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ABSTRACT  In bacteria, all nascent proteins bear the pretranslationally formed 

N-terminal formyl-methionine (fMet) residue. The fMet residue is cotransla-

tionally deformylated by a ribosome-associated deformylase. The formylation 

of N-terminal Met in bacterial proteins is not strictly essential for either trans-

lation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes 

of eukaryotes does not involve the formylation of N-terminal Met. What, 

then, is the main biological function of this metabolically costly, transient, and 

not strictly essential modification of N-terminal Met, and why has Met 

formylation not been eliminated during bacterial evolution? One possibility is 

that the similarity of the formyl and acetyl groups, their identical locations in 

N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the 

recently discovered proteolytic function of Nt-acetylation in eukaryotes might 

also signify a proteolytic role of Nt-formylation in bacteria. We addressed this 

hypothesis about fMet-based degradation signals, termed fMet/N-degrons, 

using specific E. coli mutants, pulse-chase degradation assays, and protein 

reporters whose deformylation was altered, through site-directed mutagene-

sis, to be either rapid or relatively slow. Our findings strongly suggest that the 

formylated N-terminal fMet can act as a degradation signal, largely a cotrans-

lational one. One likely function of fMet/N-degrons is the control of protein 

quality. In bacteria, the rate of polypeptide chain elongation is nearly an or-

der of magnitude higher than in eukaryotes. We suggest that the faster emer-

gence of nascent proteins from bacterial ribosomes is one mechanistic and 

evolutionary reason for the pretranslational design of bacterial 

fMet/N-degrons, in contrast to the cotranslational design of analogous 

Ac/N-degrons in eukaryotes. 
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INTRODUCTION 

Nascent polypeptides bear the N-terminal Met residue, 

encoded by the AUG initiation codon. In bacteria and in 

eukaryotic organelles mitochondria and chloroplasts (re-

mote descendants of bacteria), this Met is N
α
-terminally 

formylated (Nt-formylated) through a “pretranslational” 

mechanism. Formyltransferase (FMT) uses 

10-formyltetrahydrofolate to formylate the α-amino group 

of the Met moiety in the initiator tRNA�
��� [1-8]. The re-

sulting formyl-Met (fMet) becomes the first residue of a 

nascent polypeptide that emerges from a bacterial ribo-

some (Fig. 1A) [9-13]. The formyl moiety of N-terminal 

fMet is cotranslationally removed by peptide deformylase 

(PDF), which is reversibly bound to the ribosome near the 

exit from the ribosomal tunnel (Fig. 1B) [4, 14-27]. A ribo-

some-associated chaperone called trigger factor (TF) inter-

acts with proteins emerging from the tunnel [28-42]. The 

signal recognition particle (SRP) also binds to some nascent 

proteins, recognizing specific sequence motifs (signal se-

quences) and directing SRP-associated proteins for translo-

cation through the inner membrane [42-45].  
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Once N-terminal fMet of a nascent protein is de-

formylated by PDF, the resulting Met can be cleaved off by 

Met-aminopeptidase (MetAP) (Fig. 1B). The removal of 

(deformylated) Met by MetAP requires that a residue at 

position 2, to be made N-terminal by the cleavage, is not 

larger than Val [26, 46-48]. The Escherichia coli PDF binds 

to the 50S ribosomal subunit in part through contacts with 

the L22 ribosomal protein [23, 26]. PDF and MetAP act 

sequentially in their cotranslational processing of nascent 

proteins and compete with each other for interactions with 

their overlapping binding sites on the ribosome near the 

tunnel’s exit [26]. 

High-affinity interactions of the TF chaperone with a 

nascent protein begin to take place after the first ~100 

residues of the protein have been synthesized [28]. De-

formylation of N-terminal fMet by PDF (Fig. 1B) is impeded 

in cells engineered to overproduce TF [28]. Consequently, 

it is likely that in wild-type cells, by the time a nascent pro-

tein becomes larger than ~100 residues, i.e., shortly before 

the binding of TF to this protein [28], its N-terminal fMet 

had already been, in most cases, deformylated by the ribo-

some-associated PDF. The rate of chain elongation by bac-

terial ribosomes in vivo at 37°C is 10-20 residues/sec [49-

52]. Thus, the in vivo lifespan of the formyl group, from the 

moment fMet becomes the first residue of a newly initiat-

ed protein to the moment of fMet deformylation, is usually 

less than a minute. Given the delay in high-affinity binding 

of TF to a nascent protein [28], its first ~100 residues, 

which require 5-10 sec to be made, may be unassociated, 

during a fraction of those 5-10 sec, with any chaperone. 

Although the fMet moiety of bacterial fMet-tRNA�
��� 

interacts with the initiation factor IF2 and thereby contrib-

utes to the efficacy of translation initiation [5, 7, 53-55], 

the formylation of N-terminal Met is not strictly essential 

for protein synthesis and cell viability. For example, E. coli 

fmt mutants lacking formyltransferase are viable. Their 

abnormal phenotypes include slow growth and hypersensi-

tivity to stresses [3, 4, 7]. In Salmonella enterica, the slow 

growth of fmt mutants can be alleviated, during serial pas-

saging, through the emergence of mutants that overex-

press the initiator tRNA�
��� [56]. In Pseudomonas aerugino-

sa, an engineered overexpression of IF2 can alleviate slow 

growth of fmt mutants in minimal media [57]. Moreover, in 

P. aeruginosa and some other bacteria (other than E. coli), 

the ablation of fmt results in cells whose growth rates in 

rich media are nearly identical to those of wild-type cells 

[57, 58].  

In contrast, deformylation of the bulk of N-terminal 

fMet in nascent proteins is required for cell viability. Either 

a strong inhibition of PDF by the antibiotic actinonin or 

ablation of the PDF-encoding def gene are lethal, because 

MetAP is unable to cleave off the formyl-bearing 

N-terminal fMet [46]. (The inability to remove N-terminal 

Met leads to cell death in part because specific non-Met 

residues, e.g., Thr, must become N-terminal in some essen-

tial enzymes, in which these non-Met residues are parts of 

enzymes’ active sites [59].) However, double fmt def mu-

tants, which lack both FMT and PDF and therefore can nei-

ther deformylate fMet nor formylate it in the first place, 

are viable, with phenotypes similar to those of single fmt 

mutants [23].  

In eukaryotes, protein synthesis by the cytosolic ribo-

somes does not involve the formylation of Met, indicating 

that it was feasible, during evolution, to either lose the 

formylation of Met or not to acquire it in the first place. (It 

is unknown whether formylation of Met was a part of 

translation in the last common ancestor of extant organ-

isms.) Innate immune responses involve the recognition of 

Nt-formylated bacterial proteins and short peptides. They 

are present in infected animals at high enough levels to act 

as chemoattractants for macrophages and neutrophils [60, 

61]. Consequently, the formylation of Met can be a detri-

ment to bacterial fitness. 

Given these properties of fMet, why do all examined 

wild-type bacteria contain formyltransferase, deformylase, 

and use fMet, rather than Met, to initiate translation? Why 

has this pervasive, metabolically costly, transient, and not 

strictly essential modification of N-terminal Met not been 

eliminated during bacterial evolution? This conundrum 

suggested to us that the main biological function of fMet, 

the one that underlies the universal presence of N-terminal 

fMet in extant wild-type bacteria, remained to be discov-

ered. 

Previous work identified the N-terminus of an intracel-

lular protein as the site of degradation signals (degrons 

[62]) that are targeted by the N-end rule pathway (Fig. S1). 

This pathway is a set of proteolytic systems whose unifying 

feature is their ability to recognize proteins containing 

N-terminal degradation signals called N-degrons and to 

cause the processive degradation of such proteins by the 

26S proteasome in eukaryotes (Fig. S1A, B) [63-74] or by 

the proteasome-like protease ClpAP in bacteria (Fig. S1C, 

D) [75-80]. In eukaryotes, N-degrons can also mediate the 

degradation of specific proteins (and their noncovalently 

bound protein ligands) by autophagy, as distinguished from 

the proteasome [74]. The main determinant of an N-

degron is either an unmodified or chemically modified “de-

stabilizing” N-terminal residue of a protein. Recognition 

components of the N-end rule pathway are called 

N-recognins. In eukaryotes, N-recognins are specific E3 

ubiquitin (Ub) ligases that recognize N-degrons and 

polyubiquitylate proteins bearing them [71-73]. Bacteria 

lack the bona fide Ub system. The bacterial N-end rule 

pathway employs the ClpS N-recognin (but no ubiquityla-

tion) to deliver targeted N-end rule substrates to the ClpAP 

protease (Fig. S1C, D) [75, 76, 79-93].  

