
CONSOLIDATED FUEL REPROCESSING PROGRAM

FORPS: A FORTH-Based Production System
and I t s Application to a CONF-860729- l

Real-Time Robot Control Problem u / " J

DE86 005426

Christopher J. Matheus
University of Illinois

Urbana, Illinois

H. Lee Martin
Instrumentation and Controls Division

Oak Ridge National Laboratory*
Oak Ridge, Tennessee

Paper for presentation
at the

Computers in Engineering Conference
Chicago, Illinois
July 20, 1986

8y tcceptence of this article, the

Pub'-ihr or rtciDitm acknowledges

The u S Government's right ro

' • ! • ' " • nonenciunve. rova'tv free

' ' t e w m eno to »ny coovghl

covering the article

*Cfcerated by Martin Marietta Energy Systems, Inc., for the U.S.
Department of Energy.

* m mam ttmum

CONSOLIDATED FUEL REPROCESSING PROGRAM

FORPS: A FORTH-Based Production System
and Its Application to a

Real-Time Robot Control Problem*

Christopher J. Matheus
University of Illinois

Urbana, Illinois

H. Lee Martin
Instrumentation and Controls Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Abstract

A simple yet very powerful system has been developed that
merges the artificial intelligence qualities of a production
system with the real-time control capabilities of FORTH.
FORPS (FWTH-based Production System) offers the advantages of
intelligent, rule-based control in a small package offering
high speed, extensibility, and simplicity. A practical
example of the system is presented in the development of an
obstacle avoidance program to aid in controlling an overhead
manipulator transport system. Several other potential
applications to the area of control are discussed.

•Research sponsored by the Office of Facilities, Fuel Cycle, and
Test Programs, U.S. Department of Energy, under Contract
No. DE-AC05-8HOR2U00.

Introduction

This .paper presents a method for combining the real-time power and

versatility of FORTH with the intelligent decision-making structure of a

production rule aystem. This hybrid system is called FORPS

(FORTH-based production ^ystem). It is concise, yet it provides the

potential deductive power of a rule production system. Since FORPS is

written in FORTH, it maintains the many advantages of a FORTH

programming environment. An overview of the FORPS design and a source

code listing are provided in Appendix A to give the Interested reader

the opportunity to use FORPS. The first section of this paper presents

a brief description of production systems, followed by a discussion of

some of the features of FORTH for real-time applications. An example is

then presented in which FORPS is applied to the problem of obstacle

avoidance in the transportation of a mobile manipulation system. This

particular manipulator system is the Advanced Servomanipulator (ASM)

developed at the Oak Ridge National Laboratory (ORNL) for the

Consolidated Fuel Reprocessing Program (CFRP) [1]. The potential for

applying FORPS to other real-time problems is also explored. While the

program examples and FORPS are written in FORTH, previous exposure to

FORTH is not essential to understanding the majority of this paper.

What is a Production System?

Of the several artificial intelligence (AI) programming techniques

available, production systems have perhaps gained the widest acceptance.

A production system is fundamentally a collection of condition-action

rules. An individual production consists of a conditional clause and an

action statement, usually bound together in an IF..THEN structure.

Following is an example of a production as it might appear written in

plain English [2]:

Production 1

If it has feathers

and it flies

and it lays eggs

Then it is a bird

Thi3 rule states that If "it" (the object in question) has

feathers, flies, and lays eggs, then make the deduction that it is a

bird. A production system implemented for a specific area of knowledge

is often referred to as an expert system. A system of this nature might

consist of several hundred similar rules.

A major advantage of production systems is that they are easily

extended to accommodate new information. Production systems consider

all rules equally by mean3 of the inference engine, a program that scans

through the set of all rules and executes the action portion of a rule

whenever its conditional clause is satisfied. If, however, more than

one rule is satisfied at the same time, a method of "conflict

resolution" (based on a set of priorities) determines which rule to

"fire" (i.e., execute). This method of evaluation gives relative

independence to the rules, making it easy to add new knowledge to a

production system even after installation. Many production systems are

in fact designed to be developed incrementally through the gradual

addition of new rules [2,3].

A major drawback of traditional production systems is the amount of

time required to arrive at a final conclusion. Other major shortcomings

are the limited input/output capability of production systems and the

need for specialized machines to run them. An unfortunate consequence

of these limitations is that production systems are often unable to

solve real-time, real-world problems.

