(ONF- L7 11

CONSOLIDATED FUEL REPROCESSING PROGRAM

FORPS: A FORTH-Based Production System
and Its Application to a
Real-Time Robot Control Problem

Christopher J. Matheus
University of Illinuis
Urbana, Illinois

H. Lee Martin
Instrumentation and Controls Division
Oak Ridge National Laboratory*

Oak Ridge, Tennessee

Paper for presentation
at the
Computers in Engineering Conference
Chicago, Illinois
July 20, 1986

8y acceprance of this article. the
Publsher or recipient acknowiedges
the U S Government's right to
'41a:n g nonexclusive rovalty free
license in ang to any copyright
covering the srtcle

* Operated by Martin Marietta Energy Systems, Inc.,

Department of Energy.

CONF-860722--14
DE86 005426

for the U.S.

umnnunlrmmmn:uvsuummw<£§bu)

CONSOLIDATED FUEL REPROCESSING PROGRAM

FORPS: A FORTH-Based Production System
and Its Application to a
Real-Time Robot Control Problem¥*

Christopher J. Matheus
University of Illinois
Urbana, Illinois

H, Lee Martin
Instrumentation and Controls Division
Oak Ridge National Laboratory
-) Oak Ridge, Tennessee

Abstract

A simple yet very powerful system has been developed that
merges the artificial intelligence qualities of a production
system with the real-time control capabilities of FORTH.

FORPS (EQBTH—based Production §ystem) offers the advantages of
intelligent, rule-based control in a small package offering
high speed, extensibility, and simpliecity. A practical
example of the system is presented in the development of an
obstacle avoidance program to aid in controlling an overhead
manipulator transport system. Several other potential
applications to the area of control are discussed,.

*Reaearch sponsored by the Office of Facilities, Fuel Cyecle, and
Test Programs, U.S. Department of Energy, under Contract
No. DE-AC05-840R21400.

Introduction

This .paper presents a method for combining the real~time power and
versatility of FORTH with the intelligent decision-making structure of a
production rule system. This hybrid system is called FORPS
(FORTH-based Production System). It is concise, yet it provides the
potential deductive power of a rule production system. Since FORPS is
written in FORTH, it maintains the many advantages of a FORTH
programming environment. An overview of the FORPS design and a source
code listing are prcvided in Appendix A to give the interested reader
the opportunity to use FORPS. The first section of this paper presents
a brief desc;iption of production systems, followed by a discussion of
some of the features of FORTH for real-time applications. An example is
then presented in which FORPS is applied to the problem of obstacle
avoidance in the transportation of a mobile manipulation system. This
particular manipulator system is the Advanced Servomanipulator (ASM)
developed at the Oak Ridge National Laboratory (ORNL) for the
Consolidated Fuel Reprocessing Program (CFRP) [1]. The potential for
applying FORPS to other real-time problems {s also explored. While the
program examples and FORPS are written in FORTH, previous exposure to
FORTH is not easential to understanding the majority of this paper.

What is a Production System?

Of the several artificial intelligence (AI) programming techniques
available, production systems have perhaps gained the widest acceptance.
A production system is fundamentally a collection of condition-action
rules. An individual production consists of a conditional clause and an
action statement, usually bound together i{n an IF.,THEN structure.
Following is an example of a production as it might appear written in

plain English [2]:

Production 1
If it has feathers
and it flies
and 1t lays eggs
Then it is a bird

This rule states that if "it" (the object in question) has
feathers, flies, and lays eggs, then make the deduction that it is a
bird. A production system implemented for a specific area of knowledge
is often referred to as an expert system. A system of this nature might

consist of several hundred similar rules.

A major advantage of production systems is that they are easily
extended to accommodate new information. Production systems consider
all rules equally by means of the inference engine, a program that scans
through the set of all rules and executes the action portion of a rule
whenever its conditional clause is satisfied. If, however, more than
one rule is satisfied at the same time, a method of "conflict
resolution" {(based on a set of priorities) determines which rule to
"Pire" (i.e., execute). This method of evaluation gives relative
independence to‘the rules, making it easy to add new knowledge to a
production system even after installation. Many production systems are
in fact designed to be developed incrementally through the gradual
addition of new rules [2,3].

A major drawback of traditional production systems is the amount of
time required to arrive at a final conclusion. Other major shortcomings
are the limited {nput/output capability of production systems and the
need for specialized machines to run them. An unfortunate consequence
of these limitations 13 that production systems are often unable to

solve real-time, real-world problems.

What is FORTH?

Charles H. Mcore began developing the FORTH programming language
during the late sixties, At that time, "traditional languages did not
provide the power, ease, or flexibility" [U4] he needed, and he began
development of a new programming tool that eventually evolved into FORTH.
From the start, the concept of FORTH was dominated by Moore's

principle, "keep it simple."”