In eukaryotes, the N-end rule pathway consists of two 

branches. One of these branches, called the Arg/N-end rule 

pathway, targets proteins bearing N-terminal Arg, Lys, His, 

Leu, Phe, Tyr, Trp, Ile, Asn, Gln, Asp, Glu, and Cys (Fig. 1B) 

[63, 65, 71-73, 94-97]. This pathway can also target un-

modified N-terminal Met, if Met is followed by a bulky hy-

drophobic residue (Fig. S1A). Among these N-terminal resi-

dues, Asn, Gln, Asp, Glu, and Cys are destabilizing owing to 

their preliminary enzymatic modifications, which include 

N-terminal deamidation (Nt-deamidation) of Asn and Gln 

and Nt-arginylation of Asp, Glu and Cys (the latter  after  its  
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FIGURE 1: The working model of fMet/N-degrons. (A) Pretranslational enzymatic steps that result in formyl-Met (fMet) becoming the first 

residue of a nascent bacterial polypeptide. MetRS, Met-tRNA synthetase. IF proteins, initiation factors. (B) Translating ribosomes, with re-

versibly associated (not depicted) deformylase (PDF) and Met-aminopeptidase (MetAP) competing for their overlapping binding sites near 

the exit from the ribosomal tunnel. High-affinity binding by the TF chaperone to a nascent polypeptide chain occurs once its length exceeds 

~100 residues, usually after deformylation of N-terminal Met. A nascent chain, depicted unfolded in this diagram, tends to become unstably 

folded as it emerges from the tunnel. The rate of the MetAP-mediated removal of the deformylated N-terminal Met residue depends on the 

identity of a residue at position 2. (C-E) Self-explanatory descriptions of the working model of fMet/N-degrons. See the main text for addi-

tional details and relevant citations. 
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conditional oxidation) [66, 96, 98, 99]. The substrate speci-

ficity of the bacterial N-end rule pathway is similar to the 

targeting range of the Arg/N-end rule pathway but is not as 

broad (Fig. S1C, D) [71, 77, 78].  

The other branch of the eukaryotic N-end rule pathway 

is called the Ac/N-end rule pathway. It recognizes proteins 

through their N
α
-terminally acetylated (Nt-acetylated) resi-

dues (Fig. S1B) [67-70]. The degrons and N-recognins of the 

Ac/N-end rule pathway are called Ac/N-degrons and 

Ac/N-recognins, respectively. Nt-acetylation of eukaryotic 

proteins is largely cotranslational, being mediated by ribo-

some-associated Nt-acetylases [100-102]. At least 60% and 

about 90% of proteins are Nt-acetylated in the yeast S. 

cerevisiae and in human cells, respectively [103-106]. Nt-

acetylation is apparently irreversible, i.e., a protein mole-

cule acquires the N
α
-acetyl group largely at birth and re-

tains this group for the rest of that molecule’s lifetime in a 

cell. While Nt-acetylation also takes place in bacteria, it 

involves less than 10% of bacterial proteins and can occur 

only after the PDF-mediated deformylation of N-terminal 

fMet [107, 108]. Nothing is known about whether or not a 

version of the Ac/N-end rule pathway exists in bacteria as 

well. 

The acetyl and formyl groups differ by the CH3 moiety 

vs. the hydrogen atom. It occurred to us that the similarity 

of acetyl and formyl, their identical locations in 

Nt-acetylated and Nt-formylated proteins, and the recently 

discovered proteolytic function of Nt-acetylation in eukar-

yotes [67-71] might also signify the proteolytic role of 

Nt-formylation in bacteria, despite the transiency of the 

formyl group in fMet of nascent bacterial proteins. We 

proposed this hypothesis in 2010 [67] and carried out ex-

periments to verify it in the present study.  

The evidence below (Figs. 2-4) strongly suggests that N-

terminal fMet can act as an N-degron, termed fMet/N-

degron. In bacteria, the rate of polypeptide chain elonga-

tion is nearly an order of magnitude higher than in eukary-

otes. We suggest that the faster emergence of nascent 

proteins from bacterial ribosomes may be the mechanistic 

and evolutionary reason for the pretranslational design of 

bacterial fMet/N-degrons (Fig. 1A), in contrast to the co-

translational design of Ac/N-degrons in eukaryotes (Fig. 

S1B). By analogy with Ac/N-degrons [67-71], one function 

of bacterial fMet/N-degrons is likely to be the quality con-

trol of both nascent proteins and just released, newly 

formed proteins. Specifically, fMet/N-degrons are envi-

sioned to augment the quality of bacterial proteome 

through a preferential and largely cotranslational degrada-

tion of Nt-formylated misfolded proteins. This would hap-

pen at the price of eliminating a subset of normal proteins 

as well, given the stochasticity of both the PDF-mediated 

deformylation of fMet and the alternative, competing pro-

cess of targeting and destroying Nt-formylated proteins 

through their fMet/N-degrons. 

 

 

 

 

RESULTS 

Inhibition of fMet deformylation decreases the levels of 

larger pulse-labeled proteins 

Wild-type E. coli were pulse-labeled for 1 min at 37°C with 
35

S-methionine/cysteine in Fig. 2A. The pulse was followed 

by a chase (in the presence of translation inhibitor chlo-

ramphenicol), preparation of cell extracts, SDS-PAGE, and 

autoradiography. Actinonin, a specific inhibitor of PDF, was 

either absent or present, at indicated concentrations, 

throughout pulse-chases. The inhibition of fMet deformyla-

tion by actinonin was found to cause a significant decrease 

in the levels of larger (more than ~35 kDa)
 35

S-labeled pro-

teins and a concomitant increase of smaller (less than ~20 

kDa) proteins (Fig. 2A).  

Additional 
35

S-pulse-chases (this time in the absence of 

chloramphenicol) with wild-type vs. formyltransferase-

lacking fmt E. coli showed that the above effect of actinon-

in required the formylation of N-terminal Met, because 
35

S-

protein patterns in fmt cells were essentially the same in 

the presence or absence of actinonin (Fig. 2B). These re-

sults (Fig. 2) were consistent with the fMet/N-degron hy-

pothesis (Fig. 1C-E), as it predicts that the probability of 

destruction of an fMet-bearing nascent protein would be 

higher, on average, for a larger protein, because its poly-

peptide chain, i.e., its ribosome-associated peptidyl-tRNA, 

would dwell in the vicinity of a translating ribosome for a 

longer time than would be the case for a smaller 

fMet-bearing nascent protein. The postulated fMet/N-

recognin/protease (Fig. 1E) or at least its fMet/N-recognin 

part is envisioned to be reversibly associated with the ribo-

somes (see Discussion). Thus, the probability of capture of 

larger Nt-formylated proteins by this protease would be 

higher than the corresponding probability for smaller fMet-

bearing nascent proteins, because the latter would be re-

leased sooner and diffuse into the bulk solvent, i.e., into 

regions with (presumably) lower levels of the 

fMet/N-recognin/protease. 

An alternative interpretation of these results is that ac-

tinonin might increase the probability of premature chain 

termination. This increase would lead to a lower relative 

abundance of larger (as compared to smaller) pulse-

labeled proteins in the presence of actinonin, thereby ac-

counting for our results (Fig. 2) without invoking a prefer-

ential degradation of these proteins. However, this inter-

pretation was made unlikely by the fact that the observed 

effect of actinonin required the formylated state of 

N-terminal Met, i.e. this effect of actinonin was not ob-

served with fmt cells, in contrast to wild-type cells (Fig. 2B). 

 

Higher levels of a protein reporter in formylation-lacking 

mutants 

One prediction of the fMet/N-degron hypothesis is as fol-

lows: even in the case of a nascent protein whose 

N-terminal amino acid sequence makes it an efficacious 

PDF substrate, some molecules of this protein would still 

be expected to be destroyed through the protein’s fMet/N-

degron, given the stochasticity of deformylation of N-

terminal fMet by PDF and the alternative, competing pro-
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cess of targeting an fMet-bearing protein for degradation 

(Fig. 1C-E). Consequently, the ribosome-associated PDF 

deformylase would be expected to occasionally lose the 

competition for N-terminal fMet to the postulated fMet/N-

recognin/protease, resulting in the degradation of a tar-

geted nascent protein. The kinetic advantage of PDF may 

be decreased if a nascent N-terminal segment of a protein 

would be either unfolded (with N-terminal fMet partly 

obscured within a “molten globule”) or misfolded in a way 

that decreases the time-averaged solvent exposure of 

N-terminal fMet (Fig. 1C-E and Discussion). If so, the 

steady-state level of such a protein would be expected to 

increase in formyltransferase-lacking fmt mutants.  

We addressed this prediction through a reporter bear-

ing the N-terminal sequence of a protein called D2. Earlier 

studies of D2 protein in plant chloroplasts, by Giglione, 

Meinnel and colleagues [109, 110], were relevant to exper-

iments of the present study. Although our 2010 hypothesis 

about fMet as a degradation signal [67] was cited by Gi-

glione and colleagues [110], they did not interpret their 

findings with D2 protein in terms of fMet/N-degrons. In 

contrast, the results below, using the N-terminal segment 

of D2 as a part of protein reporters (Figs. 3 and 4), strongly 

suggest that the data by Giglione et al. [109, 110] can be 

interpreted, in hindsight, as a likely example of protein 

degradation mediated by fMet/N-degrons. 