What is FORTH?

Charles H. Moore began developing the FORTH programming language

during the late sixties. At that time, "traditional languages did not

provide the power, ease, or flexibility" [4] he needed, and he began

development of a new programming tool that eventually evolved into FORTH.

From the start, the concept of FORTH was dominated by Moore's

principle, "keep it simple."

A significant advantage of FORTH is that it provides full power and

control over all of the machine's capabilities. It is possible to

access any memory location simply by specifying its address. This

applies to all input/output ports, making it very easy and efficient to

read/write to peripheral devices such as A/D converters, timers,

counters, and switches. This ability is crucial for the sensing

necessary to real-time control. Control over the machine and its

peripherals, combined with its speed and programming ease, makes FORTH a

logical choice for real-time control applications.

Example of a Real-time FORTH Application

A prime example of a real-time application of FORTH is the Advanced

Integrated Maintenance System (AIMS) being developed at ORNL (see

Fig. 1). A pair of digitally controlled master/slave servo-

manipulators—the Advanced Servomanipulators (ASM)—are being built for

use in a teleoperated remote handling system (see Fig. 2). The AIMS

system is a prototype for a system ultimately intended for application

in a nuclear fuel reprocessing facility, with the slave manipulators

mounted on an overhead transport system within a radioactive "hot cell"

and the master operated from a remotely located control facility.

Four software packages are being developed for AIMS [5]: a servo

control package, a transporter and television camera package, a

communication package, and a man-machine interface (MMI). The servo

package controls the servo loops operating between the master and slave

joint motors. This software, which must run at a frequency of at least

100 Hz, is handled by eight Motorola 68000 microprocessors. The camera

and transporter package controls positioning of the overhead transporter

and the multiple in-cell cameras. The transporter allows the ASM to be

moved to any desired location within the cell, and the cameras provide

visual monitoring of maintenance operations. The communication package

provides information transfer between devices via a local area network.

The MMI Is the link between the operator and the other three control

packages. It runs on two Motorola 68000 processors to perform command

selection and provide system information and status for the operator.

All four software packages must run in real time, and all are written in

FORTH. A more detailed description of the AIMS control system can be

found in reference 5.

The Need for Artificial Intelligence

In many areas of AIMS software, the addition of some form of AI

would substantially improve overall system operation. For example, the

MMI is used by the operator to perform functions such as changing task

modes, analyzing system status and statistics, diagnosing faults and

failures, and controlling the camera and overhead transport packages.

Currently, the operator is required to mentally process a significant

amount of this information. It would be advantageous to have the MMI

ease the operator's workload by performing a larger percentage of

intelligent processing of system information for tasks such as obstacle

avoidance, automatic camera tracking, and system diagnostics. With

greater machine intelligence, operation of the system should become

easier, more efficient, and safer. It is important, however, that this

added intelligence operate in real time without slowing system response;

otherwise, such efforts will hinder rather than help the operator.

Why FORPS?

To implement traditional AI programming techniques on the AIMS

through a standard production system would be difficult, time consuming,

and costly due to the time and effort invested in AIMS' FORTH-based

software. It would be more desirable to develop a system that would

allow use of AI production system techniques without rewriting major

portions of existing code. In other words, write production systems

from within.FORTH. Because FORTH is extensible and is easily customized

to any application, the logical solution was to extend FORTH to

recognize production system rule structures. FORPS is based on this

concept.

The FORPS Design

The design philosophy of FORPS is based on the criteria that it

should be small, simple, and fast enough to be applicable to real-time

problems. Further, it should provide the power of a basic production

system while maintaining FORTH's approach to programming (e.g.,

extensible, flexible, fast, etc.). One important goal was that it be

possible to execute any legal FORTH word at any point within a

production rule. (In a real-time control situation it is desirable to

be able to perform an operation—such as scanning an I/O port—within

the conditional clause of a rule.) The ability to execute any FORTH

word from within either the conditional phase or the action phase of a

rule gives the programmer a higher degree of flexibility and power, two

FORTH qualities that FORPS attempts to preserve.

