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The undertow is one of the most important mechanisms for sediment transport in

nearshore regions. As such, its formulation has been an active subject of research for

at least the past 40 years. Still, much debate persists on the exact nature of the forcing

and theoretical expression of this current. Here, assuming linear wave theory and

keeping most terms in the wave momentum equations, a solution to the undertow in

the surf zone is derived, and it is shown that it is unique. It is also shown that, unless

they are erroneous, most solutions presented in the literature are identical, albeit

simplified versions of the solution presented herein. Finally, it is demonstrated that

errors in past derivations of the undertow profile stem from inconsistencies between

(1) the treatment of advective terms in the momentum equations and the wave action

equation, (2) the expression of the mean current equation and the surface shear stress,

and (3) the omission of bottom shear stress in the momentum equation. C© 2014 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4872160]

I. INTRODUCTION

The undertow is a wave-induced current, generated to compensate for the shoreward mass flux

of the waves.1, 2 Near the bed, it interacts with wave motion to dictate the amount of sediment put in

suspension.3–6 In the water column, it moves sediment offshore, counteracting the suspended flux

due to waves.7–9 Hence, this current is crucial in determining the amount and direction of sediment

movement in nearshore regions. It is therefore important to accurately determine the vertical profile

of the undertow as well as its value in the proximity of the bed.

While 2D or 3D circulation models (e.g., the Regional Ocean Modeling System,10 the Princeton

Ocean Model,11 etc. . . ) are currently receiving more attention within the coastal engineering com-

munity, steady state, wave-averaged undertow models are still widely used in the modeling of coastal

hydrodynamics12 and sediment transport.13 These models, which are relatively easy and cheap to

run, have achieved good results in reproducing observed undertow profiles U in both laboratory and

field settings.11, 14–17 In an Eulerian reference frame, models for the undertow are generally of the

form2, 14

∂τ̄

∂z
=

∂

∂z

(

ρνt

∂U (x, z)

∂z

)

= FU , (1)

where τ̄ is the turbulent shear stress in the water column, ν t is the turbulent eddy viscosity, FU is a

forcing function, with x pointing shoreward, z pointing upwards, and origin at the still water level.

To obtain an expression for the undertow U(x, z), Eq. (1) must be integrated twice in the vertical.

Three boundary conditions are available to solve this equation:

1. a shear stress at the top of the domain (referred to as surface shear stress herein), which has

been defined as the wave trough level,18, 19 or the mean water level,2, 20
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2. a shear stress at the bed,21 and

3. the continuity equation, which dictates that the depth-averaged undertow is compensated by

the shoreward volume flux due to waves and rollers.

However, only two boundary conditions are necessary to solve Eq. (1). Thus, a wide range of

solutions have been presented in the literature using different sets of boundary conditions. This leads

to the impression that the undertow problem is still theoretically unresolved. However, based on

physical grounds, and as is shown herein, there should only be a unique solution to Eq. (1) that is

consistent with the boundary conditions, assuming that the eddy viscosity ν t is known.

To integrate Eq. (1) once, the forcing FU needs to be computed, which most models as-

sume to be uniform with depth. Some models justify this depth-uniformity based on experimental

evidence,18, 22–24 while others rely on linear long-wave theory.17, 18, 21, 25 Once the depth-uniformity

has been justified, methods of computation of FU differ. Indeed, to infer the value of FU, some

models rely on outputs from wave models,18, 21, 26, 27 while others invoke surface or bottom shear

stress boundary conditions,25, 28, 29 or the continuity equation.28, 30

After the first integration is completed, an expression for the vertical gradient of the mean shear

stress is obtained, which needs to be integrated once again to obtain U(x, z). Here again, methods

differ. Some models use a bottom shear-stress boundary condition,14, 26, 27 while others use a surface

shear stress.18, 19, 28 Among the models that use the surface shear stress as a boundary condition,

there is a wide variation in the choice of formulation: Garcez-Faria et al.17 used the expression of

Stive and Wind;18 Apotsos et al.28 used the expression of Stive and de Vriend;20 Rakha31 used the

expression of Deigaard and Fredsøe;19 Tajima and Madsen25 derived a new expression. Although

these surface shear stress expressions all yielded good estimates of calibrated undertow profiles, some

of them18, 25 have erroneous physical implications.32, 33 Moreover, some models that use a bottom

boundary condition yield different results than models that use a surface shear stress boundary

condition.17, 34

Considering that, in principle, there should be only one solution to Eq. (1), the wide variety of

solutions and theoretical assumptions presented in the literature might seem puzzling and calls for

a unifying framework to solve this problem.

In this paper, a consistent solution to the undertow problem using linear wave theory is presented,

and it is shown that this solution is valid in all relative water depths of the waves. Discrepancies

in the existing formulations of the undertow that have been developed are highlighted, and their

differences are explained and reconciled when possible.

The paper is organized as follows. In Sec. II, we will show that the forcing of the undertow

is constant over depth for linear water waves. We will also derive an expression for surface shear

stress, which turns out to be identical to the expression suggested by Deigaard and Fredsøe,19 but

is valid for a wider range of conditions. The derivations are conducted by using linear wave theory

in its most general form, i.e., they are not simplified by assuming shallow water waves. Because

recent publications have recognized the role played by mean current advective terms and bed shear

stress in the forcing of the undertow,17, 28, 35 these terms are retained in the derivation but a weak

vertical variation of the undertow is assumed when treating these terms. In Sec. III, we will discuss

the findings presented in Sec. II, and illustrate some of the theoretical concepts presented in this

paper. We conclude the paper in Sec. IV.

II. GENERAL FORMULATION OF THE UNDERTOW PROFILE

To derive a theoretical formulation of the undertow profile, we will first develop an expression

for its forcing, then we will discuss the choice of boundary conditions necessary to integrate that

forcing in the water column and, finally, we will present the solution of that integration.

The problem is set up in a 2DV (x, z) Eulerian reference system, where x is pointing shoreward,

and z is pointing upwards, with an origin at the still water level (SWL). The free water surface

elevation, z = η, and the still water depth, z = −d, are both referenced from the SWL. The total

water depth is defined by h = d + η̄, where z = η̄ is the mean water level (MWL), and where the
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overbar represents wave averaging of any function ψ(x, z, t): ψ (x, z, t) = 1
T

t+T

∫
t

ψ (x, z, t) dt , with

T the wave period.