Our 37-kDa reporter, termed P1
T2

 (“protein-1 contain-

ing Thr at position 2”), comprised the 11-residue 

N-terminal sequence MTIAIGTYQEK of the wild-type D2 

protein (D2
1-11

), followed by the sequence GSGAWLL-

PVSLVKRKTTLAPNTQTASPRALADSLMQLARQVSRG (a 45-

residue segment derived from the previously used e
K
 se-

quence [extension (e) containing lysine (K)] [67, 71, 111]), 

by the 9-residue ha epitope tag (YPYDVPDYA), by the 

AFLGQ linker [67], and by the 267 residue Ura3 protein of 

the yeast Saccharomyces cerevisiae (Fig. 3A). The Ura3 

moiety is a frequently employed component of protein 

reporters [67, 69]. The e
K
 segment is another sequence 

often used in reporters, in part because e
K
 is conforma-

tionally disordered while lacking degrons in both E. coli and 

FIGURE 2: Pulse-chase analyses in wild-type 

and formylation-lacking fmt E. coli in the ab-

sence or presence of actinonin, an inhibitor of 

deformylation. (A) Wild-type E. coli were 

pulse-labeled with 
35

S-methionine/cysteine for 

1 min, followed by a chase (in the presence of 

chloramphenicol, a translation inhibitor) for 

indicated times, extraction of proteins, SDS-

PAGE, and autoradiography. Pulse-chases were 

carried out either in the absence of actinonin 

(lanes 1-3) or in the presence of increasing 

concentrations of actinonin (lanes 4-12). Mo-

lecular masses of protein markers are indicat-

ed on the left. (B) Same as in (A) but 

pulse-chases were carried out in the absence 

of chloramphenicol in wild-type cells (lanes 1-

9) and congenic fmt E. coli (lanes 10-18). 
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S. cerevisiae [67, 71, 111]. 

P1
T2

 was expressed from the constitutive PKmR promoter 

in wild-type, null fmt, and null fmt def E.coli strains, fol-

lowed by extraction of proteins, SDS-PAGE, and immunob-

lotting with anti-ha antibody (Fig. 3A, D). Extracts were 

adjusted for equal total loads using Bradford assay [112] 

and Coomassie staining of proteins fractionated by SDS-

PAGE (Fig. 3D). The levels of the P1
T2

 reporter in both fmt 

and fmt def cells were strikingly higher than in congenic 

wild-type cells, in agreement with the above prediction of 

the fMet/N-degron hypothesis (Fig. 3A, D). 

The ~70-residue N-terminal segment (D2
1-11

-e
K
-ha) of 

the 37 kDa P1
T2

 reporter is a biologically irrelevant mix of 

different sequences (Fig. 3A). A nascent protein exempli-

fied by P1
T2

, with its disordered N-terminal region, may be 

less amenable to the PDF-mediated deformylation and 

would be, therefore, a relatively favored target for the 

capture and degradation by the postulated fMet/N-

recognin/protease in fMet-containing wild-type cells (see 

Discussion for a more detailed exposition). Conversely, one 

would expect that an up-regulation of such a reporter in 

formyltransferase-lacking cells may be particularly high, in 

agreement with the observed increase of P1
T2

 in fmt and 

fmt def E. coli (Fig. 3A, D). 

 

Bypass of Met formylation can equalize the levels of effi-

cacious and poor substrates of deformylase.  

When the D2 protein, encoded by chloroplast DNA, is ex-

pressed in chloroplasts, it bears the formylated N-terminal 

fMet, similarly to nascent bacterial proteins. The fMet of 

D2 is deformylated by two functionally overlapping PDFs in 

chloroplasts [21]. The Thr residue at position 2 of the D2 

protein (denoted as D2
T2

) becomes its N-terminal residue 

once MetAP cleaves off the (previously deformylated) N-

terminal Met (Fig. 1B). The N-terminal sequence fMet-Thr 

(fMT) of a nascent D2
T2

 protein is a favorable sequence 

context for the PDF-mediated deformylation of fMet, as 

had been shown, in particular, in a detailed study of sub-

FIGURE 3: Analyses of reporter proteins in 

wild-type and formylation-lacking fmt E. coli. 

(A) Design of the P1
T2

 (D2
1-11

-eK-ha-Ura3) re-

porter protein. The term P1
T2

 (protein-1 con-

taining Thr at position 2) denotes a chimeric 

reporter containing the indicated N-terminal 

segments upstream of the 267-residue S. 

cerevisiae Ura3 moiety. Arrowheads indicate 

deformylation of N-terminal fMet by the PDF 

deformylase and the subsequent removal of 

Met by MetAP. See the main text for details. 

(B) Same as in (A) but the otherwise identical 

P1
T2D

 reporter contains Asp (D) at position 2. 

The rate of PDF-mediated deformylation of N-

terminal fMet with Asp at position 2 is at least 

10-fold lower than the rate of deformylation 

with Thr at position 2. Another difference be-

tween P1
T2

 and P1
T2D

 is the retention of N-

terminal Met in P1
T2D

. See the main text for 

details and citations. (C) The use of ubiquitin 

(Ub) fusions to generate P1
T2

 and P1
T2D

 

through the removal of the N-terminal Ub 

moiety by the S. cerevisiae Ubp1 deubiq-

uitylase expressed in E. coli. (D) Immunoblot-

ting analyses, after SDS-PAGE, of the P1
T2

 re-

porter protein expressed in fmt (lane 1), wild-

type (lane 2) and fmt def (lane 3) E. coli. Lanes 

4-6, the corresponding total protein patterns 

(Coomassie staining). Lane 7, molecular mass 

markers. (E) Immunoblotting analyses, after 

SDS-PAGE, of the P1
T2

 and P1
T2D

 reporters 

expressed from the Para promoter in wild-type 

E. coli (lanes 1-4), and of the Ub fusions Ub-

P1
T2

 and Ub-P1
T2D

 in wild-type E. coli express-

ing the S. cerevisiae Ubp1 deubiquitylase 

(lanes 5-8). (F) Same as in (E), but independ-

ent experiments, in addition to expressing Ub-

P1
T2

 and Ub-P1
T2D

 in the absence of coex-

pressed yeast Ubp1 (lanes 9-12). See the main 

text for details and citations. 
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strate preferences of E. coli PDF for amino acid residues 

downstream from fMet [17].  

When Giglione and colleagues [109, 110] carried out 

pulse-chases to monitor the degradation of the wild-type 

D2
T2

 protein in chloroplasts, they found this protein to be 

relatively long-lived under normal conditions. However, 

D2
T2

 became short-lived in the presence of actinonin, 

which inhibited the PDF-mediated deformylation of nas-

cent D2
T2

. To address the reason for this effect, Giglione et 

al. [109, 110] mutated Thr at position 2 of D2
T2

 to either 

Asp (D) or Glu (E). The resulting mutant proteins D2
T2D

 and 

D2
T2E

 were short-lived in chloroplasts even in the absence 

of actinonin, i.e., in the absence of PDF inhibition [109, 

110]. The deformylated N-terminal Met of wild-type D2
T2

 

was expected to be cleaved off by MetAP, because Thr is 

smaller than Val (see Introduction). In contrast, N-terminal 

Met was expected to be retained in the mutant D2
T2D

 and 

D2
T2E

 proteins, inasmuch as both Asp and Glu are larger 

than Val. Therefore Giglione and colleagues interpreted 

the accelerated degradation of D2
T2D

 and D2
T2E

 (compared 

to D2
T2

) in chloroplasts as resulting from the retention of 

their deformylated N-terminal Met, i.e., as the conse-

quence of the inability of MetAP to remove deformylated 

Met from the N-termini of D2
T2D

 and D2
T2E

, in contrast to 

wild-type D2
T2

 [110]. 

However, our results (Fig. 3) suggest a different, 

formyl-based interpretation of the above D2 findings [110]. 

This alternative interpretation ascribes the destruction of 

the mutant D2
T2D

 and D2
T2E

 proteins to a relatively slow 

PDF-mediated deformylation of N-terminal fMet if it is 

followed by either Asp or Glu, in comparison to the at least 

10-fold faster deformylation of fMet if it is followed, for 

example, by the Thr residue, which is present at position 2 

of wild-type D2
T2

. Thus, we suggest that the correct inter-

pretation of the earlier data about the protein D2
T2

 is the 

one in which D2
T2

 can be degraded through its 

fMet/N-degron if deformylation of fMet in D2
T2

 is inhibited 

by actinonin. Further, the data described below (Fig. 3E, F) 

suggest that the previously observed rapid destruction of 

the mutant D2
T2D

 and D2
T2E

 proteins [109, 110] is also me-

diated by their fMet/N-degrons, because the N-terminal 

fMet-Asp and fMet-Glu sequences of D2
T2D

 and D2
T2E

 are 

the least favorable sequence contexts for the 

PDF-mediated deformylation of N-terminal fMet, as had 

been shown in a detailed study of the sequence prefer-

ences of E. coli PDF [17]. 

The P1
T2

 protein (D2
1-11

-e
K
-ha-Ura3) and the otherwise 

identical P1
T2D

 protein, with Asp replacing Thr at position 2, 

were expressed from the arabinose-inducible Para promoter 

(Fig. 3A, B and Table S2). These reporters were identical, in 

their 11-residue N-terminal segments, to the N-terminal 

sequences of the wild-type D2
T2

 and mutant D2
T2D

 proteins 

that had been studied in the cited chloroplast-based exper-

iments [109, 110]. Two other plasmids expressed the oth-

erwise identical Ub-P1
T2

 and Ub-P1
T2D

, i.e., the Ub-fusion 

counterparts of P1
T2

 and P1
T2D

 (Fig. 3C and Table S2). 

Ub is not recognized as a degron in wild-type E. coli. 

