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Abstract. The current version of the Dutch Atmospheric

Large-Eddy Simulation (DALES) is presented. DALES is

a large-eddy simulation code designed for studies of the

physics of the atmospheric boundary layer, including con-

vective and stable boundary layers as well as cloudy bound-

ary layers. In addition, DALES can be used for studies of

more specific cases, such as flow over sloping or heteroge-

neous terrain, and dispersion of inert and chemically active

species. This paper contains an extensive description of the

physical and numerical formulation of the code, and gives an

overview of its applications and accomplishments in recent

years.

1 Introduction

Modern atmospheric research relies on a spectrum of ob-

servational and modeling tools. Among the numerical tools

that are commonly used for the most detailed studies of at-

mospheric flow, an important spot is taken by Large-Eddy

Simulations (LES). This type of modeling is widely used for

atmospheric boundary layer (ABL) studies and provides, in

combination with observations, the basis for many cloud and

boundary layer parameterizations in models on the other side

of the spectrum, such as General Circulation Models.

Correspondence to: T. Heus

(thijs.heus@zmaw.de)

The principle of LES is to resolve the turbulent scales

larger than a certain filter width, and to parameterize the

smaller, less energetic scales. This filter width, in practical

applications often a function of the grid size of the LES, and

ranges typically between 1 m for stably stratified boundary

layers, to 50 m for simulations of the cloud-topped ABL. In

such a typical LES setup, up to 90% of the turbulence energy

resides in the resolved scales. For applications of LES like

the ones presented in this paper, LES has the advantage over

larger-scale models that it relies less on parameterizations. In

comparison with observational studies, LES has the advan-

tage of providing a complete data set, in terms of time and

space, and in terms of variables that can be diagnosed. Espe-

cially the combined use of LES and observations is a popular

methodology in process studies of the ABL. In comparison

with the yet finer Direct Numerical Simulations (DNS) that

aim to resolve all turbulence scales, LES has the advantage

of being able to cover larger domains than a few meters.

LES modeling of the ABL started in the late sixties

(e.g., Lilly, 1967; Deardorff, 1972); cloudy boundary lay-

ers were first simulated by Sommeria (1976). From Nieuw-

stadt and Brost (1986) onward, several cycles of intercom-

parison studies compare state-of-the-art LES codes with ob-

servational studies and with each other. The aim of these

studies was not so much to determine which LES code per-

forms best in which situation, but more to determine the

strengths and weaknesses of LES. Two particularly active cy-

cles are organized under the umbrella of the Global Energy

Published by Copernicus Publications on behalf of the European Geosciences Union.
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and Water Cycle Experiment (GEWEX): the GEWEX Atmo-

spheric Boundary Layers Study (GABLS), and the GEWEX

Cloud System Study (GCSS) Boundary Layer Cloud Work-

ing Group. The GABLS focuses on the clear boundary layer,

mainly on stable and transitional situations (Holtslag, 2006;

Beare et al., 2006; Basu et al., 2008). The GCSS looks at dif-

ferent aspects of boundary layer clouds, mainly shallow cu-

mulus and stratocumulus clouds (Bretherton et al., 1999a,b;

Duynkerke et al., 1999, 2004; Brown et al., 2002; Siebesma

et al., 2003; Stevens et al., 2001, 2005; Ackerman et al.,

2009; van Zanten et al., 2010). Other useful intercompari-

son studies on the clear convective boundary layer were per-

formed by Nieuwstadt and de Valk (1987) and by Fedorovich

et al. (2004b).

The Dutch Atmospheric Large-Eddy Simulation (DALES)

has joined virtually all of the intercomparisons mentioned in

the previous paragraph. Beyond these intercomparison stud-

ies, that discuss convective, stable and cloud-topped bound-

ary layers, DALES has been used on a wide range of topics,

such as for studies of shear driven flow, of heterogeneous

surfaces, of dispersion and of turbulent reacting flows in the

ABL, and of flow over sloped terrain. Whenever appropriate,

results from DALES have been compared to observational

data to provide additional validation for the less standard use

cases. In a recent effort, DALES is being used in the KNMI

Parameterization Testbed (Neggers et al., 2010), which al-

lows for a day-by-day comparison between observational

data, LES, and large-scale model results. As such, DALES

is one of the most all-round tested available LES codes for

studies of the ABL. In this paper, we aim to describe and

validate DALES 3.2, the current version of DALES.

In the remainder of this paper, we first give a thorough

description of the code in Sect. 2. In Sect. 3, an overview of

studies conducted with DALES is given, both as a validation

of the code as well as an overview of the capabilities of an

LES like DALES. In Sect. 4, an outlook is given on future

studies that are planned to be done with DALES, as well as

an outlook on future improvements.

2 Description of the code

2.1 Generalities

DALES is rooted in the LES code of Nieuwstadt and Brost

(1986). Cuijpers and Duynkerke (1993) first used DALES

for moist convection, and provided a general description of

an older version of DALES. Large parts of the code have

been changed ever since and contributions of many people

over a number of years have resulted in the current ver-

sion 3.2 of DALES. Currently, DALES is maintained by re-

searchers from Delft University, the Royal Netherlands Me-

teorological Institute (KNMI), Wageningen University and

the Max Planck Institute for Meteorology.

Notable changes in comparison with the version that has

been described by Cuijpers and Duynkerke (1993) include:

different time integration and advection schemes, revised

subfilter-scale, surface and radiation schemes, addition of

a cloud-microphysical scheme, capabilities for chemical re-

active scalar transport and for Lagrangian particle dispersion,

for flow over heterogeneous and for flow over sloping ter-

rain. These revisions in DALES result in faster simulations

and higher stability, and in an easier and more extendable

user interface. Due to the modular setup of the code, newly

written code for specific applications of DALES can easily

improve the code as a whole. This makes DALES suitable

as a community model; besides the actively developing core

users, the code is currently used in several other institutes

across the world.

DALES 3.2 is released under the GPLv3 license. It is

available at dales.ablresearch.org. Documentation is also

available there. Although the code is completely free to use,

to modify and to redistribute, it is regarded courtesy to share

bug fixes and extensions that can be of general interest, and

to keep in contact with the core developers. Given the exper-

imental character of the code, it is also appreciated to discuss

co-authorship in case of publications coming out of research

conducted with DALES.

To improve compatibility and portability of the code, we

make an effort to stay as close as possible to standard For-

tran 95. To create makefiles and compile the code, Kitware’s

Cmake (www.cmake.org) is being used. This system is in-

stalled on most modern systems (and is usually installable

with user permissions if that is not the case). Cmake facili-

tates flexible handling of compiler options, various platforms

and library locations. It also automatically keeps track which

source code needs to be (re)build. For the communication

between multiple processes, DALES relies on the Message

Passing Interface (MPI). For purposes of input and output,

the Network Common Data Form (NetCDF) version 3 or

higher is an optional dependency. Code for Fourier trans-

formations is part of the DALES package, leaving the code

as portable as possible. To the best knowledge of the au-

thors, DALES runs on all common combinations of platform

architecture, compiler, and MPI implementation. Currently,

an effort is being made to port DALES to Compute Unified

Device Architecture (CUDA), to be able to run simulations

on graphical processors as a fast and cost efficient solution.

The prognostic variables of DALES are the three velocity

components ui (i = 1,2,3), the liquid water potential temper-

ature θl, the total water specific humidity qt, the rain water

specific humidity qr, the rain droplet number concentration

Nr, and up to 100 passive or reactive scalars. The subfilter-

scale turbulence kinetic energy (SFS-TKE, e) is an additional

prognostic variable, and is being used in the parameterization

of the sub-filter scale dynamics. To decrease simulation time,

only calculations of ui , e, and θl are obligatory; all the addi-

tional scalars need not to be calculated when these variables

are not used.

Geosci. Model Dev., 3, 415–444, 2010 www.geosci-model-dev.net/3/415/2010/
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Given that ice is not currently implemented in the model,

the total water specific humidity is defined as the sum of the

water vapor specific humidity qv and the cloud liquid water

specific humidity qc:

qt = qv +qc. (1)

Note that this definition of qt does not include the rain water

specific humidity qr. Any conversion between rain water on

the one hand, and cloud water or water vapor on the other

hand, will therefore enter the equations for qt and for θl as

an addition source term. We use the close approximation

explained by Emanuel (1994):

θl ≈ θ −
L

cpd5
qc, (2)

with θ being the potential temperature (related to the absolute

temperature T following T = θ5), L = 2.5×106 J kg−1 the

latent heat of vaporization, cpd = 1004 J kg−1 K−1 the heat

capacity of dry air, and 5 being the exner function:

5 =

(
p

p0

) Rd
cpd

, (3)

in which Rd = 287.0 J kg−1 K−1 is the gas constant for dry

air and p0=105 Pa is a reference pressure.

In the absence of precipitation and other explicit sources,

θl and qt are conserved variables. The liquid water virtual

potential temperature θv is in good approximation defined as

(Emanuel, 1994):

θv ≈

(
θl +

L

cpd5
qc

)(
1−

(
1−

Rv

Rd

)
qt −

Rv

Rd
qc

)
, (4)

with Rv = 461.5 J kg−1 K−1 being the gas constant for water

vapor. The most important thermodynamical constants that

are used throughout this paper are summarized in Table 1.

DALES is run on an Arakawa C-grid (see Fig. 2). The

pressure, the SFS-TKE, and the scalars are defined at grid

cell center, the three velocity components are defined at the

West side, the South side, and the bottom side of the grid cell,

respectively.

Hereafter, quantities that are averaged over the LES filter

width are denoted with a tilde ·̃, time averages with a over-

bar · , and averages over the two horizontal directions of

the domain with angular brackets 〈·〉 (slab average). The

prognosed scalars can often be treated in an identical man-

ner as the generic scalar field ϕ∈{θl,qt,qr,Nr,sn}. Primes

denote the subfilter-scale fluctuations with respect to the fil-

tered value. Double primes indicate local deviations from the

horizontal slab average. To remain consistent with notational

conventions used in literature and also in the source code of

DALES, some symbols can have different meaning between

different subsections. In such cases, the immediate context

should always make it clear what each symbol stands for in

a particular section. Vertical velocities and fluxes are in gen-

eral positive when directed upward; only the radiative and

Table 1. The main thermodynamical constants used throughout this

paper.

Rv Gas constant for water vapor 461.5 J kg−1 K−1

Rd Gas constant for dry air 287.0 J kg−1 K−1

L Latent heat release for vaporization 2.5×106 J kg−1

cpd Heat capacity for dry air 1004 J kg−1 K−1

sedimentation fluxes are positive when pointing downward,

following conventions.

In the following sections, different components of the code

are described one by one. Sections 2.2–2.7 describe the phys-

ical and numerical components that are necessary to conduct

a minimal experiment with DALES. After that, Sects. 2.8–

2.12 describe various forcings and source terms that extend

the core of DALES for use in more specific applications. Fi-

nally, Sect. 2.13 describes the most relevant statistical rou-

tines in DALES.

2.2 The governing equations

DALES assumes the Boussinesq approximation, with the ref-

erence state θ0,ρ0,p0 equal to the surface values of liquid

water potential temperature, density and pressure, respec-

tively. For an extended treatment see for example Wyngaard

(2004).

Within the Boussinesq approximation the equations of mo-

tion, after application of the LES filter, are given by

∂ũi

∂xi

= 0, (5)

∂ũi

∂t
= −

∂ũi ũj

∂xj

−
∂π

∂xi

+
g

θ0
θ̃vδi3 +Fi −

∂τij

∂xj

, (6)

∂ϕ̃

∂t
= −

∂ũj ϕ̃

∂xj

−
∂Ruj ,ϕ

∂xj

+Sϕ, (7)

where the tildes denote the filtered mean variables. Molec-

ular transport terms have been neglected. The z-direction

(x3) is taken to be normal to the surface, π =
p̃
ρ0

+ 2
3
e is the

modified pressure, δij the Kronecker delta, and Fi represents

other forcings, including large scale forcings and the Coriolis

acceleration

F
cor
i = −2ǫijk�j ũk, (8)

where � is the Earth’s angular velocity. Source terms for

scalar ϕ are denoted by Sϕ , and may include of microphys-

ical (Smcr), radiative (Srad), chemical (Schem), large-scale

(S ls), and relaxation (Srel) terms. The subfilter-scale (SFS),

or residual, scalar fluxes are denoted by Ruj ,ϕ≡ũjϕ−ũj ϕ̃,

i.e., the contribution to the resolved motion from all scales

www.geosci-model-dev.net/3/415/2010/ Geosci. Model Dev., 3, 415–444, 2010
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Fig. 1. Flowchart of DALES.

below the LES filter width. The deviatoric part of the sub-

grid momentum flux:

τij ≡ ũiuj − ũi ũj −
2

3
e, (9)

A schematic overview of how the different processes affect

the different variables is given in Fig. 1.

