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Electroencephalogram (EEG) is one of the common modalities of monitoring the

mental activities. Owing to the non-invasive availability of this system, its applicability

has seen remarkable developments beyond medical use-cases. One such use

case is brain-computer interfaces (BCI). Such systems require the usage of high

resolution-based multi-channel EEG devices so that the data collection spans multiple

locations of the brain like the occipital, frontal, temporal, and so on. This results in huge

data (with high sampling rates) and with multiple EEG channels with inherent artifacts.

Several challenges exist in analyzing data of this nature, for instance, selecting the

optimal number of EEG channels or deciding what best features to rely on for achieving

better performance. The selection of these variables is complicated and requires a lot

of domain knowledge and non-invasive EEG monitoring, which is not feasible always.

Hence, optimization serves to be an easy to access tool in deriving such parameters.

Considerable efforts in formulating these issues as an optimization problem have been

laid. As a result, various multi-objective and constrained optimization functions have

been developed in BCI that has achieved reliable outcomes in device control like

neuro-prosthetic arms, application control, gaming, and so on. This paper makes an

attempt to study the usage of optimization techniques in formulating the issues in BCI.

The outcomes, challenges, and major observations of these approaches are discussed

in detail.

Keywords: electroencephalogram, brain-computer interface, optimization, evolutionary algorithms, review of EEG

1. INTRODUCTION

Brain computer interfaces (BCI) are an important application of electrocephalogram (EEG) signals
(Navalyal and Gavas, 2014). The usage of EEG signals in such an application other thanmedical use
cases is due to the availability of affordable EEG devices. Also, the effectiveness of the algorithms
used in the conventional BCI pipelines play a major role in this regard. In general, BCI system’s
pipeline consists of the following blocks: pre-processing of the EEG data, event-related potential
(ERP) analysis, extraction of features, and classification of data (Sinha et al., 2015b), and so on.
The effectiveness of these blocks can be measured as a function of time complexity, computational
resources required, and the accuracy of the algorithms. With respect to enhancing the accuracy of
the algorithms, various attempts have been laid in making them robust by finding optimal tuning
parameters for them. This is however, not a straight forward task as designing of effective objective
functions and the choice of optimization problems is a very challenging task. Hence, there is a rich
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source of EEG and BCI literature that mainly focuses on using
optimization techniques and their enhanced variants in the BCI
pipelines. This paper aims at studying the usage of optimization
from the view point of the application in BCI, i.e., with respect to
the standard BCI pipelines.

Optimization schemes play a major role in most of the
engineering problems where direct understanding of the system
is not feasible. In case of EEG analysis, it is difficult to ascertain
the exact locations of the neuronal firings owing to volume
conduction. Invasive EEG can aid in this regard but cannot
be applied in day-to-day scenarios for all the participants. In
such cases, the domain knowledge can be of great help but in
the lack of this knowledge for novel BCI systems, arriving at
proper tuning parameters of BCI is very difficult. The system
needs to be tested over a large set of parameters available by
repeating the experiments for multiple times, which again is not
a practical solution. This has motivated the BCI community to
adopt optimization schemes in their pipelines.

The usage of optimization techniques in BCI applications
requires the proper understanding of the objectives and the
domain knowledge plays a vital role here. For instance, in the
EEG channel selection problem, the domain knowledge would
make the analyst to select the channels which are relevant to
the task type. However, it can be seen that optimization tools
would recommend some other channels but would enhance
the accuracy of the BCI much more than what the domain
knowledge-based channel selection might have done. But this
set of channels might not be consistent across participants.
Hence, it is necessary to have well-defined objective functions
while using the optimization algorithms. This study summarizes
the BCI applications that have used optimization and also
the parameters of BCI are reviewed in detail. This would
aid the reader in appreciating the essence of optimization in
BCI-based applications.

The rest of the paper is organized as follows. Section 2 of the
paper reviews the existing literature that uses optimization in
various BCI pipelines. Section 3 discusses the challenges involved
in adopting optimization schemes in BCI. Section 4 summarizes
the paper and also the possible medical use cases of optimization
in EEG analysis. The paper concludes in section 5 with pointers
to the guidelines in using optimization techniques in BCI.

2. FORMULATION OF OPTIMIZATION
PROBLEMS IN BCI

Optimization is a technique that is performed by comparing
different solutions to find an optimal solution. Such algorithms
aim to maximize or minimize an error function (usually
termed as an objective function). The objective function is a
representative of the model’s tuning parameters. Optimization
has seen tremendous applications in various branches of science
and engineering. Optimization techniques helps to arrive at
optimal parameters in the lack of domain knowledge or when
it is not feasible to test the system directly. For instance, in
case of EEG feature selection for a novel stimulus, the physical

interpretations of most of the non-linear, time/frequency features
is not possible with respect to the task.