FORPS Is Intentionally very simple and short In order to keep It

fast for use in real-time applications. It consists of only five

rule-defining words and the Inference engine, but the fundamental

components and potential power of a full-fledged production system are

completely intact. The object code is less than 3 Kbytes. It is

possible to add enhancements to a minimum FORPS system if a special need

becomes apparent. As an example of its theoretical usefulness, FORPS

has been U3ed to solve the classic AI problem, "The Towers of Hanoi."

Rule Definition Words

The main task of writing a production system is defining the rules.

FORPS contains only five rule-defining words: RULE:, PRIORITY:, *IF*,

•THEN*, and *END». Following is an example of a rule definition:

RULE: IS-A-BIRD PRIORITY: 1

IF HAS-FEATHERS

FLIES

LAYS-EGGS

THEN. "The animal is a bird."

END

Consider the construction of this rule. RULE: takes the next word,

IS-A-BIRD, as the name of the rule being defined. PRIORITY: sets up a

relative priority for rules in case the conditional clause of more than

one rule is satisfied at the same time. In such an event, the rule with

the higher priority is executed. The U3e of PRIORITY: is strictly

optional. When PRIORITY: is not used, a rule receives the lowest

default priority, zero.

*IF» begins the conditional portion of the rule. Each word that

follows *IF* becomes a part of the conditional clause that will be

8

executed when the inference engine scans conditionals. These words

must be predefined, executable FORTH words. In the above rule,

HAS-FEATHERS, FLIES, and LAYS-EGGS would all be FORTH-defIned words that

presumably would return values according to the state of the system

(I.e., the data in memory and the conditions of the I/O ports). For

example, HAS-FEATHERS would most likely return a true value if the

animal In question has feathers. This value might come either directly

from a variable in memory or from a peripheral device that performs a

test to see if the animal has this quality.

^ word *THEN* marks the beginning of the action portion of the

rule. The words that follow must also be predefined, executable FORTH

words, because they will be executed by the inference engine whenever

the conditional clause is satisfied and the rule is of highest priority

The word *END* simply marks the end of the rule definition.

Additional rule3 would be defined In a manner similar to the

example above. All rules in the system would then be loaded by the

standard FORTH compiler. To run the system, the inference engine Is

invoked with the "FORPS" command and sequentially scans the rules to

determine which conditional clauses are satisfied. The satisfied rule

with the highest priority is then executed, and the inference engine

repeats this cyclical process until none of the conditional clauses are

satisfiable or until an explicit HALT command is executed.

Application to Obstacle Avoidance

A practical application of FORPS is the real-time problem of

obstacle avoidance. The ASM is transported through its cell environment

by way of an overhead transport system, which an operator controls with

a joystick while observing the system's motion through several

television cameras. An additional graphic cell map is computer

generated as shown in Fig. 3. The cell map displays the manipulator's

position within the cell as well as the location of potential obstacles,

which are color coded according to their height relative to the height

of the manipulator: Red obstacles are higher than the manipulator and

represent absolute obstructions; Yellow obstacles are lower than but

very nearly the height of the manipulator and are considered potential

hazards. Information concerning the height and location of all objects

is statically maintained within the cell map's data base. Although

there are obvious problems with a static representation of objects

within the cell, their solution is beyond the present scope of this

work.

A production-based program consisting of seven rules has been

written to assist the operator in obstacle avoidance during manipulator

transportation (see Appendix B). This obstacle avoidance system

overlays the existing transporter control software. Its function is to

analyze the operator's direction requests and prevent the execution of

requests that would result in collision with an obstacle. The

production system scans data stored in the cell-map data base to

determine if the manipulator is being directed toward an object of

potentially dangerous height. If the manipulator would come close to

hitting an obstacle, a warning is displayed, but the operator is allowed

to proceed in the desired direction. If the path is blocked, the

transporter is prevented from proceeding in the requested direction, and

a "PATH OBSTRUCTED" message is displayed for the operator. In certain

instances it may be necessary to proceed cautiously near an obstacle; an

"override" switch is available to the operator to override the system's

control. Walls are shown in white, and the operator is never allowed to

command the transporter to collide with a wall.