The horizontal and vertical velocities of water particles are described by u(x, z, t) andw (x, z, t),

respectively. They are decomposed into their mean, wave and turbulent components as v (x, z, t) =
V (x, z) + ṽ (x, z, t) + v′ (x, z, t), where v represents either the horizontal or vertical velocity. These

quantities satisfy v̄ = V, ṽ = 0, and v′ = 0, and it is assumed that turbulent and wave velocities are

uncorrelated: ũu′ = 0. It is also assumed that the turbulence is nearly isotropic and that the turbulent

normal stresses are small (Stive and Wind,18 Svendsen,36 Chaps. 11 and 12), which means that

u′2 ≈ 0 and w′2 ≈ 0. Next, we show that, assuming that mean velocities V = (U, W ) are confined

between the MWL (z = η̄) and the bed (z = −d), a mean horizontal current, the undertow, develops

to balance the shoreward mass flux above the MWL due to waves.

The total mass flux (or momentum) MT reads

MT =
η∫

−d

ρudz =
η̄∫

−d

ρUdz +
η∫

η̄

ρũdz +
η∫

η̄

ρu′dz, (2)

which is rewritten as

MT = Mm + Mw + M t , (3)

where Mm is the mass flux (momentum) due to mean current, and is, per the definition presented

above, confined to a region between bed (z = −d) and MWL (z = η̄). Mw is the net mass flux

(momentum) due to waves, which is confined to a region between MWL and free surface (z =
η). Finally, Mt is the mass flux due to turbulent motion, and is also confined to a region between

MWL and free surface. This term is assumed to be zero since it is beyond the scope of this paper to

model turbulence. However, some of the effects of Mt will be heuristically captured in the roller and

turbulent eddy viscosity terms that will be introduced later on.

To relate the mean current momentum to wave momentum, the continuity equation is first

integrated from bed to free surface elevation, and averaged over a wave period. The continuity

equation reads
∂u

∂x
+

∂w

∂z
= 0. (4)

After invoking the kinematic free surface and bottom boundary conditions, which, for a sloping

bottom, are37

∂η

∂t
+ u

∂η

∂x
− w = 0 at z = η, (5)

u
∂d

∂x
+ w = 0 at z = −d, (6)

another expression for the total momentum MT is obtained:

ρ
∂η̄

∂t
+

∂ MT

∂x
= 0. (7)

Under steady state conditions, this last equation becomes ∂xMT = 0, where ∂α is shorthand for a

partial derivation with respect to a variable α. Because the shoreline is a fixed boundary that can

be considered impermeable, Eq. (7) is rewritten as MT = Constant = 0, which, following Eq. (3),

yields Mm + Mw = 0.

This last equation indicates that, under 2DV conditions, the net shoreward mass flux due to the

waves must be returned in its entirety. In other words, the shoreward mass flux due to the waves Mw

generates an offshore mean current U, the undertow:36

Mw = −Mm = −
η̄∫

−d

ρUdz = −ρhUr , (8)

where Ur is the depth averaged value of the undertow (defined between MWL and bed).
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FIG. 1. Wave and undertow profiles computed using an offshore wave height of 0.6 m and wave period of 4 s. (Top panel)

Wave height profile. (Middle panel) Depth-averaged undertow Ur. (Bottom panel) Contour of undertow velocity values on

top of the bathymetry profile. Profiles of undertow in the surf zone are plotted every 4 m (thick vertical lines, indicated by

red). Thinner dashed vertical lines represent the origin associated with each undertow profile.

To visualize the cross-shore variation of the depth averaged undertow, we modeled the evolution

of a 0.6 m wave height, with a peak period of 4 s, over a barred beach profile similar to the one

presented in Scott et al.38 As shown in Fig. 1, Ur gains strength as the waves shoal and break over

the bar. Interestingly, the depth averaged mean current reaches an absolute maximum a few meters

shoreward of the breakpoint, near the trough of the bar. In the surf zone, Ur is stronger than offshore

of the bar, even though the waves are smaller. Figure 1 also shows the vertical profiles of undertow

at discrete cross-shore locations. Those profiles, which are discussed in Sec. III, were obtained by

solving the undertow equations presented herein and with an empirical eddy viscosity formulation39

νt ≈ 0.01h
√

gh.

A. Forcing of the undertow

In this section, we derive a solution for the forcing of the undertow in the surf zone. We first

derive a general solution that can be solved using any wave theory. Next, we simplify the expression

of the forcing using linear wave theory.

1. General solution

The governing equations for inviscid unidirectional flows between z = η(x, t) and z = −d can

be written as a function of the pressure p(x, z, t) by

∂u

∂t
+

∂u2

∂x
+

∂uw

∂z
= −

1

ρ

∂p

∂x
, (9)

∂w

∂t
+

∂uw

∂x
+

∂w2

∂z
= −

1

ρ

∂p

∂z
− g. (10)

To derive an equation for the forcing of the mean current, we decompose the velocities into mean

and fluctuating parts, and wave-average the horizontal momentum equation [Eq. (9)], neglecting
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horizontal turbulent mixing terms u′2 (see above):

∂U

∂t
+

∂ ũ2

∂x
+

∂U 2

∂x
+

∂ ũw̃

∂z
+

∂U W

∂z
= −

1

ρ

∂ p̄

∂x
−

∂u′w′

∂z
. (11)

The vertical gradient of mean turbulent shear stress (τ̄ (z) = −∂x u′w′) is expressed by the vertical

mixing of horizontal mean momentum τ̄ (z) = −∂z (νt∂zU ), where ν t is an eddy viscosity coefficient

representative of the turbulence level in the water column. The wave-averaged pressure is also

rewritten by wave-averaging the vertical momentum equation [Eq. (10)], and neglecting the mixing

term w′2 (see above):

p̄ = −ρw̃2 − ρW 2 + ρg (η̄ − z) . (12)

Contrary to previous work cited herein, the mean vertical velocity W is retained in the derivation.

Finally, following Garcez-Faria et al.,17 the expression of the wave shear stress ∂z ũw̃ is simplified

by using the decomposition presented by Rivero and Arcilla:40

∂ ũw̃

∂z
= ω̃w̃ −

1

2

∂

∂x

(

ũ2 − w̃2

)

, (13)

where ω̃ represents the wave-induced vorticity. Equation (11) thus becomes

ρ
∂U

∂t
+

1

2

∂

∂x
ρ

(

ũ2 − w̃2

)

+ ρω̃w̃

︸ ︷︷ ︸

F

+ ρg
∂η̄

∂x
︸ ︷︷ ︸

P

+ ρ
∂U 2

∂x
− ρ

∂W 2

∂x
+ ρ

∂U W

∂z
︸ ︷︷ ︸

G

=
∂τ̄

∂z
, (14)

where F is a force due to action of waves only, P is a pressure force induced by gradients in MWL,

and G is a force induced by advection of mean currents. This expression is exact and can be solved

with any wave theory.

