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Abstract: Considering the development of the hybrid wind and solar photovoltaic generation and
smart grid, Active Front-End (AFE) converters for high-power applications are facing significant
opportunities and challenges related to power quality and efficiency. The Pre-programmed Pulse-
Width Modulation (PPWM) techniques can strictly control the harmonic spectrum of a specified
voltage or current waveform generated by a high-power AFE converters, and have been extensively
applied to reduce or even eliminate the harmonic distortion with low switching losses for high-power
converters in order to deal with these issues aforementioned. For the PPWM techniques with low
switching frequency, Selective Harmonic Elimination (SHE) and Selective Harmonic Mitigation
(SHM) have been the prevailing solutions and gain widespread popularity, among which SHM can
provide further control of the harmonic spectrum in cases of similar switching losses to SHE. Over
the past several decades, the applications of SHE and SHM have been extended to high-power AFE
converters. Thus, the aim of this study is to provide a comprehensive literature review regarding
their various formulations, solving algorithms, and existing problems to high-power AFE converters.
In addition, the suggestions for future applications of PPWM in high-power AFE converters are
also discussed.

Keywords: pre-programmed pulse-width modulation (PPWM); selective harmonic elimination
(SHE); selective harmonic mitigation (SHM); solving algorithm; high-power AFE converter

1. Introduction

High-power AFE converter is a very popular and significant topic in modern power
electronics, especially considering the development of the hybrid wind and solar photo-
voltaic generation and smart grid [1–6]. Several specific industry applications of high-power
AFE converters are shown in Figure 1, and the high-power AFE converter applications
according to main industry branches are listed in Table 1 [7–12]. Many researchers and
scientists are working on its related topology structures, controller designs and modulation
techniques to improve the overall performance of the power system [13–37]. Among these
research directions, modulation techniques are widely used to meet the rise in demand for
high-power AFE converters, which require power losses have to be kept below acceptable
limits of specific grid codes based on high-power AFE converters and the switching losses
need to be reduced as much as possible. However, such a limited switching frequency
(normally a few hundreds of hertzs) will produce output voltage/current waveforms with
high distortion. A suitable modulation technique should then be determined to reduce the
harmonic distortion content in the power system [38–44].
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Figure 1. Several specific industry applications of high-power AFE converters: (a) Photovoltaic appli-
cation with six-pulse connection scheme; (b) Rolling mill application with twelve-pulse connection
scheme; and (c) Wind power application with eighteen-pulse connection scheme.

It is now clear that the selection of the specific modulation technique affects the
performance characteristics of high-power AFE converter in the power system to a great
extent. Modulation techniques can be generally classified as carrier-based sinusoidal
pulse-width modulation (CB-SPWM), space vector pulse-width modulation (SVPWM), and
pre-programmed pulse-width modulation (PPWM) [45]. Additionally, switching losses
and power quality will be the main constraints when modulation schemes are employed in
high-power AFE converters.
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Table 1. Industry applications of high-power AFE converters.

Industry Branch Specific Application Power Range
(MW)

Rated Voltage
(kV)

Power

Power converters for solar
panels/wind turbines,
HVDC/FACTS links,

coal mills.

1–40 2.3, 3.3, 4.0, 4.16, 4.2,
5.2, 6.6, 8.2, 10

Mining
Bucket wheel excavators,

conveyor belts,
ore mills.

2–15 2.3, 3.1, 3.3, 4.0, 4.1,
4.16

Metals
Sectional steel mill

cold rolling mill,
hot rolling mill drives.

2–25 2.4–13.8

Marine
Booster-generators,
propulsion drives,

Thrusters.
2–20 2.3, 3.3, 4.16, 4.2, 6, 6.6,

6.9

What calls for special attention is that SPWM and SVPWM have several problems that
are difficult to overcome when they are applied in the field of high-power applications, as
the cooling system design limitations require restricted power losses. In addition, junction
temperatures will also increase with the increase in switching losses, which will further lead
to the lifetime reduction in the power devices. The switching frequency has to be low for
these two modulation techniques to keep the switching losses below acceptable limits, but
this presents high harmonic distortion around switching frequency, which leads to a bulky
and expensive output filtering stage. Overall, high switching frequencies are inapplicable
in high-power applications as they can cause more thermal losses, which will further
damage the electrical switching equipment. To deal with the aforementioned problems,
PPWM based on low switching frequency can be considered and applied, such as selective
harmonic elimination (SHE), selective harmonic mitigation (SHM), hybrid SHE/SHM
combinations, and PPWM with optimized switching patterns/sequences [46–54].