Some important observations should be made concerning this

application. First, the obstacle avoidance system was written using

existing FORTH code and data structures. Words to move the transporter

10

and to access and display the cell map's data had already been written

for ar unintelligent cell-map/transporter system. Because these words

were already in use, design and operation of the obstacle avoidance

production system was accomplished in a very short time (roughly four

hours). Second, the system operates in real time. There is no response

difference between this and the previous, unintelligent

cell-map/transporter system. Third, this simple system may be extended

easily by adding rules to increase its intelligence. One possible

enhancement is the addition of an automated path-finding routine in

which the operator specifies a destination and the program autonomously

transports the manipulator safely through the cell to that location.

A major advantage of using FORPS to solve this problem is the ease

with which high-level condition-action rules can be implemented. The

obstacle avoidance problem lends itself to a definition in terms of

production rules because one naturally orders the significant events in

terms of rules such as "if there 13 no obstacle, then move the

transporter as requested," and "if there is a wall, then prevent

movement and print a warning message." These if/then constructs

obviously could be implemented with conventional programming techniques,

but FORPS provides a flexible, orderly framework which allows efficient

program development. It is also likely that a conventional approach

would execute more slowly and be prone to logical errors.

Other Applications

The obstacle avoidance system is just one of many potential

applications for which FORPS is ideally suited. Another practical

application of FORPS being considered at ORNL is ASM system diagnostics,

in which an expert system would perform continuous diagnostic tests on

the ASM. The many potential causes of faults and failures include

mechanical breakdowns in the gear driven arms, electrical faults in the

11

amplifiers and wiring, and logical failures in the processors

controlling the ASM. An expert diagnostics program is envisioned that

would run on a dedicated processor, continually monitoring the system's

status. Upon detection of an error, the arms would be shut down and

specific diagnostic routines would be performed. Since the monitoring

of system errors amounts to little more than the continual cycling

through of several tests, a FORPS production system would be an ideal

way to construct a diagnostics system.

Similar possibilities exist for applying FORPS methodology to

problems .such as television camera control, overhead crane operation,

coordinated arm tasks, and manipulator maintenance. FORPS also could be

extended to development of expert systems on personal computers.

Summary

FORPS is a production system developed in a FORTH programming

environment. It is very simple and fast, yet maintains the many

advantages of FORTH. Its simplicity, makes possible real-time execution

speeds. FORPS potentially possesses the power of a traditional

production system and, since it is extensible, additional capabilities

can be added if such needs become evident. Furthermore, the experienced

FORTH programmer can learn and implement it easily.

Because of its unique qualities, FORPS makes possible the

application of rule-based Al programming techniques to real-time control

problems such as the ASM obstacle avoidance system, which runs in real

time to assist the operator in transporting the ASM through its

obstructed environment. Similar opportunities exist for applying FORPS

to other FORTH-based systems in which it may be necessary or desirable

to add a degree of intelligent control. By combining the real-time

input/output capabilities of FORTH with a rule production structure, a

tool is now available to apply AI techniques to real-time, real-world

problems.

References

[1] Kuban, D. P., and H. L. Martin, "An Advanced Remotely
Maintainable Foroe-Reflecting Servomanipulator Concept," Proceedings,
198M ANS Top5,cal Meeting on Robotics and Remote Handling in Hostile
Environments, 407-15 (1984).

[2] Winston, P. H., Artificial Intelligence (2d Ed.),
Addison-Wesley,

[3] BarrT A., and E. A. Feigenbaum (Eds.), The Handbook of
Artificial Intelligence, Vol. 1, William Kaufman, Inc., 190-199
(1931-82).

[4] Brodie, Leo, Starting FORTH, Prentice-Hall, 1981.

[5] Martin, H. L., et al., "Control and Electronic Subsystems for
the Advanced Servomanipulator," Proceedings, 1984 ANS Topical Meeting
on Robotics and Remote Handling in Hostile Environments,
(1984).

APPENDIX A

FORPS Source Code

14

460 LIST

0 < FORPS -- • FORth-baaad Production Syatea > < CJH •/19/«3)
1 1 3 *TKRtt
2 EXIT
3
4 FORPS la under the copyweit* of Martin Marietta Energy Syateaa.
5 It !• In the public doaaln and aay be ueed freely
6 as long ea no falee clalaa are Bade to It* authorahlp.
7 Author: Chrlatophar J. Matheue
8 University of Illinois
9 222 Digital Coaputar Lab
10 1304 V. Springfiald Ava.
11 Urban*, It. 61SO1

13 This software wa* developed at Oak Ridge National Laboratory,
14 Oak Ridge, TH, undar tha Conaolldatad Fual Reprocessing Prograa.