The underlying mechanisms of converging toward an optimal
solution in case of optimization is very well correlated to
various naturally occurring phenomena. Hence, over the past
few decades, researches have been motivated from nature
in designing such algorithms. Such algorithms are termed
as evolutionary algorithms which is a form of stochastic
optimization. Most widely used evolutionary algorithms are
Particles Swarm Optimization (PSO), Genetic Algorithm (GA),
Differential evolution (DE), Ant Colony Optimization (ACO),
Artificial Bee Colony (ABC), and so on. We noticed that most
of the BCI-based applications have made use of evolutionary
algorithms in deriving the optimal tuning parameters for various
BCI pipelines.

The following section reviews the formulation of optimization
problems around building efficient BCI pipelines. It is to be
noted that during this review, we came across various datasets
like motor imagery (MI), emotion recognition, visual evoked
potential (VEP), sleep apnea detection, mental, or cognitive
tasks, ERP analysis, and so on. We also found that the task of
EEG classification is mostly carried out using standard machine
learning classifiers (having inbuilt optimization mechanisms)
and hence, the explicit usage of optimization (by the researchers)
is missing in these cases. Hence, we have excluded the EEG
classification block in this review.

2.1. Optimization of EEG Pre-processing
Noisy signals occurring due to multiple factors during EEG data
collection contaminates the signal. The noises inherent in EEG
can be classified as follows (Zhang et al., 2016):

(i) Technical artifacts

1. Electrode related artifacts: The noise related to electrodes can
be due to improper placement, electrode slippage, varying
impedance, poor condition of the sensors, and so on. Usually
the wet electrodes, if not cleaned properly, gets rusted, and
deteriorates the signal.

2. Sweating: The sweating on the scalp can vary the impedance
of the electrodes and lead to unwanted artifacts in the signal.

3. Power line interference: strong signals resulting from A/C
supplies contaminates the signal which basically adds a sharp
peak at around 50/60 Hz.

(ii) Physiological Artifacts

1. Electrooculargram (EOG) artifacts: These are mainly caused
due to eye blinks or eye movements which adds up as a high
amplitude signal upon the EEG signal. This artifact mainly
affects the frontal channels due to their vicinity from the eyes
(Sinha et al., 2015a). Most of these artifacts falls below 4–5 Hz
range (Gavas et al., 2020).

2. Electrocardiogram (ECG) artifacts: This mostly occur on the
electrodes placed near to the blood vessels, thereby resulting
in an unwanted signal centered around 1.2 Hz due to the
contraction and the expansion of the vessels.

3. Electromyographic (EMG) artifacts: These artifacts are a
result of various muscle movements from face and neck and
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get accumulated on all the EEG channels. The frequency
bandwidth of these signals is very large and mostly falls in the
frequencies above 30 Hz.

The process of removing these noises from EEG is referred to
as the pre-processing stage. Various studies to remove these
noise exists, however, the number of studies using optimization
schemes in this process is limited. This can be attributed to the
nature of solving the EEG pre-processing problem.We pick some
of the studies which have used optimization algorithms in this
direction and the summary is presented in Table 1. The table
summarizes the task type i.e., the type of artifact removal and the
optimization algorithm used for that task.

The objective functions involved in optimization based EEG
noise cleaning can be any of the following:

• Minimizing the error between the desired and actual EEG
(Pereira et al., 2016).

• For obtaining optimal tuning parameter weights for the filtering
algorithms used. These weights in turn are derived using the
objective of minimizing the error as discussed above. For
instance, Alyasseri et al. (2017) used optimization to obtain
optimal wavelet parameters for signal denoising. The studies
in Priyadharsini and Rajan (2014) and Suja Priyadharsini
et al. (2016) showed the usage of optimization algorithms
to enhance the capabilities of adaptive network-based fuzzy
inference systems in denoising the EEG signals. Similarly,
the authors in Quazi and Kahalekar (2017) used Firefly +
Levenberg Marquardt optimization algorithms for tuning the
neural networks to adaptively filter the artifacts from EEG.

• Minimizing the mutual information (MI) between the actual
EEG and the corrupted EEG. The works of Gupta and
Palaniappan (2011) showed the reduction in power spectral
density of eye blink artifacts using genetic algorithms to
minimize the MI between the corrupted and the desired
EEG signal.

2.2. Optimization of ERP Extraction
Event related potential detection in EEG is an important part in
the analysis of various mental activities. ERP is a special case of
EEG analysis which is indicative of the direct effects of motor,
sensory, or cognitive functions. The estimation of ERP is done
by averaging the measurements over an ensemble of trials. This
approach requires many trials in order to suppress the underlying
noise in EEG. Filtering can solve the issue of noise removal to
some extent but the filter parameters needs to be tuned based
on the statistical properties of the signal. If the parameters are
not tuned properly, it may then result in suppressing the ERPs
in the EEG. Hence, optimization plays a very important role in
this case. Adaptive filtering serves to be beneficial in this regard
as noise cancelers (Ahirwal et al., 2012, 2013, 2014). The authors
in Ahirwal et al. (2014) show that through ABC optimization, the
performance of adaptive filtering can be enhanced as compared
to the conventional LMS and RLS filtering. The objective function
defined in Ahirwal et al. (2014) is the minimization of the mean
squared error by selecting optimal weights in the adaptive filter.