2.3 Subfilter-scale model

In DALES, the SFS fluxes are modeled through an eddy dif-

fusivity as:

Ruj ,ϕ = −Kh
∂ϕ̃

∂xj

, (10)

and

τij = −Km

(
∂ũi

∂xj

+
∂ũj

∂xi

)
, (11)

where e = 1
2
(ũiui − ũi ũi) is the subfilter-scale turbulence ki-

netic energy (SFS-TKE) and Km and Kh are the eddy viscos-

ity/diffusivity coefficients. In DALES, these eddy diffusivity

Fig. 2. The Arakawa C-grid as used in DALES. Pressure, SFS-TKE

and the scalars are defined at cell-center, the 3 velocity components

at the face of the cell. The level of cell center is called the full

level (denoted with an “f”); the level where w is located is called

the half level (an “h”). The (variable) vertical grid spacing 1z is

defined centered around the belonging level. The grid spacing in

the horizontal directions (1x and 1y) are constant over the entire

domain.

coefficients are modeled in two ways: either as a function of

the SFS-TKE e (Deardorff, 1973) (which is the default), or

using Smagorinsky closure (Smagorinsky, 1963).

2.3.1 SFS-TKE model

Following Deardorff (1980), the prognostic equation for e is

adopted in the form:

∂e

∂t
= −

∂ũj e

∂xj

−τij

∂ũi

∂xj

+
g

θ0
Rw,θv

−
∂Ruj ,e

∂xj

−
1

ρ0

∂Ruj ,π

∂xj

−ε, (12)

with ε the SFS-TKE dissipation rate. The first right-hand-

side term is solved, and the second term (the production of

SFS-TKE by shear) can be calculated with Eq. (11). The

other right-hand-side terms need to be parameterized to close

the equation. Following Deardorff (1980), we express the

third term, the SFS-TKE production due to buoyancy, as:

g

θ0
Rw,θv =

g

θ0

(
A Rw,θl

+BRw,qt

)
, (13)

with coefficients A and B depending on the local thermody-

namic state (dry or moist):

A = Ad = 1+
Rv

Rd
q̃t

B = Bd =

(
Rv

Rd
−1

)
θ0

}
if qc = 0, (14)

Geosci. Model Dev., 3, 415–444, 2010 www.geosci-model-dev.net/3/415/2010/



T. Heus et al.: The Dutch Atmospheric LES 419

A = Aw =
(1−q̃t+q̃s

Rv
Rd

(
1+ L

RvT

)

1+
L2qs

cpdRvT 2

B = Bw = Aw
L
cpd

−θ0





if qc > 0, (15)

where qs is the saturation specific humidity at the given

temperature. At a cloud interface, it is a matter of choice

whether to use the dry or the moist coefficients in calculation

of the buoyancy production. Especially in situations where

the properties of the cloud deck are around the buoyancy re-

versal criterion, this choice proves to be critical (Randall,

1980; Bretherton et al., 2004; de Roode, 2007). To determine

whether a parcel that contains a mixture of saturated and un-

saturated air is saturated itself, we calculate the amount of

unsaturated air that is needed to evaporate all the liquid wa-

ter in a mixed air parcel. In particular the saturation mixing

ratio χsat defines the ratio of cloudy to total air mass for a just

saturated mixed air parcel (Stevens, 2002):

χsat =

(
Ad

L
cpd

−
Rv

Rd
θ̃l

)
qc

(Ad −Aw)1θ̃l +(Bd −Bw)1q̃t

, (16)

where 1θ̃l = θ̃l(z+1z)− θ̃l(z−1z) and 1q̃t = q̃t(z+1z)−

q̃t(z −1z) are the differences over the cloud interface. If

turbulent mixing occurs, it is assumed that at level zk the

mass mixing fraction is

χ =
zk −zk−1

zk+1 −zk−1
. (17)

If χ < χsat, the mixed parcel will be saturated and conse-

quently the coefficients for saturated air (Eq. 15) will be used.

The fourth and fifth term in Eq. (12) are together parame-

terized as

−
∂

∂xj

(
Ruj ,e +

1

ρ0
Ruj ,p

)
=

∂

∂xj

(
2Km

∂e

∂xj

)
. (18)

To model the dissipation rate ε, we again follow (Deardorff,

1980):

Km = cmλe1/2, (19)

with cm =
cf

2π

(
3

2
α

)−3/2

, (20)

with α = 1.5 the Kolmogorov constant and cfλ the filter

width.

The eddy diffusivity for heat and scalars is modeled simi-

larly as Kh = chλe1/2, and for the dissipation ε we write:

ε =
cε

λ
e3/2. (21)

Still following Deardorff (1980), the SFS parameters are de-

pending on the stability of the flow:

λ = min

(
1,cN

e1/2

N

)
, (22)

Table 2. An overview of the parameters used in the SFS scheme of

DALES. Not all parameters are independent.

α cf cε,1 cε,2 cm ch,1 ch,2 cN

1.5 2.5 0.19 0.51 0.12 1 2 0.76

ch =

(
ch,1 +ch,2

λ

1

)
cm, (23)

cε = cε,1 +cε,2
λ

1
, (24)

with N =

[
g
θ0

∂θ̃v

∂z

]2
denoting the Brunt-Väisälä frequency,

and cN = 0.76. Now all parameters of the subfilter-scale pa-

rameterization of DALES are defined; they are summarized

in Table 2.

Substituting the closure relations and parameters into

Eq. (12) gives the following prognostic equation for e1/2,

which is implemented in DALES:

∂e1/2

∂t
= −ũj

∂e1/2

∂xj

+
1

2e1/2

[
Km

(
∂ũj

∂xi

+
∂ũi

∂xj

)
∂ũi

∂xj

−Kh
g

θ0

∂(Aθ̃l +Bq̃t)

∂z

]

+
∂

∂xj

(
2Km

∂e1/2

∂xj

)
−

cεe

2λ
, (25)

which closes the system.

2.3.2 Smagorinsky SFS modeling

The Smagorinsky model that is implemented in DALES is as

follows (Wyngaard, 2004):

Km = c2
s λ

2
(
2SijSij

) 1
2 , (26)

with:

cs = c
3
4
mc

− 1
4

ǫ = 0.22, (27)

Sij =
1

2

(
∂ũj

∂xi

+
∂ũi

∂xj

)
,

the Smagorinsky constant and the strain tensor, respectively.

Pr = Km/Kh = 0.33 is the Prandtl number, equivalent to cm
ch

in the previous section.

2.4 Boundary conditions: the surface model

2.4.1 Theory

DALES requires a model to parameterize the turbulent drag

and the exchange of scalars between the surface and the at-

mosphere, because it has a no-slip boundary at the bottom,

www.geosci-model-dev.net/3/415/2010/ Geosci. Model Dev., 3, 415–444, 2010
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but does not resolve the flow up to the surface-roughness

scale. The surface fluxes enter the domain at subfilter-scale,

since by definition the resolved fluctuations in the vertical

velocity at the surface are equal to zero. In the remainder of

this section we define an arbitrary surface flux of variable φ

as Fs,φ = w̃φ− w̃φ̃.

We followed the common way of parameterizing turbu-

lent fluxes in atmospheric models by applying the transfer

laws of Louis (1979). In DALES we assume that the first

model level is in the atmospheric surface layer. We apply

Monin-Obukhov similarity theory for the computation of the

spatially averaged fluxes
〈
Fs,φ

〉
and gradients at the bottom

boundary of the model.

The procedure for determining the bottom boundary con-

ditions starts with the evaluation of the Obukhov length. This

value is approximated using a Newton-Rhapson method for

solving the implicit equation that relates the bulk Richardson

number to the Obukhov length (see Eq. 28).

RiB =
z1

L

[
ln
(

z1
z0h

)
−9H

(
z1
L

)
+9H

(
z0h

L

)]

[
ln
(

z1
z0m

)
−9M

(
z1
L

)
+9M

(
z0m

L

)]2
, (28)

with

RiB =
g

θ0

z1

(〈
θ̃v1

〉
−
〈
θ̃v0

〉)

〈U1〉
2

, (29)

and

L = −
u3

∗0

κ
g

〈θv0〉

〈
Fs,θv

〉 , (30)

where RiB is the averaged bulk Richardson number of the

layer between the surface and the first full level z1, L is the

Obukhov length, z0m and z0h are the roughness lengths for

momentum and heat, 9H and 9M are the integrated stabil-

ity functions as provided by Beljaars (1991) for the stable

atmosphere and Wilson (2001) for the unstable atmosphere,〈
θ̃v0

〉
is the spatially averaged filtered surface virtual poten-

tial temperature,
〈
θ̃v1

〉
is the spatially averaged filtered virtual

potential temperature at the first model level, 〈U1〉 is the mag-

nitude of the horizontal wind vector at the first model level,

defined as 〈U1〉 =
√

〈ũ1〉
2 +〈ṽ1〉

2, κ is the Von Karman con-

stant and
〈
w̃′θ ′

v0

〉
is the horizontally averaged surface virtual

temperature flux.

Subsequently, the calculated Obukhov length is used in the

computation of the slab averaged friction velocity u∗0 and

scalar scales ϕ∗0 = −
〈Fs,φ〉

u∗0
, based on the scaling arguments

of Businger et al. (1971); Yaglom (1977).

Now, we can calculate the drag coefficients CM and Cϕ :

CM =
u2

∗0

〈U1〉
2
, (31)

Cϕ =
u∗0ϕ∗0

〈U1〉〈ϕ̃1 −ϕ0〉
. (32)

Although all locations in the horizontal use the same drag

coefficient, we calculate local fluxes and gradients that aver-

age to the values computed in our evaluation of the Obukhov

length. The subfilter-scale momentum fluxes are calculated

by decomposing u2
∗0 along the two components of the hori-

zontal wind vector (Eqs. 33, 34), whereas Eq. (35) gives the

scalar flux. This results in

Fs,u = −CM〈U1〉ũ1, (33)

Fs,v = −CM〈U1〉ṽ1, (34)

Fs,ϕ = −Cϕ 〈U1〉(ϕ̃1 −ϕ0). (35)

For land surfaces where moisture is not freely available, such

as a vegetated land surface or a bare soil, an additional step

has to be made before the similarity relation as in Eq. (35)

can be applied to the specific humidity. Here, we define

the aerodynamic resistance ra as
(
Cϕ 〈U1〉

)−1
and introduce

the surface resistance rs that takes into account the limited

water supply at the land surface. The value for rs is ei-

ther prescribed or calculated using the Jarvis-Stewart model

(Jarvis, 1976), where the correction functions for radiation,

soil moisture and vapor pressure deficit are taken from the

ECMWF Integrated Forcast System (cycle 31R1), and the

correction function for temperature from Noilhan and Plan-

ton (1989). A urface value can be computed:

〈q0〉 =
ra

ra +rs

〈qs(T0)〉+
rs

ra +rs

〈q̃1〉. (36)

Note that the drag coefficients and resistances are based on

slab averaged values, to assure that the spatially averaged

fluxes and gradients are consistent with Monin-Obukhov

similarity theory. In DALES there is also the option available

to work with locally computed values. We are aware that this

method overpredicts gradients at the first model level (Bou-

Zeid, 2005). We, however, use this method for exploratory

experiments over heterogeneous land surfaces, because here

a universal surface model formulation is still lacking (Bou-

Zeid, 2005).

2.4.2 Overview of surface boundary options in DALES

DALES has four options to provide the surface momentum

and scalar fluxes and surface scalar values to the model, with

different degrees of complexity.

1. Parameterized surface scalar and momentum fluxes, pa-

rameterized surfaces values. Here, a Land Surface

Model (LSM, see Sect. 2.4.3) calculates the surface

temperature and the stomatal resistance which enters in

the evaporation equation based on the vegetation type

that is assigned to the grid cell. The variables u∗0, L

and ϕ∗0 are determined iteratively to get the drag coeffi-

cients. This is the method that represents a fully interac-

tive land surface. Combined with the radiation model,

this options allows for the simulation of full diurnal cy-

cles, in which both the surface fluxes and the surface

temperature are free variables.
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2. Parameterized surface scalar and momentum fluxes,

prescribed scalar values at the surface. In this option

u∗0, L and ϕ∗0 are solved iteratively to get the drag co-

efficients. The surface momentum and scalar fluxes are

computed using the prescribed scalar values at the sur-

face and the acquired drag coefficients. This option is

commonly used as the surface boundary condition for

simulations of marine boundary-layers. It is also ap-

plied in the simulation of stable boundary layers. For

simulations over land, a fixed surface resistance rs can

be prescribed.

3. Prescribed surface scalar fluxes, prescribed u∗0. In this

option no iterations are necessary and the scalar surface

values ϕ0 are calculated diagnostically. This is an op-

tion that is used in idealized simulations in which the

surface drag is preferred to be controlled, thereby ne-

glecting that u∗0 is an internal parameter of the flow.

4. Prescribed surface scalar fluxes, parameterized u∗0.

Here u∗0 and L are calculated iteratively, whereas ϕ∗ is

diagnostically calculated as a function of the prescribed

scalar fluxes and the calculated u∗0. This is the most

commonly used option for simulation of daytime con-

vection over land.

Prescribed fluxes or surface values may depend on time; lin-

ear interpolation is then performed between the given “an-

chor” points.

In addition to the previous description which assumed ho-

mogeneous surfaces, DALES is also able to simulate hetero-

geneously forced ABLs. Under such conditions, only the

prescribed scalar fluxes boundary conditions are available.

Scalar fluxes are defined per grid cell, whereas the momen-

tum flux is dynamically computed. In these conditions, local

values of u∗0, L and ϕ∗0 are used.

2.4.3 Land surface model

DALES has the option to use a land surface model (LSM).