461 LIST

0 (FORPS eonatanta and variables > < CJM»«/19/S5>
1 10 CONSTAMT HAX-#RULES 16 CONSTANT RULE-LEN
2 VARIABLE NO-ACTIVITY VARIABLE 'SP-XF VARIABLE 'NOOP
3 VARIABLE >RULE-TABLE VARIABLE >LA3T-RULE VARIABLE CYCLE
4 VARIABLE HICH-PRI VARIABLE BEST-ACTIVE-RULE
5 CREATE RULE-TABLE HAX-ORULES RULE-LEN > ALLOT

7 : >ACTION < • -a) 4 * 1
6 : >FIRE-CELL (a -a) 8 • t
9 : >PRIORITY (a -a) 12 «• :

10 : HALT NO-ACTIVITY TRUE ;
11 : •ERROR. 1 ABORT" NO RULES LOADED" ;
12 : «RESET-FORPS* RULE-TABLE DUP >RULE-TABLE t NAX-*RULE3
13 RULE-LSN • ERASE C'J *ERROR> RULE-TABLE I ; >RESET-FORPS»
14 : NOOP ; ' NOOP 'NOOP ! ' NOOP 4- f CONSTANT COLON-CFA

462 LIST

0 < FORPS rul» dafining worda > < CJM*0/1S/0S>
1 : COND-PFAJ < •> HERE >RULE-TABLE • t ;
2 : ACTIOH-PFA! (a> HERE >RULE-TABLE • >ACTION S •
3 : RULE: >RULE-TABLE RULE-LEN / MAX-0RULE3 - ABORT6 no rooa"
4 CURRENT W« CONTEXT Wl CREATE COND-PFA! -4 ALLOT
5 COLON-CFA , SMUDGE J ;
6 : PRIORITY: >RULE-TABLE • -'IF NUHBER ELSE DROP EXECUTE THEN
7 SWAP >PRIORITY Wl ; IMMEDIATE
6 ! *i£» -1 'S 4- 'SP-IF t ;
9 : -IF* >RULE-TABLE • >FIRE-CELL CCOMPILE1 LITERAL

10 COMPILE -If" : IMMEDIATE
11 : >than> < *n) -1 'SP-IF fl '3 DO AND 4 *LOOP SWAP I f
12 : >THEH« COMPILE •than* COMPILE EXIT COLON-CFA ,
13 ACTIOH-PFAf ; IMMEDIATE
14 : •END" RULE-LEN >RULE-TABLE »l COMPILE EXIT SMUDGE
15 R> DROP ; IMMEDIATE

463 LIST

0 (FORPS Infarvnca angina) (CJH«8/1S/8S>
1 : SET-DEFAULT -1 HIGH-PRI I 'NOOP BEST-ACTIVE-RULE t ;
2 : RT-LIHITS < -n n> >LAST-RULE • RULE-TABLE ;
3 : CLEAR-FIRES RT-LIMITS DO O I >FIRE-CELL t R6LE-LEN *LOOP ;
4 : TEST-RULE-CONDS RT-LIHITS DO I 0EXECUTE RULE-LEN *LOOP ;
5 : SELECT-BEST-RULE NO-ACTIVITY TRUE SET-DEFAULT
6 RT-LIMITS DO I DUP >FIRE-CELL •
7 IF DUP >PRIOHITY V* DUP HIGK-PRI • >
8 IF HIGH-PRI I >ACTION BSST-ACTIVE-RULE t
9 NO-ACTIVITY FALSE
10 ELSE 2DR0P THEN
11 ELSE DROP THEN RULE-LEN -LOOP t
12 : FIRE-RULE BEST-ACTIVE-RULE • CEXECUTE :
13 : FORPS >RULE-TABLE • 4- >LAST-RULE I O CYCLE !
14 BEGIN 1 CYCLE «! CLEAR-FIRES TEST-RULE-CONDS
15 SELECT-BEST-RULE FIRE-RULE NO-ACTXVXTY • UNTIL