2.3. Optimizing the Problem of Feature
Selection
Feature vectors usually comprise of high dimensions and
this makes the feature selection an important tool for the
classification problems. The idea of feature selection can be
categorized into three types (Liu et al., 2010), namely,

• Filter method: deals with selection of subset of features
by analysing the data characteristics without involving the
learning algorithm in the process. As a result, the advantage
of these methods is that they do not have any bias
toward the learning models. Examples of filter methods are
Relief, Correlation-based Feature Selection, Consistency, C4.5,
minimum redundancy–maximum relevance (mRmR) (Ramos
et al., 2016) and so on.

• Wrapper method: selects the subset of features based on the
performance of the features on the learning algorithm during
the evaluation step. Examples involve using optimization
techniques like GA with the objective of maximizing the cross
validation accuracy (Bhattacharyya et al., 2014; Pal et al., 2014;
Xu et al., 2014; Ramos et al., 2016; Baig et al., 2017; Liu
et al., 2017; Ramos and Vellasco, 2018; Ghosh et al., 2019),
classification error (Wang and Veluvolu, 2017), unsupervised
classification (Kimovski et al., 2015), similarity score and
clustering validity index (Bhattacharyya et al., 2013; Rakshit
et al., 2013), or classifier parsimony Cîmpanu et al. (2017).

• Embedded method: feature selection is incorporated as a part
of the model’s training process. The relevance of the features
is found by evaluating their utility for optimizing the learning
algorithm’s objective function. The authors in Yin et al. (2017)
used the maximization of geometric distance (margin between
the targets) in the learning algorithm.

The design of filter methods is simple, i.e., they are either based
on forward selection or backward elimination and feature testing
criterion which is based on a certain criterion. Hence, they are
easy to understand and to implement and thus they are fast in
execution. Since, the wrapper and embedded methods are linked
to the learning process, their accuracy is higher in comparison
to the filter method. Embedded methods are basically a fusion
of filter and wrapper methods. Wrappers typically use cross-
validation kind of mechanisms for accuracy computation that
prevents overfitting. This makes them slower and leads to lack
of generality. However, most of the works are found to use
the wrapper approach as it is easier to formulate the objective
function as a wrapper when compared to a filter and also the
accuracy provided by wrappers are higher. The works of Ramos
et al. (2016) showed that wrapper methods are better over filters.
These feature selection algorithms either return a subset of
features or the weights that signify the relevance of the features.
Hence, based on the output, the feature selection algorithms can
be classified into subset selection or feature weighting.

The feature extraction stage of EEG analysis deals with
extracting frequency and time domain features which can be used
as the compact representation of the EEG data. This is then fed as
an input to various machine learning-based classification blocks.
The features extracted have high dimensionality (Kimovski et al.,

Frontiers in Neuroscience | www.frontiersin.org 3 January 2021 | Volume 14 | Article 546656

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fathima and Kore Optimization in Brain Computer Interfaces

TABLE 1 | Summary of optimization schemes in EEG artifact removal studies.

References Task EEG data Optimization algorithm

Ahirwal et al. (2012) Adaptive filtering Simulated EEG and real VEP PSO

Ahirwal et al. (2013) Adaptive noise cancellation Simulated VEP, real VEP, real sensorimotor

evoked potential

PSO, ABC and Cuckoo search

Ahirwal et al. (2014) Adaptive noise cancellation MI Bounded Range ABC

Priyadharsini and Rajan (2014) ECG component removal from EEG Simulated data Variants of memetic algorithm and GA

Wang et al. (2010) Trial pruning by removing artifacts MI GA

Gupta and Palaniappan (2011) Eye blink artifact removal BCI MI Variant of GA

Alyasseri et al. (2017) Power line and EMG noise removal Various mental tasks Hybrid β-Hill climbing

Suja Priyadharsini et al. (2016) EOG and ECG artifacts removal Simulated data Artificial immune system algorithm

Pereira et al. (2016) EOG and EMG artifacts removal Simulated data Variant of GA

Quazi and Kahalekar (2017) EMG, EOG and ECG artifacts removal EEG added with sleep apnea ECG and EOG Firefly + Levenberg Marquardt algorithm

TABLE 2 | Summary of optimization in EEG-based feature selection studies.

