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Abstract

There is an increasing need to develop a two-dimensional (2D) water entry

model including the slamming and transition stages for the 2.5-dimensional

(2.5D) method being used on the take-off and water landing of seaplanes, and

for the strip theory or 2D+t theory being used on the hull slamming. Motivated

by that, this paper numerically studies the transition stage of the water entry

of a linear wedge with constant and varying speeds, with assumptions that

the fluid is incompressible, inviscid and with negligible effects of gravity and

surface tension, and the flow is irrotational. For the constant speed impact, the

similitude of the declining forces of different deadrise angles in the transition

stage are found by scaling the difference between the maximum values in the

slamming stage and the results of steady supercavitating flow. The formulation

of the hydrodynamic force is conducted based on the similitude of the declining

forces in the transition stage together with the linear increasing results in the

slamming stage. For the varying speed impact, the hydrodynamic force caused

by the acceleration effect in the transition stage is formulated by an added mass

coefficient with an averaged increase of 27.13% compared with that of slamming

stage. Finally, a general expression of the hydrodynamic forces in both the
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slamming and transition stages is thus proposed and has good predictions in

the ranges of deadrise angles from 5◦ to 70◦ for both the constant and varying

speed impacts.

Keywords: water entry, wedge, hydrodynamic force, transition stage

Nomenclature

a = Accelerations of body

aw = Acceleration of body in vertical direction

A = Dimensionless variable of the theory of steady supercavitating flow

A2, B2 = Dimensionless variables of approximate solution

A2Mei, B2Mei = Dimensionless variable of Mei et al.’s model

c = Effective wetted length

Ca = Added mass coefficient

Ca0 = A2(k2 tanβ)2 Added mass coefficient in the slamming stage

Cconst = Dimensionless coefficient of constant speed impact

CKorobkin = Cconst of Korobkin’s model

Cp = Pressure coefficient

Cp0 = Pressure coefficient of constant speed impact

cq = Volume fraction of qth fluid

Cs = Slamming coefficient

Cs0 = Slamming coefficient of constant speed impact

C∗s0 = (Cs0 − Cs∞)/(Csmax − Cs∞)

Csmax = Maximum Slamming coefficient

Cs∞ = Slamming coefficient of steady supercavitating flow

f3D = Force coefficient of 3D effect

F = Force acting on bodies in vertical direction

F = Total hydrodynamic forces acting on the body surface

F0 = Force acting on bodies of constant speed impact

Fr = U0/
√

gl Froude number of the freefall motion case

g = Gravitational acceleration
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g = Body forces in Euler equations

G = Core function of the second Green identity

h = Penetration depth

h0 = l tanβ Height of wedge

h2 = Penetration depth corresponding to Csmax

h∗ = (h− h2)/h2 cotλ β

k = Parameter of curved FBC

k1 = h2/h0 Dimensionless penetration depth of the maximum Cs0

k2 = ∂Cs0
∂(h/h0)

Dimensionless derivative of Cs0 with respect to h

l = Half width of a finite body

L = Thickness of a 3D wedge

m = Mass of the wedge

m0 = Added mass of wedge in half model

n = Unit vector of normal to the wall surface

ny = Projection in vertical direction y of n

N = Number of nodes to calculate parameter n

p = Pressure

p0 = Pressure of constant speed impact

pa = Atmosphere pressure

P̄ = Vertices of the lower side in jet region

P̄ = Vertices of the upper side in jet region

r = Ratio between the normal distance between the two side

of the jet in proximity of the spray root and the minimun panel size

t = Time

u = ∇φ Velocities of fluid

un, us = Normal and tangential projections of fluid velocity on the body surface

U0 = Initial speed of wedge

Uw = Instantaneous speed of wedge

v = Fluid velocity of the theory of steady supercavitating flow

v0 = Incoming velocity of water of steady supercavitating flow
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Vq = Velocities of the qth fluid

vn = Vertical velocity on the free surface

V = Velocities of fluid

wn, ws = Normal and tangential projections of body speeds on the body surface

W = Body speeds

x = Position of particles lying on the free surface

x, y, = Cartesian coordinates

z = x+ iy Complex coordinates

α, χ, µ, = Coefficients of the velocity potential expression in the jet region

β = Deadrise angle of wedge bodies

βL = Deadrise angle of linear FBC

∆p = Difference of pressure between the constant and varying speed impacts

∆F = Difference of force between the constant and varying speed impacts

η = 1
N

N∑
i=1

σ2
i Mean σ of all the nodes in h∗ ∈ [0, 7]

γ = Correction factor of wetted length

γMei = Correction factor of wetted length for Mei et al.’s model

κ = Growth factor of BEM-FEM panels

λ = Auxiliary variable to model the Cs0 in the transition stage

ω = Parameter complex plane

φ = Velocity potential

φ0 = Velocity potential at C and C’ in the theory of steady supercavitating flow

Φ = Dimensionless velocity potential of similarity solution

ρ = Density of water

σ = Standard deviation of C∗s0 between different deadrise angles

τ = Parameter complex plane

θ = Argument of the velocity of fluid

Superscript

J = Panel in the jet region

∗ = Variables at the centroid of fluid control volume

Subscript
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water surface

section spray root line

direction

spray root
cross-section A cross-section B cross-section C

Fig. 1: The free surfaces of different cross-sections of a hull during the high speed planning.

q = Phase of fluid

i = Index of vertices in the jet region or index of node

1. Introduction

The take-off and water-landing of seaplanes had been studied since 1920s

and the procedures to assess the structural crashworthiness of airframe is mainly

based on a 2.5-dimensional (2.5D) method [1, 2, 3], which is similar to the for-

mulations of slamming forces of the strip theory for the hull slamming. Every

individual cross-section normal to the longitudinal direction of hull indepen-

dently experiences a single process of water entry (see Fig. 1), where the 2D

water entry model is formulated by the added mass method [4, 1, 2] or the

Wagner theory [5, 3]. The traditional procedures had been identified to be less

accurate as the numerical methods have fast developed in recent decades, and

make it possible to conduct numerical simulations of water-landing of seaplanes

[6] and transport airplanes [7, 8]. Although a whole-time history of water en-

try of aircraft can be reproduced, massive computational resources are required

and several days of calculations are taken. This could not be treated as a prac-

tical method for the engineers to complete the initial designs of seaplanes or

high-speed planning hulls [9, 10]. The alternative method is to improve the 2D
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Forebody of hull

cross-sections     types
                curved wedges
                linear wedgescross-section Ccross-section Bcross-section A

Afterbody of hull

Fig. 2: The cross-sections (normal to the keels) of the hull of seaplanes.

model of the 2.5D methods because the errors of early 2.5D methods are mainly

resulted from the transverse pressure distribution, especially for that with chine

immersion. For the cross-section C Fig. 1 without chine immersion, they used

the Wagner theory; For the cross-sections A and B in Fig. 1 with chine immer-

sion, they adopted the pressure distribution of a steady supercavitating flow

[11, 12] to formulate the transverse flow. However, the pressure distribution of

Wagner theory is quite different from that of steady supercavitating flow. How

the pressure distribution continuously changes from that of Wager theory to

that of steady supercavitating flow is missing in the early 2.5D methods.