a/21/B9 AIMS Syataa Softwara ORNL Proprietary

15

1060 LIST

0 FORP3 — FORth-based Production Systea
1 FORPS Is s slapla Production Syatea designed to teke full
2 advantage of the powers of FORTH. Basic production-like rules
3 are conatruetad using the worda RULE:. *IF*. *THEN* and «ENO*.
4 These rules are put Into a table of the following foraat:
S> CO.JD. pfs I ACTION pfs I FIRE cell I PRIORITY valua
6 four bytes I four bytes I four bytee I two bytes
7 Rul* 1 • • • •
a : : : : :
9 Rule n • • • •
10 The CONO. pfa le the pfs of the conditlonel portion of the
11 rule snd tha ACTION pfa is the action portion's pfa. The FIRE
12! call holds the result of the conditional pfa'a execution.
13 PRIORITY Is s nuabar between 0 and 6353* uacd in the choosing
14 of the beet-active-rule during "confllct-reeolutlon".

10<>l LIST

0 FORPS conatanta and variables
1 HAX-#RULE3 naxiaun nuber of rulee allowed In table
2 RULE-LEN length of a single rule tabla entry
3 NO-ACTIVITY true if no rules fired during the cycle
4 'SP-IF saves the psra. atack adcfr. at atart of cond.
3 fRULE-TABLE pointer Into the rule tabla
6 >LASr-RULE address of laat rule in table
7 CYCLE nuaber of eyclee executed
8 HIGH-PRI highest priority of all rulee fired
9 BEST-ACTIVE-RULE action pfa of highest priority active rule
10 >ACTION, >FIRE FLAG. ^PRIORITY offsets Into rula-tabla
11 HALT aeta NO ACTIVITY to true -- casues FORPS to terminate
12 «ERROR* stored ss 1st rule wh*m RESET - aborts froa FORPS
IS *RESET* clears rule-table end loads -ERROR* as 1st rule
14 NOOP no-operatlon, uaad as default BEST-ACTIVE-RULE
13 COLON-CFA cfa of : — the contente of th* cfe of : words

1062 LIST

0 FORPS rule words
1 COND-PFAI stores condition-pfa of rul* into tabl*
2 ACTION-PFAI stores action-pfa of rul* into tabla
3 RULE: adde e rule to the dictionary -- creates two words
4 with one head: first la cond word, aecond la action word
5 PRIORITY: loads th* rule's priority cell with the value of
6 the next word in the input atreaa (usually a nuabar)
7 *if* runtlae varsion of *IF*, aavea stack pointer and puta
5 a -1 on atack for aubalquant uaa by »then*
9 »IF« coapilea ss s literal a pointer to the rule'a
10 fire-cell (for uae by •than*), and coaipilaa •!£•
11 «than* runtiae veralon of •THEN* -- AND*a the cond. stack
12 ltaas snd storss th* result in the rule's FIRE cell
13 "THEM* coaplles 'than*, caaplles EXIT to atop cond. word,
14 and -soapile* COLON-CFA to begin rule's action word
15 *ENO* incrss. rul* counter snd ends rule compilation

1063 LIST

0 Inference engine
1 SET-DEFAULT seta BEST-ACTIVE-RULE to NOOP, claara priority
2 RT-LIHITS puts the rule-table'a addr. Halts on the stack
3 CLEAR-FIRES clesrs the fire ilmqm of all rulaa
4 TEST-RULE-CONOS exeeutea in order each rulea condition pfa
3 EXECUTB-ACTIVE-RULES axacutaa the action of tha hlgheat
6 priority rule which haa flrad. If no rulee fired NO-ACTIVITY
7 will be a*t to true and the FORPS loop will terminate
a.FIRE-RULE fires th* BEST-ACTIVE-RULE
9 FORPS th* aaln inference loop of the production systea.
10 After resetting #RULES and CYCLES, the inference loop la
11 entered and contlnuae until a cycle paasee in which no
12 rulee heva fired. The Inference loop haa three functions: it
13 incraaenta the cycle counter, clears all fire celle, tests
14 the conditional cleuses, snd executes the highest priority,
13 sctive rule. " '