2. Solution using linear wave theory

We use linear wave theory to solve Eq. (14), but retain horizontal and vertical mean velocities. We

assume that the energy density of a wave field is represented by Ew = 1/8ρgH 2, where H =
√

8η2.

Wave period T is related to wavelength L and associated wavenumber k = 2π /L by the linear

dispersion relationship, which reads in the presence of a depth-uniform current Uo:σ = Uok + σ r,

where σ 2
r = gktanh (kh) is the relative frequency of the wave. The wave energy density travels at

the wave group velocity Cga:

Cga = nC + Uo = Cg + Uo =
1

2

(
2kh

sinh (2kh)
+ 1

)

C + Uo, (15)

where the relative celerity C of the wave is

C =
√

gk tanh kh

k
=

2π/T − Uok

k
. (16)

We simplify the wave stress terms in Eq. (14) to obtain (see Appendix A for details)

ρ
1

2

∂

∂x

(

ũ2 − w̃2

)

=
∂

∂x

(
Sxx − Ew/2

h

)

, (17)

where Sxx represents the radiation stress due to waves only—rollers are not included yet. The vorticity

term in Eq. (14) disappears under the assumptions of linear wave theory.

Equation (17) shows that, in Eq. (14), the combination of the wave velocity advective term ũ2,

the dynamic pressure term w̃2 and the wave-induced shear stress ũw̃ generates a depth uniform

forcing term for the undertow. This result is in line with previous experimental observations,18, 22, 23

but is valid only if one uses linear wave theory: using a weakly nonlinear wave theory, Zou et al.41

expressed the wave-induced vertical shear stress ũw̃ as a function of the bed shear stress, which

causes ∂z ũw̃ to become depth-varying.
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Finally, second-order terms in W are assumed to be negligible (see Appendix B), and Eq. (14)

is rewritten as

ρ
∂U

∂t
+

∂

∂x

(
Sxx − Ew/2

2h

)

+ ρg
∂η̄

∂x
+ ρ

∂U 2

∂x
+ ρ

∂U W

∂z
=

∂τ̄

∂z
. (18)

Equation (18), which reduces to the one derived by Newberger and Allen11 in shallow water (see

their Eq. (B3)), shows that the undertow is forced by two depth uniform forces per unit volume, F

and P, and a depth-varying force per unit volume G:

FU =
∂

∂x

(
Sxx − Ew/2

2h

)

︸ ︷︷ ︸

F(x)

+ ρg
∂η̄

∂x
︸ ︷︷ ︸

P(x)

+
[

ρ
∂U 2

∂x
+ ρ

∂U W

∂z

]

︸ ︷︷ ︸

G(x,z)

. (19)

The depth uniform force F, first term on the right-hand side (RHS), is generated by the wave

momentum flux; we will see in Sec. II B that it can be expressed as a function of the total radiation

stress gradient, as Newberger and Allen11 also showed. The second part of the forcing P, the middle

term on the RHS, is a depth uniform pressure gradient due to wave setup/setdown (∂x η̄). The third

part of the forcing G, the last term between brackets on the RHS, is a depth-varying force caused by

the horizontal and vertical advection of the mean current, U(x, z).

B. Boundary conditions

To solve the wave-averaged mean current equation, Eq. (18), two boundary conditions are

necessary. The first condition is the depth-averaged continuity, Eq. (8). The second condition is a

boundary condition, which can either be a mean bottom shear stress condition τ b,17, 21, 29 or a mean

shear stress at the MWL or at the trough level.2, 15, 18, 30 In this section, we first present expressions for

bottom and surface shear stress that have been proposed in the literature. Next, we use the equations

presented above to show that the expression of surface shear stress originally derived by Deigaard

and Fredsøe19 can be arrived at by relaxing assumptions of shallow water linear waves.

1. Existing expressions for mean bottom and surface shear stress, τb and τs

The mean bottom shear stress, τb = ρνt∂zU|zo
, where zo represents the bed level, is usually

expressed empirically by using a friction factor fwc,42 such as in

τb =
2

π
ρ fwcũbUδ, (20)

where ũb represents the wave orbital velocity at the bed, and Uδ is the mean velocity right above the

wave bottom boundary layer (WBBL). In practice, Uδ = Uz = −d, for models which assume a slip

boundary condition.

Similarly, various expressions for the surface shear stress have been suggested. One of the first

expressions of the surface shear stress was developed by Dally:2

τs = −
1

2

∂ E

∂x
. (21)

Dally2 derived this expression by integrating the wave-averaged horizontal momentum equation

[Eq. (14)] between a level z in the water column, (z < η̄), and the free water surface η. He neglected

wave stress terms between MWL and free surface and assumed vertical velocity was negligible. He

also assumed that all stress terms between MWL and free surface can be averaged at the MWL.

Later, Stive and Wind,18 following Svendsen43 (see also Svendsen36, p. 613), derived an identical

expression for the surface shear stress at the trough level. They integrated the momentum equation

between trough level and free surface, but also assumed shallow water conditions and a locally

horizontal flat bottom. More recently, Tajima and Madsen25 re-evaluated the same integral that

Dally2 calculated, but assumed that linear wave theory holds from trough to crest, and that the mean

velocity is constant in that region. They arrived at an expression that differs from Eq. (21), because

it includes wave and mean current variables (for details, see Ref. 25). These three expressions of
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the surface shear stress, which are based on different assumptions, generate a surface shear stress in

regions where no breaking occurs. This outcome is physically unrealistic because, if a shear stress

existed in these regions, the work done by this internal force would have to dissipate the wave energy

flux. However, in the absence of wave breaking no dissipation exists, so no surface shear stress can

be generated.32, 33

Another expression for τs was heuristically developed by Deigaard,44 following the work of

Deigaard and Fredsøe,19 by equating the work done by the shear stress at the trough level to wave

and roller dissipation:

τs =
Dw

C
−

∂2Er

∂x
, (22)

where Dw is wave dissipation, Er is the average roller kinetic energy,21 and C is the wave celerity.

Stive and de Vriend20 arrived at the same expression of the surface shear stress by depth-integrating

the linearized momentum equation from bed to the mean water level. They assumed linear shallow

water wave theory to express wave-induced radiation stress and neglected bottom shear stress in the

depth-integrated, depth-averaged total momentum equation (see Sec. II B 2). Newberger and Allen11

also arrived at the same expression by assuming linear shallow water wave theory, as well as depth

uniform horizontal current, and integrating the full horizontal momentum equations, nonlinear terms

included, from the mean water level to the free surface. They expressed the mean surface shear stress

by expanding Mw at the MWL using a Taylor expansion of the horizontal momentum equation

[Eq. (9)]. They added the roller contribution ad hoc.