The LSM has two components, namely a solver for the sur-

face energy balance and a four layer soil scheme which cal-

culates the soil temperature profile for each grid cell. The

following surface energy balance equation is solved:

Csk
dT0

dt
= Q∗ −ρcpFs,θl

−ρLvFs,qt −G, (37)

in which Csk is the heat capacity per unit of area of the skin

layer (see Duynkerke, 1999), T0 is the surface temperature,

Q∗ is the net radiation and G is the ground heat flux. If

the LSM is used, the surface resistance rs in Eq. (36) is

calculated using the Jarvis-Stewart parameterization (Jarvis,

1976).

The ground heat flux is parameterized as:

G = 3(T0 −Tsoil1), (38)

in which 3 is a bulk conductivity for the stagnant air in the

skin layer (Duynkerke, 1999) depending on the type of sur-

face, and Tsoil1 is the temperature of the top soil layer.

The soil consists of four layers in which the heat transport

is solved using a simple diffusion equation in which both the

conductivity and the heat capacity are functions of the prop-

erties of the soil material and of the soil moisture content.

The temperature at the bottom of the lowest soil layer is pre-

scribed.

2.5 Boundary conditions: the sides and top

In comparison with the boundary conditions at the bottom

boundary, the boundary conditions at the top and the sides of

the domain are relatively straightforward. In the horizontal

directions, periodic boundary conditions are applied for all

fields. At the top of the domain, we take:

∂ũ

∂z
=

∂ṽ

∂z
= 0; w̃ = 0;

∂ϕ̃

∂z
= constant in time. (39)

Fluctuations of velocity and scalars at the top of the do-

main (for instance due to gravity waves) are damped out

by a sponge layer through additional forcing/source terms

(added to the right-hand-side of the transport equations):

F
sp
i (z) =

1

t sp
(〈ũi〉− ũi), (40)

S
sp
ϕ (z) =

1

t sp
(〈ϕ〉− ϕ̃), (41)

with t sp a relaxation time scale that goes from

t
sp

0 =1/(2.75×10−3) s≈6 min at the top of the domain

to infinity at the bottom of the sponge layer, which is by

default a quarter of the number of levels, with a minimum of

15 levels.

2.6 Pressure solver

To solve for the modified pressure π , the divergence ∂
∂xi

of Eq. (6) is taken. Subsequently, the continuity equation

(Eq. 5) is applied (both divergence and continuity equation

are applied in their discrete form). As a result, the left hand

side of the equation is equal to zero. Rearranging the terms

leads to a Poisson equation for the modified pressure:

∂2π

∂x2
i

=
∂

∂xi

(
−

∂ũi ũj

∂xj

+
g

θ0
θ̃vδi3 +Fi −

∂τij

∂xj

)
. (42)

Since computations are performed in a domain that is pe-

riodic in both horizontal directions, the Poisson equation is

solved by applying a Fast Fourier Transform in the lateral di-

rections followed by solving a tri-diagonal linear system in

the z-direction using Gaussian elimination. In the latter, the

pressure gradients at the upper and lower boundary are set to

zero. An inverse Fast Fourier Transform in both lateral di-

rections is applied to the result of the Gaussian elimination

to obtain the modified pressure.
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2.7 Numerical scheme

A Cartesian grid is used, with optional grid stretching in the

z-direction. For clarity, an equidistant grid is assumed in the

discussion of the advection scheme. The grid is staggered

in space as an Arakawa C-grid; the pressure, the SFS-TKE

and the scalars are defined at x+ 1
2
(1x,1y,1z), the ũ is de-

fined at x+ 1
2
(0,1y,1z), and similar for ṽ and w̃. The level

of cell center is called the full level (denoted with an “f”);

the level where w is located is called the half level (an “h”).

The (variable) vertical grid spacing 1z is defined centered

around the belonging level (see Fig. 2). The grid spacing in

the horizontal directions (1x and 1y) is constant over the

entire domain.

To be able to use multiple computational processes, thus

decreasing the wall clock time of experiments, DALES 3.2

has been parallelized by dividing the domain in separate

stripes in the y-direction. Tests show that this method is com-

putationally efficient as long as the amount of processes is

smaller than a quarter of the number of grid points in the

y-direction. In the near future, we plan to also divide the do-

main in the x-direction, leaving narrow columns to be calcu-

lated by each process, and ensuring that the maximum num-

ber of processes would scale with the total number of grid

points in each slab, thus allowing for much larger experi-

ments.

Time integration is performed by a third order Runge-

Kutta scheme following Wicker and Skamarock (2002).

With f (φn) the right-hand side of the appropriate equation of

Eqs. (6–7) for variable φ = {̃u,ṽ,w̃,e1/2,ϕ̃}, φn+1 at t +1t

is calculated in three steps:

φ∗ = φn +
1t

3
f (φn),

φ∗∗ = φn +
1t

2
f (φ∗),

φn+1 = φn +1tf (φ∗∗), (43)

with the asterisks denoting intermediate time steps. The size

of the time step 1t is determined adaptively, and is limited

by both the Courant-Friedrichs-Lewy criterion ( CFL)

CFL = max

(∣∣∣∣
ũi1t

1xi

∣∣∣∣
)

, (44)

and the diffusion number d (see Wesseling, 1996).

d = max

(
3∑

i=1

Km1t

1x2
i

)
. (45)

The numerical stability and accuracy depends on the spatial

scheme that is used. Furthermore, additional terms, such as

chemical or microphysical source, may require more strin-

gent time stepping. Therefore, the limiting CFL and d

numbers can be manually adjusted to further optimize the

timestep. By default CFL and d are set well below the

stability levels known from the literature of the respective

combinations of spatial and temporal integration scheme (see

Wicker and Skamarock, 2002).

Depending on the desired properties (like high accuracy

or monotonicity), several advection schemes are available.

With advection in the x-direction discretized as

∂ũiφi

∂x
=

F
i+ 1

2
−F

i− 1
2

1x
, (46)

with F
i− 1

2
the convective flux of variable φ through the i− 1

2

plane; the i− 1
2

plane is the plane through the location of ve-

locity ũi(i), perpendicular on the direction of velocity ũi(i).

Since we are using a staggered grid, the velocity is available

at i− 1
2

without interpolation (see Fig. 2). Second order cen-

tral differencing can be used for variables where neither very

high accuracy nor strict monotonicity is necessary:

F 2nd

i− 1
2

= ũ
i− 1

2

φi +φi−1

2
, (47)

and similar for F 2nd

i− 1
2

. A higher-order accuracy in the calcu-

lation of the advection is reached with a sixth order central

differencing scheme (see Wicker and Skamarock, 2002):

F 6th

i− 1
2

=
ũ

i− 1
2

60

[
37(φi+φi−1)−8(φi+1+φi−2)+(φi+2+φi−3)

]
.

(48)

Starting with this sixth order scheme, a nearly

monotonous fifth order scheme can be constructed by

adding a dissipative term to F 6th

i− 1
2

,

F 5th

i− 1
2

= F 6th

i− 1
2

−

∣∣∣∣∣
ũ

i− 1
2

60

∣∣∣∣∣ (49)

[
10(φi −φi−1)−5(φi+1 −φi−2)+(φi+2 −φi−3)

]
.

For advection of scalars that need to be strictly monotone (for

example chemically reacting species) the κ scheme (Hunds-

dorfer et al., 1995) has been implemented:

F κ

i− 1
2

= ũ
i− 1

2

[
φi−1 +

1

2
κ
i− 1

2
(φi−1 −φi−2)

]
, (50)

in case ũ > 0. Following Hundsdorfer et al. (1995), κi−1/2

serves as a switch between third order upwind advection in

case of small upwind gradients of φ, and a first order upwind

scheme in case of stronger gradients. This makes the scheme

monotone, but also more dissipative, effectively taking over

the role of the SFS-scheme in regions of strong gradients.

2.8 Cloud microphysics

The cloud-microphysical scheme implemented in DALES is

a bulk scheme for precipitating liquid-phase clouds. The hy-

drometeor spectrum is divided in a cloud droplet and rain

drop category. The cloud liquid water specific humidity qc is
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Fig. 3. Representation of the prognostic thermodynamical variables θ̃l, q̃t, the microphysical parameter and variables Nc, qc, Ñr, q̃r, and the

microphysical processes relating these variables.

diagnosed using a classic saturation adjustment (Sommeria

and Deardorff, 1977). The cloud droplet number concentra-

tion Nc (with dimensions m−3) is a fixed parameter that can

be adjusted according to the degree of pollution of the cloud.

Two precipitation schemes have been implemented, both 2-

moment bulk schemes: rain drop spectra are characterized

by the rain drop number concentration Ñr and the rain water

specific humidity q̃r. The first one is based on Seifert and

Beheng (2001, hereafter SB01) (and will be referred to SB01

scheme) two-moment bulk scheme developed for heavy pre-

cipitating warm clouds and the second one on Khairoutdinov

and Kogan (2000, hereafter KK00), valid only for stratocu-

mulus clouds.

For each prognostic variable modified in microphysics, the

source term due to microphysical processes Smcr can be de-

scribed as effects of autoconversion (au), accretion (ac), rain

drop selfcollection (sc), break-up (bu), rain sedimentation

(ser), cloud droplet sedimentation (sec), and of rain evapo-

ration (evr):

Smcr
qt

= Sau
qt

+ Sacc
qt

+ Ssec
qt

+ Sevr
qt

Smcr
θl

= Sau
θl

+ Sacc
θl

+ Ssec
θl

+ S
evr
θl

Smcr
Nr

= Sau
Nr

+ S
Sc
Nr

+ Sbr
Nr

+ Sser
Nr

+ S
evr
Nr

Smcr
qr

= Sau
qr

+ Sacc
qr

+ Sser
qr

+ Sevr
qr

.

(51)

Microphysical tendencies in θ̃l can be expressed directly as

function of q̃t tendencies:

S
mcr
θl

= −
L

cp,d5
S

mcr
qt

, (52)

with the exner function 5 based, from here, on the slab av-

eraged pressure 〈p̃〉.

The prognostic thermodynamical variables, microphysi-

cal variables, processes and parametrizations are summa-

rized in Fig. 3 and are described in the next sections. The

conversion rates that impact rain formation and evolution

are parametrized according to KK00 or according to SB01,

Seifert and Beheng (2006, hereafter SB06), and Seifert

(2008) (hereafter S08). The cloud water specific humidity

is diagnosed from the cloud condensation and evaporation

scheme.

2.8.1 Cloud droplet condensation and evaporation

The cloud water specific humidity qc is diagnosed from the

resolved pressure, the temperature and the total specific hu-

midity using an “all or nothing” cloud adjustment scheme i.e.

it is assumed that there is no cloud water present in an unsat-

urated grid box, while all moisture exceeding the saturation

value q̃s is cloud water:

qc =

{
q̃t − q̃s if q̃t>q̃s

0 otherwise.
(53)

To calculate q̃s ≡ q̃s(T̃ ,〈p̃〉), an implicit equation needs to

be solved, because T̃ is not directly available and has to be

diagnosed from the prognostic variables θl and qt. The tem-

perature T̃ is approximated with help of the liquid water tem-

perature T̃l, which is equal to:

T̃l = 5θ̃l. (54)

Following Sommeria and Deardorff (1977), q̃s(T̃ ,〈p̃〉) is

found through a Taylor expansion around q̃sl≡q̃s(T̃l,〈p̃〉):

q̃s(T̃ ,〈p̃〉) = q̃s(T̃l,〈p̃〉)+(T̃ −T̃l)
∂q̃s

∂T̃l

∣∣∣∣
T̃l=T̃

+O
(
1T̃l

2
)
,(55)

and the higher order terms are neglected. For ideal gases, the

saturation specific humidity is expressed through the satura-

tion vapor pressure as:

q̃sl =
Rd

Rv

es

〈p̃〉−

(
1−

Rd

Rv

)
es

. (56)

By convention, es is used to denote the saturation vapor pres-

sure; note however, that es is not related to the SFS-TKE ẽ as
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defined in Sect. 2.3. The Clausius-Clapeyron relation relates

es to the temperature:

des

dT̃
=

Les

RvT̃ 2
, (57)

with Rv = 461.5 J kg−1 K−1 denoting the gas constant for

water vapor. It can be solved in very good approximation

as:

es(T̃l) = es0exp

[
a
T̃l −T trip

T̃l −b

]
, (58)

with constants es0 = 610.78 Pa, T trip = 273.16 K, a = 17.27

and b = 35.86 K. After having substituted in Eqs. (56–58)

into the truncated Taylor expansion Eq. (55) we obtain for

the saturated specific humidity:

q̃s = q̃sl

(
1+

L2

Rvcp,dT̃l
2
q̃t

)(
1+

L2

Rvcp,dT̃l
2
q̃sl

)−1

, (59)

and finally the cloud water specific humidity can be calcu-

lated with Eq. (53). When higher accuracy is necessary, the

procedure can be applied iteratively.

2.8.2 Cloud droplet sedimentation

The cloud droplet sedimentation process has an impact on

cloud evolution by reducing entrainment at stratocumulus

cloud top (Ackerman et al., 2004; Bretherton et al., 2007).