However, a Ub fusion can be cotranslationally cleaved in E. 

coli if they express a deubiquitylating (DUB) enzyme such 

as Ubp1 of S. cerevisiae [75, 113, 114]. Placing the Ub moi-

ety in front of two reporters and expressing the resulting 

Ub fusions in Ubp1-containing E. coli allowed the produc-

tion of P1
T2

 and P1
T2D

 through the site-specific removal, by 

Ubp1, of the N-terminal Ub moiety. (This version of the Ub 

fusion technique was developed in our studies of the E. coli 

N-end rule pathway [75, 113, 114].) The difference be-

tween two modes of reporter expression, the direct one 

and the Ub fusion-mediated one, is the transient presence 

of the fMet residue at the N-termini of directly produced 

P1
T2

 and P1
T2D

 vs. the presence of unformylated N-terminal 

Met in the otherwise identical P1
T2

 and P1
T2D

 that had been 

generated from Ub-P1
T2

 and Ub-P1
T2D

 through the removal 

of their Ub moiety (Fig. 3C). It should be noted that alt-

hough N-terminal fMet was present at the N-terminus of 

nascent Ub upon the expression of Ub-P1
T2

 and Ub-P1
T2D

 in 

E. coli, the rapid folding of the emerging Ub moiety would 

be expected to facilitate deformylation of its N-terminal 

fMet, thereby abrogating its fMet/N-degron (Fig. 1D). 

Equal total protein loads were controlled as described 

above for P1
T2

 in wild-type and fmt cells (Fig. 3D). Extracts 

from wild-type E. coli containing the directly expressed P1
T2

 

and P1
T2D

 reporters were fractionated by SDS-PAGE, fol-

lowed by immunoblotting with anti-ha antibody (Fig. 3E, F). 

Whereas the band of P1
T2

 could be detected in cells grow-

ing in the presence of arabinose, the level of the otherwise 

identical P1
T2D

, containing Asp at position 2 (this is an unfa-

vorable sequence context for fMet deformylation [17]) was 

either too low for detection in one experiment (Fig. 3F, 

lanes 1-4) or was detectable but considerably lower than 

the level of P1
T2

 in another, independent experiment (Fig. 

3E, lanes 1-4).  

In contrast, when the same two reporters, P1
T2

 and 

P1
T2D

, were expressed as Ub fusions in E. coli that also ex-

pressed the yeast Ubp1 DUB enzyme, two changes were 

observed. First, the yields of both reporters were greatly 

increased. Second, their steady-state levels, instead of be-

ing strongly different upon reporters’ direct expression, 

became equal (Fig. 3C, E, F). Expression of the same Ub 

fusions in E. coli lacking the Ubp1 DUB yielded equal levels 

of the larger, unprocessed Ub-P1
T2

 and Ub-P1
T2D

 fusions 

(Fig. 3F, lanes 9-12). 

These findings (Fig. 3B, C, E, F), together with the data 

about P1
T2

 in wild-type vs. fmt E. coli (Figs. 3A, D), suggest-

ed that the N-terminal fMet residue of both nascent and 

just completed, newly formed proteins can participate in 

two alternative transitions: the PDF-mediated deformyla-

tion of N-terminal fMet vs. its capture by the postulated 

fMet/N-recognin/protease and the ensuing processive 

degradation of a targeted protein (Fig. 1C-E and Discussion). 

 

Formylation-dependent selective destabilization of a re-

porter protein.  

In these 
35

S-pulse-chase assays, our reporters were deriva-

tives of a natural cytosolic E. coli protein, the 164-residue 

PpiB peptidyl-prolyl cis-trans isomerase [115]. One feature 

of these assays (Fig. 4) was a “built-in” reference protein. 

fMVTF, the N-terminal sequence of PpiB, is a motif favored 

by the E. coli PDF deformylase [17]. This sequence is indi-



K.I. Piatkov et al. (2015)  Formyl-methionine as a degradation signal 

 
 

OPEN ACCESS | www.microbialcell.com 383 Microbial Cell | October 2015 | Vol. 2 No. 10 

cated by the superscript on the left side of the term 

PpiB
�
����

f, which denotes the C-terminally flag-tagged wild-

type PpiB, a reference protein. It was coexpressed with one 

of two otherwise identical reporters, termed, respectively, 
MYFY

PpiBf-Ub and 
MDDD

PpiBf-Ub (Fig. 4). The reference pro-

tein PpiB
�
����

f and the reporter 
MYFY

PpiBf-Ub were coex-

pressed from two identical, arabinose-inducible, tandemly 

arranged Para promoters (Fig. 4A, B). An otherwise identical 

plasmid coexpressed the reference PpiB
�
����

f and the re-

porter 
MDDD

PpiBf-Ub (Fig. 4C, D and Table S2).  

The two reporters, 
MYFY

PpiBf-Ub and 
MDDD

PpiBf-Ub, dif-

fered from the reference PpiB
�
����

f at two places: by the 

sequence of three residues following N-terminal Met and 

by the presence of the ~8 kDa Ub moiety C-terminally to 

the PpiBf moiety (Fig. 4A, C). The Ub moiety was linked, C-

terminally, to the PpiB moiety solely for making it easy to 

distinguish, by SDS-PAGE, the resulting reporters 
MYFY

PpiBf-Ub and 
MDDD

PpiBf-Ub from the reference PpiB
�
����

f 

(Fig. 4).  

Three residues, Val-Thr-Phe, which follow N-terminal 

Met in wild-type PpiB, were replaced, in 
MYFY

PpiBf-Ub and in 
MDDD

PpiBf-Ub, by the sequences Tyr-Phe-Tyr (YFY) and 

Asp-Asp-Asp (DDD), respectively (Fig. 4). 
MYFY

PpiBf-Ub was 

our “rapidly deformylatable” reporter (also called reporter-

1), since N-terminal sequences of the kind exemplified by 

the sequence fMYFY are kinetically favorable contexts for 

the PDF-mediated deformylation of N-terminal fMet (Fig. 

4A) [17]. The N-terminal sequence fMVTF, of the reference 

PpiB
�
����

f, is also a favorable motif for the PDF-mediated 

deformylation of N-terminal fMet [17]. 

FIGURE 4: Formylation-dependent selective 

destabilization of PpiB-based reporter proteins. 

(A) Diagram of the expression cassette in which 

two identical tandem Para promoters express the 

C-terminally flag-tagged PpiB reference protein 

PpiB
�
����

f and the reporter protein 
MYFY

PpiBf-Ub 

(reporter-1). The latter differs from PpiB
�
����

f by 

three amino acid residues adjacent to N-terminal 

fMet, and by the presence of C-terminal Ub moie-

ty, added to make the two proteins distinguisha-

ble by size. (B) Lanes 1-6, formylation-lacking fmt 

E. coli were pulse-labeled with 
35

S-

methionine/cysteine for 1 min, followed by a 

chase (in the absence of chloramphenicol) for 

indicated times, extraction of proteins, immuno-

precipitation with a monoclonal anti-flag anti-

body, SDS-PAGE, and autoradiography. Lanes 7-

12, same but in wild-type E. coli. (C) Same as in 

(A), with the reference PpiB
�
����

f and the report-

er 
MDDD

PpiBf-Ub (reporter-2), which differed from 
MYFY

PpiBf-Ub in (A) and (B) by three residues 

(Asp-Asp-Asp) downstream from N-terminal 

fMet. (D) Same as in (B) but with PpiB
�
����

f and 
MDDD

PpiBf-Ub (reporter-2). See the main text for 

the logic and details of these experiments. 
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The encoded N-terminal sequence of 
MDDD

PpiBf-Ub (re-

porter-2) was Met-Asp-Asp-Asp (MDDD) (Fig. 4C). 
MDDD

PpiBf-Ub was our “slowly deformylatable” reporter, 

because the N-terminal sequence fMDDD has been shown 

to be among the most unfavorable contexts for the 

PDB-mediated deformylation of N-terminal fMet [17]. De-

formylation, by purified E. coli PDF, of synthetic peptides 

bearing N-terminal fMet was at least 10-fold faster for 

most favorable fMet sequence contexts, in comparison to 

least unfavorable ones [17]. These sequence motifs were 

exemplified, in our reporters, by fMYFY and fMVTF (favor-

able contexts) vs. fMDDD (unfavorable context) (Fig. 4A, C). 

If fMet/N-degrons exist (in other words, if the postulat-

ed fMet/N-recognin/protease exists), the relatively slowly 

deformylated reporter-2 and the relatively rapidly de-

formylated reporter-1 would be vulnerable both to the 

PDF-mediated deformylation of their N-terminal fMet (a 

step that abrogates fMet/N-degrons) and to the alternative, 

competing event of capture and processive degradation of 

a reporter protein through its fMet/N-degron. In the latter 

outcome, the postulated fMet/N-recognin/protease suc-

ceeds in binding to N-terminal fMet before its deformyla-

tion by PDF. Either one of these mutually exclusive steps 

would take place while the polypeptide chain of a nascent 

reporter continues to emerge from the ribosomal tunnel at 

the rate of 10-20 residues/sec. 

Given this disposition, one key prediction of the 

fMet/N-degron hypothesis is as follows: if the N-terminal 

fMet residue of one nascent protein (reporter-2) is de-

formylated significantly slower than fMet of another (near-

ly identical) nascent protein (reporter-1) (Fig. 4A, C), the 

molecules of reporter-2 would be targeted for destruction 

more often through its (more frequently retained) fMet/N-

degron, resulting in a higher rate of degradation of report-

er-2.  