Finally, Stive and de Vriend,20 following the work of Nairn et al.45, modified Eq. (22) to read

τs =
Dw

C
−

1

C

∂2Er C

∂x
. (23)

Compared to Eq. (22), this expression assumes that ∂xC ≪ 1, which is consistent with the assumption

of a flat bottom. The extra term in τs in Eq. (23), represents the exchange of mass (momentum)

between wave and roller during the roller growth and decay phases (Deigaard;44 see also the

Appendix of Ref. 20). Deigaard44 excluded that term in his derivation of the surface shear stress.

All expressions of surface shear stress presented so far in this section have been used to model

the undertow. For example, Garcez-Faria et al.17 and Spielmann et al.34 referred to Stive and Wind,18

Deigaard44 and Rakha31 used Eq. (22), and Apotsos et al.28 used Eq. (23). Although the difference

between Eqs. (22) and (23) can be considered to be relatively minor,31 these expressions are not

identical, and they are based on different assumptions.

For illustration, we compare in Fig. 2 the different formulations of surface shear stress using

the outputs of the numerical experiment presented in Fig. 1. Only the expressions of Deigaard and

FIG. 2. Comparison between the various formulations of shear stress at the MWL using the wave data presented in Fig. 1.

Formulations of Deigaard44 and Stive and de Vriend20 correctly predict a relatively small, if not zero, shear stress offshore

of the breaking point (indicated by thick vertical dashed line), a region where wave and roller dissipation should also be

relatively small, if not zero.
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Fredsøe19 and Stive and de Vriend20 generate zero shear stress offshore of the surf zone, where

dissipation does not occur. Furthermore, it appears that differences between these two formulations

are small.

2. Derivation of surface shear stress

All the expressions of surface shear stress reviewed above were derived assuming shallow

water waves, negligible bottom shear stress and, with the exception of Newberger and Allen,11 by

neglecting the nonlinear advection terms. However, as Guannel46 showed, undertow profiles are

often observed in intermediate waters depths (i.e., kh > π /10, according to linear wave theory). In

this section, we close this theoretical gap and demonstrate the generality of the surface shear stress

expression shown above [Eq. (22)] by evaluating the time evolution of the total momentum equation

[Eq. (3)], advection terms included. We do not make any assumptions about the relative water depth

and do not neglect bottom shear stress in the momentum equations [Eqs. (9) and (10)]. We assume

that waves are described by linear wave theory, and that higher-order terms involving horizontal

currents are depth-uniform. This assumption is necessary in order to obtain an equation for the

wave momentum evolution, ∂t Mw. In the remainder of this paper, the tilde over wave velocities are

dropped (ũ = u), as well as the overbar over mean shear stress (τ̄ = τ ).

To obtain an equation for the surface shear stress, we first obtain an evolution equation for MT by

depth-integrating the horizontal momentum equation from the bed to the free water surface. Second,

we obtain an evolution equation for Mm by depth-integrating the wave-averaged mean momentum

equation [Eq. (18)], from the bed to the mean water surface. In the process, the shear stress at the

MWL, τ s, explicitly appears. Third, we obtain an expression for the evolution of Mw by re-arranging

the various terms of the wave action equation, following the work of Smith.47 Finally, we use the

time derivative of the depth-integrated momentum equation to equate the evolution equations of

total, mean and wave momentum, ∂t MT = ∂t M M + ∂t Mw, and obtain an expression for τ s in the

absence of rollers. The roller term is included in the momentum equations following Svendsen14 to

obtain the same equation for the surface shear stress shown in Sec. II B 1, Eq. (22).

First, an expression for the evolution of total momentum, ∂ tM
T, is obtained by wave-averaging

the depth-integrated horizontal momentum equation, Eq. (9), from z = −d to z = η (Svendsen,36

p.544), and by neglecting wind stress and atmospheric pressure:

∂ MT

∂t
+

∂Sxx

∂x
+ ρgh

∂η̄

∂x
+ ρ

∂hU 2
r

∂x
+ 2

∂Ur Mw

∂x
+ τb = 0. (24)

Although Svendsen36 neglected mean vertical currents in his derivation, this assumption is not

necessary to obtain Eq. (24). In the depth integration of the horizontal momentum equation [Eq. (9)],

the nonlinear term containing vertical current [third term on the RHS of Eq. (9)] is combined with

the first and second terms on the RHS of the same equation. Next, after applying Leibniz rule to the

integral, terms containing the total vertical velocity vanish because of the surface and bed boundary

conditions, Eqs. (5) and (6) [for details, see Svendsen,36 Eqs. (11.4.6) and (11.4.7)]. Furthermore,

terms containing pressure at the free surface and at the bottom appear in the depth integration of the

horizontal momentum equation.

We obtain the expression for the vertical variation of pressure from the depth integration of the

vertical momentum equation, Eq. (10). Vertical velocity appears in the expression of the pressure at

the free surface, but atmospheric pressure is neglected. Vertical velocity also appears in the expression

of the pressure at the bed via a term containing the cross-shore gradient of a shear stress term (see

Svendsen,36 p. 539). This term is commonly assumed small since a non-zero contribution from this

term (in a wave averaged formulation) would result in a physically counter-intuitive scenario where

the pressure at the bottom of a column of water is less than the weight of the water column. For

a detailed discussion of this argument, the reader is referred to Svendsen,36 Sec. 11 D. As a result

of these considerations, Eq. (24) is consistent with the assumption that first-order mean vertical

currents are not neglected. (We show in Appendix B that second order mean vertical currents can be

neglected.)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.193.163.187 On: Tue, 08 Jul 2014 18:12:38
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To obtain an evolution equation for the mean current momentum, ∂tMm, the wave-averaged

mean momentum equation, Eq. (18), is integrated between the bed −d and MWL η̄, and the Leibniz

rule is invoked to obtain:

∂

∂t

η̄∫

−d

ρUdz + h
∂

∂x

(
Sxx − E/2

2h

)

+ ρgh
∂η̄

∂x
+

∂

∂x

η̄∫

−d

ρU 2dz + ρU 2
|−d

∂d

∂x

−ρ (U W )|−d − ρU 2
η̄

∂η̄

∂x
+ ρ (U W )|η̄ + τb − τs = 0. (25)

To simplify this expression, we wave-average the kinematic boundary conditions, Eqs. (5) and (6),

and obtain (see Refs. 47 and 48, and also Appendix A of Ref. 11)

∂η̄

∂t
+ U

∂η̄

∂x
− W +

1

ρ

∂ Mw

∂x
= 0 at z = η̄, (26)

U
∂d

∂x
+ W = 0 at z = −d, (27)

where Mw = Ew/C (Ref. 49).