A significant advantage of FORTH is that it provides full power and
control over all of the machine's capabilities. It i3 possible to
access any mémory location simply by specifying its address. This
applies to all input/output ports, making it very easy and efficient to
read/write to peripheral devices such as A/D converters, timers,
counters, and switches. This ability is crucial for the sensing
necessary to real-time control. Control over the machine and its
peripherals, combined with its speed and programming ease, makes FORTH a

logical choice for real-time control applications.

Example of a Real-time FORTH Application

A prime example of a real-time application of FORTH is the Advanced
Integrated Maintenance System (AIMS) being developed at ORNL (see
Fig. 1). A pair of digitally controlled master/slave servo-
manipulators--the Advanced Servomanipulators (ASM)--are being built for
use in a teleoperated remote handling system (see Fig. 2). The AIMS
system is a prototype for a system ultimately intended for application
in a nuclear fuel reprocessing facility, with the slave manipulators
mounted on an overhead transport system within a radicactive "hot cell"

and the master operated from a remotely located control facility.

Four software packages are being developed for AIMS [5]: & servo
control package, a transporter and television camera package, a
communication package, and a man-machine interface (MMI). The servo
package controls the servo loops operating between the maater and slave
joint motors. This software, which must run at a frequency of at least
100 Hz, is handled by eight Motorola €8000 microprocessors. The camera
and transporter package controls positioning of the overhead ft.ransporter
and the multiple in-cell cameras. The transporter allows the ASM to be
moved to any desired location within the cell, and the cameras provide
visual monitoring of maintenance operations. The communication package
provides information transfer between devices via a local area network.
The MMI 1s the link between the operator and the other three control
packages., It runs on two Motorola 68000 processors to perform command
selection and provide system information and status for the operator.
All four software packages must run in real time, and all are written in
FORTH. A more detailed description of the AIMS control system can be

found in reference 5.

The Need for Artificial Intelligence

In many areas of AIMS software, the addition of some form of AI
would substantially improve overall system operation. For example, the
MMI is used by the operator to perform functions such as changing task
modes, analyzing system status and statistics, diagnosing faults and
failures, and controlling the camera and overhead transport packages.
Currently, the operator is required to mentally process a significant
amount of this information. It would be advantageous to have the MMI
ease the operator's workload by performing a larger percentage of
intelligent processing of system information for tasks such as obstacle
avoidance, automatic camera tracking, and system diagnostics. With
greater machine intelligence, operation of the system should become
easier, more efficlent, and safer. It is important, however, that this

added f{ntelligence operate in real time without slowing system response;
otherwise, such efforts will hinder rather than help the operator.

Why FORPS?

To implement traditional AI programming techniques on the AIMS
through a standard production system would be difficult, time consuming,
and costly due to the time and effort invested in AIMS' FORTH-based
software. It would be more desirable to develop a system that would
allow use of Al production system techniques without rewriting major
portions of existing code. In other words, write production systems
from within FORTH. Because FORTH is extensible and is easily customized
to any application, the logical solution was to extend FORTH to

recognize production system rule structures. FORPS is based on this

concept.

The FORPS Design

The design philosophy of FORPS is based on the criteria that it
should be small, simple, and fast enough to be applicable to real:time
problems. Further, it should provide the power of a basic production
system while maintaining FORTH's approach to programming (e.g.,
extensible, flexible, fast, etc.). One important goal was that it be
possible to execute any legal FORTH word at any point within a
production rule. (In a real-time control situation it is desirable to
be able to perform an operation--such as scanning an I/0 port--within
the conditional clause of a rule.) The ability to execute any FORTH
word from within either the conditional phase or the action phase of a
rule gives the programmer a higher degree of flexibility and power, two
FORTH qualities that FORPS attempts to preserve.

FORPS 1is intentionally very simple and short in order to keep it
fast for use in real-time applications. It consists of only five
rule~defining words and the inference engine, but the fundamental
components and potential power of a full-fledged production system are
completely intact. The object code is less than 3 Kbytes. It is
possible to add enhancements to a minimum FORPS system if a special need
becomes apparent. As an example of its theoretical usefulness, FORPS
has been used to solve the classic AI problem, "The Towers of Hanoi."

Rule Definition Words

-

The main task of writing a production system is defining the rules.
FORPS contains only five rule-defining words: RULE:, PRIORITY:, *IF%,
®*THEN*, and *END®. Following is an example of a rule definition:

RULE: IS-A-BIRD PRIORITY: 1
IF HAS-FEATHERS

FLIES

LAYS-EGGS
THEN. "The animal is a bird."
END

Consider the construction of this rule., RULE: takes the next word,
IS-A-BIRD, as the name of the rule being defined. PRIORITY: sets up a
relative priority for rules in case the conditional clause of more than
one rule is satisfied at the same time. In such an event, the rule with
the higher priority is executed. The use of PRIORITY: {s strietly
optional. When PRIORITY: 1s not used, a rule receives the lowest

default priority, zero.