References Algorithm Task Accuracy Number of classes

Rakshit et al. (2013) Artificial bee colony MI 64.29 2

Kimovski et al. (2015) Parallel multi-objective optimization MI 100 2, 3

Xu et al. (2014) Particle swarm optimization MI 78 2

Bhattacharyya et al. (2014) DE MI 99.41, 87.99 2

Pal et al. (2014) Bacterial foraging algorithm MI 80.29 2

Bhattacharyya et al. (2013) DE variant MI 94 3

Yin et al. (2017) Transfer recursive feature elimination Emotion classification 75+ 2

Cîmpanu et al. (2017) Single and multi-objective Genetic algorithm Memory load detection <14% (Error rate) 2

Liu et al. (2017) Firefly algorithm and learning automata MI 70.2 4

Eslahi et al. (2019) Genetic algorithm MI 84 (max) 4

Fernandez-Fraga et al. (2018) Ant colony optimization SSVEP BCI 82.76 –

Wang and Veluvolu (2017) Evolutionary algorithm MI 83 4

Ramos et al. (2016) Genetic algorithm MI 93.71 2

Baig et al. (2017) Differential evolution MI 95 3

Ghosh et al. (2019) Grey wolf optimization Silent speech classification 65 5

Ramos and Vellasco (2018) Quantum- inspired evolutionary algorithm MI 96.86 2

Selim et al. (2018) hybrid bio-inspired algorithms MI 78.55, 86.6,85 4,3,4

2015) that can increase the processing time and can result in the
inclusion of outliers as features because of poor signal-to-noise
ratio of EEG (Tacchino et al., 2020). These factors culminates
in reduced accuracy of the BCI system. Hence, selection of
appropriate subset of features is a vital step in the analysis of
EEG data. In this stage, the features with enhanced discriminative
power are used to carry out the further steps. It is to be noted that
most of the times, the conventional feature selection algorithms
aim to select features with high variances. This at times does
not improve the overall accuracy of the system. The major
reason could be the presence of redundant features. However, this
problem is not a straight-forward task to solve. Many standard
feature selection tools are available (Giorgio, 2020) to solve these
issues. In the interest of the current paper’s scope, the ones
using optimization techniques in case of EEG are summarized
in Table 2.

2.4. Optimization of EEG Channel Selection
For any EEG-based application, the selection of channels that is
physiologically significant to the system in hand, is of paramount
importance. The EEG data acquired is multichannel in nature.
It is advisable to work on a subset of the channels instead
of considering the whole. This is because, setting up the EEG
system on a participant with many channels is cumbersome
and time consuming. It also leads to the inconvenience of the
participant which might reflect in lack of attention or distraction
during the actual data collection. Apart from these subject-
specific issues, this also adds to the increased computational
complexity of the overall EEG application. Channel reduction is
of great interest in designing portable EEG devices for detecting
the onset of epileptic seizures hours before they prevail in order
to provide early interventions. Such portable systems would
need algorithms which are fast and the hardware smaller in
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size. This makes the usage of channel selection a important
research problem in the EEG community. The main objectives
of EEG channel selection are: (i) Reduction in dimensionality
and providing faster processing, (ii) improving the performance
of the model created, and (iii) identification and localization
of the brain regions that are responsible for the given activity.
Many efforts have been laid toward this direction of achieving an
optimal subset of channels. It was realized in the EEG research
community that these optimal channel sets can be achieved more
easily using optimization tools and this benefited more than
considering the EEG channels that are known to be responsible
for the task. For instance, the brain region corresponding to
motor functions is located in the central region. Hence, it is
more appealing to consider the central EEG channels for motor
imagery-based analysis. However, due to volume conduction, the
locations in the vicinity of central channels would also carry
some information regarding the motor imagery. The overlap in
information among these channels depends on several factors
like the subjective nature of the skull shape, the type, and the
sensitivity of the EEG used, and so on. Hence, instead of directly
selecting the central channels for motor tasks, the selection
of channels has to be personalized which can be done using
optimization tools. Table 3 surveys some of the most relevant
works in this regard. The accuracy obtained for each of these
approaches are also provided. Since, each of these studies used
different EEG devices/datasets and subjects, we also report the
improvement in accuracy over the state-of-the-art techniques
(provided in brackets).

The optimal solution to EEG channel selection refers to
a subset of channels that has highest relevance for the given
stimulus/experiment. Innovative ways of looking at this problem
can be formulated as a multi-objective function as follows,

• Number of channels: an obvious expectation is to have the
minimum number of selected channels.

• Region of interest (ROI)-based: obtaining the candidate
channels in the vicinity of the regions in brain that are known
to produce the neurophysiological activations

• Classification accuracy-based: searching for channels that
contributes in obtaining high accuracy of task classification.
This can also be related to the case of having minimum error
rate for the test set data.