Combining Eqs. (25)–(27), and assuming depth uniform currents in the second order current

terms, an equation for the mean momentum equation appears as

∂ Mm

∂t
+ h

∂

∂x

(
Sxx − E/2

2h

)

+ ρgh
∂η̄

∂x
+

∂hU 2
r

∂x
+ Ur

(
∂ Mw

∂x
+ ρ

∂η̄

∂t

)

+ τb − τs = 0. (28)

Finally, the evolution equation of net wave momentum ∂t Mw is derived from the wave action

equation,50–52 which is expressed as

∂

∂t

Ew

σr

+
∂

∂x

Ew

(

Cg + Ur

)

σr

= −
Dw

σr

. (29)

In this equation, the dissipation term Dw represents the dissipation of wave energy, neglecting

effects of bottom friction. Following the work of Smith47 (Sec. II C) and after a few manipulations

summarized in Appendix C, an evolution equation for the wave momentum appears

∂ Mw

∂t
+

∂Sxx

∂x
− h

∂

∂x

(
Sxx − E/2

2h

)

+
Dw

C
+

∂Ur Mw

∂x
+ Mw ∂Ur

∂x
= 0. (30)

This equation was first derived by Longuet-Higgins in 1973 for waves in the absence of mean

currents. It shows that, under steady state conditions, the radiation stress gradient (2nd term on the

LHS) can be expressed as a function of (1) a portion of the depth uniform forcing of the undertow F

[3rd term on the LHS, see Eq. (19)], (2) wave dissipation (4th term on the LHS), which only exists

when waves are breaking, and (3) wave-current interaction terms (5th and 6th terms on the LHS).

Next, the evolution equations for total, mean and wave momentum are combined to generate an

expression for the surface shear stress τ s:

∂ MT

∂t
−

∂ Mw

∂t
−

∂ Mm

∂t
= ρUr

∂η̄

∂t
+

Dw

C
− τs = 0, (31)

which, for steady state, becomes

τs = Dw/C, (32)

where C is the relative speed of the wave with respect to the current Ur, given by Eq. (33).

This expression, which was derived at the MWL and not at the trough level, shows that the

dissipation of wave energy exerts a stress at the MWL; the same result could not be found at

the trough level following the method described herein. This expression is also identical to the

one derived by Newberger and Allen,11 Deigaard and Fredsøe,19 or Stive and de Vriend,20 except

that here, contrary to those references, the shallow water assumption has been relaxed. Under the

assumption of depth-uniform second-order horizontal current, all nonlinear terms vanish exactly, and

thus have no influence on the surface stress. This finding, which differs from Tajima and Madsen,25
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is consistent with physical reasoning:19, 33 the work of an internal force, i.e., τ sC, only generates

dissipation.

Wave dissipation is characterized by the formation of a roller, which absorbs some of the excess

momentum of the waves. Hence, to complete Eq. (32), it is necessary to account for the roller

momentum flux, referred to as Mr. In the absence of a formal derivation for roller momentum

evolution, we used the heuristic expressions for roller momentum and roller radiation stress derived

by Svendsen.14 The total momentum equation thus becomes21, 36

∂ MT

∂t
+

∂Sxx

∂x
+

∂ Rxx

∂x
+ ρgh

∂η̄

∂x
+ ρ

∂hU 2
r

∂x
+ 2

∂Ur Mw

∂x
+ τb = 0, (33)

where Rxx = 2Er. Furthermore, following Svendsen,14 the depth-averaged return current Ur becomes

ρhUr = −Mw
t = −

(

Mw + Mr
)

= − (E/C + 2Er/C) , (34)

where Mr = 2Er/C is the momentum of the roller, and Er is the roller energy. With this definition

of Ur, we once again evaluate the time derivative of Eq. (3), but written as ∂t MT = ∂t Mm + ∂t Mw
T .

Equation (22) for the surface shear stress thus appears again: τs = Dw/C − ∂x 2Er .

In this section, we formally derived an expression for the surface shear stress similar to the

one reported by Deigaard.44 The shallow water wave approximation was relaxed, and bottom shear

stress and mean currents were included. From the approach presented herein, the mean surface shear

stress is expressed at the MWL, similarly to Stive and de Vriend20 and Newberger and Allen.11

C. Solutions

As mentioned earlier, the solution to the mean momentum equation and for the profile of

undertow in the water column, Eq. (18), were obtained by integrating it twice in z, and by applying

either one of the boundary conditions presented in Sec. II B 1. This solution requires knowledge

of the wave variables as well as eddy viscosity in the fluid. In previous publications, researchers

compared the merits of applying a surface versus a bottom shear stress condition, in addition to using

mass conservation.17, 34, 53 Others presented a formulation of the undertow based on the difference

between surface and bottom shear stresses25 (i.e., ∂z(τ (z)) = f(τ s − τ b)]. In this section, we examine

the various possible solutions to Eq. (18), and show that they are all equivalent. Specifically, we show

that there is no difference in a solution computed using surface shear stress or bottom shear stress

as a boundary condition. We also show that the solution is similar whether one takes the difference

between surface and bottom shear stress or uses the depth uniform forces F and P presented in

Eq. (18) to express the vertical variation of undertow.

First, we integrate Eq. (18) once in z, and use the bottom shear stress boundary condition:

τ (z) = (F + P) (z + d) + ρ
∂

∂x

z∫

−d

U 2dz + ρU W + τb, (35)

where the wave-averaged kinematic bottom boundary condition, Eq. (27), was invoked. Alternatively,

when a mean shear stress at the MWL is used, the expression of the undertow reads

τ (z) = (F + P) (z − η̄) − ρ
∂

∂x

η̄∫

z

U 2dz + ρU W − ρU|η
∂ Mw

∂x
+ τs, (36)

where the wave-averaged free surface kinematic boundary condition, Eq. (26), was invoked.

To show that these two expressions are similar, both equations are subtracted to obtain

hF + h P + ρ
∂

∂x

η̄∫

−d

U 2dz + ρU|η
∂ Mw

∂x
= τs − τb, (37)

which is the steady-state mean momentum equation for depth-varying mean currents, Eq. (25). After

we express (F + P) from this equation, and insert it in Eq. (36), a third expression for the solution
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to Eq. (18) appears:

τ (z) =
τs − τb

h
(z + d) + τb −

⎛

⎝ρ
∂

∂x

η̄∫

−d

U 2dz + ρU|η
∂ Mw

∂x

⎞

⎠
z + d

h
+ ρ

∂

∂x

z∫

−d

U 2dz + ρU W.