Because these events are expected to involve largely 

nascent, still growing polypeptide chains, the second pre-

diction is that a difference in degradation rates between 

reporter-1 and reporter-2 in wild-type E. coli may be large-

ly confined to previously glimpsed proteolytic processes 

referred to as the “time-zero”, “before-chase” proteolysis 

[67-69, 71, 97, 116-118]. These effects result from the pro-

cessive cotranslational degradation, in contrast to post-

translational degradation. While the posttranslational deg-

radation of a protein is measured during a chase, the ex-

tent of cotranslational degradation of the same protein is 

determined by comparing time-zero (before chase) levels 

of this protein and an otherwise identical protein that lacks 

(or nearly lacks) the relevant degron [67-69, 71, 97, 116-

118]. Given the second prediction above, the presence, in 

our assays, of the “built-in” reference protein PpiB
�
����

f (Fig. 

4) was particularly important, because a reference greatly 

increases the accuracy of quantifying both cotranslational 

and posttranslational degradation, with the cotranslational 

mode revealing itself through time-zero, before-chase ef-

fects. 

The third and equally critical prediction of the fMet/N-

degron hypothesis: if a faster degradation of the more 

slowly deformylated reporter-2 is actually observed in 

wild-type cells (possibly as a time-zero, before-chase ef-

fect), this effect should vanish if 
35

S-pulse-chases are per-

formed in fmt cells, which lack formyltransferase and 

therefore lack fMet/N-degrons. 

Experiments designed as described above were carried 

out. The results were in agreement with all three predic-

tions of the fMet/N-degron hypothesis (Fig. 4). 

In the first set of 
35

S-pulse-chases, wild-type E. coli and 

its fmt mutant (lacking Met formylation) were transformed 

with pKP458, which expressed, from two identical Para 

promoters, the rapidly deformylatable PpiB
�
����

f reference 

and the also rapidly deformylatable 
MYFY

PpiBf-Ub reporter-1 

(Fig. 4A, B and Table S2). Arabinose was added to induce 

expression of the two proteins, followed by 1-min pulse 

with 
35

S-methionine/cysteine at 37°C, chases for 1, 3, 7, 15 

and 30 min, preparation of cell extracts, immunoprecipita-

tion of PpiB
�
����

f and 
MYFY

PpiBf-Ub with anti-flag antibody, 

fractionation of precipitated proteins by SDS-PAGE, and 

autoradiography. The data were quantified by plotting, on 

a semi-logarithmic scale, the ratios of 
35

S in the band of the 
MYFY

PpiBf-Ub reporter-1 to 
35

S in the band of the reference 

PpiB
�
����

f (Fig. 4A, B, E). 

PpiB
�
����

f and 
MYFY

PpiBf-Ub were relatively stable over 

the 30-min chase in wild-type and fmt E. coli. In addition, 

no significant differences in 
35

S ratios of 
MYFY

PpiBf-Ub to 

PpiB
�
����

f at the time-zero (before chase) point were ob-

served between wild-type and fmt cells (Fig. 4E; curves 1 

and 2). That was expected, given the approximately equal 

rates of the PDF-mediated deformylation of the reference 

and reporter-1, as described above. 

In the second set of 
35

S-pulse-chases, wild-type and fmt 

E. coli were transformed with pKP459, which expressed, 

from the two Para promoters, the rapidly deformylatable 

PpiB
�
����

f  and  the  relatively  slowly deformylatable
 

MDDD
PpiBf-Ub reporter-2 (Fig. 4C, D and Table S2). This 

comparison revealed a strikingly high ~8-fold difference 

between the rates of time-zero, before-chase degradation 

of the rapidly deformylatable 
MYFY

PpiBf-Ub reporter-1 and 

the relatively slowly deformylatable 
MDDD

PpiBf-Ub reporter-

2, indicating a much higher rate of the early, presumably 

cotranslational degradation of the (relatively) slowly de-

formylated 
MDDD

PpiBf-Ub in wild-type cells (Fig. 4E; curves 2 

and 4). Crucially, the bulk of this effect was abrogated 

when the otherwise identical 
35

S-pulse-chases were per-

formed in fmt cells, which did not formylate N-terminal 

Met and therefore could not create fMet/N-degrons (Fig. 

4E; curves 1 and 3).  

While the degradation of the 
MDDD

PpiBf-Ub reporter-2 in 

wild-type cells was largely of the time-zero, before-chase 

kind, this reporter was also destroyed, relatively slowly, 

during chases in both wild-type and fmt cells (Fig. 4C-E; 

curves 3 and 4). In contrast, little posttranslational degra-

dation was observed with the 
MYFY

PpiBf-Ub reporter (differ-

ing from 
MDDD

PpiBf-Ub by three residues after N-terminal 

Met) in either wild-type or fmt cells (Fig. 4A, B, E). A parsi-

monious interpretation of the slow posttranslational deg-

radation of 
MDDD

PpiBf-Ub is that the sequence of three Asp 

residues after N-terminal Met may have created a weak, 

largely posttranslational and formylation-unrelated degron. 
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The design of these assays, i.e., their built-in reference 

protein as well as two identical transcriptional promoters 

expressing a reference and a reporter in wild-type vs. fmt 

cells, controlled for variables other than protein degrada-

tion (Fig. 4A, C). The ~8-fold difference in the time-zero, 

before-chase levels of the rapidly deformylated reporter-1 

and the relatively slowly deformylated reporter-2 in wild-

type cells, and the dependence of this effect on the pres-

ence of formyltransferase (Fig. 4E) seem to allow only one 

plausible and parsimonious interpretation. Specifically, we 

posit that this difference and its dependence on Nt-

formylation indicated the presence, in our reporters, of 

PDF-vulnerable fMet/N-degrons (Figs. 1C-E and 4). 

 

DISCUSSION 

Key results of the present study are the evidence that rap-

idly and slowly deformylated protein reporters are de-

stroyed at different rates in wild-type E. coli, and that this 

effect is abrogated in formylation-lacking fmt mutants. 

These and related findings strongly suggest that the 

formylated N-terminal fMet residue can act as an N-degron, 

termed fMet/N-degron, of a novel bacterial N-end rule 

pathway, termed the fMet/N-end rule pathway (Figs. 1-4). 

 

Incomplete deformylation of nascent bacterial proteins in 

vivo 

N-terminal fMet of nascent polypeptides can be incom-

pletely deformylated by PDF in vivo [60, 119]. The incom-

plete deformylation is particularly pronounced with DNA-

encoded, ribosome-generated small natural peptides [120]. 

For example, the bulk of secreted 7-residue microcin-C 

peptide is not deformylated in vivo [120], although this 

peptide’s second residue, in the N-terminal sequence 

fMet-Arg, is one of position-2 residues that are optimal for 

deformylation of fMet by PDF [17].  

The molar concentration of PDF in E. coli is 2-3 μM, an 

order of magnitude below that of the ribosomes, ~30 μM 

[7, 23, 37]. Consequently, an efficacious deformylation of 

nascent proteins requires that molecules of PDF “hop” 

among the PDF-binding sites of different ribosomes. Given 

the resulting stochasticity of deformylation, given low 

steady-state levels of PDF in the bulk solvent (since most 

PDF molecules are ribosome-bound), and given a signifi-

cant dependence of the rate of deformylation by PDF on 

fMet-proximal sequence contexts [17, 18], one should ex-

pect an incomplete deformylation of bacterial proteins to 

be a frequent occurrence [60, 119]. For example, a 2-D 

electrophoretic study of abundant Bacillus subtilis proteins 

indicated that some of them retained, at steady-state, a 

small but significant fraction of their initial (formylated) 

N-terminal fMet [121]. 

Analyses, using 2-D electrophoresis, of the in vivo inhi-

bition of fMet deformylation by the PDF-specific inhibitor 

LBM-415 in Staphylococcus aureus and Streptococcus 

pneumoniae demonstrated the accumulation of formylated 

(non-deformylated) counterparts of normally deformylated 

proteins [122]. Interestingly, while a subset of proteins in 

LBM-415-treated bacterial cells exhibited a telltale double-

spot appearance on 2-D gels (a formylated plus de-

formylated species), many other proteins remained as sin-

gle spots, without formylated counterparts [122]. This find-

ing, remarked upon but not explained by the authors [122], 

might signify the selective degradation of some formylated 

proteins through fMet/N-degrons suggested by the results 

of our study (Figs. 1-4). In this interpretation of the data in 

ref. [122], those proteins that accumulate, in the presence 

of PDF inhibitor, as formylated (non-deformylated) species, 

might be partially protected from degradation owing to a 

steric shielding (sequestration) of their fMet/N-degrons, 

either through intramolecular protein folding or through 

the formation of “protective” oligomeric complexes with 

cognate protein ligands. The latter mechanism would be 

analogous to the previously discovered shielding-mediated 

conditionality of natural eukaryotic Ac/N-degrons [68]. 

 

Working model of fMet/N-degrons 

The idea of fMet/N-degrons was sketched in ref. [67]. It is 

now described in detail (Fig. 1C-E) vis-á-vis the data (Figs. 

2-4). 