From the perspective of a 2D transverse flow in a constant speed, the cross-

section without chine immersion is corresponding to a slamming stage in which

the hydrodynamic force increases linearly with the increasing wetted length, and

the cross-section with chine immersion is corresponding to a transition stage in

which the body experiences a fast drop of hydrodynamic force when the spray

root leaves the chine. The pressure distribution and the hydrodynamic force

gradually decline and finally approach those of steady supercavitating flow, as

the experimental results of Zhao et al. [13] indicated. The poor accuracy of

original 2.5D methods is due to the weakness of their 2D model for the transverse

flow and lack of involvement of the hydrodynamic forces acting on afterbody

of hull (see Fig. 2). Since there is no effective theoretical method to formulate

the transition stage, Sun and Faltinsen [14, 15] directly adopted a boundary

element method (BEM) as the 2D water entry model to develop another similar
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Fig. 3: The description of the water entry of a 2D wedge with a speed of Uw, h being the

penetration depth.

method called 2D+t theory for the high speed hulls. Their BEM [16, 13] can

address both the slamming and transition stages with increasing accuracy of

predictions, but at the same time greatly increases the computational cost,

which undermines the efficiency of the 2D+t theory. Therefore, there is an

increasing need to improve the efficiency of the 2.5D methods and the 2D+t

theory by proposing an analytical solution as accurate as the numerical methods

to predict the hydrodynamic forces in both slamming and transition stages. For

the slamming stage, many researchers had contributed to the formulations of

hydrodynamic force by added mass methods [4, 5, 17], asymptotic theories [18,

19, 20] and approximate solution [21]. Among them, the approximate solution

of Wen et al.[21] provided the most accurate model for the constant and varying

speed cases by a similarity solution of Dobrovol1’skaya[22]. For the transition

stage, due to the different hydrodynamic characteristics, the formulation of

hydrodynamic force is more difficult and is yet to be fully addressed. In this

paper, by following the formulation work of our previous research [21], the

transition stage of the water entry of linear wedges with constant and varying

speeds, as shown in Fig. 3, is formulated to complete the 2D water entry model.

There are three different formulations of the hydrodynamic forces in the
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transition stage in literature. The first one was proposed by Logvinovich[18]

based on the boundary condition at the separation (point C in Fig. 3). The

pressure at C is required to be same with the atmospheric pressure, which is

denoted as zero pressure condition. Logvinovich derived an ordinary differential

equation (ODE) to obtain a virtual wetted length but integrated the pressure

to obtain the hydrodynamic force on the real wetted surface AC. Tassin et

al. [23] improved the Logvinovich’s model by introducing the correction of

1+tan2 β (β being the deadrise angle) to the pressure expression on the wall

surface and re-derived the ODE of virtual wetted length. The predictions are in

better agreement with BEM results of Iafrati and Battistin [24] than the original

one. The second way is called fictitious body continuation (FBC) and was also

developed by Tassin et al. [23] based on a modified Logvinovich’s model (MLM)

of Korobkin [20] who addressed the formulation of the slamming stage. The FBC

is a virtual wall surface extended from the separation C with an angle of βL

with respect to the horizonal line (see Fig. 3). The wetted length is solved from

the combination of the real wall surface AC and FBC, while the hydrodynamic

force is only integrated on AC as it does in the Logvinovich’s model of the

zero pressure condition. Tassin et al. [23] had to compare with the numerical

results to identify the parameter βL. Although the agreement with the numerical

results is better than the Logvinovich’s model with correction 1+tan2 β, there

is still some discrepancy and the FBC needs more improvement. Wen et al. [25]

proposed the curved FBC to improve the accuracy of linear FBC of Tassin et

al. [23] based on a modified Wagner’s model (MWM). They introduced another

parameter k and provided explicit equations to determine βL and k. Their

predictions were in better agreement with the numerical results than the linear

FBC of Tassin et al. [23]. Since these methods are all based on the Wagner

theory [5], their predictions will become less accurate when the deadrise angle is

larger than 30◦. The last and the most sophisticated formulation was conducted

by Semenov and Wu [26] by extending their integral hodograph method (IHM)

[27, 28] from the slamming stage to transition stage. Their results show a larger

declining force than the BEM simulations of Iafrati and Battistin [24] because
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they imposed a self-similar solution onto a non-self-similar flow in the transition

stage. In general, the fully analytical solutions as accurate as the numerical

results and with a range of deadrise angle [15◦, 45◦] for the applications of

take-off and water landing of seaplanes are currently unavailable. In contrast to

formulate the hydrodynamic force by the asymptotic analysis and self-similar

solution, a semi-analytical solution for both the slamming and transition stages

can be probably built by summarizing the numerical results and exploring the

possible patterns of the hydrodynamic forces.

The failures of the abovementioned theoretical methods to formulate the hy-

drodynamic forces in the transition stage is caused by inaccurate modelling of

free surface, which is the main difference between the numerical methods and

the theoretical methods. There are two broad categories of the numerical meth-

ods: BEM and computational fluid dynamics (CFD). The free surface problems

of water entry for the BEM include the modelling of jet and the new free sur-

face AC. Zhao et al. [13] provided the first fully nonlinear BEM results, using a

model of jet-cut to avoid the high-speed thin jet, and the lowest-order expansion

of the Kutta condition (the flow leaves the body tangentially at the separation

point C) to simplify the new free surface AC. Iafrati and Battistin [24] proposed

a different approach to switch boundary conditions (BCs) of the panels from a

wall panel to a free surface panel when the center of panel leaves the separation

point C. Instead of using the jet cutting strategy as Zhao and Faltinsen [16]

and their previous method [29] did, they combined the use of a BEM solver in

the bulk of fluid and a simplified finite element method (FEM) in the thin jet

developing along the body contour. The hybrid method was denoted as a hybrid

BEM-FEM (HBF) approach and can provide a detailed description of the flow

and free surface dynamics, together with an improved prediction of the separa-

tion, while keeping the computational effort still reasonable. The HBF method

was recently extended by Del Buono et al. [30] to deal with the water entry with

varying speed and the water exit problems. Considering the good application

of the BCs switching, Wang and Faltinsen [31] also develop their BEM of jet

cutting replacing the lowest-order expansion of the Kutta condition with the
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BCs switching for the water entry problems. In contrast to the BCs switching

and FEM solver, Bao et al. [32] used the least orders of equations to update

the normal velocity of the free surface AC and a shallow water assumption for

the jet region in the transition stage. The abovementioned BEM methods have

different strategies for the jet region and new free surface AC, but are basically

consistent with each other. They can reduce the computational cost and provide

the velocity potential distribution on the wedge surface, which is important for

the varying speed impact. Different from the complexity of the free surface mod-

elling of BEM, the CFD methods are more flexible to deal with the modelling

of free surface. The most widely used method for the free surface problems, vol-

ume of fraction (VOF), was first proposed by Hirt and Nichols [33] based on the

framework of finite volume method (FVM). A modified high-resolution interface

capturing scheme (Modified HRIC) was developed by Muzaferija et al. [34] to

solve volume fraction equations and has good applications to the water entry

problems [8, 35, 36]. Compared with the BEM approaches, the CFD methods

provide more information about the distributions of pressure and velocities in

the whole region which intuitively picture the rapid changes of flow field in the

transition stage of the constant speed impact. The FVM with VOF has been

the most successful method to deal with the water entry problems and will be

adopted in this paper to produce the numerical results of constant speed im-

pact. In order to study the distribution of velocity potential on the wall surface

for the varying speed impact, the HBF of Iafrati and Battistin [24] will also be

used to provide the required data.