It is important to note that for channel reduction/selection
problems, the reduction of raw data plays a vital role in reducing
the time and space consumption of the system. Downsampling
allows the reduction of computational cost while retaining the
vital information in the time-series data. As most relevant EEG
activity lies in the range of 0.1–50 Hz, downsampling the signal
from higher frequencies to 100 Hz is usually carried out in
most of the studies like (Hasan and Gan, 2009; Hasan et al.,
2010; He et al., 2013; Gonzalez et al., 2014; Shenoy and Vinod,
2014; Kee et al., 2015; Shan et al., 2015; Zhang and Wei, 2019;
Arican and Polat, 2020). Though downsampling seems to be a
straightforward approach, some studies reduced the data size
by first extracting the features (as features are a compact way
of looking at the data) and then the features were subjected
to principal component analysis (PCA) to further reduce the

dimension. The studies mentioned in Table 3 that used this
approach are Ghaemi et al. (2017), Hasan and Gan (2009), Jin
et al. (2008), and Kim et al. (2013). Few other studies like the
ones in Hasan and Gan (2009), Hasan et al. (2010), used both
the techniques to reduce the data size. The works by Yang et al.
(2012) used time and frequency based feature analysis to reduce
the dimension of the data.

2.5. EEG Mode Decomposition and
Optimization
Mode decomposition of time series signals refers to decomposing
a given signal into several realizations which differs in terms of
morphological characteristics like frequency response from each
other. The summation of all these realizations reproduces the
original signal. The realizations are termed as intrinsic mode
functions (IMFs). EEG signal mode decomposition becomes
important to reconstruct or separate out various neuronal
activities (Soler et al., 2020), source localization (Khosropanah
et al., 2018), artifact removal (Wang et al., 2015), detection of
seizures (Bajaj and Pachori, 2011), and so on.

Various studies have used signal decomposition algorithms
like empirical mode decomposition (EMD), ensemble EMD
(EEMD), variational mode decomposition (VMD), and so on
to decompose physiological signals. Out of these, the VMD
algorithm is based on solving an optimization function which in
turn makes it robust against the existing mode decomposition
algorithms (Gavas and et al., 2018). VMD basically looks at the
problem of signal decomposition as an optimization problem
by decomposing a 1-dimensional time series into K number
of modes uk(t) as, x(t) =

∑K
k=1 uk(t), with the criterion that

the signal gets reconstructed ideally fully by summing up the
K number of modes while the sum of bandwidths of all modes
is kept minimum (Dragomiretskiy and Zosso, 2013). Every
mode is compact along the mean frequency wk. The method
solves a constrained variational function to find optimal wk and
uk given by,

min
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∑

k
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The reader is requested to get the detailed explanation of the
VMD algorithm from Dragomiretskiy and Zosso (2013). The
number of IMFs extracted from the decomposing algorithms is
mainly application dependent and is often restricted to a certain
number by empirical analysis of the central frequencies of the
IMFs.We summarize few of the applications wherein VMD or its
variants were used (Table 4). Note the number of IMFs extracted
in each of the case is different.
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TABLE 3 | Summary of optimization in EEG-based channel selection studies.

References Algorithm Task Accuracy

(improvement)

Numberof

classes

Datareduction

Jin et al. (2008) Discreet particle swarm Directional

moving

77.54 (7.38) 4 Yes

Hasan and Gan (2009) Multi-objective PSO MI 57 (NA) 3 Yes

Hasan et al. (2010) Multi-objective evolutionary

algorithm based on

decomposition

MI 58 (NA) 3 Yes

Handiru and Prasad (2016) Iterative multi-objective

optimization

MI 80 (7) 2 No

Yang et al. (2012) Genetic neural mathematic

method

MI 80, 86, 82 (NA) 2 Yes

Yang et al. (2013) Time-spatial optimization MI 78 (NA) 2 No

Shan et al. (2015) A novel algorithm based on

Relief

MI 85.2 (31.7), 94.1

(8), 83.2 (19.7)

2 and 4 Yes

Arican and Polat (2020) Binary particle swarm

optimization

Speller

systems

90, 89.8(NA) 4 Yes

Lv and Liu (2008) Common spatial pattern +

Particle swarm optimization

MI 83,92(NA) 2 Yes

Kim et al. (2013) Binary particle swarm

optimization and GA

MI 78 (mean) and 67

(mean)

2 Yes

Kee et al. (2015) Multi-objective genetic

algorithm

P300 and MI 85+(5.25–8.60) 2 Yes

He et al. (2013) Rayleigh coefficient

maximization based genetic

algorithm

MI 80+(NA) 2 Yes

Joseph and Govindaraju

(2019)

Glow swarm optimization MI 92.59 (6.31, 5.48) 2 No

Zhang and Wei (2019) PSO MI 91.94 2 Yes

Ghaemi et al. (2017) Improved binary gravitation

search

MI 76.24 (mean) 80

(max)