Its cloud water specific humidity source term can be ex-

pressed as the derivative of a sedimentation flux. The latter

is parametrized by assuming a Stokes law to calculate the

cloud droplets terminal velocity and a log-normal distribu-

tion to represent the cloud droplet spectrum (Ackerman et al.,

2009), which lead to the following expression:

F sec
qc

= kSt
4

3
πρw N

−2/3
c q

5/3
c exp(5ln(σgc)

2), (60)

with ρw = 1000 kg m−3, kSt = 1.2×108 m−1 s−1 and the log-

normal geometric standard deviation parameter σgc is set to

1.3 (Geoffroy et al., 2010).

2.8.3 Rain drop processes

The precipitation processes are parameterized as functions

of the local thermodynamical state. Thus they are valid only

for simulations where microphysical fields are explicitly re-

solved, as is the case in LES. To be able to neglect subfilter-

scale fluctuations, resolution must not be more than 200 m

horizontally and a few ten of meters vertically.

In slightly precipitating clouds, most of the falling mass

is contained in particles smaller than 50 µm in radius, also

referred to as drizzle. In Khairoutdinov and Kogan (2000)

scheme, the limit between the cloud category and the rain

category is set at the radius value of 25 µm which permits

consideration of drizzle in the precipitating category, which

can have significant impact on the evolution of the boundary

layer. This scheme is empirically based: it has been tuned

with spectra derived from 3-D simulations of stratocumulus

clouds using a coupled LES-bin microphysics model. Thus it

is valid only for stratocumulus clouds. Because a description

of that scheme is fully given in Khairoutdinov and Kogan

(2000), it is not described here.

The SB01 scheme assumes the limit at the separating mass

value x0 of 2.6×10−10 kg which corresponds to a separating

radius r0 of the order of 40 µm. Thus the SB01 scheme is

more suitable for heavily precipitating clouds, in which most

of the falling mass is contained in millimeter size particles.

The parametrized collection rates are expressed in function

of the microphysical variables by analytical integration of the

stochastic collection equation (SCE) and assuming analytical

distributions to represent the hydrometeor spectra. A correc-

tion function is added to the autoconversion and accretion

rate, that take in account the evolution of the cloud droplet

spectra due to conversion of cloud water in rain water.

The rain drop size distribution (RDSD) is assumed to be

a Gamma distribution:

nr(r) = N0λ
µr+1
r rµre−λrr , (61)

where r is the rain drop radius. N0 and the slope parameter

λr can be expressed as a function of the prognostic variables

and µr. In autoconversion and accretion parametrizations,

µr has been set to the Marshall and Palmer (1948) value (i.e.

0) and is fixed because the parametrizations have been tuned

with such a value using spectra derived from 1-D simulations

using a coupled LES-bin microphysics model. The value of

the shape parameter µr is parametrized in function of the rain

water content (Geoffroy et al., 2010):

µr = 0.5/(1000ρq̃r)
0.7 −1, (62)

2.8.4 Autoconversion from cloud droplets to rain drops

Autoconversion is the process that initializes the rain drop

spectra. After analytical integration of the SCE and

adding of correction function, SB06 obtained the following

parametrized expressions:

S
au
qr

=
k au

20x0

(νc +2)(νc +4)

(νc +1)2
q2

c x2
c

(
1+

ζ au(χl)

(1−χl)2

)
ρ0, (63)

S
au
qt

= −S
au
qr

, (64)

with:

χl = q̃r/(qc + q̃r), (65)

ζ au(χl) = 400χ0.7
l

(
1−χ0.7

l

)3
, (66)

and kau = 10.58×109 m3 kg−2 s−1 (Pinsky and Khain, 2002,

SB06) and xc is the mean mass of the cloud droplet distribu-

tion. νc is parametrized according to Geoffroy et al. (2010):

νc = 1580ρqc −0.28, (67)
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New drizzle drops are assumed to have a radius equal to the

separating radius r0. Thus the rain number concentration

source term due to autoconversion is:

S
au
Nr

=
Sau

qr

4πρw

3ρ
r3

0

, (68)

2.8.5 Accretion of cloud droplets

The growth rate of rain drops by collecting cloud droplets is

taken to be a function of the cloud and rain water contents

(SB06):

S
acc
qr

= kaccqcq̃rζacc,(ρ0ρ)
1
2 (69)

S
acc
qt

= −S
acc
qr

, (70)

with:

ζacc(χl) =

(
χl

χl +5×10−5

)4

, (71)

and kacc=5.25 m3 kg−1 s−1.

2.8.6 Rain drop selfcollection

The rain number concentration decreases because of the self-

collection process, i.e. interaction between rain drops to-

gether to form larger rain drops. Its parametrization is ex-

pressed as the following (SB06):

S
sc
Nr

= −kscÑrq̃r

(
1+

κsc

λr
(
4

3
πρw)1/3

)−9

(ρ0ρ)
1
2 , (72)

with ksc = 7.12 m3 kg−1 s−1 and κsc = 60.7 kg−1/3.

2.8.7 Break-up of rain drops

The break-up of rain drops into smaller rain drops is applied

for spectra with a mean volume radius rvr larger than 150 µm

following (SB06):

S
br
Nr

= −S
sc
Nr

(
k br(rvr −req)+1

)
, (73)

with kbr = 2000 m−1 and req = 550 µm. When rvr becomes

larger than req the break-up process becomes predominant

over the selfcollection process. The strong increase of the

break-up process for large mean volume radius is not taken

in account.

2.8.8 Rain drop sedimentation

Assuming the Rogers et al. (1993) dependence of rain drop

terminal velocity in function of the drop radius, the flux of

the rain number concentration and the flux of the rain water

specific humidity are (Stevens and Seifert, 2008):

F ser
Nr

=

(
a−b(1+c/λr)

µr+1
)
Ñr, (74)

F ser
qr

=

(
a−b(1+c/λr)

µr+4
)
q̃r, (75)

with a = 9.65 m s−1, b=9.8 m s−1, c = 1200 m−1 (see S08).

2.8.9 Rain drop evaporation

The tendency of the rain water specific humidity due to evap-

oration is expressed by integration of the drop growth rate by

vapor diffusion formulation (S08):

S
evr
qr

≈ 4π
ρw

ρ
G(T ,P )

q̃t − q̃s

q̃s

(Ñrλr)
µr+1

Ŵ(µr +1)

×

[
avŴ(µr +2)λ−(µr+2)

r +bvSc
1
3

(
a

νa

)1/2

Ŵ

(
µr +

5

2

)

× λ

(
−µr+

5
2

)

r


1−

1

2

b

a

(
λr

c+λr

)(µr+
5
2

)


, (76)

where Ŵ(x) is the gamma distribution,

G(T ,P ) =
1

ρw

[
RvT

es(T )Dv
+

L

kaT

(
L

RvT
−1

)]−1

, (77)

Sc, the Schmidt number, av and bv are ventilation factor co-

efficients with the following values: Sc = 0.71, av = 0.78 and

bv = 0.308 (Pruppacher and Klett, 1997).

The tendency of the rain drop number concentration due

to evaporation is assumed to be (S08):

S
evr
Nr

= γ
Ñr

q̃r
S

evr
qr

, (78)

with γ = 0.7 (A. Seifert, personal communication, 2008).

Note that a 0 value of γ means that no rain drop disappear

during evaporation. A value larger than 1 would be possi-

ble if a large number of little rain drops totally evaporate in

presence of large drops.

2.9 Radiation schemes

The net radiative heating is equal to the (downward pointing)

radiative flux divergence (per unit wave length) integrated

over all wavelengths ν:

S
rad
θl

=

∫ ∞

0

ρ0cpd
∂F rad(ν)

∂z
dν, (79)

DALES includes a multi-waveband radiative transfer model.

It needs information of the vertical profiles of temperature,

humidity and ozone up to the top of the atmosphere. To re-

duce the computational cost of the radiative transfer calcu-

lation, DALES has implemented the Monte Carlo Spectral

Integration (Pincus and Stevens, 2008), where at each grid

point and at each time step the radiative flux is approximated

by the radiative flux of one randomly chosen waveband, or a

randomly chosen part of that waveband where all absorption

coefficients are similar. A complete discussion of the radia-

tive transfer model can be found in Fu and Liou (1992); Fu

et al. (1997).

DALES also includes a simple parameterization for the

vertical component of the longwave radiation and of the
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shortwave radiation through computationally cheap analytic

approximations of the Mie theory, that maintain sufficient

accuracy for most purposes. In the parameterized radiation

scheme, radiative transfer is computed at every single col-

umn of the LES, neglecting horizontal radiative transfer.

2.9.1 The GCSS parameterization for longwave radia-

tion

The absorptivity of longwave radiation is controled by the

liquid water path (LWP),

LWP(x,y,z1,z2) = ρair

∫ z2

z1

qc(x,y,z)dz. (80)

The net longwave radiative flux F rad
L is linked to the liquid

water path through an analytic formula,

F rad
L (x,y,z) = FL(ztop)e

−kLWP(x,y,z,ztop)

+FL(0)e−kLWP(x,y,0,z), (81)

where k is the absorption coefficient, and FL(ztop) and FL(0)

represent the total net longwave radiative flux at the top of the

cloud and the cloud base, respectively. Larson et al. (2007)

discuss the validity of this parameterization in detail. They

conclude that when the parameterization constants are opti-

mized for individual stratocumulus cases like the ones set up

by Duynkerke et al. (1999, 2004), and Stevens et al. (2005),

the formula yields remarkably accurate fluxes and heating

rates for low clouds.

To study the effect of longwave radiative on the generation

of turbulence, but in the absence of latent heat release effects

that occur in a real liquid water cloud, one can substitute the

liquid water path by the vertical integral of a passive scalar.

This so-called “smoke” cloud has an initial concentration set

to unity in the boundary layer and zero above (Bretherton

et al., 1999b). The liquid water path in the longwave radia-

tion Eq. (81) is then replaced by the smoke path, which can

be computed by substituting qc by the smoke concentration s

in Eq. (80). For a smoke absorptivity k = 0.02 m2 kg−1 one

obtains similar cooling rates as in stratocumulus (Bretherton

et al., 1999b). It should be noted that unlike liquid water,

smoke is a conserved quantity. This means that if smoke

is transported by turbulence into the inversion layer, it will

cause a local cooling tendency in this layer.

2.9.2 The delta-Eddington model for shortwave radia-

tive transfer

In the shortwave band the cloud optical depth τ is the

most important parameter defining the radiative properties of

clouds,

τ(x,y,z) =
3

2

LWP(x,y,z,zt)

reρw
. (82)

Here re defines the cloud droplet effective radius, i.e. the ratio

of the third moment to the second moment of the droplet size

distribution (Stephens, 1984). A constant value for re is used,

and for marine boundary layer clouds is re = 10 µm, which

was observed for stratocumulus over the Pacific Ocean off

the coast of California during FIRE I (Duda et al., 1991).

Cloud droplets scatter most of the incident radiation into

the forward direction. This asymmetry in the distribution of

the scattering angle is measured by the first moment of the

phase function, and is commonly refered to as the asymme-

try factor g which is taken g = 0.85. The radiative transfer

for shortwave radiation in clouds is modeled by the delta-

Eddington approximation, in which the highly asymmetric

phase function is approximated by a Dirac delta function and

a two term expansion of the phase function (Joseph et al.,

1976). The physical interpretation of this approach is that

forward scattered radiation is treated as direct solar radiation.

The ratio of the scattering coefficient Qs to the extinc-

tion coefficient Qe is called the single scattering albedo

ω0 = Qs/Qe, and is unity for a non-absorbing medium. Fol-

lowing Fouquart (1985),

ω0 = 1−9×10−4 −2.75×10−3(µ0 +1)e−0.09τt , (83)

with τt the total optical depth in a subcloud column. Due

to multiple scattering this small deviation of ω0 from unity

leads to a non-negligible absorption of shortwave radiation.

The delta-Eddington equations are exactly the same as the

Eddington equations (Joseph et al., 1976) with transformed

asymmetry factor g, single-scattering albedo ω0 and optical

depth τ substituted by primed quantities:

g′ =
g

1+g
, (84)

ω′
0 =

(1−g2)ω0

1−ω0g2
, (85)

τ ′ = (1−ω0g
2)τ, (86)

For constant ω0 and g the delta-Eddington equation can

be solved analytically (Shettle and Weinman, 1970; Joseph

et al., 1976):

F rad
s (x,y,z) = F0

4

3[
p(C1e

−kτ ′(x,y,z)−C2e
kτ ′(x,y,z))−βe

−
τ ′(x,y,z)

µ0

]

+µ0F0e
−

τ ′(x,y,z)
µ0 , (87)

with:

k = [3(1−ω′
0)(1−ω′

0g
′)]1/2, (88)

p =

(
3(1−ω′

0)

1−ω′
0g

′

)1/2

, (89)

β = 3ω′
0µ0

1+3g′(1−ω′
0)µ

2
0

4(1−k2µ2
0)

, (90)

and µ0 = cosα0 for a solar zenith angle α0. The values of

the constants C1 and C2 in Eq. (87) are calculated from the
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boundary conditions. A prescribed value for the total down-

ward solar radiation (parallel to the beam) determines the up-

per boundary condition at the top of the cloud F0. In addi-

tion, it is assumed that at the ground surface a fraction of

the downward radiation reaching is reflected back by a Lam-

bertian ground surface with albedo Ag. See for further de-

tails Shettle and Weinman (1970) and Joseph et al. (1976).