In this paper, the slamming and transition stages of water entry of linear

wedges with constant and varying speeds are numerically studied by the FVM

with VOF [36] and the HBF of Iafrati and Battistin [24]. To propose a semi-

analytical solution of a combination of numerical results and theoretical results

to address the high speed impact problems, the fluid is considered to be incom-

pressible, non-viscous, weightless and with negligible surface tension effects and

the flow is to be irrotational. The hydrodynamic forces in the slamming and

transition stages during the water entry of a wedge with constant and varying
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speeds will be formulated. The arrangements of this paper are as follows. The

computational approaches of FVM with VOF and HBF are detailed in Sec. 2

and the validations of the two methods are given in Sec. 3. For the constant

speed impact, the formulation of forces in both slamming and transition stages

of the water entry of linear wedges with the deadrise angles varying from 5◦

to 70◦ is proposed based on the CFD results in Sec. 4. For the varying speed

impact, the acceleration effect is addressed based on the HBF results in Sec. 5.

The general formulations of hydrodynamic force of both the slamming and tran-

sition stages will be provided and can address the constant speed impact and

the acceleration effect.

2. Computational Approaches

A CFD method of FVM with VOF technique is adopted to provide the

detailed results of flow field of water entry in a constant speed and the HBF [24,

37] is used to calculate the velocity potential (the CFD method can’t provide the

velocity potential) and the pressure distributions on the wedge surface during

the water entry in a varying speed.

2.1. CFD method

2.1.1. Flow solver

The unsteady incompressible Euler equations ignoring the surface tension

force are solved using ANSYS FLUENT as follows

∂V

∂t
+ V · ∇V = −1

ρ
∇p− g, (1)

where V is the velocity of fluid, ρ is the density, p is the pressure and g = (0,−g)

representing the gravity of fluid (the gravity of fluid can be neglected for the high

speed impact). The semi-implicit method for pressure linked equation consistent

algorithm (SIMPLEC) is used to deal with the pressure-velocity coupling. The

unsteady terms are discretized by first order implicit scheme, the convention

terms are discretized by second order upwind scheme, and the pressure term is

discretized by body force weighted scheme.
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2.1.2. VOF method

The VOF method was firstly proposed by Hirt and Nichols [33], which can

capture the free interfaces between two or more immiscible fluids by introducing

a variable, called volume fraction, for each phase. If the volume fraction of the

qth fluid in a certain cell is denoted as cq, cq = 0 represents the cell is empty of

the qth fluid; cq = 1 represents the cell is full of the qth fluid; and 0 < cq < 1

represents the cell contains the interface between the qth fluid and other fluids.

The sum of the volume fractions of all phases must be 1 in each cell. The volume

fraction equation of the qth fluid is written as follows:

∂

∂t
(cqρq) +∇ · (cqρqVq) = 0, (2)

where Vq is the velocity of q fluid. The first term in the left hand is discretized

by one order implicit scheme, and the second term is discretized by modified

high resolution interface capturing (Modified HRIC) scheme [34].

2.1.3. GMM method and VOF boundary conditions

In this paper, the global moving mesh method (GMM) [38] is used to deal

with the motion of wedge. The whole computational domain (including the cells

and boundaries) moves together with the wedge like a rigid body. The volume

fraction boundary conditions can ensure that the free water surface keeps a given

level when the computational domain moves. This condition is set according

to the cell coordinates of the boundaries in the earth fixed coordinate system,

i.e., the volume fraction of water cq = 0.5 for the cell located on the interface

between air and water; cq = 0 for the cells located above the interface; cq = 1

for the cells located below the interface.

2.2. HBF approach

In this section, the fully nonlinear potential flow model based the hybrid

BEM-FEM approach is presented. The method is mainly based on the studies

of Refs. [24, 37], where full details are provided.
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2.2.1. Governing Equations

The water entry problem of rigid bodies is faced under the hypotheses of

an inviscid and incompressible fluid. The flow is assumed irrotational and the

problem is formulated in terms of the velocity potential φ. Surface tension effects

are neglected. The flow is therefore governed by the following initial-boundary

value problem:

∇2φ = 0 in water domain Ω, (3)

∂φ

∂n
= W · n = −Uwny on wall surface SB, (4)

Dφ

Dt
=
|∇φ|2

2
− gy,

Dx

Dt
= ∇φ, on free surface SS, (5)

where n is the unit vector of normal to the wall surface, ny is the projection of

n in the vertical direction y, W is the entering speed of the body, and x is the

position of the particle lying on the free surface. At each time step, the solution

of the boundary-value problem for the velocity potential is solved in the form of

the boundary integral representation provided by the second Green’s identity

1

2
φ (P ) =

∫
SB∪SS

[φn (Q)G (P,Q)− φ (Q)Gn (P,Q)] dS (Q), P ∈ SB ∪ SS (6)

where G (P,Q) = 1
2π log (|P −Q|). According to Eqs. (4)-(5), the velocity po-

tential is known on the free surface while its normal derivative is assigned on

the body contour, which belongs to a boundary integral equation of mixed first

and second kind. Once Eq. (6) is solved, the velocity potential and its normal

derivative are known on the body contour and the free surface. The solution

of the boundary integral equation Eq. (6), providing the normal derivative of

the velocity potential on the free surface, allows the determination of the ve-

locity field on the free surface, which is integrated in time through a two-step

Runge-Kutta scheme to update the position of particle of the free surface.

2.2.2. Pressure distribution

The pressure distribution along the body contour is obtained through the

Bernoulli’s equation:

p− pa = −ρ

(
φ̇+
|∇φ|2

2
+ gy

)
, (7)
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Fig. 4: The description of the jet model of the simplified FEM solver.

and the total hydrodynamic load is obtained by integration of the pressure field

along the wetted part of the body

F = −
∫
SB

(p− pa)ndS. (8)

φ̇ has to be provided before the pressure distribution on the wall surface is

given. The calculation of φ̇ is similar to φ. On the free surface, the φ̇ is known

as φ̇ = − |∇φ|
2

2 − gy according to Eq. (5). On the wall surface, the normal

derivative of φ̇ is known and calculated as

∂φ̇

∂n
= a · n− ws

∂un
∂s
− wn

∂us
∂s

+ ksW · u, (9)

where a is the body acceleration, ws and wn are the tangential and normal

projections of W on the wall surface, us and un are the tangential and normal

projections of u = ∇φ on the wall surface and ks denotes the curvature of the

wall surface. The normal derivative of φ̇ on free surface and the φ̇ on the wedge

surface can be solved by a similar boundary integral equation of Eq. (6). it is

worth noting that the gravitational acceleration g is only used for the validations

of freefall cases in Figs. 10 and 25, and is never included in other cases.