4 Yes

Shenoy and Vinod (2014) Iterative optimization

technique

MI 90.77 and 81.21 3 and 4 Yes

Arvaneh et al. (2011) Sparse common spatial

pattern

MI 80+(10) 2 and 2 No

Gonzalez et al. (2014) Multi-objective hybrid

real-binary particle swarm

optimization

Auditory ERP 95 (6) 2 Yes

Jin et al. (2019) Regularized common spatial

pattern

MI 81.6 (25.2) 87.4

(10.9) 91.9 (6.8)

2,3,2 Yes

3. CHALLENGES INVOLVED IN
OPTIMIZATION OF BCI PIPELINES

The main issue faced in any EEG-based artifact removal
studies, particularly when it comes to the removal of other
physiological effects like ECG, EOG from EEG is the absence
of exact ground truth (Gavas et al., 2020). Usage of simulated
data becomes a straightforward approach of validating the
designed noise removal algorithms in such cases. Figure 1

shows a typical approach of generating an EEG signal
with an EOG artifact (Pereira et al., 2016). The simulated
data can provide the exact start and stop events of the
physiological artifact like blink and also the exact morphology
of the artifact embedded onto the raw signal. The test

cases involving the simulated data performs better with the
designed algorithms but the results degrade when it comes
to real data. In such cases, the usage of conventional
signal processing tools or even optimization-based data driven
methods perform somewhat similar, as setting up the proper
basis functions is difficult in such cases. However, mode
decomposition algorithms are seen to be a better alternatives
in such cases (Gavas et al., 2020) involving simulated or real
EEG data.

Owing to the higher sampling rates and the increased
number of channels in EEG, the amount of processing time
and resources required for the EEG data is huge. For instance,
decomposing a multi-channel EEG data with a high sampling
rate using the MVMD (Rehman and Aftab, 2019) can be very
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TABLE 4 | Summary of papers using VMD in EEG signal analysis.

References Task No. of EEG channels VMD type No. of IMFs

Rehman and Aftab (2019) Separation of alpha rhythms 4 Multivariate VMD 5

Gavas et al. (2020) Blink artifact removal 4 and 57 Multivariate VMD 10

Zhang et al. (2017) Feature extraction for Seizure detection Single Univariate VMD 15

Taran and Bajaj (2018) Identification of focal EEG Single Clustering-VMD (univariate) 2

Bhattacharjee et al. (2018) Sleep Apnea detection Single Univariate VMD 5

Dora and Biswal (2020a) ECG artifact correction from EEG Single modified VMD (univariate) 12

Taran and Bajaj (2019) Emotion recognition 10 out of 24 used Univariate VMD –

Dora and Biswal (2020b) Ocular artifact suppression 5 Univariate VMD 12

Saini et al. (2019) Ocular artifact removal Single Extended Univariate VMD 2 and 3

Saini et al. (2020) Muscle artifact supression Single Univariate VMD 2

Yücelbaş et al. (2018) Detection of K-complexes 2 Univariate VMD –

FIGURE 1 | Sample embedding of EEG signal with EOG artifact (adapted from Pereira et al., 2016).

slow, computationally very complex and requires huge amount
of memory.

To visualize, this, we ran the MATLAB implementation of the
MVMD algorithm on a 4 GB RAM, core i5 processor machine

by simulating a 4-channel EEG data of various small duration.
The execution time is as seen in Figure 2. It is to be noted that
the execution time increases drastically as the signal duration
and the number of IMFs increases. The number of channels also
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FIGURE 2 | Execution time of MVMD algorithm for different signal duration and different number of IMFs.

plays a major role in determining the run time of the algorithm.
For higher number of channels and signal duration, the required
system memory and time is very large and cannot run on low
configuration devices. Same is the case when dealing with such
data using evolutionary algorithms which require atleast a good
number of iterations (usually more than 100) to converge to a
good solution. Also, the fear of converging lately or getting stuck
in local minima can always be a major set back in using such
optimization schemes in real time BCI.

EEG signal mode decomposition is seen to be beneficial
for various applications in BCI. However, as seen in Table 4,
the number of IMFs extracted is not constant across studies
even for the same BCI task. This inconsistency is commonly
addressed as arising due to the nature of the application
but the actual fact lies in the nature or the stochasticity of
the EEG signal. If EEG signals were deterministic, then the
frequency components across the same IMFs across different
EEG data would be similar. This would have helped building
new applications that make use of mode decomposition without
investing much efforts on experimenting on the optimal number
of IMF generation.