(38)

Thus, the solution to the mean current equation, Eq. (18), is the same whether one imposes a

surface or a bottom shear stress boundary condition. Equations (35) and (36) yield the same expres-

sion for the mean shear stress τ (x, z) as was argued by Svendsen.54 Additionally, the comparison

of Eqs. (35) and (36), and (38) shows that the solution is also the same if one expresses it using the

depth-uniform forcing F + P [Eq. (35) and (36)] or a difference of surface and bottom shear stresses

τ s − τ b [Eq. (38)].

We once again assume that the vertical variation of second order nonlinear terms is negligible,

which means that terms on the RHS of Eqs. (35) and (36), and (38) are depth uniform. Under this

assumption, these equations become (see Appendix D for details)

ρνt

∂U

∂z
=

[

h
∂

∂x

(
Sxx − E/2

2h

)

+ ρg
∂η̄

∂x
+ ρUr

∂Ur

∂x

]

(z + d) + τb, (39)

and

ρνt

∂U

∂z
=

[

h
∂

∂x

(
Sxx − E/2

2h

)

+ ρg
∂η̄

∂x
+ ρUr

∂Ur

∂x

]

(z − η̄) + τs, (40)

and

ρνt

∂U

∂z
=

τs − τb

h
(z + d) + τb. (41)

The nonlinear term in Eq. (39) or (40) is half the term in Garcez-Faria et al.17 because the derivation

presented above included mean vertical velocity. All nonlinear terms vanished from Eq. (41).

III. DISCUSSION

We have expressed the various forcing mechanisms of the undertow, assuming linear wave

theory. We also demonstrated that, although one can create three formulations of the undertow

depending on the boundary conditions, these formulations are interchangeable if a consistent frame-

work is employed, and they all lead to the same solution. Hence, theoretically, it is possible to

reproduce observed profiles of the undertow U(x, z) for a given wave field if the wave momentum

flux is reproduced accurately,55 and the value of the eddy viscosity ν t is known. We generated profiles

of undertow using the three different solutions presented in Sec. II C, using the dataset presented in

Fig. 1; the eddy viscosity in the water column was approximated as39 νt ≈ 0.01h
√

gh. We found

that the undertow in the surf zone is convex, and strongest shoreward of the breakpoint (Fig. 1).

Furthermore, the difference between the three solutions was of the order of mm/s, with the strongest

deviations observed when a bottom boundary condition was used. This is not too surprising as the

estimate of the bottom shear stress is approximate.

To investigate the forcing of the undertow, the mean momentum equation [Eq. (28); see also,

e.g., Dingemans et al.32] is rewritten as

ρh
∂Ur

∂t
= − ρhg

∂η̄

∂x
︸ ︷︷ ︸

I

−
[

h
∂

∂x

(
Sxx − E/2

2h

)

− τs

]

︸ ︷︷ ︸

I I

−
[

ρ
∂hU 2

r

∂x
+ Ur

∂ Mw

∂x

]

︸ ︷︷ ︸

I I I

− τb
︸︷︷︸

I V

, (42)

where each term was multiplied by ρh. The first process (term I on the RHS, denoted by dη) is the

pressure gradient induced by wave setup/setdown. The second process (term II on the RHS) is a

wave-induced force. It is composed of a portion of the depth uniform force in Eq. (18), denoted by

hF, and a stress term which is related to the shoreward directed surface shear stress, denoted by τ s;

this latter term is only present when wave dissipation occurs. The third process is an advective and

wave-current interaction force (term III on the RHS, denoted by Adv), and is also a mass source/sink

at the surface caused by the change in wave momentum, as pointed out by Smith47 and Newberger
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FIG. 3. Top subplots: balance of terms in the mean momentum equation [Eq. (33) or (42); subplot a], the total momentum

equation [Eq. (28) or (43); subplot b]. Bottom subplots: decomposition of radiation stress gradient according to Eq. (30)

(subplot c), and decomposition of the surface shear stress according to Eq. (22) (subplot d). Symbols used in legend are

explained in the text.

and Allen.11 The fourth process is caused by the bottom shear stress (term IV on the RHS, denoted

by τ b). Written this way, it becomes clear how the expression for the forcing of the undertow

[Eqs. (39)–(41)] validates the conceptual explanation presented by Dyhr-Nielsen and Sørensen,1

who state that the mean current is forced by those four processes.

We use the aforementioned dataset presented in Fig. 1 to explore the relative importance of those

terms (Fig. 3(a); note that those terms were multiplied by the water depth h before plotting). Except

in the inner surf zone (cross-shore distance X > 60 m) the depth-uniform force F, along with the

surface shear stress term τ s balance gradients in MWL dη. In the inner surf zone, the depth-uniform

force F works together with gradients in MWL dη to oppose the surface shear stress τ s. Bed shear

stress and advective terms play a relatively minor role, and have approximately the same strength.

These observations indicate that, depending on the location of the breaker, the body force is either

balanced by gradients in MWL or by the surface shear stress. These observations also highlight the

important role played by the surface shear stress in generating the undertow. Guannel46 conducted

the same analysis for different flume and field datasets and found similar properties of the forcing of

the undertow. It is worth mentioning that the relative role of the surface shear stress varies between

datasets.

The role of the pressure gradient dη in generating the undertow is further examined by exploring

the relative importance of the terms in the total momentum equation, which is rewritten here for

convenience as

∂ MT

∂t
+ ρgh

∂η̄

∂x
︸ ︷︷ ︸

I

+
∂Sxx

∂x
︸ ︷︷ ︸

I I

+
∂ Rxx

∂x
︸ ︷︷ ︸

I I I

+ ρ
∂hU 2

r

∂x
+ 2

∂Ur Mw

∂x
︸ ︷︷ ︸

I V

+ τb
︸︷︷︸

V

= 0. (43)

Under steady state conditions, the pressure gradient generated by the MWL (term I, denoted by dη)

is balanced by the combined action of gradients of radiation stress due to waves and roller (terms

II and III, respectively, denoted by dSxx and dRxx, respectively), the action of advective terms (term
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056604-13 G. Guannel and H. T. Özkan-Haller Phys. Fluids 26, 056604 (2014)

IV, denoted by Adv) and the bed shear stress (term V, denoted by τ b). Offshore of the breakpoint

(Fig. 3(b), cross-shore position X < 40 m), the gradient in MWL is principally balanced by the wave

radiation stress gradient. As the roller develops during breaking and advances in the surf zone, the

balance between dSxx and dRxx is more complex, as they continually change sign. Hence, the role of

the roller in balancing dη – which balances the body force F along most of the profile – is unclear.

Interestingly, the roller also pushes the location of the setdown shoreward, since dη changes sign

shoreward of the location where dSxx does. Finally, as observed previously, the bed shear stress and

advective terms play a relatively weak role, and have the same relative strength. Consequently, it is

possible that, in most models where advective terms are ignored but bed shear stress is calibrated

to match observations of MWL,28 the bottom friction coefficient captures both bed friction and

advective term effects.