2.2.3. Jet model

In the simplified FEM solver used for the description of the thin jet, a part of

the jet region is divided in control volumes in which the vertices corresponding

to the panel centroids (P̄i−1, P̄i, P̂i−1, P̂i), as shown in Fig. 4. In each control

volume, the velocity potential is written in the form of a harmonic polynomial

expansion, up to second order. Details about the approach in the slamming
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stage can be found in Battistin and Iafrati [24] and Del Buono et al. [30]. For

the transition stage, the harmonic polynomial expansion, φJi is reduced to first

orders and reads

φJi (x, y) = αi + χi (x− x∗i ) + µi (y − y∗i ) . (10)

The corresponding normal derivative is

φJn,i (x, y) = χinx,i + µiny,i (11)

where (x∗i , y
∗
j ) is the centroid of the fluid control volume P ∗i , nx,i and ny,i are

the unit vector of the ith panel which are directed along the x-axis and y-axis,

αi, χi and µi are new unknown variables and can be determined by enforcing

the free surface condition

φJi
(
P̄i−1

)
= φ

(
P̄i−1

)
, φJi

(
P̄i
)

= φ
(
P̄i
)
, (12)

and by enforcing the continuity of the φn at adjacent elements

φJn,i
(
P̄i−1

)
= φJn,i−1

(
P̄i
)
. (13)

3. Validations of numerical methods

3.1. Grid independence

Figure 5 shows the grid independence validation of the CFD simulations for

the water entry of a wedge with β = 30◦ in a constant speed, where the slamming

coefficient Cs and pressure coefficient Cp are defined as follows

Cs =
F

1
2ρU

2
wl
, (14)

Cp =
p− pa
1
2ρU

2
w

, (15)

where Uw is the entering speed of the body. Three grids of cell numbers of 50,000,

100,000 and 200,000 are adopted to simulate the impact flow with adaptive time

steps. The courant number is set to be 0.95 during the adaptive time steps.

The Cs of the whole time-history between the three grids match well. The Cp
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Fig. 5: Grid independence validation of the CFD simulations for the water entry of a wedge

with β = 30◦ in a constant speed: (a) Slamming coefficient Cs; (b) Cp distribution of h/h0 =

0.8; Free surface of h/h0 = 0.8.
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Fig. 6: Description of the BEM panels and FEM panels in the BEM.

distribution and free surface of h/h0 = 0.8 (h0 = l tanβ) are also consistent

between the three grids except for some discrepancies at the tip of jet. The grid

independence of CFD method is successfully validated. Therefore, the CFD

grid with cell number of 100,000 is adopted for further simulations by balancing

both the accuracy of spatial resolution and the computational cost.

Figure 6 shows the description of the HBF model in which the fluid boundary

is divided into three parts: (1) free surface panels; (2) wall surface panels and

(3) jet panels. The free surface and wall surface panels are solved by BEM

solver while the jet panels are solved by the FEM solver. The panel distribution

is determined by three parameters in Tab. 2: growth factors κ of BEM panels

and FEM panels, as well as the ratio r between the normal distance between
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Grids κ of BEM panels κ of FEM panels r

Coarse 1.04 1.05 1.5

Normal 1.03 1.04 2.0

Fine 1.02 1.03 4.0

Tab. 2: The grid details of BEM panels: κ being the growth factor; r being the ratio between

the normal distance between the two side of the jet in proximity of the spray root and the

minimun panel size.
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Fig. 7: The grid independence of the HBF simulations for the water entry of a wedge with

β = 30◦ in a constant speed: (a) the slamming coefficient Cs; (b) the pressure coefficient Cp

at the tip of wedge.

the two side of the jet in proximity of the spray root and the minimun panel

size. The Cs and Cp at the tip of wedge of the three distributions of HBF for

the constant speed case in Fig. 7 match well with each other. Here, a normal

grid is adopted for most of the HBF calculations in present study.

3.2. Comparisons between different methods

For the slamming stage of constant speed impact in which the self-similar

flow is satisfied, the present CFD and HBF methods are compared with the

similarity solution of Dobrovol’skaya[22, 36]. For the varying speed impact of

both the slamming and transition stages, the present CFD and HBF methods

are compared with the predictions of Bao et al.’s BEM [32] for the freefall motion
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Fig. 8: The comparisons of the pressure coefficient Cp on the wedge surface and the free

surface profiles of h/h0 = 0.6 between the predictions of CFD, HBF and similarity solution

[36] during the water entry of a wedge with β = 30◦ in a constant speed.

case. In this case, the impact speed is small and the gravity effect will become

significant in the transition stage. In the simulations of Bao et al.’s case [32], the

gravity of fluid is included. For the other cases, the gravity of fluid is excluded.

For the slamming stage with h/h0 = 0.6 in the case of the water entry of a

wedge with β = 30◦ in a constant speed, Fig. 8 shows the comparisons of the

pressure coefficient Cp on the wedge surface and the free surface profiles between

the predictions of CFD, HBF and similarity solution [36]. The spray root of the

jet remains under the knuckle of the wedge, which means the self-similar flow

is still satisfied and thereby the similarity solution can be used for a validation.

The good agreement between the present methods and the similarity solution

is excellent.

For the transition stage, Fig. 9 shows the comparisons of the force (a), pres-

sure distribution (b) and free surface (c) between the present CFD and HBF for

the water entry of a wedge with β = 30◦ in a constant speed. The CFD results

are all consistent with those of HBF, except for the jet tip of free surface. Since

the jet tip is of little relevance with the pressure and force acting on the wedge

surface, the mutual validations between the present CFD and HBF are prop-

erly conducted. Fig. 10 shows the comparisons of the acceleration (a), pressure
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Fig. 9: Comparisons of the force (a), pressure distribution (b) and free surface (c) between

the present CFD and HBF for the water entry of a wedge with β = 30◦ in a constant speed.
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Fig. 10: Comparisons of the acceleration (a), pressure distribution (b) and free surface (c)

between the CFD, HBF and BEM of Bao et al. [32] for the water entry of wedges of β = 30◦

in a freefall motion.

distribution (b) and free surface (c) between the CFD method, HBF and BEM

of Bao et al. [32] for the water entry of wedges of β = 30◦ in a freefall motion.

The CFD and HBF results are in good agreement with those of the BEM of

Bao et al. [32], while there are still minor discrepancies of the jet tip of free

surface and the pressure distribution near the apex of wedge. These differences

are acceptable for the validations of CFD and HBF methods.

It can be concluded that the CFD method and HBF method are consistent

with each other and can deal with the slamming and transition stages of the

constant and varying speed impacts. In this paper, the CFD method is mainly

used to produce the numerical results of constant speed impact, while the HBF

method is to used produce those of varying speed impact.

19



Fig. 11: The pressure distributions and free surface of different penetration depths in the

transition stage during the water entry of a wedge with β = 30◦ in a constant speed [25].

4. Constant speed impact

In this section, the constant speed impacts of wedges with different deadrise

angles are studied based on the CFD method. The hydrodynamic forces of the

three stages are formulated based on a combination of the results of similarity

solution of slamming stage, the CFD results of transition stage and the theo-

retical results of steady supercavitating flow. The steady supercavitating flow

is an approximation of the flow around the wedge at a very large penetration

depth and is theoretically formulated in Appendix 7.1 based on the theoretical

method of Gurevich [12].

4.1. Pressure distributions of β = 30◦ caused by the constant speed impact

The pressure distributions and free surface of different penetration depths

in the transition stage during the water entry of a wedge with β = 30◦ in a

constant speed are shown in Fig. 11. It is clearly observed that the high pressure

region located at the spray root rapidly vanishes after the spray root leaves the

knuckle of the wedge. In the slamming stage, the high pressure region is formed
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Fig. 12: The pressure distributions on the wedge surface in the transition stage of the water

entry of a wedge with β = 30◦ in a constant speed. The result of steady supercavitating flow

is calculated by the potential theory in Appendix 7.1.

because the water under the wedge has to accumulate in the spray root and

turns into a jet with high speed, as the wetted area of wedge keeps increasing.