Since the 1960s, there has been a number of clear trends in the development of PPWM,
aimed at solving scientific and technical problems in the fields of electromagnetic compati-
bility (EMC) and energy efficiency and increasing the output power quality of high-power
AFE converters. PPWM was originally studied for traditional two- and three-level convert-
ers. Since then, after years of research, it has expanded to a variety of multilevel/hybrid
AFE converters in numerous applications. At the beginning, it was found that adding some
switching angles to the square voltage waveform could suppress low-order harmonics.
Then, as the research further develops, the harmonic contents of a PWM waveform can be
mathematically expressed by using Fourier series, which include a group of nonlinear and
transcendental equations (mainly based on switching angles) [55–57]. Finally, a superior
harmonic distortion performance can be realized when these PPWM methods apply a
given set of switching angles that is obtained from particular mathematical calculations.
The several distinct characteristics of PPWM are as follows [58–76]:

1. Working at low switching frequency, which is beneficial to reduce switching losses
and improve the reliability and efficiency of the high-power AFE converter;

2. Allowing overmodulation, which can achieve high voltage gain as it causes an in-
creased utilization of the DC bus;

3. Reducing or even removing additional filtering components/systems, and it can
further reduce total cost of power systems;

4. For SHE, the specific low-order harmonics can be strictly eliminated while keeping
the fundamental harmonic at a pre-determined value, which can avoid harmonic
interference and resonance phenomena;

5. For SHM, its idea is to keep the harmonic content below the limits imposed by the
particular applied grid codes, while also considering the resulting voltage/current
total harmonic distortion (THD) from the perspective of power quality.
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6. For hybrid SHE/SHM combinations, their performance indices can be optimized
based on a given power quality aspect to a certain degree.

Despite the advantages of PPWM as mentioned above, there are some difficulties or
challenges in applying this kind of approach. The first aspect is that the biggest challenge in
the implementation of PPWM is to solve the sets of trigonometric equations with multiple
switching angles through Fourier series analysis based on the output voltage/current wave-
forms. However, the sets of trigonometric equations, in nature, are highly nonlinear and
transcendental. The existence of this situation means that no solutions, unique solutions, or
multiple solutions may obtained over different modulation indices. Another aspect of these
difficulties is that the switching angle sets are normally calculated offline as it takes a lot of
computational work, then these results will be pre-stored in the look-up table (LUT); this is
the reason why this approach is called pre-programmed. Finally, during the high-power
AFE converter operation, these calculated switching angle sets are used. It should be noted
that the offline nature of PPWM indicates the limitations of this approach.

Thus, the aim of this study is to provide an analytical literature review of PPWM
development for high-power AFE converters and to make it serve as a useful and compre-
hensive material for understanding PPWM techniques, such as their features, advantages,
and disadvantages. The state of the art and prominent issues in the PPWM methods are
discussed. In addition, several well-established solving algorithms for calculating non-
linear and transcendental equations are reported, and illustrative simulation results are
also provided.

This article is structured as follows. In Section 2, an overview of common PPWM
output waveforms is described and their corresponding mathematical expressions are also
proposed. Section 3 is devoted to the explanations of solving algorithms for achieving the
solutions to the nonlinear and transcendental set of PPWM equations. Several illustrative
examples based on solution trajectories, PPWM waveforms, and FFT spectra are provided
to prove the feasibility of some commonly applied algorithms in Section 4. Section 5 deals
with the existing problems of PPWM nowadays, and some suggestions for the future
applications are also proposed. Finally, conclusions of the work are presented in Section 6.

2. PPWM Formulations

In the scientific and technical literature, the formulations of PPWM are on the basis of
the decomposition of voltage/current PWM waveforms by using Fourier expansion series.
It should be pointed out that PPWM formulations normally depend on the characteristics
of a given waveform, such as unipolar, bipolar, stepped, multilevel, symmetrical, and
asymmetrical waveforms [77–82]. All these features play the same important role in the
analysis and determination of the form and complexity of a given solution space.