S/21/SS AIMS Systaa Software ORNL Proprietary

APPENDIX B

Obstacle Avoidance Productions

17

MO LIST
0 < Callaap P3 constants t varisblaa > (CJM«8/09/8S>
1 1 CONSTANT WALL 7 CONSTANT LOW-O03 2 CONSTANT HIGH-OBS
2 1CLOSI 4O * CONSTANT ROBOT-POS

4 VARIABLE STARTED VARIABLE NEWDIR UVARIABLE OIR-CONTENTS
9 VARIABLE XDIR VARIABLE YOIR VARIABLE ZOIR
6 VARIABLE CELL-EXIT VARIABLE CPAO-STATE
7 VARIABLE OVERIDE

10 : THAN CELL.HAP STARTED FALSE FOFPS t
11 (TRAK CELL MAP aiaply axacutas
12 tha production ayataa rula aat 1

14
19

3B1 LIST

0 (Cvllaap Input words) HEX (CJH'8/09/89)

2 : 7MENU-SEL PAD.VALUE • 8000OO0O AND NOT i
3 : 7CELL-PAD PADIVALUE • 3FFFFFFF AND 5 • ;
4 : 7CELL-CMD PAD VALUE • DUP 3FFFFFFF AND PAD.VALUE I
9 40000000 AN6 :
6 :-CPAD-ALLOW 80000O00 PAD VALUE *! i
7 : REAO-JOYSTICK < —n/n> "FFFF4O C» IF AND IF XOR
8 FFFF42 C« 3 AND 3 XOR ;
9 : READ-OVERIDE < -n> FFFF42 CM F AND DUP 7 • SWAP B. • OR
10 DUP IF OVERIDE TRUE THEN PAUSE I

12
13
14
IS

382 LIST

0 (Canmap «anu word* > < CJH«8/09/as>
1 : CPAD-ACCEftT -200 100 NOVABS 1 PRHFIL WHITE COMP
2 139 39 RECREL UNCOHP ;
3 : ACCENT-CPAD 7CELL-PAD IF CPAO-STATE • NOT
4 IF CPAD-ACCENT 1 CPAD-STATE ! THEN
9 ELSE CPAD-STATE 0 IF CPAD-ACCENT O CPAD-9TATE ! THEN THEN *
6 t CPAD-CHECK 7NENU-SEL IF ACCEKT-CPAD 7CELL-CHD IF 7CELL-PAD
7 IF 1 CELL-EXIT I THEN THEN CPAD-ALLOW THEN ;
a : CELL-PAD -200 100 HOVABS CYAN 32 10 MOVREL
9 3 O TEXTC V.M EXIT" 0 0 TEXTC !
10 i CELL-HAP-IHIT 1 PRMFIL 0 CELL-tXIT J 0 CPAD-STATE !
11 BLACK FLOOD CELL-ORG CELL-CHAR RESTARER CELL-PAD 2 0 TEXTC
12 CUR STOP CPAD-ALLOW ;
13 : CELL-MAP-EXIT BLACK FLOOD 3 0 0 CLOAD 4 O O CLOAD CR
14 CUR.REPORT STAT.INIT HEAD.INIT O 1 MENU STATUS.HANDLER ;

383 LIST

0 < Obatacla dataetlon words > (CJK»8/09/8S>
1 : WORST (n n - n> OVER 1 • OVER 1 • OR IF 2DROP 1 ELSE
2 OVER 2 • OVER 2 • OR IF 2DR0P 2 ELSE
3 7 • SWAP 7 - OR IF 7 ELSE 0 THEN THEN THEN :
4 : 3CAN-DIR < - n) XDIR • YDIR •
9 2DUP 17.• SWAP 11 • • ROBOT-POS * Ct >R
6 2DUP 18 • SWAP 2 * * ROBOT-POS * CM >R
7 19 > SWAP -7 • • ROBOT-POS * C« R> R> WORST WORST
8 DIR-CONTENTS C! ;

10 : POS-TEXT RED 2 0 TEXTC -200 -20 HOVABS »
11 : BELL 7 EMIT ;
12 : NT 0 0 TEXTC ;
13 : V." COMPILE POS-TEXT COMPILE vjot" 34 STRING
14 COMPILE NT : IMMEDIATE
19 : CLEAR-MSG W." " BLACK 1 P£'7IL 19O 19 RECREL ;
8/21/89 AIUS 3ys' » Software ORNL Propriatary