First, we presumed that a distinct fMet/N-

recognin/protease (envisioned as a transient complex of 

both) can recognize, in a competition with PDF, the N-

terminal fMet moiety of a nascent protein and thereby 

initiate a processive destruction of this protein either co-

translationally or posttranslationally. The latter distinction 

is based on whether the protein’s N-terminal fMet is cap-

tured by the fMet/N-recognin/protease before or after the 

protein’s nascent polypeptide chain is released from the 

last tRNA molecule at the ribosome’s peptidyltransferase 

site. Cotranslational protein degradation is defined as the 

processive degradation of a nascent, growing polypeptide 

that exists, at the time of proteolytic attack, as a ribosome-

associated peptidyl-tRNA.  

A proteolytic pathway that targets a specific degron in 

a protein and converts the bulk of it to short peptides must 

be highly processive. A nonprocessive protease would tend 

to release an initially captured protein and thereby would 

lose it for good if a protein’s segment containing the 

degron had already been destroyed. The postulated bacte-

rial fMet/N-recognin/protease is envisioned to be a pro-

cessive proteasome-like protease, possibly one of the 

known ones, such as, for example, FtsH, Lon, or a ClpP-

containing protease [123] (see also Concluding Remarks). 

One protease of the latter class, ClpXP, is unlikely to be 

involved, because its in vitro activity toward a test protein 

was shown to be independent of the presence or absence 

of Nt-formylation [22]. 

The degradation of an fMet-bearing nascent protein, 

i.e., of a ribosome-bound peptidyl-tRNA, would proceed to 

completion once it begins, after the recognition of pro-

tein’s N-terminal fMet. During this (postulated) degrada-

tion, the fMet/N-recognin/protease, having captured the 

protein’s N-terminal fMet, would remain associated with 

the translating ribosome. The emerging chain of a nascent 

protein would continue to be delivered into the protease’s 

chamber and destroyed to short peptides until the natural 

(i.e., not premature) chain termination event at the ribo-
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some’s peptidyl-transferase site. An alternative possibility 

is that the initiation of cotranslational degradation of a 

ribosome-associated peptidyl-tRNA would lead, through 

allosteric effects, to a premature termination of translation. 

Second, the fMet/N-recognin/protease or at least its 

fMet/N-recognin part was presumed to have a non-zero 

affinity for the ribosomes, forming a “cloud” of fMet/N-

recognin/protease molecules (or fMet/N-recognin alone) 

“hugging” the ribosomes. The analogous cloud of ribo-

some-hopping PDF molecules [23] would partially overlap 

with the (presumed) cloud of fMet/N-recognin/protease 

molecules. One version of this model envisions a “tighter 

cloud” of ribosome-hopping PDF molecules, i.e., a smaller 

time-averaged distance between them and the ribosomes, 

in comparison to a “looser cloud” of fMet/N-

recognin/protease molecules, reflecting their (presumed) 

lower affinity for the ribosomes. In such a setting, which 

was partly characterized for PDF [23] and is postulated 

here for the fMet/N-recognin/protease (or its fMet/N-

recognin part), a molecule of ribosome-bound PDF would 

have a stochastically better “shot” at binding to and de-

formylating N-terminal fMet of an emerging nascent pro-

tein. The term “looser cloud” implies a larger time-

averaged distance of the fMet/N-recognin/protease from 

the tunnel’s exit, in comparison to PDF. Whether the 

“cloud” model is relevant to a postulated fMet/N-recognin 

rather than to a “downstream” protease remains to be 

seen, particularly if the protease in question is the inner 

membrane-embedded FtsH protease (see Concluding Re-

marks). 

In this working model of fMet/N-degrons, some non-

wild-type N-terminal sequences, once they emerge from 

the ribosomal tunnel, would either not collapse rapidly 

enough, or would collapse into globules that impede de-

formylation of N-terminal fMet by PDF. In the latter case, a 

collapse may prevent, at least in part, an exposure of the 

roughly 10-residue N-terminal region (including its fMet) 

on the globule’s surface. As a result, the ribosome-bound 

PDF would often fail to deformylate fMet, given the narrow 

kinetic/stochastic window of opportunity that PDF is al-

lowed to have (Fig. 1C-E). As to the former case, the radii 

of gyration of folded polypeptides with lengths of up to 

100 residues are 1.0-1.2 nm, whereas the radii of gyration 

of unfolded polypeptides increase from ~1.0 to ~3.0 nm as 

their length increases from 8 to 100 residues [124]. In such 

a setting, the N-terminal fMet residue of a (largely) unfold-

ed polypeptide may be stochastically and partially buried in 

a fluctuating, partially folded conformation, thereby im-

peding the capture and deformylation of fMet by the ribo-

some-bound PDF (Fig. 1C-E).  

Results of a study based on the ribosome profiling 

technique suggested that the PDF-mediated deformylation 

of nascent bacterial proteins takes place, in the main, be-

fore they become significantly larger than ~100 residues 

[28]. Thus, the postulated targeting of a nascent 

Nt-formylated protein for processive degradation through 

its fMet/N-degron (Fig. 1C-E) may be “decided upon” large-

ly on the basis of protein’s first 100 or so residues. In other 

words, significantly more distal regions of a protein may 

often not be involved.  

Given this disposition, we suggest that ~100-residue N-

terminal regions of bacterial proteins evolve under a selec-

tion pressure that tends to maximize their ability to col-

lapse into a “molten globule” [125] in which roughly 10 N-

terminal residues, including N-terminal fMet, tend to be 

extruded from the globule and exposed to solvent. Conse-

quently, PDF would be able to deformylate a nascent pro-

tein before the N-terminal fMet residue would move too 

far away from the ribosome-bound PDF, owing to the on-

going elongation of the protein’s polypeptide chain (Fig. 1C, 

D). Entries in Protein Data Bank 

(http://www.rcsb.org/pdb/home/home.do) exhibit a ten-

dency for N-terminal regions to be weakly ordered in crys-

tal structures. Moreover, such regions are often absent 

altogether in published structures, having been removed 

from the proteins’ natural N-termini to allow crystallization. 

For example, the first high-resolution structures of “soluble” 

eukaryotic proteins with intact natural N-terminal regions 

(usually in complexes with their cognate protein ligands) 

have been determined only recently [126-128]. 

Third, the kinetic advantage of PDF in targeting the N-

terminal fMet residue would be transient, because a sto-

chastic failure of PDF to capture and deformylate fMet of a 

nascent protein would soon (within seconds) position that 

fMet outside the physical reach of a ribosome-bound PDF 

molecule, owing to the ongoing elongation of the protein’s 

polypeptide chain. It would be, then, the stochastic and 

also transient turn of the less tightly ribosome-bound 

fMet/N-recognin/protease or its fMet/N-recognin part 

(resulting in its larger time-averaged distance from the 

ribosomes) to capture the N-terminal fMet residue, whose 

distance from the tunnel’s exit may continue to increase as 

the nascent polypeptide keeps emerging from the ribo-

some. 

Fourth, the main (but not necessarily the sole) function 

of postulated fMet/N-degrons (Fig. 1E) is envisioned to be 

the quality control of nascent bacterial proteins and just 

released, newly formed proteins. This role of bacterial 

fMet/N-degrons would be similar to the previously identi-

fied quality-control function of eukaryotic Ac/N-degrons 

[67-70]. The naturally high (~10
-3

 per residue) frequency of 

amino acid misincorporation during protein synthesis can 

be further increased by antibiotics that elevate the ribo-

some’s error rate. Such antibiotics are endemic in natural 

bacterial habitats [7, 51]. On the assumption that the error 

rate is approximately uniform along the sequence of a 

translated polypeptide, a significant fraction of N-terminal 

regions of nascent proteins would be mutant vis-á-vis their 

wild-type DNA-encoded sequences even in the absence of 

stress. The frequency of abnormal (mistranslated) se-

quences would be further elevated in the presence of fidel-

ity-decreasing antibiotics or other stresses. 

Fifth, some molecules of just completed, newly formed 

proteins would stochastically and at least transiently by-

pass the targeting by both PDF and the postulated fMet/N-

recognin/protease. The non-ablated fMet/N-degrons of 

such proteins are envisioned to be often rapidly repressed 
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through their steric shielding (sequestration), owing to 

interactions of newly formed proteins with their cognate 

ligands, which can be other proteins, RNA or DNA. In con-

trast, a nascent or a newly formed Nt-formylated protein 

that cannot form such “protective” complexes efficaciously 

enough or cannot form them at all (owing, for example, to 

its misfolding) would remain vulnerable to either the de-

struction by the postulated fMet/N-recognin/protease or 

to the PDF-mediated deformylation of N-terminal fMet, a 

step that abrogates the protein’s fMet/N-degron. This 

model presumes a low level of PDF away from the ribo-

somes, in agreement with experimental evidence [23]. In 

contrast, the postulated fMet/N-recognin/protease (or its 

fMet/N-recognin part), while also ribosome-associated, is 

presumed to be present at significant levels in the bulk 

solvent as well. 

Studies by Green and colleagues employed defined in 

vitro translation systems and showed that a bacterial (but 

apparently not eukaryotic) ribosome can sense a misincor-

poration of a non-cognate residue during protein synthesis 

and react through a further decreased fidelity of transla-

tion downstream from the incorrect amino acid residue 

[129, 130]. This error-induction response increases the 

probability of premature translation termination and the 

release of a mistranslated nascent polypeptide [129]. The 

extent of Green’s effect remains to be determined in vivo. 