In the transition stage, the wetted length of the wedge stops increasing and

the wall surface of the spray root no longer exists, and thus the high pressure

region disappears. Fig. 12 shows the pressure distributions on the wedge surface.

With the increasing penetration depth, the pressure on the whole wedge surface

decreases and finally approaches the distribution of steady supercavitating flow.

It is difficult to figure out the way how the pressure drops from the original

distribution of slamming stage. In this paper, we focus on the formulation of

the force and expect to find a general expression of slamming and transition

stages .

4.2. Hydrodynamic force caused by the constant speed impact

Figure 13 (a) shows the slamming coefficient Cs0 of different deadrise angles

varying from 25◦ to 45◦. The Cs0 of a single β increases linearly to the maximum

Cmax and declines to a steady value Cs∞. The Cs∞ of different deadrise angles
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Fig. 13: The slamming coefficient Cs0 (a) and the new variables C∗s0 (b) of different deadrise

angles varying from 25◦ to 45◦ calculated by the CFD method.

are shown in Fig. 32 in Appendix 7.1, which is calculated by a potential theory

[12]. In order to formulate the slamming coefficient Cs0 in the transition stage,

new variables are adopted:

h∗ =
h− h2
h2

cotλ β, (16)

C∗s0 =
Cs0 − Cs∞
Csmax − Cs∞

, (17)

where h2 is the penetration depth corresponding to the maximum slamming

coefficient Csmax. The new parameter λ is determined by a gradient algorithm

enforcing on the following function

η(λ) =
1

N

N∑
i=1

σ2
i (λ), (18)

where σi(λ) is the standard deviation of C∗s0 between different deadrise angles

for the ith node in the range of h∗ ∈ [0, 7] and thereby becomes a function of

λ. An uniform distribution with N=7001 nodes in the range of h∗ ∈ [0, 7] is

adopted, and the initial values are chosen as λ = 1.4 and 1.35. After 35 steps,

the gradient algorithm is convergent with λ = 1.3075 (∆λ <1e-6). The C∗s0

of different deadrise angles with λ = 1.3075 are also shown in Fig. 13 (b), and

it can be seen that the C∗s0 of different deadrise angles in the transition stage

coincide well with each other.
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Fig. 14: Description of the formulation for the whole process of water entry.

Owing to the linear increasing slamming coefficient in the slamming stage

and the coinciding results in the transition stage, the hydrodynamic force of

both the slamming and transition stages of water entry can be formulated as

shown in Fig. 14, where the slamming stage is in the range of [h∗1, 0] and the

transition stage is in that of [0,+∞]. The coinciding C∗s0 of Fig. 13 (b) in the

transition stage is formulated by a rational function in h∗ ∈ [0, 7] based on the

mean results of the C∗s0 of different deadrise angles

C∗s0 =
1.539h∗ + 2.618

h∗2 + 8.081h∗ + 2.169
. (19)

Due to the fitting errors, C∗s0 in Eq. (19) is larger than 1 when h∗ ∈ [0, 0.067].

In order to deal with the continuity between Eq. (19) and the linear increasing

C∗s0 of slamming stage, C∗s0 of is approximately as 1 in h∗ ∈ [0, 0.067]. The

linear increasing C∗s0 appears the following form

C∗s0 = 1 +
∂C∗s0
∂h∗

h∗. (20)

By taking the derivative of C∗s0 with respect to h∗, the slope of the linear ex-

pression of Eq. (20) in [h∗1, 0] appears to be

dC∗s0
dh∗

=
k1k2tanλβ

Csmax − Cs∞
, (21)

where k1 = h2/h0, k2 = dCs0
d(h/h0)

. Csmax = k1k2 according to the definations

of k1 and k2. Fig. 15 shows the k1 and k2 of various deadrise angles from
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Fig. 15: The k1 and k2 of various deadrise angles from 15◦ to 45◦, which are calculated by

the present CFD method.

15◦ to 45◦, which are calculated by the present CFD method. In the Wagner

theory, k1 = 2/π. k1 from CFD results match 2/π when β ≤ 30◦. Thus,

k1 = 2/π can be adopted for small deadrise angle. k2 appears to be equal

to B2 tanβ of the similarity solution [22, 39, 21]. The CFD results of k2 are

in good agreement with the similarity solution. In this paper, the results of

k1 and k2 for an arbitrarily deadrise angle within the range of [15◦, 45◦] are

given by a least square fitting method (LSF) of a quadratic function k1 =

0.2027β2 − 0.1295β + 0.655 and a quadratic function multiplying cotβ, e.g.,

k2 =
(
1.585β2 − 6.856β + 7.764

)
cotβ from the CFD results, and the maximum

fitting errors are 0.62% and 1.91% respectively. Therefore

C∗s0 =


1 +

∂C∗
s0

∂h∗ h
∗, h∗ ≤ 0

1,

1.539h∗+2.618
h∗2+8.081h∗+2.169 ,

0 < h∗ ≤ 0.067

h∗ > 0.067

(22)

By combining the Eqs. (16) - (17) and (22), it is possible to find the Cs0 value

and then the hydrodynamic force acting on the wedge surface (half model) for

the cases in a constant speed is given

F =
1

2
ρU2

wlCs0. (23)
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4.3. Comparisons with CFD results

In Sec. 4.2, the formulation of slamming stage in the slamming and transition

stages is set up by Eqs. (16)-(17) and (22), and the hydrodynamic force is finally

calculated by Eq. (23). The formulation is based on the CFD results in a range

of deadrise angles from 15◦ to 45◦. In order to explore its application range of

deadrise angles, this section compares the predictions of Eq. (23) and the CFD

results in the range of β ∈ [5◦, 70◦].

For the comparisons in β ∈ [15◦, 45◦], Fig. 16 shows the comparisons be-

tween the predictions of Eq. (23), the modified Wagner’s model (MWM) [25]

and the CFD method for the cases of β = 15◦, 25◦ and 45◦. The agreement

between the present model and the CFD results is good except that a tiny dis-

crepancy occurs at the maximum Cs for the case of β = 45◦. The WMW can

only work in the range of β ∈ [15◦, 35◦]. For the cases of β = 15◦ and 25◦, the

accuracy of the present model and MWM is close.

The comparisons in the ranges of small and large deadrise angles are also

provided in Figs. 17 and 18. The agreement between the predictions of Eq. (23)

and the CFD results is generally good, though with some discrepancies. Eq. (23)

slightly underestimates the force at a large penetration depth for the case of

β = 5◦ and overestimates the forces for the cases of large deadrise angles at

an early period of the transition stage. But the agreement becomes better as

the penetration depth increases. Therefore, it can be concluded that the present

formula can provide accurate predictions for the slamming coefficients of various

deadrise angles from 5◦ to 70◦.