18

3*4 LIST

O

2
3
4
9
6

a
10
ii
12
13
14
19

< RAPPER PS constant* A varlablaa) < CJH*«/Q9/S9>

CUFOIHC (-xy
XDIR • NEWX t
OUP NEW* ! KKW

CUR>XY2 <
OUP 2
DUP •
DUP 2

H 7LEGAL HEWZ I
X?_?LEGAL HEWY t

2DIR • NEWZ
WX t VDIR • NEWY •
! KKWY • NCWZ • f
n/r»--x/y/a>
• IF DROP -1 THEN 6 > SWAP
- IF DROP O -1 ELSE DUP 4 • IF DROP -1 O ELSE

IF DROP 1 O ELSE DUP 1 - IF DROP O 1 ELSE
DROP 0 O THEN THEN THEN THEN ROT ;

READ-JQYSTICK-CHD < -n> PAUSE READ-JOYSTICK OVER J6 <
IF CUft>XV2 ELSE 2DR0P 1 CELL-EXIT t 0 O 0 THEN
ZDIR I OVER OVER YDIR I XDIR t OR ZDIR • OR PAUSE J

3*9 LIST

(Obefcacla avoidance rulaa >
•RESET-PS* c claar PS rula tabla

0
1
2
3 RULE:

9
6
8
9 RULE:

10
11
12
13
14
IS

(CJH*8/09/S9>

START-UP PRIORITY: 10 (initialize call nap)
•IF* NOT< STARTED • > *
•THEN* CELL-HAP-INIT

STARTED TRUE NEWDIR FALSE CELL-EXIT FALSE
•END*

CET-DIR PRIORITY: 0
• IF* NOTt NEWDIR • >
•THEN* CPAD-CHECK

READ-OVERIDE

(gat naw diraction raquast)

• END'

IF CLEAR-HSG W." OVER-RIDE"
READ-JOYSTICK-CMD IF CLEAR-HSG SCAN-DIR

NEWDIR TRUE THEN

THEN

386 LIST

1
3
4

6
7

9
10
11
12 RULE
13
14
IS

(Diraction checking rulaa >
RULE: RED-OBJ PRIORITY: 1 (deatinatlon obatructad >

•IF> NEWDIR 0 DIR-CONTENTS C« HIGH-OBS •
•THEN* OVERIDE «

IF DIR-CONTENTS FALSE
ELSE NEWDIR FALSE W.~ OBSTRUCTED PATH" BELL THEN

• END*
RULE: YELL0W-08J PRIORITY: 1 (daatinotion hazardous 1

•IF* NEWDIR 0 DIR-CONTENTS C« LOW-OBS •
•THEN* W." HAZARDOUS AREA" BELL

DIR-CONTENTS FALSE
• END*
WHITE-OBJ PRIORITY: 1 (daatinotion bloekad by wall)
•IF* NEWDIR 9 DIR-CONTENTS C« WALL •
•THEN* W." BLOCKED BY WALL" BELL NEWDIR FALSE
• END"

38? LIST

O
2

4
9

7

9
1O
11
12
13
14
19

< Hova ok rula > (CJH»8/09/89)

RULE: HAKE-MOVE PRIORITY: 1 (daatination claar - «aka nova)
•IF* NEWDIR a NOTC DIR-CONTENTS C9)
•THEN* CUR>INC RUNNING OVERIDE FALSE NEWDIR FALSE
•END* .

RULE: EXIT-HAP PRIORITY: S
•IF* CELL-EXIT »
•THEN* CELL-HAP-EXIT
• END*

(axit from call »ap I

HALT

8/21/89 AIMS Syataa Softwara ORNL Proprietary

Fig. 1. Concept of the Advanced Integrated Maintenance System
(AIMS).

Fig. 2. The Advanced Servomanipulator (ASM).

Fig. 3. Graphic cell map display.

UPPER
EQUPMENT RACK

LOWER
EQUPMENT RACK

CRNL-OWG 8 5 - 6 8 6 5 R

THE ADVANCED INTEGRATED MAiNTENANCE SYSTEM

OVERHEAD GANTRY

'MASTER CONTROLLERS

OPERATOR CONTROL STATION

ADVANCED
SEftVOMAMPULATOR

oml

\

, . * * • •