The mathematical expression of the output voltage PWM waveform generated by
a high-power AFE converter u(ωt) is based on the Fourier expansion series, which is
written as:

u(ωt) =
a0

2
+

∞

∑
n=1

(an cos(nωt) + bn sin(nωt)) (1)

where ω is the radian frequency of the output voltage, n is the harmonic order, a0, an, and
bn are the Fourier series coefficients, among which a0 determines the amplitude of the DC
component, and an and bn determine the amplitude of the nth harmonic order (here, taking
the three-level waveform with equal voltage levels in the range of 2π as an example):

a0 = 1
π

∫ 2π
0 u(ωt)d(ωt),

an = 1
π

∫ 2π
0 u(ωt) cos(nωt)d(ωt),

bn = 1
π

∫ 2π
0 u(ωt) sin(nωt)d(ωt).

(2)



Energies 2022, 15, 1696 5 of 25

The Fourier expansion series, as is clear from Equation (2), includes the calculation of
a set of switching angles α (α = ωt), and these switching angles are used to determine the
particular harmonics to be controlled (usually to be eliminated or mitigated).

Figure 2 shows the classification of common PPWM types and formulations. The
problem of SHE can be formulated as a minimization function seeking complete elimination
of the selected harmonics. As for SHM, its problem can sometimes be expressed as a
minimization function that tries to find a local or global minimum value of the selected
harmonic rather than its complete elimination, and sometimes it can be formulized as a
minimization function that provides the solutions to make each selected harmonic value as
well as the voltage/current THD lower than the limit of the grid codes applied [83–87]. In
some specific applications, such as the high-power four-leg inverter, a combination of SHE
and SHM can be used [88–90].

Figure 2. Classification of common PPWM types and formulations.

When considering applying the above PPWM approaches, the main factor that needs
to be properly controlled to a required value is the fundamental frequency. The tradeoff
between harmonic contents and feasibility analysis of solutions should be seriously consid-
ered for all multilevel waveforms, which means that the applied PPWM method should be
conducive to the convergence of solutions and the higher continuity of solutions.

Previously, the PPWM formulations can be simply and clearly determined by the
quantity of switching transitions within one cycle for two-level output voltage waveforms.
However, two factors should be considered for multilevel PPWM formulations: the quantity
of switching transitions within one cycle and the distribution of these switching transitions
at different levels of output voltage waveforms.

The latter has the influence on convergence and continuity of solutions and can also
affect the complexity of PPWM formulations. Therefore, equations of a single form that can
be universally used for PPWM waveforms are significant to handle this kind of technique.
Next, the brief descriptions of several common PPWM formulations are given below.

2.1. PPWM Formulation with Quarter-Wave Symmetry

The simplest PPWM formulation for multilevel waveforms is quarter-wave symmetry,
as shown in Figure 3.
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Figure 3. Three-level waveform with quarter-wave symmetry.

It requires the least number of equations and can remarkably simplify the calculation
process of solving the PPWM problem due to the absence of the dc component, even
harmonics and the sine coefficients of odd harmonics. Therefore, the output voltage can be
reduced to

u(ωt) =
∞

∑
n=1

(
4

nπ

[
N

∑
k=1

(−1)k+1 cos(nαk)

]
sin(nωt)

)
(3)

where N is the number of switching, k is the sequence number of the switching angle from
1 to N. Additionally, the following limit must be satisfied for the switching angles within a
quarter of the period:

0 < α1 < α2 < . . . < αN < π/2 (4)

2.2. PPWM Formulation with Half-Wave Symmetry

Compared to quarter-wave symmetric multilevel waveforms, PPWM formulation
with half-wave symmetry can expand the number of feasible solutions and also has the
potential to better improve harmonic performance, as shown in Figure 4.

Figure 4. Three-level waveform with half-wave symmetry.

The dc component and the even harmonics in half-wave symmetry are eliminated, and
therefore only the sine and cosine components of the odd harmonics need to be controlled.
Then, the expression of multilevel waveform with half-wave symmetry is written in the
following form:

u(ωt) =
∞

∑
n=1

(
2

nπ

[
2N

∑
k=1

(−1)k+1 sin(nαk)

]
cos(nωt) +

2
nπ

[
2N

∑
k=1

(−1)k+1 cos(nαk)

]
sin(nωt)

)
(5)
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Additionally, the following requirement must be satisfied for the switching angles
within a half of the period:

0 < α1 < α2 < . . . < αN < . . . < α2N < π (6)

2.3. PPWM Formulation with Asymmetry

Complete cancellation of the symmetry requirements causes the increased complexity
of the asymmetrical PPWM formulation, such as computational burden, difficulty to achieve
valid solutions and suboptimal harmonics. Therefore, this kind of PPWM formulation
remains the least attractive choice, as shown in Figure 5.