Since there exists entrainment of air when the deadrise angle is smaller than

5◦ [40, 41], the predictions of force without involvement of the effect of air

cushion may be inaccurate. Thus, this paper does not consider the validations

of a smaller deadrise angle, and 5◦ ≤ β ≤ 70◦ will be a proper range of deadrise

angle for most of the engineering applications.
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Fig. 16: The comparisons between the predictions of Eq. (23), the modified Wagner’s model

(MWM) [25] and the CFD method for the water entry of linear wedges with deadrise angles

of β = 15◦, 25◦ and 45◦.
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Fig. 17: The comparisons between the predictions of Eq. (23) and the CFD method for water

entry of linear wedges with small deadrise angles of β = 5◦ and 10◦.
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β (◦) U0 (m/s) start time (s) aw (m/s2)

Case 1 30 1 0.25 −1

Case 2 30 1 0.25 -2t+0.2

Case 3 30 1 0.25 2t− 2

Case 4 15 2 0.06 −5

Case 5 20 1 0.15 −2t+ 0.3

Case 6 45 1 0.63 −0.5t+ 0.315

Tab. 3: Details of the cases of varying speed impacts in forced motions. The cases remains

the impacts in a constant speed of U0 before the start time and turn into those of a varying

speed with the above accelerations after that. Cases 1 and 4 have constant decelerations and

the other have linear decelerations.

5. Varying speed impact

In this section, the varying speed impact of a linear wedge is numerically

studied by the HBF method described in Sec. 2.2. The varying speed cases are

shown in Tab. 3. The wedges have the same half-width of 1m. All the cases

start the varying speed motions at the start time in the slamming stage, which

makes sure that the impacts in the transition stage are all in varying speed

motions. Cases 1 and 4 have constant decelerations and the other have linear

decelerations. In the following simulations of HBF, the growth factor of BEM

and FEM panels are 1.03 and 1.04 respectively and the ratio between the normal

distance between the two side of the jet in proximity of the spray root (to be

honest where the jet model start) and the minimun panel size is 2. The pressure

distributions and the force acting on the wedge body are discussed by comparing

the results of the constant and varying speed impacts. The formulation of the

acceleration effect in the transition stage is proposed and the new expression

will be validated by numerical and experiment results and compared with other

theories.
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Fig. 19: The Cp distributions on the wedge surface in the transition stage of Case 1 (see

Tab. 3) (a) and the distributions of ∆p/(0.5ρawc), where ∆p is the difference of the pressure

between the varying and constant speed impacts in a same penetration depth and with a

same instantaneous speed (b). The result of similarity solution k1 tanβ(−2Φ) is also given for

comparisons[36]. The result of h/h0 = 0.502 remains in the slamming stage.

5.1. Pressure distributions of β = 30◦ caused by the acceleration effect

Figure 19 (a) shows the Cp distributions on the wedge surface in the tran-

sition stage of Case 1 (see Tab. 3). For the case of β = 30◦, the transition

stage starts at h/h0 = 0.639 and thus the result of h/h0 = 0.502 is still in

the slamming stage while the other are in the transition stage. As can be

seen in Fig. 19 (a), the Cp distributions along the wedge surface decline with

the increasing penetration depth. The reasons of the pressure drop includes

two different aspects: the vanishing of high pressure region at spray root (see

Sec. 3.1) and the deceleration of wedge. In order to distinguish these two kinds

of influence, the pressure is split into two parts: (1) the pressure only related

to the constant speed impact p0 = 0.5ρU2
wCp0 (see Fig. 12); (2) the pressure

changing ∆p = p− p0 caused by the acceleration of wedge, where p0 and p are

the pressure of the constant and varying speed impacts respectively in a same

penetration depth and with a same instantaneous speed. Fig. 19 (b) shows the

distributions of ∆p/ (0.5ρawc), where the effective wetted length (half length)

is c = min {h cotβ/k1, l}. The ∆p/ (0.5ρawc) of different penetration depths

show similar distributions and have a small increase along the whole wedge
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Fig. 20: The dimensionless velocity potential −2φ/(Uwc) on the wedge surface of Case 1 in

the transition stage. The result of h/h0 = 0.502 remains in the slamming stage.

surface with the increasing penetration depth. The result of similarity solu-

tion k1 tanβ(−2Φ) [36] in the slamming stage is well consistent with the result

h/h0 = 0.502 in the slamming stage. It can be concluded that the distribution

of ∆p/ (0.5ρawc) remains as k1 tanβ(−2Φ) in the slamming stage and then has

a small increase in the transition stage. The results become steady as the pene-

tration depth continues to increase. The small increase pressure will also result

in the small increase of slamming coefficient, which will be further discussed in

Sec. 5.2.

From the studies of slamming stage [36, 21], the pressure changing caused

by the acceleration of wedge can be quantified by the dimensionless velocity

potential −2Φ. Fig. 20 shows the dimensionless velocity potential −2φ/ (Uwc)

(a similar dimensionless variable like −2Φ) on the wedge surface of Case 1 in

the transition stage. The −2φ/(Uwc) distribution of h/h0 = 0.502 is identical to

−2Φ of the similarity solution [21] since it still remains in the slamming stage.
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Fig. 21: The time histories of ∆F/(0.5ρc2aw) of different prescribed speeds (Case 1, Case 2

and Case 3 in Tab. 3), where ∆F is difference of force between the varying and constant speed

impacts in a same penetration depth and with a same instantaneous speeds. The results of

Ca0 = A2(k1 tanβ)2 from the similarity solution [36] and Eq. (26) from Tassin et al. [23] are

also given for comparisons.

The other distributions show large differences with−2Φ of the similarity solution

and the ∆p/ (0.5ρawc) distributions in Fig. 19 (b). It can be concluded that the

pressure changing caused by the acceleration of wedge can not be quantified

by the velocity potential in the transition stage as it does in the slamming

stage. Although the ∆p/ (0.5ρawc) distributions have a similar distribution and

small increase as the penetration depth increases, there is still some challenging

problems to formulate the pressure changing caused by the acceleration effect.

In this paper, we focus on the formulation of the hydrodynamic force caused

by the acceleration effect and hope to find an effective method to formulate the

hydrodynamic force caused by the acceleration effect.

5.2. Hydrodynamic force caused by the acceleration effect

Similar to the pressure distribution on the wedge surface, the force can also

be divided into two part: (1) the force caused by the constant speed impact
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F0 = 0.5ρU2
wlCs0, where Cs0 can be given by Eqs. (16) - (17) and (22); (2) the

force caused by the acceleration effect ∆F = F − F0, where F0 and F are the

forces of constant and varying speed impacts respectively in a same penetration

depth and with a same instantaneous speed. Fig. 21 shows the ∆F/(0.5ρc2aw)

of different prescribed speeds (Cases 1,2 and 3 in Tab. 3). All of the cases are de-

celerating with different decelerations. Case 1 has a constant deceleration, Case

2 has an increasing deceleration and Case 3 has a decreasing deceleration. The

∆F/(0.5ρc2aw) show good consistence between different cases in the transition

stage of h/h0 ∈ [0.639 1.0], though with some numerical fluctuations. Therefore,

Ca = ∆F/(0.5ρc2aw) is defined as an added mass coefficient, and independent

of aw in h/h0 ∈ [0.639 1.0]. It can be concluded that the effects of acceleration

on the hydrodynamic force have a fixed pattern in the transition stage as it does

in the slamming stage [21]. In the slamming stage, the acceleration effect on

the hydrodynamic force is given as ∆F = ρA2awh
2 from the similarity solution

[36], indicating an added mass coefficient Ca0 = A2(k1 tanβ)2. The Ca in the

slamming stage can be given as Ca0 = 1.0459, and in the transition stage, Ca

has an averaged result of 1.3297 in h/h0 ∈ [0.639 1.0], which is ξ = 27.13%

larger than the result of similarity solution Ca0. In this paper, a hybrid added

mass coefficient is adopted to formulate the acceleration effect corresponding to