Consider the problem of EEG channel selection for MI tasks.
By domain knowledge it is known that the central channels
like C2, CZ, and C3 are well-suited for motor imagery related
activities. However, due to the effect of volume conduction, the
idea of relying on only the central channels is questionable.
Owing to the subjective aspects like the skull size and the
nature of EEG sensor, the channels picking up the motor
imagery data faithfully, might vary from person to person.
In such cases, the usage of personalized channel selection
using optimization schemes seems to be an attractive idea
(Shireen Fathima, 2019). The major challenge foreseen in this
case is the design of the objective function to select the optimal
channels. Even if this problem is tackled, the next major

issue lies in the selection of optimization algorithm and also
initializing the tuning parameters of the algorithm. Researchers
have mainly used meta-heuristic algorithms in such cases. As
EEG signals are highly stochastic and non-linear in nature,
different optimization algorithms can lead to the selection of
different EEG channels, for the same participant and for the
same task.

Even the consistency of channel selection across participants
for a given optimization algorithm is not possible. For instance,
we used the channel selection method (Khushaba et al., 2011) on
a motor imagery BCI as mentioned in Shireen Fathima (2019) on
a 22-channel EEG data. The resulting histogram of the selected
channels across all the participants for the same task is given in
Figure 3. The histogram is generated by considering the optimal
channel ids for all the participants taken together. It is to be noted
that in the figure, the channels are not consistent across all the
participants and the generalization of channels is not possible.
If same channels were selected as optimal channels, then the
histogram would have centered over a small subset of channels.
On similar grounds, the results change drastically when different
optimization schemes are used for the said purpose. This can
really make the task of arriving at a subset of generalized optimal
channels to be used during real time BCI challenging, as no
algorithm till date yields the same set of optimal channels for the
same task and for the same participant.

Solving multi-objective functions of channel selection like
least number of channels and least error rate leads to pareto
solutions (as shown in Figure 4) and selecting a pareto optimal
solution depends on the researcher or on the application.
Figure 4 shows the pareto solutions of error rates at the expense
of number of channels (Kee et al., 2015). As the number of
channels increase, there is a decrease in error rate. In such cases,
it is tricky to settle down to a certain count of channels with a
satisfactorily lower error rate.
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FIGURE 3 | Histogram of selected EEG channels for a 22-channel MI task across participants.

FIGURE 4 | Pareto optimal solutions for a channel selection problem in MI task (adapted from Kee et al., 2015).

4. DISCUSSIONS

Usage of optimization has recently gained wide popularity in
EEG analysis, mainly in the field of feature selection and channel
selection. This can be attributed to the fact that these two
tasks are straightforward, majorly relying on the objective of
maximizing accuracy of classification tasks. Though channel
selection and feature extraction are means of selecting a subset
of the data, however, they both vary considerably in nature.

Channel selection deals with selecting a subset of optimal
channels whereas, feature selection deals with selection of a
subset of optimal features. A common practice is to apply
feature selection on the subset of optimal selected channels.
The selected optimal channels can give insights on the source
location of the task being performed. However, the selected
features can help understand the signal specific characteristics
of the underlying effect. Another common practice that we
observed in this field is the usage of evolutionary algorithms.
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TABLE 5 | Summary of optimization strategies employed in EEG analysis.

Task Objective functions Advantages Disadvantages

Noise cleaning
(1) Minimize error

Output signal

resembles

desired signal

Knowledge

of target

signal

characteristics

is a must

(2) Obtain tuning

parameters

(3) Minimize mutual

information

ERP extraction Minimize error in

adaptive filters

Data driven ERP components

are prone to get

distorted

Feature

selection

(1) Filter method Reduces overall

system time

complexity

Non repeatable

set of features

get selected

(2) Wrapper method
Enhances

accuracy

Only

subject-specific

selection
(3) Embedded/Hybrid

method

Channel

selection

(1) Minimum number

of channels

Can lead to

usage of low

cost devices

Highly

subjective

(2) Region of

interest-based

Enhances

accuracy
Additional data

reduction method

required
(3) Classification

accuracy-based

Reduced system

complexity

Mode

decomposition

(1) All modes sum

up to form the

original signal

with least error

Decomposition

based on

frequency

information

Increased time

complexity

(2) Sum of bandwidths

of all modes

is minimum

Generally, when non-linear optimization schemes are deployed
for EEG based problems, the objective function yields multiple
local solutions in cases involving high dimensional search
space and for lower values of signal-to-noise ratios. This
has attracted the researchers to use meta-heuristic algorithms
which work very well for such scenarios. Hence, it is
obvious to find a rich source of EEG optimization literature
involving meta-heuristic algorithms which is also evident in
this review.

Selection of proper objective functions is crucial to any
optimization-based problem solving. In case of EEG, this
becomes more challenging owing to the non-stationary nature of
the signal but at the same time, it comes with added advantages.
Table 5 summarizes the objective functions, its advantages and
disadvantages in different EEG pipelines. It is evident that
optimization when used in any given EEG pipeline comes
with its own pros and cons. However, their widespread usage
in current times shows the benefits that it has over their
conventional counterparts.

As EEG is a very powerful diagnostic tool for detecting
abnormal electrical discharges in the brain, its usage in the field

of medicine is inevitable. Optimization has been used in various
ways in such EEG-based diagnosis process and hence, this section
aims at throwing light on such applications.