The dc component, as well as both the odd and even harmonics, need to be controlled
in the asymmetrical PPWM formulation. Therefore, the formula of asymmetrical multilevel
waveform should be rewritten as:

u(ωt) =
1

4π

[
4N

∑
k=1

(−1)k+1αk

]
+

∞

∑
n=1


2

nπ

[
4N
∑

k=1
(−1)k+1 cos(nαk)

]
cos(nωt)

+ 2
nπ

[
4N
∑

k=1
(−1)k+1 cos(nαk)

]
sin(nωt)

 (7)

Figure 5. Three-level waveform with asymmetry.

Additionally, the following constraint must be met for the switching angles within a
whole period:

0 < α1 < α2 < . . . < αN < . . . < α4N < 2π (8)

For the majority of high-power AFE converter topologies, the PPWM formulations
presented above are convincing based on the principle of equal output voltage levels in
amplitude. Furthermore, with the extensive development and strong popularization of
renewable energy technologies, such as photovoltaic applications, converter topologies
based on cascaded H-bridge (CHB) normally work with unequal/variable output voltage
levels in amplitude. The formulations of unequal/variable output voltage levels can be
classified as [91,92]: (1) unequal and constant voltages; (2) unequal and variable voltages;
and (3) a combination of constant and variable voltages.

3. Solving Algorithms for PPWM Techniques

Finding feasible solutions of the PPWM methods is a crucial task and the option of an
appropriate solving algorithm considerably relies on the PPWM formulation of the output
waveform discussed in Section 2. In the past few decades, scientists and research groups
have made great efforts to develop and improve a large number of solving algorithms
in order to find the unique optimal solution or multiple optimal solutions in the PPWM
formulations, such as numerical methods, algebraic methods, and intelligent optimization
methods [93–125]. This section specifically introduces these solving algorithms focusing on
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their characteristics and the classification with commonly used methods is presented in
Figure 6.

Figure 6. Classification of PPWM solving algorithms and methods.

3.1. Numerical Methods

There are normally two factors should be considered in solving the PPWM formula-
tions with numerical methods:

• The iteration efficiency of algorithm;
• The determination of initial values for algorithm.

The former factor has been well improved with the vigorous development of the
field of mathematics, therefore the latter factor has actually become the main issue that
needs to be considered in solving the PPWM formulations. A satisfactory estimate of the
initial values can ensure the convergence of the final solutions to a large extent. Although
sometimes the initial values may be predictable for output waveforms with a small quantity
of switching angles, they may not work well or they are difficult to predict for output
waveforms with a large quantity of switching angles.

The Newton–Raphson method was intensively studied in the early stage to solve the
PPWM equations, and several approaches that can be chosen to determine the initial values
are as follows. The incremental value of modulation index M is used to calculate the PPWM
equations, which is based on the assumption that the equations change continuously with
the modulation index, and the current solution will continue to be directly used as the
initial value of the new equation with a slight increase in M [126]. For a given modulation
index M, some linear functions can be achieved to calculate the initial values for the PPWM
equations with a small quantity of switching angles and then extended to the PPWM
equations with a large number of switching angles [46]. Using predictive algorithms to find
the initial values for the PPWM equations along the tangent direction of a feasible point on
the solution trajectory with an incremented value of modulation index M, and then use the
Newton–Raphson method to find the exact feasible solutions [127,128]. Method based on
the equal area and barycenter superposition of the PPWM signal with sinusoidal reference
signal is applied to determine the starting point of the solution trajectory [129–131]. The
mirror surplus harmonic method can be combined in a phase-shift technique to provide the
initial values while reducing the computational burden of harmonic suppression [132]. The
conventional sine-triangle PWM can also be applied to generate the initial values. Using
the orthonormal set of Walsh functions to find a more tractable PPWM equations instead
of Fourier series representations [71,133,134]. Using the homotopy algorithm to relax the
limits of defining initial values of PPWM equations due to its convergence domain is bigger
than that of Newton–Raphson method [135,136].
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3.2. Algebraic Methods

Algebraic methods can overcome the limits in numerical methods, which can achieve
feasible solutions of PPWM equations without the need of initial values. These methods
apply trigonometric identities to transform the nonlinear and transcendental equations
of PPWM into a set of equivalent polynomial equations, and then use resultant theory to
calculate the resultant system of polynomial equations and finally try to find all feasible
solutions of the switching angles based on a given PPWM formulation.