The analysis of the total and mean momentum balances showed that, along with the pressure

gradient induced by changes in MWL, total radiation stress gradients and surface shear stress play

a major role in determining the value of mean return current Ur. As mentioned earlier, the surface

stress is non-zero when waves start to dissipate their energy. Dissipation of wave energy results in a

non-zero body force term, but also in a dissipation term.

To gain some insight into the behavior of the radiation stress gradient dSxx [Eq. (30), 2nd term on

the LHS], the profiles of the different terms in Eq. (30) are presented in Fig. 3(c). The radiation stress

gradient is balanced principally by the body force hF [Eq. (30), 3rd term of the LHS] and the wave

dissipation term [Eq. (30), 4th term on the LHS]. It is interesting to note that the wave dissipation

term alters this balance and, inside the surf zone, works together with the body force hF to balance

the radiation stress gradient. Advective terms play a relatively minor role in the decomposition of

the radiation stress gradient, but, in all cases, strengthen it in the surf zone. Finally, decomposition of

surface shear stress [Eq. (22)] in Fig. 3(d) shows that roller growth (dRxx < 0) counteracts the effects

of wave dissipation, and reduces the strength of the surface shear stress. When the roller decays (dRxx

> 0), it acts in conjunction with wave dissipation to push water shoreward at the MWL. In all cases,

the effect of the roller is to push the location of maximum surface shear stress shoreward and sustain

the surface shear stress when wave dissipation weakens. Consequently, as mentioned previously, the

roller term plays an important role in generating the surface shear stress, which, together with the

body force, balances the pressure gradient induced by changes in MWL.

IV. CONCLUSION

We have shown for the first time that, under the confines of linear wave theory, nearly all of the

theoretical formulations of undertow that have been published can be reconciled. Throughout the

derivations, we relied on the evolution equations of total momentum [Eq. (24)], mean momentum

[Eq. (28)], and wave momentum [Eq. (29)], which are all linked by the equation of mass conservation

[Eq. (3)]. Various formulations of the undertow based on linear wave theory are presented and the

expression for surface shear stress originally presented by Deigaard and Fredsøe19 was re-derived

by relaxing some of their assumptions. The derivations are valid for all relative water depths, and

included effects of bottom shear stress as well as mean currents. Second order mean current terms

were assumed to be negligible. Further, we found that the forcing of the mean shear stress (τ =
ν t∂zU) is depth-uniform, and the mean shear stress is linear. The forcing can be expressed as a

function of gradients in wave velocity and MWL, or by taking the difference between surface and

bottom shear stresses.

Errors between solutions occur if one is not consistent in the methodology used to solve the

three evolution equations. Specifically, three common types of inconsistencies were identified as

follows:

1. Inclusion of advective terms in the depth-averaged cross-shore momentum equation [Eq. (24)]

and in the mean current equation [Eq. (18)], but not in the wave action equation, Eq. (29).

2. Omission of the wave stress ũw̃ in the mean current equation [Eq. (18)], but inclusion of

surface shear stress terms τ s [Eq. (22)] in the solution.

3. Omission of bottom shear stress in wave-averaged total momentum equation.
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Now that the theoretical foundation for the solution to the undertow problem assuming linear

wave theory has been established, the next step is to evaluate the performance of the theoretical

model at reproducing observed profiles of undertow. The skill of this model will be dependent on

the performance of the wave and roller model.55 Most importantly, the model performance will be a

function of the formulation of the eddy viscosity.35, 46 The investigation of the performance of these

different formulations will be the subject of a subsequent publication.
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APPENDIX A: SIMPLIFICATION OF WAVE STRESS TERMS

Consistent with linear wave theory, it is assumed that the flow is irrotational, which means that

ω̃ = 0. The vertical derivative of ũw̃ is decomposed as40

∂

∂z

(

ũw̃
)

= −
1

2

∂

∂x

(

ũ2 − w̃2

)

. (A1)

Dropping the tildes over wave velocity (ũ = u), this expression is combined with the other wave

velocity terms in Eq. (14) to obtain17

∂

∂x

(

u2 − w2

)

+
∂uw

∂z
=

1

2

∂

∂x

(

u2 − w2

)

. (A2)

This latter equation is further simplified by using the linear wave theory expressions of u and w to

obtain a depth uniform term2, 40, 56

ρ

(

u2 − w2

)

=
2k Ew

ρ sinh 2kh
. (A3)

The wave radiation stress is expressed as56, 57

Sxx =
η∫

−h

ρũ2 + pdz −
1

2
ρg (h + η̄)2

= Ew

(

2Cg/C − 1/2
)

(A4)

=
2khEw

sinh 2kh
+

Ew

2
,

so, Eq. (A3) becomes

ρ

(

u2 − w2

)

=
Sxx − E/2

h
. (A5)

APPENDIX B: NON-DIMENSIONAL ANALYSIS FOR MEAN VERTICAL VELOCITY

To estimate the relative order of mean vertical velocity with respect to mean horizontal velocity,

horizontal and vertical velocities are first decomposed into mean, wave and turbulent components:

u = U + ũ + u′, (B1)

w = W + w̃ + w′. (B2)

This decomposition is applied to the continuity equation, Eq. (4), and we obtain after wave-averaging:

∂U

∂x
+

∂W

∂z
= 0. (B3)
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056604-15 G. Guannel and H. T. Özkan-Haller Phys. Fluids 26, 056604 (2014)

Next, mean velocities are assumed to vary over a horizontal length scale X = LU, which is much

longer than the wave length scale Lw = 2π/k, a vertical length scale equal to the total water depth Z

= d, and a time scale TU which is much larger than the wave timescale Tw = 2π/σ . Non-dimensional

velocities U∗ and W ∗ are defined as U∗ = TUU/LU and W ∗ = TU W/LU , and non-dimensional length

scales are defined as x∗ = x/X and z∗ = z/Z. Hence the wave-averaged continuity equation becomes

∂U

∂x
+

∂W

∂z
=

Lu

Tu

1

Lu

∂U ∗

∂x∗ +
LU

TU

1

h

∂W ∗

∂z∗ , (B4)

which yields W ∼ εU , with ε = h/L. Consequently, in the wave-averaged horizontal momentum

equation, Eq. (14), we have

∂U 2

∂x
+

∂W 2

∂z
=

L2
U

T 2
U

1

Lu

∂U ∗2

∂x∗ +
L2

U

T 2
U

1

LU

∂W ∗2

∂z∗ , (B5)

which means that ∂x W 2 ∼ ε2∂xU 2. We now decide that, although we will keep terms of order ε in

the remainder of this paper, we will neglect terms of order ε2. Consequently, terms involving W 2 are

neglected, but terms involving W are kept in the wave-averaged horizontal momentum equation.