If the frequency of nascent polypeptides that are prema-

turely terminated in living bacteria owing to this effect is as 

high as it was observed to be in vitro [129], one would ex-

pect a significant frequency of Nt-formylated, mistranslat-

ed and prematurely terminated proteins that emerge from 

the ribosomal tunnel while bearing fMet/N-degrons. Owing 

to misincorporation events that led to their premature 

release, such (incomplete) proteins would often fold either 

abnormally or not at all. These properties may render them 

less susceptible to deformylation. 

The temporal and geometric aspects of N-terminal 

fMet vis-á-vis other participants in this kinetic drama 

would vary from one nascent protein to another, at least in 

part because the rate of PDF-mediated deformylation of 

fMet in a nascent protein depends on the identities of resi-

dues at position 2 and beyond [17]. In sum, the folding (or 

misfolding) of a growing nascent protein, and the propensi-

ty (or its absence) of N-terminal fMet to remain sterically 

accessible to PDF on the surface of a nascent protein glob-

ule would affect the outcomes of competition between the 

ribosome-associated PDF and the postulated 

fMet/N-recognin/protease. This glimpse of possible me-

chanics is an illustration of complexities that remain to be 

understood vis-á-vis the concept of fMet/N-degrons (Fig. 

1C-E). 

 

CONCLUDING REMARKS 

The fMet/N-degron hypothesis was proposed in 2010 [67]. 

The difficulty in viewing (let alone proving) the N-terminal 

fMet residue as a degradation signal stems from the tran-

siency of the formyl group of N-terminal fMet in a majority 

of nascent bacterial proteins. 

The rate of chain elongation by bacterial ribosomes in 

vivo at 37°C is 10-20 residues/sec, i.e., it is up to an order 

of magnitude higher than estimated rates of chain elonga-

tion by the cytosolic ribosomes in eukaryotes [49-52]. Fast-

er emergence of nascent proteins from bacterial ribosomes 

may have precluded the adoption, during bacterial evolu-

tion, of cotranslationally (as distinguished from pretransla-

tionally) created N-degrons, such as, for example, Ac/N-

degrons in eukaryotes (Fig. S1B). Notably, the 

Nt-acetylation of many eukaryotic proteins is known to be 

incomplete [103], i.e., the cotranslational generation of 

Ac/N-degrons is often not efficacious enough even at rela-

tively low rates of chain elongation in eukaryotes. This fact 

is consistent with the view that the observed pervasiveness 

of the pretranslational formylation of N-terminal Met (all 

examined wild-type bacteria contain fMet) resulted from 

selection pressures to maximize the extent of Met formyla-

tion vis-á-vis high rates of polypeptide chain elongation. 

Competition among bacteria and other microorganisms 

often involves antibiotics that increase the frequency of 

translational errors in susceptible strains. One function of 

fMet/N-degrons is envisioned to be the preferential degra-

dation of misfolded nascent proteins. Thus, stresses caused 

by perturbed translation, including antibiotics-mediated 

conflicts in the microbial world, may be a source of selec-

tion pressures that retained the apparatus of bacterial 

fMet/N-degrons. 

Now that the first evidence for fMet/N-degrons has 

been produced (Figs. 1-4), the next essential step is to 

identify the postulated, possibly two-component 

fMet/N-recognin/protease. A recent study by Bittner et al. 

[131] described the N-terminal degradation signal of YfgM, 

an inner membrane-embedded E. coli protein. Analyses by 

Bittner et al. [131] did not invoke either an fMet/N-degron 

or the formylation of N-terminal Met. However, specific 

properties of the cytosol-facing N-terminal degron of YfgM 

[131] suggested, to us, that this degradation signal may be 

an fMet/N-degron. If so, the inner membrane-embedded, 

ATP-dependent FtsH protease would be the one that tar-

gets the N-terminal fMet residue (either directly or 

through an unknown fMet/N-recognin), because Bittner et 

al. [131] identified FtsH as the protease that destroys YfgM. 

Remarkably, our recent studies showed that the degron of 

YfgM is, in fact, an fMet/N-degron, thereby identifying FtsH 

as the relevant protease (T.T.M.V., K.P. and A.V., un-

published data). 

 

MATERIALS AND METHODS 

Miscellaneous reagents 

Anti-flag M2 Magnetic Beads (M8823), anti-flag M2 antibody, 

and anti-ha antibody were from Sigma-Aldrich. Complete 

EDTA-free Protease Inhibitor Cocktail Tablets were from Roche. 

Express [
35

S] Protein Labeling Mix (1.175 Ci/mmol) was from 

Perkin-Elmer. Methionine/cysteine-free synthetic complete 

("Hopkins") supplement mixture (SC) was from Sunrise Science 

Products. Actinonin was from Enzo Life Sciences. 
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Bacterial strains and mutagenesis 

E. coli strains (Table S1) were grown at 37°C on Luria-Bertani 

(LB) medium. When used for selection, antibiotics were added 

to the following final concentrations: kanamycin (Km): 

50 μg/ml; ampicillin (Amp): 100 μg/ml. Null fmt and def-fmt E. 

coli mutants (strains KPS73-KPS76) (Table S1) were construct-

ed using a gene disruption strategy [132]. The resulting E. coli 

mutants were grown in LB under selective conditions. The 

desired deletions were verified by polymerase chain reaction 

(PCR), followed by sequencing of PCR-amplified, purified DNA 

fragments. 

 

Construction of plasmids 

E. coli DH5α (Invitrogen) was used for cloning and maintaining 

plasmids. Phusion High-Fidelity DNA polymerase (New Eng-

land Biolabs) was used for PCR. Specific DNA constructs were 

generated using standard techniques [112] and verified by 

DNA sequencing. 

The plasmids containing one or two Para promoters were 

derived from the pBADET vector, a gift from Dr. V. Ksenzenko 

(Institute of Protein Research, Pushchino, Russia). The plas-

mids pKP249 and pKP250, which expressed P1
T2X

 (P1
T2X

-e
K
-ha-

Ura3) fusion proteins (X=Thr or Asp) from the Para promoter, 

were constructed by subcloning a NdeI/HindIII-digested DNA 

fragment (produced by PCR from pCH178; Table S2) into the 

NdeI/HindIII-cut plasmid pBADET (Table S2). (The DNA frag-

ment from pCH178 that encoded e
K
-ha-Ura3 was extended, by 

PCR, to yield fragments encoding either P1
T2

-e
K
-ha-Ura3 or 

P1
T2D

-e
K
-ha-Ura3.) To construct pKP251 and pKP252, which 

expressed Ub-P1
T2X

 fusion proteins from the Para promoter, a 

DNA fragment containing the ORF of Ub was PCR-amplified 

(using the pCH178 plasmid as a template), digested with 

NdeI/BspEI and subcloned into NdeI/BspEI-cut pKP249 and 

pKP250 (Table S2). To construct pKP257 and pKP258, which 

expressed P1
T2X

 proteins (P1
T2X

-e
K
-ha-Ura3) (X=Thr or Asp) 

from the PKmR promoter, NdeI/HindIII-digested fragments, 

produced by PCR from pKP249 and pKP250, were subcloned 

into NdeI/HindIII-cut pACYC177 (Table S2). The plasmids 

pKP286 and pKP287, which expressed
 MXXX

PpiB-His8-flag 

(
MXXX

PpiBf) proteins (XXX=Val-Thr-Phe or Asp-Thr-Phe), were 

constructed by subcloning a NdeI/XbaI-digested DNA fragment 

(encoding PpiB and produced by PCR from MG1655 E. coli 

genomic DNA) into NdeI/XbaI-cut pBADET (Table S2). The 

plasmids pKP458 and pKP459, each of which expressed two 

PpiB-derived proteins from two identical Para promoters (Fig. 

4) were constructed as follows. DNA fragment containing the 

Para promoter was PCR-amplified from pBADET (Table S2). 

DNA fragment encoding 
MXXX

ppiB-His8-flag-Ub (
MXXX

PpiBf-Ub) 

(XXX=Tyr-Phe-Tyr or Asp-Asp-Asp) was PCR-amplified from 

pKP335 (Table S2). The resulting DNA fragments were linked 

together using PCR, digested with AfeI/NsiI and thereafter 

subcloned into AfeI/NsiI-cut pKP286 (Table S2). Additional 

cloning details are available on request. 

 

Immunoblotting assays 

Methods for data in Fig. 3D 

Wild-type and mutant E. coli (CAG12184, KPS73 and KPS74; 

Table S1) carrying pKP257 (Table S2) were grown at 37°C 

overnight in Growth Medium (GM) (M9 medium (33.9 mg/ml 

Na2HPO4, 15 mg/ml KH2PO4, 5 mg/ml NH4Cl, 2.5 mg/ml NaCl, 

pH 7.0), 0.5% glycerol, 0.2% glucose, 40 μg/ml Met, 40 μg/ml 

Cys, methionine/cysteine-free synthetic complete (SC) mixture 

(Sunrise Science Products) supplemented with ampicillin 

(Amp; 50 µg/ml)). Cultures were diluted 1:100 in 30 ml of GM 

medium and incubated on a shaker at 37°C until A600 of ~0.5. 