There are some applied approaches of PPWM technologies proposed by algebraic
methods. The multiple-angle formulas and the variables substitution are employed to
transform the PPWM equations to their corresponding polynomial equations, and then the
polynomial equations are converted to their equivalent triangular equations by using the
resultant elimination theory, and finally all valid solutions of switching angles can be ob-
tained [137,138]. The Chebyshev function can also be applied to convert the trigonometric
equations related to PPWM problems into their algebraic equivalents, thereby achieving
less computing time and superior convergence ability [139]. The symmetric polynomial
theory and the power sum can be introduced to reduce the degree of the resultant poly-
nomial equations [75,140–142]. Another approach is the Wu-method, which can convert
polynomial equations to a characteristic triangular set with the same zero set as the original
polynomial equations under the help of symmetric polynomial theory [143]. One procedure
of solving PPWM equations can be guaranteed by the extension theorem in the Groebner
bases theory, and then all feasible solutions can be found [144].

The main limitation of these algebraic methods is that the order/degree of polynomials
increases as the number of harmonics needed to be considered increases (or the number of
switching angles increases), which increases the computational burden and thus causes
low efficiency.

3.3. Intelligent Optimization Methods

Currently, the intelligent optimization methods are studied and admired by more
and more researchers to solve the PPWM problems. Here, the PPWM problem can be
reformulated as an optimization problem, which will be minimized by the fitness function
and the constraint functions, and meanwhile modern stochastic search algorithms can be
applied to find all feasible solutions. The reasons why intelligent optimization methods are
popular can be defined as:

• They have lower requirement or are less dependent on the determination of initial
values for PPWM formulations than numerical methods. This demand exists as high-
power AFE converters are used in more and more applications and the methods with
the need of initial values are not competent for this case;

• They are easy and clear for understanding and implementation due to the great
development of the artificial intelligence techniques in the past few decades.

A differential evolution (DE) algorithm can be used to find the optimal switching
angles for the PPWM technique by transforming the nonlinear and transcendental equations
of PPWM to a constrained optimization problem [145,146]. Genetic algorithms (GAs) have
been used to find feasible solutions to the PPWM problem in many research areas, such as
selected harmonic elimination, reduction in the line current harmonic and determination of
the optimal switching angles with balanced/unbalanced dc sources [147–149]. The particle
swarm optimization (PSO) algorithm is another powerful optimization tool for different
PPWM formulations, which can realize functions such as the elimination of harmonics and
minimization of the voltage/current THD [150–152].

Although these intelligent optimization methods show their abilities and strong ro-
bustness to solve the PPWM equations without the need of initial values, they are sensitive
to the setting parameters of the algorithm applied and the converge speeds are normally
slower than the numerical methods and algebraic methods.

A key issue in the real-time implementation of numerical and intelligent optimization
methods is that we cannot be sure whether there is a feasible solution or not. Additionally,
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it is also not clear that the failure to achieve a feasible solution is caused by the selection of
the setting parameters of the algorithm applied or there is indeed no such valid solution
for the PPWM equations.

3.4. Other Improved Methods for Real-Time/Online Implementation

Most of the solving algorithms mentioned above are based on off-line calculation,
which are no longer suitable for online/real-time implementation. The online/real-time
implementation is a hard and challenging task to PPWM problems.

Nevertheless, some corresponding algorithms and methods have been already suc-
cessfully proposed by some researchers. One approach is presented to greatly reduce
the mathematical complexity of PPWM equations, which is able to realize the real-time
implementation for PPWM by the microcontroller [153,154]. In this method, the nonlinear
and transcendental PPWM equations are transformed to a set of algebraic equations by
Chebyshev polynomials, and then continue to be converted to a single polynomial by
generalized Newton’s identities. Finally, the values of the switching angles are represented
by the roots of this polynomial, and they can be computed in real-time by direct substitution
of the reference phase voltage angle. Introducing the curve-fitting mode with a piecewise
linear representation to represent the nonlinear trajectory of the switching angles as straight
line segments, it can then calculate switching angles online by digital signal processor (DSP)
with ease [58,155]. A mathematical model based on Chebyshev polynomials is applied
to generate switching angles in real time by field-programmable gate array (FPGA) [156].
The application of artificial neural network (ANN) in the real-time implementation of
PPWM require the offline training of the neural network for the switching angles. After
that, this approach can generate optimal switching angles for a certain range of modulation
indices [157–159]. Another method, called model predictive control (MPC), can control the
selected harmonic components in real time with low switching frequency [160,161]. The
regular-sampled PWM techniques can be employed to realize the easy real-time implemen-
tation by the microprocessor, but it requires a complex nonlinear sampling process in order
to generate optimized PWM [162–164].