The delta-Eddington solution is applied in every column us-

ing the local cloud optical depth. A study by de Roode and

Los (2008) of the cloud albedo bias effect showed a good

agreement between results obtained with the delta-Eddington

approach and from the I3RC Monte-Carlo model (Cahalan

et al., 2005) that utilizes the full three-dimensional structure

of the cloud field.

2.10 Other forcings and sources

Large-scale forcings and sources, such as the mean

geostrophic wind ug, the large-scale subsidence ws, and the

horizontal advective scalar transport may depend on height

and time. The effects of large-scale subsidence are calcu-

lated using the slab-averaged scalar profiles and a prescribed

subsidence velocity ws(z,t) (see, e.g. Siebesma et al., 2003):

S
subs
ϕ = −ws

∂ 〈ϕ̃〉

∂z
, (91)

Optionally, the slab-averaged prognostic variables can be

nudged with a relaxation time scale t rel to a prescribed (time

depending) value ϕrel:

S
rel
ϕ = −

1

t rel

(
〈ϕ〉−ϕrel

)
, (92)

analogous to large-scale forcings in single column models

(see Neggers et al., 2010). The application of Srel
ϕ to the hor-

izontal mean 〈ϕ〉, instead of to the individual values of ϕ,

ensures that room for variability within the LES domain re-

mains, and the small-scale turbulence will not be disturbed

by the nudging.

2.11 Flow over tilted surfaces

To simulate flow over a sloped surface under an angle α

(> 0), a coordinate transformation is performed; computa-

tions are then done in a system (s,y,n) , with s and n are

the coordinates in the down slope direction and perpendicu-

lar to the slope, respectively. Under the assumption that the

flow can be considered homogeneous along the slope (see

Sect. 3.5), only the buoyancy force is directly dependent on

s. The original gravitational forcing
g
θ0

θ̃vδi3 needs to cor-

rected. The reformulated gravitational forcing is equal to:

F
slope
us

= −
g

θ0
θ̃vsinα, (93)

F
slope
un

=
g

θ0
θ̃vcosα. (94)

As of yet, the SFS model is not adjusted, which limits the

accuracy of the simulations, especially for bigger slope an-

gles and very stable conditions. To accommodate the peri-

odic horizontal boundary conditions for slope flow, we fol-

low Schumann (1990) in splitting each scalar field ϕ in an

ambient component ϕa that incorporates the z dependency of

the mean state, and a deviation ϕd with respect to ϕa.

ϕ(s,y,n) = ϕa(s,y,n)+ϕd(s,y,n). (95)

The ambient profile ϕa(s,y,n) is equal to slab averaged value

of the scalar 〈ϕ〉(z), where the brackets still stand for an

average over the x- and y-directions. Defining z = 0 at

s,n = {0,0}, the ambient value of the scalar is equal to:

ϕa(s,z) = 〈ϕ〉(ncosα−ssinα). (96)

The deviation ϕd is now homogeneous along the slope sur-

face direction, and periodic boundary conditions can be ap-

plied on it. Currently, this splitting procedure is not imple-

mented for the total specific humidity, focusing slope flow

studies exclusively on the dry boundary layer for now.

2.12 Chemically reactive scalars

DALES is equipped with the necessary tools to study the dis-

persion of atmospheric compounds using the Eulerian and

Lagrangian framework and their chemical transformation.

The Lagrangian framework is explained in Sect. 2.13.2. In

the Eulerian approach, a line or surface source of a scalar

or a reactant is included to mimic the emission of an atmo-

spheric constituent in the ABL flow allowing the calcula-

tion and analysis of the diagnostic scalar fields (Nieuwstadt

and de Valk, 1987). If the atmospheric compounds react, the

source or sink term in Eq. (7) needs to be included in the nu-

merical calculation. For a generic compound ϕl, this reaction

term reads:

Sϕl
=P(t,ϕm)−L(t,ϕm)ϕl m = 1,...,n. (97)

The respective terms P(t,ϕm) and L(t,ϕm) are nonnegative

and represent production and loss terms for atmospheric con-

stituent ϕl reacting on time t with the n number of species ϕm

it is reacting with.

In DALES, we compute the chemical source term Sϕl
us-

ing the chemical solver TWOSTEP extensively described

and tested by Verwer (1994) and Verwer and Simpson

(1995). In short, this chemical solver uses an implicit

second-order accurate method based on the two-step back-

ward differentiation formula. Since in atmospheric chemistry

we are dealing with chemical system characterized by a wide

range of chemical time scales, i.e., stiff system of ordinary

differential equations, the time step is adjusted depending on

the chemical reaction rate.

A simple chemical mechanism serves us as an introduction

of the specific form of P(t,ϕk) and L(t,ϕk). Atmospheric
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chemistry mechanism are composed of first- and second-

order reactions. Third-order reactions normally involve wa-

ter vapor or an air molecule, for instance nitrogen or oxygen.

Due to the much larger concentration of these compounds

than the reactant concentration, third-order reaction rates are

normally expressed as a pseudo second-order reaction, i.e.,

k2nd = k3rd[M] where [M] is a molecule of H2O or air. There-

fore, the generic atmospheric chemical system consisting of

a first- and a second-order reaction reads:

a
j

→ b+c, (R1)

b+c
k

→ a, (R2)

where a, b and c are atmospheric compound concentrations,

j and k are the first- and second-order reaction rate. For

reactant a the L and P are, respectively:

L = −j, (98)

P = kbc. (99)

The photodissociation rate j depends on the ultraviolet ac-

tinic flux and specific photodissociation properties of the at-

mospheric compound. Therefore, in DALES j is a function

on the diurnal variability (latitude, day of the year) and the

presence of clouds. The j -values are updated every time step.

The cloud influence on the actinic flux is implemented using

a function that depends on the cloud optical depth (Eq. 82)

(Vilà-Guerau de Arellano et al., 2005). The reaction rate

k depends on the absolute temperature, on the water vapor

content and the pressure. Depending on the reaction, sev-

eral reaction rate expressions can be specified at DALES.

Moreover, the generally very low concentrations of chemi-

cal species in the atmosphere allows us to neglect the heat-

ing contribution of the reactions on the liquid water potential

temperature θ̃l, or on the water content q̃t and q̃r.

For the chemical solver, it is essential that the concentra-

tion of the species is non-negative. Therefore, the entire nu-

merical discretization for the reactants, spatial and temporal

integration of advection and diffusion and temporal integra-

tion of the chemistry, has to satisfy the following three nu-

merical properties: it has to be conservative, monotone and

positive definite. Of the advection schemes that are imple-

mented in DALES, the kappa scheme (see Sect. 2.7) fulfills

these properties.

The chemistry module is designed to be flexible in or-

der to allow study of different chemical mechanisms. Re-

quired input parameters include the number of inert scalars,

and of chemical species, their initial vertical profiles and sur-

face fluxes, and a list of chemical reactions, together with the

reaction rate functions. More information on the chemistry

module can be found at Vilà-Guerau de Arellano et al. (2005)

and Vilà-Guerau de Arellano et al. (2009).

2.13 Statistics

In DALES, standard output includes time series and slab-

averaged profiles of the main variables, the (co-) variances,

and of the resolved and SFS-modeled fluxes. The modular

set-up of the code facilitates inclusion of many other statisti-

cal routines, specifically aimed at the purposes of a particular

research question. Sharing such code with the community

leaves the code base with a rich palette of statistics, includ-

ing specific routines that focus on the details of, for example,

radiation, cloud microphysics, or the surface layer. A few

examples of the statistical capabilities of DALES are given

below.

2.13.1 Conditional sampling

Conditionally averaged profiles can be found by defining

a mask M , which is equal to 1 or 0, depending on whether

a set condition is true or false, respectively. Frequently used

sampling conditions are, for instance, clouds (ql > 0), areas

of updrafts (w̃ > 0), areas of positive buoyancy (θ̃v > 〈θv〉),

and any combination of these conditions. New definitions of

the mask M are possible with small adjustments of the code.

2.13.2 Lagrangian statistics

While the Eulerian formulation of the LES favors a Eulerian

frame of reference for statistics, many problems can greatly

benefit from a Lagrangian approach. This holds in particu-

lar for studies of entrainment and detrainment, since these

problems can often be stated as a study on the evolution in

time of a parcel of air. To this end a Lagrangian Particle Dis-

persion Model (LPDM) has been implemented into DALES.

Within this model, massless particles move along with the

flow. Since each of the particles is uniquely identifiable, the

origins and headings of the particles (and of the air) can be

captured.

The position of a particle xp is determined using:

dxi,p

dt
= ũi(xp;t)+u′

i(xp;t), (100)

where ũ is the LES-resolved velocity linearly interpolated

to the particle position, and u
′ is an additional random term

that represents the SFS-velocity contribution. This term is

especially important in regions where the SFS-TKE is rela-

tively large, such as near the surface or in the inversion zone.

The calculation of u
′ follows Weil et al. (2004), and was tai-

lored for use in LES with TKE-closure. It is implemented in

DALES as follows:

du′
i = −

3fsC0εu
′
i

4e
dt +

1

2

(
u′

i

e

de

dt
+

2

3

∂e

∂xi

)
dt

+(fsC0ε)
1/2dξi, (101)

where C0 is the Langevin-model constant (Thomson, 1987)

that has been set to 6; fs is the slab-averaged ratio between
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SFS-TKE and total TKE. dξ is a Gaussian noise to mimic

the velocity field associated with the subfilter turbulence.

Boundary conditions are periodic in the horizontal di-

rections, and emulate the LES boundary conditions at the

top and bottom of the domain. Particles are reflected (wp

changes sign) should they hit the top or bottom. For time in-

tegration, the third order Runge Kutta scheme is again used.

The LPDM was validated by Heus et al. (2008) for a cumu-

lus topped boundary layer and additionally by Verzijlbergh

et al. (2009) for a scalar point source emission in different

clear and cloud-topped boundary layer flows.

2.13.3 Transport, tendencies and turbulence

To study the mechanisms driving the development of the

ABL, tendency statistics are included that diagnose slab av-

erage profiles of every forcing and source term in Eqs. (6)

and (7). Where necessary, the individual terms of the un-

derlying equations can also be diagnosed, such as for the

SFS-TKE, radiation or microphysical components. Fluxes

and co-variances of the main variables are also calculated.

To understand the turbulence in the boundary layer it is

interesting to analyze the resolved turbulence kinetic energy

budget E, which, under horizontal homogeneous conditions

and neglecting subsidence, can be based on the turbulence

kinetic energy budget as given by e.g. (Stull, 1988):
〈
∂E

∂t

〉
≡

〈
∂

∂t

[
1

2

(
ũ

′′2 + ṽ
′′2 + w̃

′′2
)]〉

= −

[〈
ũ′′w̃′′

〉 ∂ 〈̃u〉

∂z
+
〈
ṽ′′w̃′′

〉 ∂ 〈̃v〉

∂z

]

+
g

θ̃0

〈
w̃θv

〉
−

∂
〈
w̃′′E

〉

∂z

−
∂
〈
w̃′′π ′′

〉

∂z
−〈εr〉, (102)

where the double prime indicates a deviation from the slab-

average, θ0 is a reference virtual potential temperature. The

left-hand side term represents the total tendency of turbulent

kinetic energy. The right-hand side terms are, respectively,

the shear production, the buoyancy production, the turbulent

transport, the pressure correlation, and the viscous dissipa-

tion term:

εr = ũ′′
j

∂

∂xj

(
Km

[
∂ũ′′

i

∂xj

+
∂ũ′′

j

∂xi

])
,

where Km is the SFS eddy diffusivity.

Due to the staggered grid used in DALES each variable

entering in the budget terms is evaluated at a different posi-

tion. In order to correctly build up the different terms, several

interpolations have to be performed, which have to be consis-

tent with the spatial discretization of the model. Due to these

numerical issues, the budget is not fully closed, although the

residual is small compared to the physical terms (see Fig. 4

Fig. 4. Vertical profile of the various terms of the TKE budget in

a sheared CBL: total tendency (orange), buoyancy (black), dissi-

pation (violet), transport and pressure (green), shear (red), and the

residual (blue).

for the budget of E in a sheared CBL). In order to further re-

duce this residual term, a method based on Gao et al. (1994)

is currently in development.

3 Applications and evaluation of DALES

3.1 Dry boundary layers

3.1.1 Convective boundary layer

One of the most common test cases for an atmospheric LES

is the dry convective boundary layer (CBL). In a CBL a pos-

itive heat flux at the surface destabilizes the air resulting in

a vigorous turbulence which mixes (thermo)dynamic quan-

tities like heat and momentum over the entire depth of the

boundary layer, and which comprises eddies that vary over

a wide range of scales, i.e. from the depth of the boundary

layer (∼km) down to the Kolmogorov-scale (∼mm). But be-

cause the largest scales of motion control most of the vertical

transport (e.g. the vertical fluxes of heat and momentum), it

is reasonable to fully resolve the large scales on a resolution

of ∼ 10−100 m, and account for the scales of motion smaller

than the grid scale using the subgrid model (such as Eq. 25).