One of the early implementations of genetic algorithm in
epileptic EEG is found in Marchesi et al. (1997). The authors
utilized genetic algorithm to detect the 3 Hz spikes and slow
wave complexes in the EEG. The objective function involved
the following

f = fitness cases− hits (2)

where fitness cases corresponds to the total number of training
examples and hits refer to the count of the matches. The
stopping is thus when the count of the training cases equals
to that of the hits or when the maximum number of
generations are reached. An overall accuracy of 85% is seen with
this setup.

The works in Wen and Zhang (2017) showed the usage
of optimization in the frequency domain bin selection and in
overall subset of feature selection in the analysis of epileptic
EEG. A variant of genetic algorithm is used to first search
for the optimal frequency ranges as features and then the
features thus obtained are fused with non linear EEG features.
The objective function thus aims at minimizing the linear
discriminant analysis-based coefficients of the frequency bin
summations done over an assortment of bins and traversed
using certain constants called the slack variables. For the feature
selection process, the objective function aims at minimizing
the following,

minimize(FPR− (1− TPR)) (3)

where FPR is the false positive
rate and TPR is the true
positive rate.

The detection of epileptic seizures is attempted using grid
search optimization as in Wang et al. (2019). The usage of
optimization in this study was to tune the parameters of
the random forest algorithm as it mainly generates a large
number of hyperparameters and it is difficult to empirically
arrive at the optimal values of these parameters. The targeted
hyperparameters were number of decision trees, minimum
sample leaf, maximum features, number of split features,
and number of estimators. The objective function was to
maximize the classification accuracy based on K-fold cross-
validation technique. On similar grounds the work in Gomathi
et al. (2020) worked toward detecting brain abnormalities
arising due to brain stroke, brain tumor, birth defects, genetic
mutation, and brain injuries using evolutionary gravitational
neocognitron based optimization technique to obtain tuned
parameters in a typical neural network classifier. Another
attempt in optimizing a standard neural network classifier using
genetic algorithm for detecting Alzheimer’s disease is in Kim
et al. (2005). This study made use of a single channel EEG
and used rest and auditory odd ball stimulus for generating
event related potentials. Standard EEG features were derived
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and the objective function confined to the NN architecture
is used,

f =
1

N ×m

N
∑

i=1

m
∑

j=1

(NOij − DOij)
2 (4)

where NO is the network output and DO is the desired
output. N is the number of training patterns and m
is the number of output nodes of the network. The
work in Singh et al. (2019) showed the optimization of
parameters in an ensemble of classifier algorithms for
the sake of classifying epileptic EEG. Thus, optimization
has crucial role to play in the field of medical
EEG analysis.

5. CONCLUSIONS

This paper summarizes the various optimization approaches in
BCI pipelines. It is to be noted that evolutionary optimization
techniques have been widely used in the domain of EEG signal
analysis. The widely used evolutionary algorithms were GA,
ABC, DE, PSO, and so on. It is to be noted that these algorithms
were further enhanced so as to adapt to the use-cases in
BCI. The usage of evolutionary algorithms for optimizing the
parameters in BCI exceeds that of linear programming-based
conventional tools of optimization. The reason being that the
latter assumes the starting point of the search to be well-defined,
whereas in case of evolutionary schemes, the starting point is
selected heuristically.

Most of the existing literature on using optimization in
BCI focuses mainly on optimal feature or channel selection,
and a very few works dealing with EEG preprocessing or ERP
detection using optimization are found. The review aims at
providing the researches in the field to have a clear understanding
of the techniques of optimization applied in BCI domain
so far. As a guideline for using optimization in BCI, we
observe that,

• Many optimization tools are readily available which can
be either used directly for BCI uses-cases or needs to be
enhanced so as to obtain better outcomes. The modification
or enhancement of existing optimization tools requires a lot
of expertise and skill in the field and should not be altered
arbitrarily which could end up providing feasible solutions to
a limited set of inputs.

• The nature of task and the area of using optimization
techniques should be well-studied by using the existing
literature. The tables summarizing the techniques and the
application area can be used in this regard.

• The optimization problem should be designed carefully so as
to match closely with the domain knowledge. In most of the
cases, multiobjective optimization method is required and the
confusion with pareto optimal solutions should be taken care
of, effectively.

• Mode decomposition of EEG signals should be done using
high end machines owing to the computational demands of
the algorithms. In the absence of such systems, only small
portions of EEG with fewer channels can be decomposed into
fewer IMFs. The number of IMFs required should be judicious
and the center frequencies of each of them should be assessed
to avoid unwanted realizations of the signals.

The aim of this review is to help the researchers in knowing the
state of existing attempts made in optimizing the BCI pipelines.
We further encourage the readers to use the references for each
of the pipelines for understanding the methodologies in detail.
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