These improved methods for real-time/online implementation of PPWM normally
require the use of microprocessor techniques, which need large memory capabilities for
the LUTs. Sometimes, the accuracy of the calculated switching angles could be reduced in
order to approximate the valid solutions of PPWM, and this will impose restrictions on the
use of PPWM.

4. Illustrative Examples Based on Solution Trajectories, PPWM Waveforms, and FFT Spectra

The different definitions of the PPWM problems mainly depend on the number of
switching angles and voltage levels, resulting in an infinite number of possible results. In
this section, solution trajectories, PPWM waveforms, and FFT spectra of the typical three-
level waveforms with quarter-wave symmetry are presented in terms of the relationship
between switching angles and modulation indices. All feasible solutions of the switching
angles for PPWM are achieved in the modulation range from 0.7 to 1.15 (step size is 0.01),
and the line voltage spectra on the converter side are obtained when the modulation index
M is 0.8. In addition, the general structure of the solving process of PPWM is proposed in
Figure 7.
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Figure 7. General structure of the solving process of PPWM.

4.1. Results of SHE Implementation

In SHE, the magnitude of fundamental component and harmonics that can be elimi-
nated are expressed as:

H1 = 4
π

N
∑

k=1
(−1)k+1 cos(αk) = M

Hn = 4
π

N
∑

k=1
(−1)k+1 cos(nαk) = 0, where n = 5, 7, 11, . . . .

(9)

Meanwhile, Equation (9) also needs to satisfy the constraint below:

0 < α1 < α2 < . . . < αN < π/2 (10)

Then, the objective function in SHE is as follows:

E = (H1 −M)2 + . . . + Hn
2 → min (11)

Figures 8–10 illustrate several SHE solutions by built-in function fsolve in MATLAB
(MathWorks, 2017b, Natick, MA, USA) for six-pulse, twelve-pulse, and eighteen-pulse
connection schemes [102], respectively. It is important to note that this method has the
characteristics of fast convergence speed and high precision when a proper initial value
is given. Additionally, it is clear from these figures that the selected harmonics are all
effectively removed from the spectra, which prove the feasibility of this method. In addition,
the solution trajectories tend to be linear over the modulation range from 0.7 to 1.15, which
can facilitate real-time/online implementation.

In order to find more feasible solutions or multiple solutions, the PSO algorithm is
applied and its results [150] are compared with the solution in Figure 8a obtained by fsolve
function. The result of the first case (Case 1) obtained by the PSO algorithm is the same as
the solution in Figure 8a, but there are two other different results (Case 2 and Case 3), as
shown in Figure 11.
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Figure 8. Results of solution trajectories, PPWM waveforms and FFT spectra for six-pulse connection
scheme based on fsolve function: (a) SHE problem with five switching angles; (b) SHE problem with
seven switching angles; (c) SHE problem with fifteen switching angles; and (d) SHE problem with
seventeen switching angles.
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Figure 9. Results of solution trajectories, PPWM waveforms and FFT spectra for twelve-pulse
connection scheme based on fsolve function: (a) SHE problem with five switching angles; (b) SHE
problem with seven switching angles.

Figure 10. Results of solution trajectories, PPWM waveforms and FFT spectra for eighteen-pulse
connection scheme based on fsolve function: (a) SHE problem with five switching angles; (b) SHE
problem with seven switching angles.
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Figure 11. Results of solution trajectories, PPWM waveforms and FFT spectra for six-pulse connection
scheme based on PSO algorithm: (a) SHE problem with five switching angles—Case 2; (b) SHE
problem with seven switching angles—Case 3.

As can be seen from Figure 11, all groups of solutions can effectively eliminate the
selected harmonics, but their solution trajectories, PPWM waveforms, and FFT spectra
differ. Sometimes, the same solution will be obtained using the PSO algorithm, considering
the modulation range between 1.01 and 1.1 in Figure 11. In this case, it is necessary to run
the PSO algorithm several times until other solutions are obtained. However, it is unknown
whether there are multiple solutions, a unique solution, or even no solution under one
modulation index.