Probably the most defining feature of a CBL is the fact

that the mixed layer is not confined by a rigid lid (such as

Rayleigh-Bénard convection), but that it is capped by an

inversion, a marked increase of the potential temperature

with height. As such the mixed-layer depth zi (the top of

which is often defined as the height of the maximum gra-

dient in temperature, or as the height of the minimal buoy-

ancy flux), is not fixed, but grows in time: thermals imping-

ing on the inversion cause overlying free tropospheric air to

be entrained into the mixed-layer, the depth of which there-

fore increases. The rate of growth is called the entrainment

rate we, a key unknown in weather, climate and air quality
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Fig. 5. DALES results for a CBL with a weak inversion (a, b, c) and with a strong inversion (d, e, f), reproducing cases W06 and S24

of the study by Sullivan et al. (1998). For extra information see Table 3. All results are averages over hour 3–4 and spatially averaged in

the horizontal. (a, d): average temperature profile (thin line in a shows the initial temperature profile). (b, e): normalized heat-flux profiles,

resolved (thin line), subgrid (dashed) and total (solid line). cf. turbulence statistics of resolved velocities σ 2
u = 〈ũ′ũ′〉 (solid line), σ 2

v = 〈ṽ′ṽ′〉

(thin line), σ 2
w = 〈w̃′w̃′〉 (dashed line), and subgrid contribution 2e/3 (dotted line).

Fig. 6. Vertical profile of the total
〈
w̃θ̃v + w̃′θ ′

v

〉
(solid line) and

subfilter-scale contribution
〈
w̃′θ ′

v

〉
(dashed) of the virtual poten-

tial temperature flux obtained after four hours of simulation by

DALES2.0 (black) and DALES 3.2 (red) with the same physical

conditions and advection scheme (2nd order central differences).

models. Large-Eddy Simulation provides a powerful tool to

make a comprehensive study of entrainment (see e.g., Sul-

livan et al., 1998; Fedorovich et al., 2004a) and investigate

Table 3. Simulation details of the two simulated CBLs: weak inver-

sion case (W06) and strong inversion case (S24). zi(0) and 1θ(0)

denote the initial mixed-layer depth and initial temperature jump,

respectively.

Q d 〈θv〉/dz zi(0) 1θv(0) zi w∗

Case K m s−1 K m−1 m K m m s−1

W06 0.06 0.003 750 0 1230 1.34

S024 0.24 0.003 950 8 1096 2.05

the dependencies on for example the inversion jump 1θv,

the surface heat flux
〈
Fs,θv

〉
and the actual mixed-layer depth

zi(t). Rather than studying the entrainment rate directly, one

can also focus on the entrainment flux of heat, in particular

the value of the heat flux at the inversion. This approach is

followed below for DALES.

To test the performance of DALES for dry convective

boundary layers, we simulated two of the cases studied by

Sullivan et al. (1998), one with a weak inversion 1θv ∼ 0.5 K

(their case number W06), and one with a strong inversion

1θv ∼ 5 K (case S24). The corresponding surface heat flux,

initial mixed-layer depth zi(0) and stratification d 〈θv〉/dz of
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the overlying layer, are given in Table 3. In both cases there

is no mean wind and hence no (mean) shear. Note that W06

was initiated without an inversion jump. For S24 the ini-

tial inversion thickness amounted to 120 m (linear interpo-

lation between 300 K and 308 K over 120 m). Both simula-

tions were conducted on a grid of Nx = Ny = 64,Nz = 96,

using the same resolution as in the original simulations,

1x = 1y = 100 m, 1z = 20 m. Time-step was variable, and

for the advection of all variables the fifth-order scheme (see

Sect. 2.7) was chosen.

In Fig. 5 we present the results averaged from hour 3 to

4. Turbulence statistics are normalized using the convective

velocity scale

w∗ =

(
g

20
Q0zi

)1/3

, (103)

where Q0 =
〈
Fs,θv

〉
is the surface kinematic heat flux in

K m/s, and zi the mixed layer depth (see Table 3). The fig-

ures are formatted such that they can be directly compared

with the original study by Sullivan et al. (1998). Although

W06 was initiated without an inversion, the CBL dynamics

is such that it creates its own inversion, as can be seen in

Fig. 5a showing the characteristic “steepening” of the tem-

perature profile in the entrainment zone. The strength of the

resulting inversion is the same as observed by Sullivan et al.

(1998). The same holds for case S24 (Fig. 5d). For both

cases also the normalized heat flux profiles displays a value

of roughly −0.15 in the entrainment zone, indicative of the

entrainment process (Fig. 5b, e). The SFS contribution to

the heat flux is rather small in the mixed-layer and near the

inversion. The SFS contribution to TKE, on the other hand,

extends over the entire layer (Fig. 5c, f); again the magnitude

and shape of the SFS-TKE are in very good agreement with

the results reported by Sullivan et al. (1998).

3.1.2 Generation of mesoscale fluctuations

Jonker et al. (1999) performed a simulation of a dry convec-

tive boundary layer on a large horizontal domain and demon-

strated that the fields of passive scalars can be dominated by

fluctuations at length scales much larger than the boundary

layer depth. However, it was found that scalars for which

the entrainment to surface flux ratio is close to ∼ −0.25, as

is a typical value for the buoyancy flux in a clear convec-

tive boundary layer, do not exhibit mesoscale fluctuations.

In subsequent studies by de Roode et al. (2004a) and de

Roode et al. (2004b) the tendency equation for the variance

of scalars was analyzed. For an arbitrary passive scalar ϕ it

reads

∂
〈
ϕ̃

′′2
〉

∂t
= −2

〈
w̃′′ϕ̃′′

〉 ∂ 〈ϕ̃〉

∂z
−

∂
〈
w̃′′ϕ̃′′ϕ̃′′

〉

∂z
−ǫϕ, (104)

where the terms on the rhs indicate the production, transport

and dissipation of scalar variance, respectively. If the verti-

cal flux of a scalar changes sign at some level in the mixed

layer, and if the mean vertical gradient of the scalar changes

sign at a different height, the vertical flux will be counter the

mean vertical gradient. According to the variance equation

this implies that the production of variance will become neg-

ative. The large-eddy simulations show a clear correlation

between the depth of the countergradient flux layer and a de-

crease in the production of variance.

In addition, it was found that the growth rate of mesoscale

fluctuations of passive scalars is tightly connected to the

shape of the vertical profile of the buoyancy flux and its mag-

nitude in particular. This was demonstrated with aid of sim-

ulations of a smoke cloud that was radiatively cooled from

its top. This cooling drives top-down convection and pro-

duces positive buoyancy fluxes in the bulk of mixed layer,

where a larger cooling rate causes larger buoyancy fluxes.

The largest growth rates of mesoscale fluctuations of passive

scalars were found for the case with the largest values for the

buoyancy flux. The main message that these studies carry is

that turbulence alone is capable to generate mesoscale fluctu-

ations of passive scalars, indicating that for these quantities

a spectral gap does not exist.

3.1.3 Sheared convective boundary layer

To analyze the influence of wind-shear characteristics on

the evolution of the CBL, long simulations and large do-

mains are necessary to fulfill a quasy–stationarity flow pat-

tern that matches with the prescribed surface fluxes, and to

resolve the expected pattern for forced convection (Khanna

and Brasseur, 1998). With DALES, resolutions up to 25 m

and 6 m in the horizontal and vertical directions, respectively

were considered.

The studies of the sheared CBL focus on the influence of

the wind shear on the boundary layer growth due to the modi-

fication of the entrainment fluxes (Pino et al., 2003); on iden-

tification and parameterization of the main physical mecha-

nisms that control the entrainment heat flux (Kim et al., 2006;

Pino et al., 2006b); on the role of shear and the inversion

strength in the decay of convective turbulence during sunset

(Pino et al., 2006a); and most recently on how to parameter-

ize the different terms of the TKE budget by means a first or-

der jump mixed layer model (Pino and Vilà-Guerau de Arel-

lano, 2008). In an intercomparison study of the sheared CBL

in different wind regimes by Fedorovich et al. (2004b), a pre-

vious version of the model showed larger entrainment fluxes

than the other codes. Consequently, a drier and warmer

boundary layer was obtained. In comparison with this older

version of DALES, DALES 3.2 shows smaller entrainment

fluxes (see Fig. 6). Presumably, this is due to the improved

numerical scheme; as the κ advection scheme performs bet-

ter in combination with the Runge Kutta integration scheme

than with the previously used leap frog scheme Hundsdorfer

et al. (1995).

Among the results mentioned above we would like to em-

phasize first the influence of the shear in the boundary layer
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Fig. 7. Boundary layer height zi observed by radiosondes launched

at different facilities of ARM campaign (symbols) and obtained

by means of LES: without shear (black), including a constant

geostrophic wind of 10 ms−1 in the east-west direction (green), and

prescribing the observed mean wind (red). Adapted from Pino et al.

(2003).

growth by using LES and observations (Pino et al., 2003),

and second the influence of the wind shear in the charac-

teristics length scales during afternoon decaying convective

turbulence (Pino et al., 2006a). It was shown there that the

enhancement of the entrainment heat flux caused by the wind

shear at the inversion zone is responsible for an increased

boundary layer growth rate. Neglecting this wind shear in

the parameterizations of the entrainment heat fluxes would

result in a significant underestimation of the boundary layer

depth (see Fig. 7).

3.2 Stable boundary layers

In the context of LES, one of the characteristics of stable

boundary layers (SBLs) is the mere absence of large eddies

(as compared to the height above the surface, or the depth of

the boundary layer; see e.g. the spectra presented in Kaimal

and Finnigan, 1994). The stable stratification suppresses ver-

tical motion and transfers turbulence kinetic energy into tur-

bulence potential energy (defined as 1
2

(
∂θ
∂z

)−1
θ ′2, see Zil-

itinkevich et al., 2007) through the buoyancy destruction

term in the TKE equation. Part of that potential energy is

released back as turbulence kinetic energy but part is dissi-

pated through the dissipation of temperature variance. Due to

these two aspects, the role of the subfilter-scale model tends

to be much larger in LES of SBLs than it is for convective or

neutral (but sheared) boundary layers. This implies that for

the SBL generally much higher resolutions are used than for

other simulations.

The first application of (a previous version of) DALES

to stable boundary layers was reported by Galmarini et al.

(1998) where a slightly different version of the subfilter-scale

model was used.

In the context of the GEWEX Atmospheric Boundary

Layer Study (GABLS, Holtslag, 2006), a series of model in-

tercomparisons has been organized for SBL cases. In all in-

tercomparisons a single-column model intercomparison case

was defined, whereas an LES case was defined in the first and

third intercomparison. The first case (Beare et al., 2006) was

inspired by the setup of the simulations of Kosović and Curry

(2000): a moderately stable boundary layer (with zi/L ≈ 2,

where zi is the depth of the SBL (here defined as the height of

vanishing shear stress) and L the Obukhov length). The do-

main size was set to 400 m in all three directions. The rough-

ness length for momentum z0 was set to 0.1 m and for heat

the same roughness length was applied. The lower boundary

condition for heat was imposed as a constant cooling rate of

0.25 K/h for the surface temperature. The flow was forced

with pressure gradient representative of a geostrophic wind

of 8 ms−1 at a latitude of 73◦ N.

In total 11 models participated in the intercomparison, be-

ing run at resolutions from 12.5 m down to 1 m for some

models. DALES participated in the intercomparison at res-

olutions of 12.5 and 6.25 m. For this paper, the case was

re-run at a resolution of 3.125 m. The results are shown in

Fig. 8. The results of DALES are clearly within the range of

the other models, although the mean shear is stronger than in

most models close to the surface and weaker at higher levels

in the SBL. Furthermore, the strength of the low-level jet (or,

more precisely, the super geostrophic jet, i.e., the wind max-

imum at the top of the SBL) seems to be slightly less than in

the other models.

3.3 Cloud topped boundary layer

If there is sufficient moisture in the convective boundary so

that the total specific humidity qt exceeds its saturation value

qs, condensation processes will initiate and clouds will start

to form. Since qs increases exponentially with temperature

and as temperature decreases with 10 K/km in the convective

boundary layer, clouds typically start to form at the top of

the convective boundary layer. They are often referred to as

boundary layer clouds, as long as the capping inversion at

the top of the boundary layer is strong enough to encapsulate

them. As a result they have a limited vertical extent of around

3 km which makes the use of LES well suitable to study the

dynamics of boundary layer clouds.

Stratocumulus and shallow cumulus are the two main

types of boundary layer clouds that have been simulated ex-

tensively in the past with DALES and the schematics of these

different types of boundary clouds are depicted in Fig. 9.

Stratocumulus (see Fig. 9b) clouds are low-lying, strati-

form clouds often covering the sky completely, with a thick-

ness of only several hundreds of meters, capped by a strong

inversion. The turbulence that maintains the well-mixed pro-

files of the conserved variables qt and θl is mainly driven

from the top of the stratocumulus deck due the longwave
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Fig. 8. Profiles of mean wind speed (top) and potential temperature

(bottom) for the first GABLS1 LES intercomparison (average over

9th hour of simulation). Solid black line: DALES result at 3.125 m

resolution and cf = 2.0; grey lines: results of other participants at

3.125 resolution.

radiative cooling in addition to local cooling and heating due

to condensation and evaporation of cloud droplets.

In contrast, shallow cumulus clouds (see Fig. 9c) occur

as a population of separated small cauliflower shaped clouds

with a cloud base height at around 1 km and a maximum ver-

tical extend of around 2 km. These clouds generally only

cover 10 to 30% of the sky. Shallow cumulus clouds usu-

ally form on top of the dry rising thermals in the subcloud

layer and are dynamically characterized by strong vertical

motions due to the condensational heating resulting in in-

ner cloud cores that are positively buoyant with respect to

the (dry) environment. As a result the stratification in terms

of the mean profile of 〈θv〉 is stable with respect to vertical

displacements of unsaturated test parcels and unstable with

respect to saturated test parcels. This effect, often referred to

as conditional instability is unique for moist convection and

has no counterpart in dry convection and is responsible for

the strong intermittant behaviour of cumulus updrafts.