Eq. (22)

Ca =


Ca0, h∗ ≤ 0

(1 + ξh∗/0.067)Ca0,

(1 + ξ)Ca0

0 < h∗ ≤ 0.067

h∗ > 0.067

(24)

The results of h∗ ∈ [0, 0.067] are given by a linear distribution from Ca0 to (1 +

ξ)Ca0. For the case of β = 30◦, the approximation of Ca in the transition stage is

summarized from the HBF results of h/h0 ∈ [0.639, 1.0], corresponding to h∗ ∈

[0, 1.1586]. However, further validations of Eq. (24) by the numerical results in

Sec. 5.3 indicates that Eq. (24) can work in a larger range of h∗ and deadrise

angles. Therefore, for the water entry of linear wedges with an acceleration, the

hydrodynamic force can be predicted by Eq. (24) together with Eqs. (16) - (17)

and (22), and the final expression of the force (half model) has the following
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form:

F =
1

2
ρU2

wlCs0 +
1

2
ρc2awCa, (25)

where c = min {h cotβ/k1, l}.

In the linear FBC of Tassin et al. [23] based on MLM, the acceleration effect

was addressed by the following form of Ca of in the slamming and transition

stages

Ca =


π
2 +

(
1− 4

π

)
tanβ, h

h0
≤ 2

π

π
2 +

(
1− 2h

h0

)
tanβ,

π
2 − tanβ.

2
π <

h
h0
≤ 1

h
h0
> 1

(26)

As can be seen in Fig. 21, the present model has a different Ca from that of

Tassin et al. [23].

5.3. Validations by numerical and experiment results

Figure 22 shows the comparisons of the forces acting on the wedge surface

between the present predictions and the HBF results for Case 1, 2 and 3. The

results of Eq. (23) only include the effect of constant speed impact while those of

Eqs. (25) include the effect of constant speed impact and the acceleration effect.

The predictions of Eqs. (25) are in good agreement with the HBF results, while

those of Eqs. (23) show much discrepancies with the HBF results. Fig. 23 shows

comparisons for Case 4, 5 and 6 of different deadrise angles and different ways of

decelerations. The same Ca correction of ξ = 27.13% is adopted for the cases of

different deadrise angles, and the good agreement is also obtained. It indicates

that the Ca correction of ξ = 27.13% also works for other deadrise angles.

To explore the application ranges of deadrise angles and of different ways

of wedge motions for the present model, Fig. 24 shows the comparisons of the

forces acting on the wedge surface between the present predictions and the CFD

results for the freefall cases of (a) β = 5◦ and β = 70◦. The wedges are in freefall

motions with masses of m = 1.5ρl2. For the small and high deadrise angles, the

present model can provide good predictions for the hydrodynamic forces, even

for the freefall motions where the acceleration of wedge is unknown before the

predictions.
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Fig. 22: The comparisons of the forces acting on the wedge surface between the present

predictions and the HBF results for Case 1, 2 and 3.
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in freefall motion.

The case in Fig. 10 is also used for a validation for the present model. Fig. 25

shows the comparisons of the predictions of accelerations of wedge with β =

30◦ between the CFD without gravity of fluid, BEM of Bao et al. [32] with

gravity of fluid, theory of Wen et al. [21] without considering the transition

stage, Eq. (23) and Eq. (25) during the water entry in freefall motion. The

agreement between the CFD result and the present model with acceleration

effect, e.g., Eq. (25), is good in both slamming and transition stages, while the

theory of approximate solution without considering the transition stage [21] can

only address the slamming stage. The present model without acceleration effect,

e.g., Eq. (23), also shows large differences compared with the CFD result. The

gravity effect has small influence on the hydrodynamic force in the transition

stage for the cases of Fr = 1.9587. For the high speed impact of higher Fr,

the gravity of fluid can be neglected and the present model will have better

predictions.

A comparison of the forces between an experimental test of Zhao et al. [13]

and the present model is shown in Fig. 26. The case is a three-dimensional water
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result of Zhao et al. [13] for the water entry of a wedge of β = 30◦. The vertical velocity of

the wedge is given by the experimental result of an optical sensor. The force coefficient of 3D

effect is approximately formulated as a parabolic f3D = 1 − 0.80(c/l)2 by using Meyerhoff’s

results [42].

entry with deadrise angle of β = 30◦. The half width of wedge is l = 0.25 m

and the thickness is L = 1 m. The vertical speed of the wedge is given by the

experimental result of an optical sensor. The acceleration of wedge is given by

the derivative of vertical speed. The present 2D model has large discrepancies

compared with the experimental result. As Zhao et al. indicated, the reason is

due to the three dimensional (3D) effect and the force should be corrected by

a force coefficient f3D (a function of c/L). They used Meyerhoff’s results [42]

of f3D(0.25) = 0.95, f3D(0.4) = 0.87, f3D(0.5) = 0.8 from the added masses

of thin rectangular plates with a generalization of Wagner theory to formulate

the 3D effect. In this paper, a parabolic f3D = 1− 0.80(c/L)2 is approximately

formulated by fitting from the above results. After using the 3D correction, the

present model with 3D effect can predict the force of the experimental test.

To sum up, Eq. (25) together with Eqs. (16), (17), Eq. (24) and (22) can be

used for both the predictions of hydrodynamic force in slamming and transition

stages for the water entry of wedges with different deadrise angles in constant
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Model γ Cconst Ca

Von Karman [4] 1 π 1

Wagner’s original model [5] π
2

π3

4
π
2

Wagner’s new model [5] π
2 π

(
π
2β − 1

)2
tan2 β π

2

Faltinsen [17] π
2

π3

4 (1− β
2π )2 π

2 (1− β
2π )2

Mei et al. [19] γMei B2Mei tan2 β A2Mei(tanβ/γMei)
2

Tassin et al. [23] π
2 CKorobkin

π
2 −

(
4
π − 1

)
tanβ

Present model 1
k1

B2 tan2 β A2(k1 tanβ)2

Tab. 4: The correction factor γ of the wetted length, the dimensionless coefficient of constant

speed impact Cconst and the added mass coefficient Ca of slamming stage for different theories.

and varying speeds.

5.4. Comparisons with other theories

For the slamming stage, the traditional added mass methods have the forms

of added mass and the hydrodynamic force (half model)

m0 =
1

2
ρc2Ca, (27)

F =
d(m0Uw)

dt
=

1

2
ρU2

whcot2βCconst +
1

2
ρc2awCa, (28)

where c = γh cotβ for the traditional methods. Tab. 4 shows the correction

factor γ of the wetted length, the dimensionless coefficient of constant speed

impact Cconst and the added mass coefficient Ca of slamming stage for different

theories [4, 5, 17, 19, 23]. The Wagner’s new model [5] was proposed to improve

the predictions of forces of constant speed impact for different deadrise angles,

but the acceleration term remained unchanged. γMei can be found in Refs.