The resulting cultures (10 ml) were centrifuged at 5,000 g for 5 

min at 4°C, washed three times with 1-ml samples of ice-cold 

phosphate-buffered saline (PBS) and thereafter lysed in 0.1 ml 

volumes of 1% SDS. The resulting extracts were clarified by 

centrifugation at 14,000 g for 5 min at 4°C, and protein con-

centration in the supernatants were determined using Pierce 

BCA Protein Assay (Fisher Scientific). Samples were mixed with 

equal volume of 2 x SDS-sample buffer and heated at 95°C for 

10 min. 25 μg of total protein in the resulting samples were 

subjected to SDS-4-12% NuPAGE (Invitrogen), followed by im-

munoblotting, using standard procedures [67, 68] with a mon-

oclonal anti-ha antibody (1:2,000) (Sigma-Aldrich), with detec-

tion using ECL Plus (GE Healthcare). 

 

Methods for data in Fig. 3E, F 

Wild-type E. coli CAG12184 (Table S1) carrying pKP249-252, 

and pJT184 (Table S2) were grown at 37°C overnight in GM 

medium as described above. Cultures were diluted 1:100 in 30 

ml of GM medium and incubated at 37°C until A600 of ~0.35. 

Cells were pelleted by centrifugation 5,000 g for 5 min at 

room temperature (RT), washed with 1 ml of Induction Medi-

um-Ara-0.25 (IM-Ara-0.25) (M9 medium (pH 7.0), 0.5% glycer-

ol, 0.25% arabinose, 40 μg/ml Met, 40 μg/ml Cys, methio-

nine/cysteine-free synthetic complete (SC) mixture) and re-

suspended in 30 ml of IM-Ara-0.25 medium. After 90 min of 

incubation at 37°C, the resulting cultures (10 ml) were centri-

fuged at 5,000 g for 5 min at 4°C, washed three times with 1-

ml samples of ice-cold PBS and thereafter processed for lysis, 

SDS-PAGE, and immunoblotting with anti-ha antibody as de-

scribed above. 

 

Pulse-chase assays without immunoprecipitation 

Methods for data in Fig. 2A  

Wild-type E. coli CAG12184 cells (Table S1) were grown in LB 

medium at 37°C overnight. 0.75 ml of overnight culture in LB 

was washed with 1 ml of GM medium, resuspended in 30 ml 

of GM, and was grown until A600 of ~0.35. Cells were pelleted 

by centrifugation at 5,000 g for 5 min at RT, washed with 1 ml 

of pre-warmed IM-Ara-0.25 medium and resuspended in 30 

ml of pre-warmed IM-Ara-0.25. After 90 min of incubation on 

a shaker at 37°C in IM-Ara-0.25, 15 ml of the culture were 

centrifuged at 5,000 g for 5 min at RT, and washed 2 times 

with 1-ml samples of pre-warmed Pulse Medium-025 

(PM-Ara-0.25), which differed from the IM-Ara-0.25 medium 

by lacking Met and Cys. Cell pellet was resuspended in 1 ml of 

PM-Ara-0.25 and divided into 4 equal samples, which were 

incubated for 10 min at 37°C with agitation. Actinonin was 

added (to the final concentrations indicated in panels of Fig. 

2A, B) at the beginning of 10-min incubations and was kept at 

the same concentrations throughout pulse-chases. Thereafter 

the cultures were labeled with 15 µl of Express [
35

S] Protein 

Labeling Mix (1.175 Ci/mmol, Perkin Elmer) for 1 min at 37°C, 

followed by centrifugation at 14,000 g for 30 sec at RT. Each 

supernatant was added to 0.3 ml of Chase Medium (CM) (M9 

medium (pH 7.0), 0.5% glycerol, 0.5% glucose, 0.5 mg/ml Met, 

0.5 mg/ml Cys, 0.2 mg/ml chloramphenicol, methio-

nine/cysteine-free synthetic complete (SC) mixture), followed 

by a chase, also at 37°C. Samples (0.1 ml) were withdrawn at 

indicated times during chase, followed by immediate freezing 
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in liquid nitrogen. For further analyses, one volume of 2x-SDS-

PAGE sample buffer was added to a frozen sample, followed 

by heating at 95°C for 10 min, brief vortexing and centrifuga-

tion at 12,000 g for 5 min. 5 µl of each “time-zero” sample 

were spotted on Whatman 3MM filters, immersed in ice-cold 

10% CCl3COOH for 5 min, boiled in 10 % CCl3COOH for 10 min, 

rinsed (for 15 sec) 3 times in 5% CCl3COOH, washed (for 5 min) 

2 times with 5% CCl3COOH, rinsed 3 times with 95% ethanol, 

and air-dried, followed by measurements of 
35

S using Safety-

Solve scintillation cocktail and scintillation spectrometer. 

20,000 
35

S cpm of each time-zero sample (Fig. 2B), and equal 

volumes of samples at later time points were subjected to SDS 

4-12% PAGE, followed by autoradiography. 

 

Methods for data in Fig. 2B 

Wild-type (CAG12184) and fmt (KPS73) E. coli (Table S1) were 

grown in LB medium at 37°C overnight. Cultures were diluted 

1:200 in the GM medium and incubated at 37°C until A600 of 

~0.5. The resulting culture (7 ml) was centrifuged at 5000 g for 

5 min at room temperature, washed three times with 1-ml 

samples of pre-warmed PM-Ara-0.25 medium, and resus-

pended in 70 µl of PM-Ara-0.25, followed by incubation at 

37°C for 10 min. A culture was labeled with 7 µl of Express 

[
35

S] Protein Labeling Mix (1.175 Ci/mmol, Perkin Elmer) for 1 

min at 37°C. The labeling was quenched by the addition of 0.5 

ml of CM (lacking chloramphenicol) and a chase, also at 37°C. 

Samples (0.1 ml) were withdrawn at indicated times during 

chase and mixed with 80 µl of TDS buffer (1% SDS, 5 mM di-

thiothreitol (DTT), 50 mM Tris-HCl, pH 7.4) containing “com-

plete protease-inhibitor mixture” (Roche), followed by imme-

diate freezing of samples in liquid nitrogen. Frozen samples 

were directly heated at 95°C for 10 min, and thereafter pro-

cessed and analyzed identically to pulse-chase samples de-

scribed above. 

 

Pulse-chase assays with immunoprecipitation 

E. coli CAG12184, and pKP73 (Table S1) carrying pKP458 or 

pKP459 (Table S2) were grown at 37°C overnight in LB sup-

plemented with Amp (50 µg/ml). Cultures were diluted 1:200 

in fresh LB and grown until A600 of ~0.5. A resulting culture (7 

ml) was centrifuged at 5000 g for 5 min at room temperature, 

washed three times with 1 ml samples of pre-warmed PM-

Ara-0.1 medium (containing 0.1% arabinose), and resuspend-

ed in 70 µl of PM-Ara-0.1, followed by incubation at 37°C for 

10 min. Cultures were then pulse-labeled with 7 µl of Express 

[
35

S] Protein Labeling Mix (1.175 Ci/mmol, Perkin Elmer) for 60 

sec at 37°C. The labeling was quenched by the addition of 0.5 

ml of Chase-Medium (CM: M9 medium, pH 7.0, 0.5% glycerol, 

0.25% glucose, 0.1 mM CaCl2, 2 mM MgSO4, Methio-

nine/Cysteine-free Synthetic Complete (SC) Mixture (Sunrise 

Science Products), 0.5 mg/ml unlabeled Met, 0.5 mg/ml unla-

beled Cys). Chases were carried out also at 37°C. Samples (0.1 

ml) were withdrawn at indicated times during chase and 

mixed with 80 µl of TDS buffer (1% SDS, 5 mM dithiothreitol 

(DTT), 50 mM Tris-HCl, pH 7.4) containing “complete protease-

inhibitor mixture” (Roche), followed by immediate freezing of 

samples in liquid nitrogen. For further analyses, one volume of 

2x SDS-PAGE sample buffer was added to a frozen sample, 

followed by heating at 95°C for 10 min. They were, thereafter, 

briefly vortexed and centrifuged at 12,000 g for 5 min. Super-

natants were diluted with 10 volumes of TNN buffer (0.5 % 

NP40, 0.25 M NaCl, 5 mM Na-EDTA, 50 mM Tris-HCl (pH 7.4), 

containing “complete protease-inhibitor mixture” (Roche)), 

and processed for immunoprecipitation. 5 µl of each “time-

zero” sample were spotted on Whatman 3MM filters and pro-

cessed for measurements of CCl3COOH-insoluble 
35

S as de-

scribed above. 5.5x10
6
 

35
S cpm of each of the time-zero sam-

ples, and equal volumes of the following time points for each 

pulse-series were processed for immunoprecipitation, using 

magnetic beads with immobilized anti-flag antibody M2 (Sig-

ma; 7 µl of settled beads for each sample). The samples were 

incubated with rocking at 4°C for 3 h, followed by four washes 

of the beads in TNN buffer, resuspension of pellets in 20 μl of 

SDS-sample buffer, incubation at 95°C for 5 min, and the re-

moval of beads. The resulting samples were fractionated by 

SDS-PAGE using NuPAGE 4-12% Bis-Tris gradient gels, followed 

by autoradiography and quantification using PhosphorImager 

(Molecular Dynamics, Sunnyvale, CA). 
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