Fig. 9. Schematic overview of the different types of boundary layer

clouds.

The dynamics of stratocumulus might appear to be sim-

pler than shallow cumulus due to the fact that it is horizon-

tally more homogeneous than shallow cumulus and that it is

well mixed in the vertical so that it can be conceptually well

described by a simple mixed layer model. However, it is ac-

tually harder to to simulate stratocumulus clouds in an LES

model due to the strong inversion at the top of the stratocu-

mulus deck where temperature jumps of 10 K over 100 m are

not uncommon. Such strong inversions result from the ra-

diative cooling and are difficult to resolve with LES tech-

niques, resulting in unwanted numerical diffusion over this
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Fig. 10. Hourly-averaged entrainment rates from LESs for four dif-

ferent GCSS cases. The “DALES old” and “other LES” indicate

entrainment results as obtained from previous versions of the code.

The observed entrainment rates with their uncertainties are also

plotted. Because the Eurocs FIRE case is based on a monthly mean

climatology, no observed entrainment rates are available for this

case. The “DALES old” results were all obtained with the kappa

scheme. The results with the current DALES version were obtained

with the kappa, second-order and fifth-order advection schemes as

indicated in the legend.

interface which can dominate the transport over the inver-

sion interface. On the other hand, in the case of shallow

cumulus clouds the interaction with the radiation is not so

strong due to the short life span of the clouds, and due to

the low cloud fraction. As a result, shallow cumulus clouds

are not topped by such strong inversions which simplifies the

numerical simulations. Another related simplifying factor is

that because of the low cloud fraction the interaction between

the clouds and the radiation is not so critical that an interac-

tive treatment of both processes would be essential.

DALES has participated in numerous LES intercompari-

son studies organized over the last 15 years by the GEWEX

Cloud System Studies (GCSS). These intercomparison stud-

ies have been set up to serve several purposes. They provide

critical evaluations of the participating LES codes and unique

data sets to obtain further insights in the dynamics of the

cloud topped boundary layer. More specifically these LES

data sets have helped in improving the parameterized formu-

lation of these processes in large scale Numerical Weather

Prediction (NWP) and climate models. In the coming 2 sub-

sections examples are presented how research with DALES

have contributed to the improved knowledge of the physics

and dynamics of shallow cumulus and stratocumulus.

3.3.1 Stratocumulus

One of the most critical phenomena in the dynamics of stra-

tocumulus is the entrainment of dry air at the top of the cloud

layer. Following the flux-jump relation (Lilly, 1968), the en-

trainment rate (we) determines the turbulent flux at the top of

the boundary layer (〈w̃′ϕ′〉e),

〈
w̃′ϕ′

〉
e
= −we1〈ϕ〉, (105)

with 1〈ϕ〉 the jump across the inversion. This equation is

valid for an infinitesimally thin inversion layer and shows the

importance of the entrainment rate on the turbulent fluxes at

the top of the boundary layer. The representation of turbulent

transport by an LES code therefore critically depends on its

capability to produce realistic entrainment rates.

Figure 10 shows the modeled entrainment rates by pre-

vious versions of DALES and by other models as reported

in intercomparison studies by Duynkerke et al. (1999),

Duynkerke et al. (2004), and Stevens et al. (2005). Results

obtained with the current version of DALES using three dif-

ferent advection schemes are also shown. To facilitate a di-

rect comparison to the previous findings, the new simulations

were all run nearly identically to the original case descrip-

tions. The entrainment rates obtained from the LES mod-

els represent hourly-average values from the third (ASTEX)

or fourth hour of simulations (Eurocs FIRE and DYCOMS

RF01).

The entrainment rates from previous versions of DALES

were all rather large in comparison to results from other par-

ticipating LES codes used in the intercomparison studies. An

initially large entrainment rate generated by the previous ver-

sion of DALES led to a rapid thinning and subsequent break-

up of the DYCOMS RF01 stratocumulus deck. As a conse-

quence the longwave radiative forcing at the boundary-layer

top decreased, explaining the small value for the entrainment

rate as shown in the figure for older versions of DALES. It

is clear from the figure that entrainment rates are reduced in

the current version of DALES. Entrainment rates in simula-

tions with the monotone kappa advection scheme tend to be

slightly larger in comparison to the second or fifth order ad-

vection schemes. Only a simulation with the latter scheme is

capable to maintain a solid stratocumulus cloud deck for the

DYCOMS RF01 case. Less sensitivity can be seen for the

Eurocs FIRE case, since in this case the stratocumulus deck

is generally much more stable as in the Dycoms RF01 case.

3.3.2 Shallow cumulus

A number of interesting and well-documented shallow cu-

mulus cases based on observational studies have been sim-

ulated by DALES over the last 10 years. These studies in-

clude: non-precipitating steady-state marine shallow cumu-

lus based on the Barbados Oceanographic and Meteorolog-

ical Experiment (BOMEX) (Siebesma et al., 2003) and on

the Atlantic Trade Wind Experiment (ATEX) (Stevens et al.,

2001), diurnal cycles of shallow cumulus over land observed

on 21 June 1997 at the Southern Great Plains (SGP) site

(Brown et al., 2002) and during the Small Cumulus Micro-

physics Study (SCMS) (Neggers et al., 2003a) and more
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recently precipitating marine shallow cumulus (van Zanten

et al., 2010) such as observed during the Rain in Cumulus

over the Ocean (RICO) field study Rauber et al. (2007). All

these cases have been used to critically evaluate the DALES

results against observations and to help developing and test-

ing theories, conceptual models and parameterizations of

shallow cumulus convection. In this section we will give

a short overview of the results of these studies.

The first category of these studies is related to cloud geo-

metrical issues. In Siebesma and Jonker (2000) it has been

shown that the simulated cumulus cloud boundaries have

self-similar or fractal properties that can be characterized by

a fractal dimension Df = 7/3. These results are in excellent

agreement with observational studies and therefore provide

a critical test of the capability of DALES to simulate realis-

tic cumulus clouds. Moreover, these results helped in con-

structing theoretical scaling to explain why cloud boundaries

appear to be self-similar with a dimension of 7/3. Another

intriguing cloud geometrical topic is related to the question:

what is the shape of the cumulus cloud size distribution? It

is well known that shallow cumulus cloud ensembles con-

sist of many small clouds and lesser large clouds but the

precise shape of the cloud size distribution is still an open

issue. Extensive numerical studies with DALES show that

the cloud size density of the simulated cloud populations is

described well by a power-law from scales smaller than the

standard grid-spacing (50 m) up to scales of typically 1000 m

with a power-law exponent of −1.7 (Neggers et al., 2003b).

This exponent is comparable to values found in observational

studies (Cahalan and Joseph, 1989; Rodts et al., 2003). No

convincing theory for the power-law behaviour nor for the

scale break has yet been put forward. Finally, more recently

analyses with DALES of up- and downdrafts in and around

individual cumulus clouds have shown that strong updrafts

in individual cumulus clouds are typically surrounded by

so-called subsiding shells with persistent downdrafts (Heus

and Jonker, 2008). These downdrafts are driven by negative

buoyant forces that result from the evaporative cooling of the

cloud water. As they surround the clouds along their entire

perimeter, the subsiding shells cover a significant area and

are therefore found to be responsible for a large part of the

downward mass transport (Jonker et al., 2008).

The second category studies is related to transport due to

cumulus convection which is one of the important processes

that needs parameterization in large scale Numerical Weather

Prediction (NWP) and climate models. The time evolution of

a moist conserved variable ϕ due to moist convection can be

written as

∂ 〈ϕ〉

∂t
= −

∂
〈
Fϕ

〉

∂z
, (106)

where Fϕ is the (upward pointing) turbulent flux. A popular

method to parameterize this turbulent flux is through the use

of a so called mass flux approach

Fϕ ≈
M

ρ
(ϕc −〈ϕ〉). (107)

where ρ is the density and the subscript c refers to cloud

averaged values of ϕ, 〈ϕ〉 the average of ϕ over the entire

horizontal slab, and the mass flux is defined as M ≡ ρacwc

Betts (1975), i.e. essentially the product of the cloud aver-

aged vertical velocity times wc and the fractional cloud area

ac. Usually a cloud model is derived to obtain equations for

M and ϕc

∂M

∂z
= M(ε−δ), (108)

∂ϕc

∂z
= −ε (ϕc −〈ϕ〉), (109)

Within this cloud model the key variables are the fractional

entrainment ε and fractional detrainment δ rate. These in-

verse length scales are measures of the rate of dilution of the

cloud ensemble (entrainment) and the rate of air leaving the

cloud ensemble (detrainment) and LES results from DALES

have been used extensively to diagnose ε and δ on the ba-

sis of Eqs. (108) and (109) (Siebesma and Cuijpers, 1995).

This approach has initiated considerable research in devel-

oping theories and models of these exchange mechanisms

between clouds and environment. From these studies it has

become clear that the fractional entrainment rate can be well

estimated by the inverse cloud depth (Siebesma et al., 2003).

The fractional detrainment rate δ is typically larger than ε as

a result of the fact the cloud fraction ac is in general decreas-

ing with height.

Another useful additional equation often used in cloud

models is the vertical velocity equation for the cloud ensem-

ble (Simpson and Wiggert, 1969)

1

2

∂w2
c

∂z
= −bεw w2

c +aB with B =
g

θ0
(θv,c −〈θv〉), (110)

which describes how buoyancy forces and entrainment pro-

cesses influence the vertical velocity in the clouds. Ad-

justable prefactors a and b are introduced in this equation

to incorporate pressure perturbation effects and incloud tur-

bulence effects in an implicit way. By using Eqs. (110)

and (108) we can derive alternative expressions for the en-

trainment that are more linked to the dynamics than a recip-

rocal dependency on the height is:

εw =

(
B

w2
c

)
−

1

b

∂ lnwc

∂z
+

a

b
, (111)

δw =

(
B

w2
c

)
−

(1+b)

b

∂ lnwc

∂z
+

a

b
−

∂ lnac

∂z
. (112)

In Fig. 11 we compare the entrainment and detrainment rates

based on Eqs. (110), (111), and (112) for which estimates of

a = 0.6 and b = 1 are used for a large variety of different LES

experiments.
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Fig. 11. Comparison of LES derived fractional entrainment and

detrainment rates εq and δq using φ = qt based on Eq. (110) (hori-

zontal axis) versus LES estimates of these rates εw and δw based on

the vertical velocity equation (Eqs. 111 and 112).

The fact that the results fall reasonably well on the diag-

onal shows that Eqs. (110) and (108) are consistent, so that

the subscripts of εw and δw can be removed and Eqs. (111)

and (112) can be used as well to interpret the exchange rates.

It can also be observed that ε can vary considerably between

values of 1 ∼ 4×10−3 m−3 indicating that parameterizations

that use a constant value for ε is not a good option. Fur-

thermore it should be noted that the range of variability for

δ is much larger 1 ∼ 20×10−3 m−3. More detailed analysis

shows that this large variability is mainly due to the gradient

of the cloud fraction with height in Eq. (112). This indicates

that, in order to have a good estimate of the mass flux M , it

is more relevant to have a good parameterisation of δ rather

than for ε, a statement already emphasized in de Rooy and

Siebesma (2008). In that respect it is surprising to see that

most of the research efforts have been concentrated on en-

trainment rather than on detrainment.

3.4 Heterogeneous surfaces

DALES has contributed to the understanding of flow over

thermally heterogeneous terrain. The study of van Heer-

waarden and Vilà-Guerau de Arellano (2008) addressed the

question whether convective cloud formation is more likely

to form over a land surface that has a heterogeneous surface

flux than over a land surface that is homogeneously heated.

Heterogeneous land surfaces were simulated by creating

two stripes of 3.2 km wide at the land surface in the model,

as this is the spatial scale at which heterogeneity is consid-

ered to modify the turbulent structure of the overlying CBL

the most. All fluxes at the land surface were prescribed, with

a constant u∗ of 0 m s−1. Note, that this study did not take

into account the impact of the induced circulation on surface

friction, which was not possible in the previous version of

DALES that did not allow for local fluxes. Both stripes had

the same available energy (sum of sensible and latent heat

fluxes), but a different Bowen ratio. The left stripe was char-

acterized by a small Bowen ratio, whereas the right stripe had

a large ratio. In the different runs in this study, the Bowen

ratio was varied. The LES model was run for four hours;

statistics were calculated over the last hour.

The main findings of the study are summarized in Fig. 12

that shows the relative humidity in the CBL and the wind

vectors in a case where the free atmosphere is moist (left

panel) and in a case where the free atmosphere is dry.

In both cases a secondary circulation (see wind vectors)

distributes heat and moisture towards the area that has a rela-

tively large sensible and a small latent heat flux. At these hot

spots, strong but moist thermals rise, resulting in a large rel-

ative humidity over the area that has the smallest latent heat

flux. In case of a dry free troposphere (right panel), the sec-

ondary circulation can transport very dry free tropospheric

air downwards to the land surface. Therefore, a very low

relative humidity is found over the area that has the largest

latent heat flux.