To compare the differences of these three groups of solutions more deeply, the compar-
ison of AFE-side line voltage THD for these three different cases is provided, as shown in
Figure 12.

Figure 12. Comparison of AFE-side line voltage THD for these three different cases.
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Additionally, it can be seen from Figure 12 that there is a significant difference in
AFE-side line voltage THD, which can provide another new idea for how to better reduce
the overall THD of the power system. For instance, the combined solution with the lowest
THD among these three groups of solutions can be applied instead of using only single
group of solutions.

4.2. Results of SHM Implementation

In SHM, the objective function becomes:

E =

√
H2

5 + H2
7 + H2

11 + . . . + H2
49

H2
1

→ min (12)

Additionally, it should meet the following constraints based on the applied grid codes.
Here, grid code EN 50160 and quality CIGRE WG36-05 standard [165,166] are employed
for demonstration. {

|H1 −M| ≤ L1
|Hn |
|H1|
≤ Ln, where n = 5, 7, 11, . . . , 49.

(13)

where L1 is the limitation that determines the value of the fundamental component depend-
ing on the modulation index M, which should ideally be close to 0; Ln is the allowed limits
for each nth harmonic component.

Figure 13 shows two groups of SHM solutions based on 13 and 15 switching an-
gles [167] by built-in function fmincon in MATLAB (MathWorks, 2017b, Natick, MA, USA),
respectively.

Figure 13. Results of solution trajectories, PPWM waveforms and FFT spectra based on fmincon function:
(a) SHM problem with thirteen switching angles; (b) SHM problem with fifteen switching angles.
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In Figure 8c, the magnitudes of the 47th and 49th harmonics are large in the SHE
solution with fifteen switching angles, which do not meet the requirements of the grid
codes. Even though this problem can be solved by increasing the number of switching
angles, as shown in Figure 8d, it will bring more switching losses.

As mentioned in Section 1, SHM is proposed to make the output results of the power
system conform to the requirements specified by the grid codes. Compared with the
solutions in Figure 8c,d, both of the two cases in Figure 13 satisfy the limits of the grid codes
without increasing the switching loss, and can even reduce the switching loss. In addition,
it is important to note that the switching loss of the first case with thirteen switching angles
is less than the second case with fifteen switching angles, but the THD (considered up to
harmonic order 49th) of the second case with fifteen switching angles is better than the first
case with thirteen switching angles. Therefore, there is a trade-off between switching losses
and THD.

5. Existing Problems and Future Challenges

As discussed in Sections 2 and 3, the numerical methods have the features of fast
convergence speed and high precision when a proper initial value is given, but there is
no general calculation method for the determination of initial values for PPWM. This
problem can be solved by algebraic methods and intelligent optimization methods, as their
implementations do not require the determination of initial values.

However, the computation burden of algebraic methods is very heavy, making them
difficult to realize in real time or online. For this reason, the intelligent optimization
methods with real-time/online implementation for PPWM will become the focus and
hotspot of future research. In the research process, the following issues need to be noted
and to be studied more deeply:

• The convergence speed of intelligent optimization methods is not as fast as that of
numerical methods, which should be further improved;

• The precision of the solution by intelligent optimization methods with the mini-
mization of the objective function is limited by the development of microprocessors.
Sometimes, the solutions with low accuracy can be applied for some engineering
applications;

• For intelligent optimization methods, it is unknown whether there is no solution, a
unique solution, or even multiple solutions, or if there is a unique solution, or even no
solution, under one condition;

• Realization with dynamic response, etc.

In addition, a review of the scientific literature shows that the main factors affecting
the output voltage/current spectrum on the high-power AFE converter side using PPWM
are the accuracy of synchronization with the grid, the frequency of the voltage/current
control loop, the sampling frequency of microcontroller (DSP/FPGA), the passive filter, the
voltage distortion and impedance of the network, the voltage distortion and impedance in
the circuit network, the response speed of the control system, the balance of the DC-link
voltage, and the applied PPWM switching pattern/sequence of the semiconductor module
in the high-power AFE converter [168].

Improperly adjusting the parameters of the PI controllers in the voltage/current
control loops in dq synchronous reference frame will lead to significant fluctuations in the
modulation index M and in the phase shift angle between the converter side and grid side,
which will cause the incorrect formation of the PPWM switching patterns/sequences for
the high-power AFE converters. The same bad effect can also be caused by the unfiltered
distortion in the feedback of the phase current and phase locked loop (PLL) control loops
when the control system is synchronized with the voltage vector of the grid. The settings
of the capacity of the cable connection and the parameters of the line filters can cause
resonance effects near the switching frequency of the high-power AFE converter, leading
to severe distortion of the feedback signals of the power system, and further causing the
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operation failures of the high-power AFE converter or other devices at the point of common
coupling (PCC) [169].