APPENDIX C: EVOLUTION EQUATION FOR Mw

The wave action equation reads36, 58

∂

∂t

Ew

σr

+
∂

∂x

Ew

(

Cg + Ur

)

σr

= −
D

σr

, (C1)

where A = Ew/σr is the wave action, and σ 2
r = (2π/T − Ur k)2 = gk tanh kh. Expanding this equa-

tion by recognizing that the net wave momentum Mw is Mw = Ak = k Ew/σr = Ew/C gives

∂ Mw

∂t
+

∂

∂x
Mw

(

Cg + Ur

)

− A

(
∂k

∂t
+

(

Cg + Ur

) ∂k

∂x

)

= −
k D

σr

. (C2)

To simplify this expression, the kinematical conservation equation is invoked (see Ref. 59, p. 23)

∂k

∂t
+ ∇ (σr + kUr ) =

∂k

∂t
+

(

Cg + Ur

) ∂k

∂x
+ k

∂Ur

∂x
+

∂σr

∂h

∂h

∂x
= 0, (C3)

where we used ∂kσ r = Cg. Hence, Eq. (C2) becomes

∂ Mw

∂t
+

∂

∂x
Mw

(

Cg + Ur

)

= −
k D

σr

− A

(

k
∂Ur

∂x
+

∂σr

∂h

∂h

∂x

)

. (C4)

Equation (C4) is further simplified by expressing A∂hσ r using the expression for Cg and trigonometric

identities:

Ew

σr

∂σr

∂h
=

Ew

σr

σr k

sinh 2kh
=

2n − 1

2kh
k E, (C5)

where n = Cg/C. Consequently, Eq. (C4) becomes (see Ref. 47, Eq. (2.27))

∂ Mw

∂t
+

∂

∂x
Mw

(

Cg + Ur

)

= −
k D

σr

− Mw ∂Ur

∂x
− Mw E (n − 1/2)

h

∂h

∂x
. (C6)

Recognizing that Sxx = 2MwCg − E/2 = E (2n − 1/2), Eq. (C6) is rewritten as

∂ Mw

∂t
+

∂Sxx

∂x
−

∂

∂x

E (2n − 1)

2
− h

E (2n − 1)

2

∂

∂x

(
1

h

)

+
∂ MwUr

∂x
+ Mw ∂Ur

∂x
= −

D

C
.

(C7)

Finally, the wave action equation becomes

∂ Mw

∂t
+

∂Sxx

∂x
− h

∂

∂x

(
Sxx − E/2

2h

)

+
∂ MwUr

∂x
+ Mw ∂Ur

∂x
= −

D

C
. (C8)
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APPENDIX D: DERIVATION OF UNDERTOW FORCING FOR DEPTH-UNIFORM

HORIZONTAL CURRENT

In Sec. II A, we derived an expression for the solution of the wave-averaged momentum equation,

Eq. (18), using a bottom shear stress boundary condition

τ (z) = (F + P) (z + d) + ρ
∂

∂x

z∫

−d

U 2dz − ρU 2 ∂z

∂x
+ ρU W + τb. (D1)

We can simplify the nonlinear terms in this expression assuming a weak vertical variation of the

mean horizontal current, i.e., U(x, z) = Ur(x, z) + εU1(x, z), with ε ≪ 1:

ρ
∂

∂x

z∫

−d

U 2dz + ρU W =
z∫

−d

ρ
∂U 2

r

∂x
+ ρ

∂Ur W

∂z
dz

= ρ
∂U 2

r

∂x
(z + d) + ρ (W (z) − W (−d)) ,

= ρUr

∂Ur

∂x
(z + d) − ρU 2

r

∂z

∂x
, (D2)

where ∂xz was neglected and the integral of the wave-averaged continuity equation between z and

−d was used: (z + d) ∂xUr + W (z) − W (−d) = 0. Hence Eq. (D1) becomes

ρνt

∂U

∂z
=

[
∂

∂x

(
Sxx − E/2

2h

)

+ ρg
∂η̄

∂x
+ ρUr

∂Ur

∂x

]

(z + d) + τb. (D3)

Similarly, the expression for the solution of the wave-averaged momentum equation, Eq. (18),

using a shear stress at the MWL as boundary condition was

ρνt

∂U

∂z
= (F + P) (z − η̄) − ρ

∂

∂x

η̄∫

z

U 2dz − ρU 2 ∂z

∂x
+ ρU W − ρU|η̄

∂ Mw

∂x
+ τs, (D4)

and after simplifying the nonlinear terms in this equation, assuming a weak vertical variation of the

mean horizontal current, and invoking the wave-averaged continuity equation between z and MWL

η̄, we obtain

ρ
∂

∂x

η̄∫

z

U 2dz − ρU 2 ∂z

∂x
+ ρU W − ρU|η̄

∂ Mw

∂x
= ρUr

∂Ur

∂x
(η̄ − z) , (D5)

and we obtain in Eq. (D4)

ρνt

∂U

∂x
=

[
∂

∂x

(
Sxx − E/2

2h

)

+ ρg
∂η̄

∂x
+ ρUr

∂Ur

∂x

]

(z − η̄) + τs . (D6)

Subtracting Eq. (D6) from Eq. (D3) yields the steady state mean momentum equation

h
∂

∂x

(
Sxx − E/2

2h

)

+ ρgh
∂η̄

∂x
+ ρhUr

∂Ur

∂x
+ τb − τs = 0. (D7)

Finally, if F + P is expressed from Eq. (D3), Eq. (D7) becomes

ρνt

∂U

∂x
=

τs − τb

h
(z + d) + τb, (D8)

where all explicit nonlinear terms have now vanished.
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Equation (D7) is identical to the steady state momentum equation derived in Sec. II B 2,

Eq. (28), because

∂U 2
r h

∂x
+ Ur

∂ Mw

∂x
= 2hUr

∂Ur

∂x
− Ur h

∂Ur

∂x

= hUr

∂Ur

∂x
. (D9)

These equalities are exact because hUr = −Mw. But, in the surf zone, hUr = −Mr + Mw. So, for

Eq. (D9) to hold, Mw is re-defined as Mw = Mw + Mr (Ref. 14). But if we do so, then we can no

longer arrive at the wave action equation, Eq. (29), since it was derived in Appendix C by taking

Mw = Ew/C .

Consequently, for all equation to be consistent, the roller needs to be taken into account in the

evolution of wave action. This problem illustrates once again the need to develop a rigorous equation

for the wave roller evolution that can be incorporated in the momentum equation.
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