). In addition,
the simulation results of the minimum vertex coverage prob-
lem in Fig. 4 show that out of 50 simulations, there are only
8 feasible solutions that satisfy the constraint conditions. If
the constraint is not satisfied, the value of the energy func-
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tion is reflected in the value multiplied by Bv = 850 to the
second-order term of the QUBO, resulting in a biased en-
ergy function value of 14000 to 16000 and only two optimal
solutions. In this sense, the reliability of the simulation re-
sults in Fig. 4 remain an issue. In the future, we would like
to improve the formulation of the constraint conditions for
the minimum vertex coverage problem and consider formu-
lations that converge more easily to the optimal solution.

Finally, we discuss the issue of the fact that the for-
mulation assumes a two-body problem. In this study, the
path identification problem, which contributes to achieving
a state of mindfulness, is formulated by implicitly reduc-
ing it to a two-body problem. In addition, when solving
optimization with the Ising model, as in the current DA,
it is necessary to reduce the multi-body problem to a two-
body problem through preprocessing and formulation. This
should be studied in the future, taking into consideration the
possibility that the problem can be reduced to a multi-body
problem.

11. Conclusion

In this study, we defined the optimal network state to real-
ize the mindfulness state as “the state in which information
propagates to all brain regions” formulated it as a combina-
torial optimization problem, transformed it into QUBO, and
searched for the optimal solution using Digital Annealer. As
a result, eight brain regions were identified, most of which
were consistent with the brain regions likely related to the
mindfulness state in existing studies. We then formulated
the maximum-flow problem for the insula, dlPFC, and OFC,
which are suggested to be particularly involved in the mind-
fulness state. We tried to identify the information propaga-
tion pathways in the network structure that contribute to the
state in which more input flows into these brain regions (i.e.,
the state in which the optimal network state is achieved).
These results suggest that brain regions in the cerebral cor-
tex contribute to the activation of AI, while PI and MI con-
tribute to the insular cortex. In addition, activation of the
dlPFC and OFC is thought to be mediated by activation of
the insula. In addition, it was suggested that the mindful-
ness state may be realized by the state in which the bottom-
up processing of sensory information is more dominant than
the state in which the top-down processing of information,
such as from the dlPFC, is dominant at a certain point in
time. This finding supports the existing studies that have
identified only partial brain regions involved in mindfulness,
and enables us to identify important brain regions and par-
tial information propagation pathways in the brain network
structure in more detail. Thus, we can contribute to the de-
velopment of basic neuro-scientific research on mindfulness
and to more direct interventions and support for the realiza-
tion of mindfulness. In addition, our approach is effective as
an exploratory approach to elucidate the brain regions and
information propagation pathways that are important for the
realization of higher-order cognitive activities in humans.
This is realized by information propagation dynamics in a

large-scale brain network structure.
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