Although it is complicated to fine-tune control systems of the high-power AFE con-
verters by using PPWM techniques and many other related issues, systems based on them
continue to be actively used nowadays. Many manufacturers guarantee the EMC of their
devices only relying on the indicators of THD and the individual harmonic components not
exceeding the 50th harmonic, the reason is that the current EMC standards do not specify
the above indicators within the range between 2.5 and 150 kHz [170]. The test results from
several metallurgical enterprises in Russia also confirm the existence of unsolved scien-
tific and technical problems to ensure the EMC of high-power AFE converters [171,172].
Therefore, there is a need for the development of new power quality standards to solve the
problem of electromagnetic compatibility for high-power AFE converters connected with
the grid.

Overall, all of the above factors are closely related to each other and require a deep
analysis based on the problems in the fields of electromagnetic compatibility (EMC) and
energy efficiency and increasing the output power quality of high-power AFE converters
with PPWM.

6. Conclusions

This literature review provides a greater understanding of PPWM techniques as the at-
tractive modulation techniques for AFE converters in high-power applications. The reasons
PPWM techniques are widely used are that they can work with reduced/low switching fre-
quency and can effectively control the harmonic spectrum and voltage/current THD. This
article focuses on the PPWM formulations for different output multilevel waveforms, solv-
ing algorithms, existing problems, and suggestions of research trends in PPWM techniques.
The main achievements and contributions of this review can be summarized as follows:

1. The PPWM formulations for different output multilevel waveforms and their re-
spective characteristics play a significant role in determining the complexity of opti-
mization problem in PPWM techniques and achieving feasible solutions of switching
angles. The level of output voltages and the number of switching angles are other two
elements that will affect the definition of PPWM equations;

2. Three common PPWM output waveforms are presented based on the principle of
equal voltage levels in amplitude, such as quarter-wave symmetric, half-wave sym-
metric, and asymmetrical waveforms, and their corresponding mathematical expres-
sions are also proposed, among which the PPWM formulation with quarter-wave
symmetry offers the simplest form and can be easier implemented. In addition, there
are also output waveforms with unequal or variable voltages in amplitude;

3. Determination of the solving algorithms to find the feasible solution of switching
angles for PPWM techniques are the work that requires careful consideration. There
are two factors that should be considered: (1) PPWM output waveforms/formulation
and (2) Practical goals. A large number of solving algorithms/methods are dis-
cussed and classified into four different groups: (1) Numerical methods; (2) Algebraic
methods; (3) Intelligent optimization methods; and (4) Other improved methods
for real-time/online implementation, based on whether they require initial value
determination, whether they can achieve multiple solutions, and they are capable of
real-time/online operation, etc.;

4. Determination of the objective optimization function is another significant aspect
of PPWM techniques. It can either aim to eliminate selected harmonics or relax the
harmonic limits that consider minimizing voltage/current THD or complying with
requirements of applied grid codes;

5. The existing problems of solving algorithms for PPWM techniques are brought up
for discussion. The numerical methods struggle to calculate the initial values, even
when they have rapid convergence speed and high precision if a suitable initial
value is provided. The algebraic methods can achieve feasible solutions without
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the need of initial values, but they have heavy computation burden, which is not
suitable for real-time/online implementation. Therefore, the intelligent optimization
methods with real-time/online implementation will be the focus and hotspot in this
research direction;

6. Several main factors that will influence the output voltage/current spectrum on the
high-power AFE converter side using PPWM techniques are listed. The situation of
the EMC of many devices, designed nowadays by manufacturers only considering
indicators of THD, and the individual harmonic components not exceeding the 50th
harmonic, should be noted. For this reason, the more advanced and normalized
power quality standards need to be specified.

In the end, PPWM techniques have great potential and hold tremendous promise
in various industrial applications due to its characteristics of low switching frequency
and controllability of the switching pattern/sequence, such as adjustable speed drives
(ASDs), flexible AC transmission systems (FACTS), and renewable energy systems (RESs),
although the dynamic response still needs to be seriously analyzed and evaluated in PPWM
techniques when they are applied into practical applications.
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