[19, 21]. B2Mei and A2Mei are calculated by direct pressure and velocity potential

integrations of Mei et al.’s model [19]. CKorobkin is from the theoretical results

of Korobkin [20]. B2 and A2 of the present model were calculated from the

similarity solution [22], and the results are shown in Ref. [21].
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and (b) added mass coefficient Ca of the slamming stage between the present model and other

theories [4, 5, 17, 19, 23].

In early researches of Refs. [4, 5, 17, 19, 20] for the slamming stage, the

hydrodynamic force of constant speed impact received the most attention and

the researchers proposed their models by comparing the results of similarity

solution [22, 16] to correct the underestimated results of Von Karman [4] and

overestimated results of Wagner’s original model [5], as shown in Fig. 27 (a).

The models of Mei et al. [19], Tassin et al. [23] and Wagner’s new model [5]

have been approximately close to the results of similarity solution, but these

models actually violate the framework of added mass methods. Their Cconst are

no longer 2Caγ
2, which are different from the models of Von Karman [4], Wagner

[5] (original model) and Faltinsen [17]. Although these models [19, 23, 5] brought

good predictions for the constant speed impact, they still can not properly model

the acceleration effect, as shown in Fig. 27 (b). The Faltinsen’s model cannot

properly address both the constant speed impact and acceleration effect. The

present model formulates the models of constant speed impact and acceleration

effect directly from the approximate solution [21] based on the similarity solution

of Dobrovol’skaya [22], regardless of the framework of added mass methods

and the consistency of Cconst and Ca. The validations by numerical results in

Ref. [21] and Figs. 22 and 23 have completely verified the present model.

37



For the transition stage, Tassin et al.’s model [23], the MWM of Wen et al.

[25] and the present model can address both the slamming and transition stages,

while the models of Ref. [4, 5, 17, 19] can only work in the slamming stage. Wen

et al. had greatly improved the predictions of hydrodynamic forces for the

constant speed impact in the range of β ∈ [15◦, 35◦] compared with the linear

FBC of Tassin et al. and the improved model of zero pressure condition [18, 23].

The accuracy of present model is close to Wen et al.’s MWM, but with a much

larger range of deadrise angle. Besides, the acceleration effect in the transition

stage is missing in MWM. Tassin et al.’s model provided the formulation of

acceleration effect and the Ca is given by Eq. (26). The comparison of Ca of

β = 30◦ between the present model and Tassin et al.’s model is shown in Fig. 27

(b). In contrast to an increase of Ca in the transition stage, the Ca of Tassin et

al.’s model declines and finally reaches a constant value lower than Ca0, which

is inconsistent with the HBF results in Fig. 27 (b).

In general, we rewrite the formula of hydrodynamic force and extend it to

the transition stage for the constant and varying speed impacts. Although the

present model is more sophisticated, it works better than the traditional added

mass methods and the asympotic theories and can work in a larger range of

deadrise angle.

6. Conclusions

In this paper, the transition stage of the water entry of a linear wedge with

constant and varying speeds is numerically studied by FVM with VOF and HBF.

The hydrodynamic force acting on the wedge is formulated by a combination

of the numerical results and theoretical results of the steady supercavitating

flow. The fluid is assumed to be incompressible, inviscid, weightless and with

negligible surface tension, and the flow is irrotational for the high speed impact.

For the constant speed impact, the similitude of the slamming coefficients of dif-

ferent deadrise angles in the transition stage is found by scaling the difference

between the maximum values in the slamming stage and the results of steady
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supercavitating flow. The formulation of the hydrodynamic force is conducted

based on the similitude of the declining forces in the transition stage together

with the linear increasing results in the slamming stage. For the varying speed

impact, the acceleration effects on the pressure distribution and force acting on

the wedge surface are revealed. The hydrodynamic force caused by the accel-

eration effect in the transition stage is formulated by an added mass coefficient

with an averaged increase of 27.13% compared with that of slamming stage.

A general expression of the slamming coefficient with the deadrise angles from

5◦ to 70◦ in both the slamming and transition stages is thus proposed for the

constant and varying speed impacts, and its predictions are in good agreement

with the numerical and experiment results. Thus, it can be treated as a 2D wa-

ter entry model the 2.5D method being used on the take-off and water landing

of seaplanes, and for the strip theory or 2D+t theory being used on the hull

slamming.
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7. Appendix

7.1. The theory of steady supercavitating flow

The water entry in the infinite penetration depth becomes a steady super-

cavitating flow with an incoming currency with velocity v0. The theory can be

extended from the water entry on a plate by the theory of Gurevich [12]. The

free surface CD and C′D′ of impact flow is shown in Fig. 28 after the solution

is solved. The direction of incoming flow is upward and the stream-function on

the streamline passing A is 0. The velocity potential at A is chosen as 0. A

parameter plane τ mapping to the geometry in Fig. 28 is shown in Fig. 29 and

thus the complex velocity potential of impact flow can be calculated as

w = φ0τ
2, (29)
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where φ0 is the velocity potential at C and C ′. Another parameter plane

ω = v0
dz
dw = v0e

iθ/v (i being the imaginary unit) mapping to the velocity is

shown in Fig. 30 and can be formulated by the Schwarz-Christoffel formula as

ω (τ) =

(
1− 2β

π

)
ln

(√
1− 1/τ2 +

i

τ

)
+ i

π

2
. (30)

The complex coordinate can be derived

z =

∫
dz

dw

dw

dτ
dτ =

2φ0
v0

i

∫ (√
1− 1/τ2 +

i

τ

)1− 2β
π

τdτ. (31)

By considering the distance from A to C, the velocity potential at C and C ′ can

be determined
2φ0
v0

=
l

A cosβ
, (32)

where

A =

∫ 1

0

(
1 +
√

1− τ2
τ

)1− 2β
π

τdτ (33)

Therefore, the x on AC is given as
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x (τ) =
l

A

∫ τ

0

(
1 +
√

1− τ2
τ

)1− 2β
π

τdτ, (34)

and the velocity on AC is

v = v0

(
1−
√

1− τ2
τ

)1− 2β
π

(35)

The pressure coefficient Cp has the form

Cp = 1−

(
1−
√

1− τ2
τ

)2(1− 2β
π )

. (36)

The Cp distributions of different deadrise angles β are shown in Fig. 31. The

Cp is 1 at the stagnation A and 0 at the separation C for a steady supercavi-

tating flow. The free surface profile in Fig. 28 is given by the following x and y
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expressions

x (τ) = l − l

A cosβ
Re

i

∫ τ

1

(√
1− 1/τ2 +

i

τ

)1− 2β
π

τdτ

 , (37)

y (τ) = l tanβ +
l

A cosβ
Im

i

∫ τ

1

(√
1− 1/τ2 +

i

τ

)1− 2β
π

τdτ

 . (38)

The force acting on the wedges is calculated by integrating the pressure with

the Cp expression Eq. (36). The slamming coefficient Cs∞ of different deadrise

angles is shown in Fig. 32. The result of β = 0 is equal to 0.88, which is

consistent with that of water entry on a plate derived by Gurevich [12]. The

Cs∞ decreases with the increasing deadrise angle and reaches 0 at β = 90◦.

Korvin-Kroukovsky and Chabrow [11] in 1948 had already presented the

calculation of pressure distribution on the wedge surface. The present theory is

consistent with their model.
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