To conclude, the study showed that heterogeneity results in

a situation that is more favorable for cloud formation, regard-

less of the specific humidity of the free troposphere. Using

a similar set up, Górska et al. (2008) use DALES to deter-

mine the role of heterogeneity on the carbon dioxide distri-

bution. The study points out of the need to redefine aircraft

measurements strategies above non-uniform surfaces.

3.5 Atmospheric flow over sloping surfaces

Compared with the many successful large-eddy simulations

of the boundary layer over flat terrain, as of yet only a few

simulations of the ABL over sloping surfaces have been car-

ried out. One of the problems concerning the simulation of

slope flow, is that the potential temperature as well as the
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Fig. 12. Cross section of the 1-h-averaged relative humidity RH for a case with a moist free troposphere (left) and a case with a dry free

troposphere (right). The horizontal coordinates are scaled by the patch size λ and the vertical coordinates are scaled by the CBL height zi .

Vectors indicate the wind direction and magnitude. From van Heerwaarden and Vilà-Guerau de Arellano (2008).

depth of the flow and the flow velocity change along the

slope. Observations of katabatic flow, however, have shown

that the flow in a strongly stratified boundary layer and/or

over (moderately) steep slopes varies only slightly along the

slope (Haiden and Whiteman, 2005). Therefore, although

DALES currently only facilitates periodic boundary condi-

tions, we are still able to study homogeneous slope flow.

One of the outlooks is to implement open boundary condi-

tions, which would enable the simulation of slope flow under

a larger range of circumstances. Nonetheless, DALES has in

recent years successfully been used to study homogeneous

katabatic flow over moderately steep slopes.

Axelsen and van Dop (2010) performed a model valida-

tion by comparing simulation results to observations from

two glaciers. They found that the simulated profiles of

temperature and downslope velocity were quantitatively in

agreement with the observations. An example is given in

Fig. 13. Near the surface the downslope velocity increases

with height and reaches a maximum at a height of 4 m.

Above the wind maximum height, the downslope velocity

decreases with height. The figure shows that near the sur-

face the simulated and observed velocity profiles agree, but

above the wind maximum the model underestimates the ve-

locity. The profile of the simulated potential temperature is

also seen to agree rather well with the mast measurements,

but that there is a systematic offset between the balloon mea-

surements and the simulated potential temperature.
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Fig. 13. Mast profiles (squares), balloon data (dots) and LES pro-

files of downslope velocity (a) and potential temperature (b) in flow

over a sloped surface.

3.6 Dispersion and chemically reacting flows

We summarize here the main research results achieved in the

field of turbulent dispersion and chemical transformations

using DALES. The plume dispersion main characteristics
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Fig. 14. Evolution on time of the vertical concentration (crosswind

integrated) of a plume released as a function of the releasing time

(dimensional and non-dimensional) for (top) dry convective condi-

tions, (middle) stratocumulus topped boundary layer, and (bottom)

shallow cumulus topped boundary layer. Concentration has been

multiplied by a factor 1000 to obtain a convenient scale. The crosses

indicates the position of the maximum concentration.

and statistics under different ABL flow conditions have been

thoroughly investigated using DALES. Dosio et al. (2003,

2005) and Dosio and Vilà-Guerau de Arellano (2006) investi-

gated the plume dispersion in the dry CBL from Eulerian and

Lagrangian perspectives. Based on DALES results, they de-

rived a parameterization to include the effect of shear on the

plume spreading, studied the validity of Taylor’s diffusion

theory for horizontal and vertical dispersion, and separated

the contributions of small- and large-scales on the plume evo-

lution, both from an absolute coordinate system as well as

relative to the plume’s center of mass. Verzijlbergh et al.

(2009) extended this study to determine the influence of stra-

tocumulus and shallow cumulus on the turbulent dispersion

properties and related to turbulent structures like skewness of

the vertical velocity. As an example, Fig. 14 shows the verti-

cal concentration characteristics and the location of the maxi-

mum concentration under different ABL conditions: dry con-

vective boundary layer, stratocumulus and shallow cumulus

Verzijlbergh et al. (2009).

Fig. 15. Instantaneous vertical cross section of the cloud water qc

(g/kg) content and the photostationary state (8) calculated using the

NO, NO2 and O3 mixing ratios. At chemical equilibrium 8 = 1.
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Fig. 16. The shallow cumulusmass flux density m1r as a function

of the distance r to the edge of the cloud for several horizontal res-

olutions. In-cloud locations are described with negative values of r ,

positive values of r mean locations in the clear environment. From

Heus et al. (2009).

Similarly to turbulent dispersion, the chemical transforma-

tions in the ABL are influenced by the characteristics of the

turbulent flow. This turbulence control is particularly impor-

tant when the turbulent time scale (τt) and the chemistry time

scale (τc) have similar values, i.e., the order of magnitude of

the Damköhler number (τt/τc) is O(1). Under this regime,

the species are chemically transformed at a different reaction

rate depending on the way species are introduced in the ABL,

premixed or non-premixed, and the turbulence intensity to

mix chemical species. Key tropospheric chemical reactions

involving species such as nitric oxide and certain biogenic

hydrocarbons like isoprene are therefore controlled by turbu-

lence.
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Fig. 17. The liquid water path for DYCOMS2 using the 5th order advection scheme for various resolutions. Runs are performed without

χ∗-correction, which in it self significantly enhances the LWP.

Following Schumann (1989), Petersen et al. (1999) and

Petersen and Holtslag (1999) studied by means of LES how

the transport and mixing of reactants in the CBL is influ-

enced by the presence of vigorous thermals and subsidence

motions. Based on the DALES results, they suggested a pa-

rameterization to represent the fluxes and covariance of re-

actants in large scale chemistry transport models. The re-

search was extended to study more complex mechanism un-

der non-uniform emissions of the reactants (Krol et al., 2000;

Vilà-Guerau de Arellano et al., 2004). To further study the

influence of the reactivity on high-order moments, a spectral

analysis showed that the reactant variability (variance) de-

pends strongly on the reaction rate (Jonker et al., 2004). The

analysis was done using the DALES simulation of a turbu-

lent flow reacting according to the scheme (R1–R2). These

results showed large variations in the characteristic length

scale as a function of the Damköhler number and the state

of the chemical equilibrium.

To improve parameterizations in large-scale atmospheric

chemistry models, Vinuesa and Vilà-Guerau de Arellano

(2003, 2005) proposed an expression of an effective reaction

rate (keff) that takes into account explicitly the influence of

turbulent mixing on the reaction rate.

The moist and optically thick boundary layer clouds can

also influence atmospheric chemistry. DALES was used to

study the combined effect of turbulence and radiation on

simple chemical mechanism in a dry smoke cloud (Vilà-

Guerau de Arellano and Cuijpers, 2000) and shallow cu-

mulus (Vilà-Guerau de Arellano et al., 2005). Figure 15

shows the cloud water content and the photostationary state

8 in a CBL developed over land characterized by the pres-

ence of shallow cumulus. This state 8 quantifies the effect

of the physical processes (turbulence and radiation) on the

atmospheric chemistry. For such reactants as nitric oxide

(NO), ozone (O3) and nitrogen dioxide (NO2), it is defined

as 8 = (k[NO][O3])/(j [NO2]). Departure from the value

8 = 1 indicate perturbations of the chemical equilibrium ei-

ther by radiation or turbulent processes.

3.7 Resolution dependencies and convergency

Given the pretention of LES to resolve the significant scales

of turbulence, one would expect that the outcomes could be

independent from the exact resolution. Indeed, in the bulk

of a typical convective boundary layers at common resolu-

tions (∼ 10 m), the energy contained in the unresolved turbu-

lence is an order of magnitude smaller than the energy of the

resolved turbulence. However, given the limited amount of

computational time available and the numerous complex pro-

cessess we often want to simulate, full convergency is rarely

reached or even desired. For the idealized atmosphere that

DALES attemps to model, qualitative agreement with higher

resolutions usually suffices. Nevertheless, it is important to at

least realize where DALES results converge and where they

do not. Especially in the vicinity of strong (local) gradients,

such as close to the surface and around cloud interfaces con-

vergence is not easily reached.

Although, due to a lack of strong gradients in the crucial

regions, cumulus topped boundary layers only need moderate

resolutions to get the lower moments of the domain-averaged

statistics converge, one needs to be more carefull when inves-

tigating more detailed around the cloud interface. For exam-

ple, Heus et al. (2009) showed that to obtain correct values

for the in-cloud vertical mass flux in cumulus clouds, much

finer resolutions are necessary than are commonly used in for

instance intercomparison studies. When the correct spatial

mass flux distribution is desired, DALES shows convergence

at a horizontal resolution of 25 m (see Fig. 16).

As shown by Stevens et al. (2005), the strong temperature

and moisture gradients at the top of a stratocumulus layer

are difficult to mimick in LES. A further complication of

the matter is that since stratocumulus convection is for a sig-

nificant driven by cloud-top cooling, a misrepresentation of

these cloud-top gradients can severly affect the state of the

entire cloud layer. As an illustration, in Fig. 17 we show the

time-dependent liquid water path (LWP in the DYCOMS2

(Ackerman et al., 2009, DYnamics and Chemistry Of Ma-

rine Stratocumulus experiment) RF02 intercomparison of a

stratocumulus-topped boundary layer with a strong inversion

([10]K across a grid cell). It should be noted that the runs
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are performed without χ∗-correction, which in it self signifi-

cantly enhances the LWP to values of 110, but are not shown

here.

Departure from the standard resolution as prescribed by

the intercomparison also yields improvements. The orig-

inal aspect ratio of a grid cell was much smaller than 1

(1z/1x = 5 m/50 m = 0.1, and the current length-scale for-

mulation of the SFS scheme gives more mixing in such sit-

uations. A coarser grid with better aspect ratio (dark gray

line; 1x = 12.5,1z = 10 m) can give results that are close

to the observed values for similar computational cost. At

a resolution of 1x = 25 m,1z = 20 m, the length scale λ =

(1x1y1z)1/3 equals to λ of the intercomparison setup, and

the liquid water path is comparable or slightly better, but at

much less computational cost.

4 Outlook

As was shown in this paper, DALES can provide reliable re-

sults for a multitude of atmospheric conditions, and there are

many alleys of study that can be pursued with DALES 3.2.

In the field of cloudy boundary layers, very fine grid spacing

can be used to reliably resolve most of the dynamics within

and around the cloud. Simulations on relatively large hori-

zontal domains (∼ 25 km) can mimic the physics in an area

similar to a single column of a regional or global model. On

that scale, LES is well capable of variability studies that are

necessary to improve the GCMs, and to study the impact of

GCM grid refinement. For other studies, LES can provide

spatial and temporal turbulence characteristics that cannot be

easily retrieved from measurements alone. This is always

a role that LES can play, but it can be especially important in

spatially anisotropic or inhomogeneous situtations, such as

in the fields of flow over sloping or heterogeneous surfaces.

While there are many plans to use DALES in its current

state, ongoing improvement of the code is also planned. In

the near future, we aim to be able to run DALES in more

diverse and more realistic scenarios than what was shown

in this paper. Furthermore, we aim to focus on studies that

makes integrated use of several of the features of DALES.

As was shown throughout many parts of the applications

section, LES could still benefit from a better representation

of anisotropic turbulence around steep gradients and inver-

sion layers, specifically in stable boundary layers, dry con-

vective boundary layers, and stratocumulus layers. Increas-

ing computer power and resolution could end up simply re-

solving these gradients in the future, but more intelligent

subfilter-scale modeling could also give a significant contri-

bution in solving this problem. This is especially important

in critical stratocumulus cases, where entrainment of rela-

tively dry and warm air leads to buoyancy reversal.

To study the interactions between the various components

of the model, we strive to have the modules as interactive

as possible. This could for instance lead to better under-

standing of coupling mechanisms between radiative forcings

and the surface conditions, coupling between radiation and

chemistry, or between chemistry and cloud and aerosol for-

mation.
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Pino, D., Vilà-Guerau de Arellano, J., and Kim, S. W.: Repre-

senting sheared convective boundary layer by zeroth- and first-

order jump mixed layer models: large-eddy simulation veri-

fication, J. Appl. Meteor., 45, 1224–1243, doi:10.1175/1520-

0469(2003)060<1913:TCOSTT>2.0.CO;2, 2006b.

Pinsky, M. B. and Khain, A. P.: Effects of in-cloud nucle-

ation and turbulence on droplet spectrum formation in cu-

mulus clouds, Q. J. Roy. Meteorol. Soc., 128, 501–533,

doi:10.1256/003590002321042072, 2002.

Randall, D.: Conditional instability of the fist kind up-

side down, J. Atmos. Sci., 37, 125–150, doi:10.1175/1520-

0469(1980)037<0125:CIOTFK>2.0.CO;2, 1980.

Rauber, R. M., Stevens, B., Ochs, H. T., Knight, C. A., Albrecht,

B. A., Blyth, A. M., Fairall, C. W., Jensen, J. B., Lasher-Trapp,

S. G., Mayol-Bracero, O. L., Vali, G., Anderson, J. R., Baker,

B. A., Bandy, A. R., F., B., Brenguier, J.-L., Brewer, W. A.,

Brown, P. R. A., Chuang, P., Cotton, W. R., Di Girolamo, L.,
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