IF begins the conditional portion of the rule. Each word that
follows *IF* becomes a part of the conditional clause that will be

g e,

executed when the inference engine scans conditionals. These words
must be predefined, executable FORTH words. In the above rule,
HAS-FEATHERS, FLIES, and LAYS-EGGS would all be FORTH-defined words that
presumably would return values according to the state of the syatem
(i.e., the data in memory and the conditions of the I/0 ports). For
example, HAS-FEATHERS would most likely return a true value if the
animal in question has feathers. This value might come either directly
from a variable in memory or from a peripheral device that performs a
test to see if the animal has this quality.

The word *THEN* marks the beginning of the action portion of the
rule. The words that follow must also be predefined, executable FORTH
words, because they will be executed by the inference engine whenever
the conditional clause is satisfied and the rule is of highest priority.
The word *END* simply marks the end of the rule definition.

Additional rules would be defined in a manner similar to the
example above. All rules in the system would then be loaded by the
atandard FORTH compiler, To run the system, the inference engine is
invoked with the "FORPS" command and sequentially scans the rules to
determine which conditional clauses are satisfied. The satisfied rule
with the highest priority is then executed, and the inference engine
repeats this cyclical process until none of the conditional clauses are

satisfiable or until an explicit HALT command is executed.

Application to Obstacle Avoidance

A practical application of FORPS is the real~-time problem of
obstacle avoidance. The ASM is transported through its cell environment
by way of an overhead transport system, which an operator controls with
a joystick while observing the system's motion through several
television cameras. An additional graphio cell map is computer

generated as shown in Fig. 3. The cell map displays the manipulator's
position within the cell as well as the location of potential obstacles,
which are color coded according to their height relative to the height
of the manipulator: Red obstacles are higher than the manipulator and
represent absolute obstructions; Yellow obstacles are lower than but
very nearly the height of the manipulator and are considered potential
hazards. Irformation concerning the height and location of all objects
is statically maintained within the cell‘map's data base. Although
there are obvious problems with a static representation of objects
within the cell, their solution is beyond the present scope of this

work.

A production-based program consisting of seven rules has been
written to assist the operator in obstacle avoidance during manipulator
transportation (see Appendix B). This obstacle avoidance system
overlays the existing transporter control software. Its function is to
analyze the operator's directicn requests and prevent the execution of
requests that would result in collision with an obstacle. The
production system scans data stored in the cell-map data base to
determine if the manipulator is being directed toward an object of
potentially dangerous height. If the manipulator would come close to
hitting an obstacle, a warning is displayed, but the operator is allowed
to proceed in the desired direction., If the path is blocked, the
transporter is prevented from proceeding in the requested direction, and
a "PATH OBSTRUCTED"™ message is displayed for the operator. 1In certain
instances it may be necessary to proceed cautiously near an obstacle; an
"override" switch is available to the operator to override the system's
control. Walls are shown in white, and the operator is never allowed to
command the transporter to collide with a wall.

Some important observations should be made concerning this
application. First, the obstacle avoidance system was written using
existing FORTH code and data structures. Words to move the transporter

10

and to access and display the cell map's data had already been written
for ar unintelligent cell-map/transporter system. Because these words
were already in use, design and operation of the obstacle avoldance
prcduction system was accomplished in a very short time (roughly four
hours). Second, the system operates in real time. There is no response
difference between this and the previous, unintelligent
cell-map/transporter system. Third., this simple system may be extended
easily by adding rules to increase its intelligence. One possible
enhancement 1s the addition of an automated path-finding routine in
which the operator specifies a destination and the program autonomously
transports the manipulator safely through the cell to that location.

A major advantage of using FORPS to solve this prcblem is the ease
with which high~level condition-action rules can be implemented. The
obstacle avoidance problem lenda itself to a definition in terms of
production ruleé because one naturally orders the significant events in
terms of rules such as "if there i3 no obstacle, then move the
transporter as requested,” and "if there is a wall, then prevent
movement and print a warning message." These if/then conatructs
obviously could be implemented with conventional programming techniques,
but FORPS provides a flexible, orderly framewcrk which allows efficient
program development. It is also likely that a conventional approach

would execute more slowly and be prone to logical errors.

Other Applications

The obatacle avoldance system is just one‘of many potential
applications for which FORPS is ideally suited. Another practical
application of FORPS being considered at ORNL is ASM system dlagnostiocs,
in which an expert system would perform continuous diagnostic tests on
the ASM. The many potential causes of faults and failures include
mechaniéal breakdowns in the gear driven arms, electrical faults in the

11

amplifiers and wiring, and logical failures in the processors
controlling the ASM. An expert diagnostics program is envisioned that
would run on a dedicated processor, continually monitoring the system's
status. Upon detection of an error, the arms would be shut down and
specific diagnostic routines would be performed. Since the monitoring
of system errors amounts to little more than the continual cycling
through of several tests, a FORPS production system would be an ideal

way to construct a diagnostics system.

Similar possibilities exist for applying FORPS methodology to
protlems such as television camera control, overhead crane operation,
coordinated arm tasks, and manipulator maintenance. FORPS also could be

extended to development of expert systems on personal computers.

Summary

FORPS is a production system developed in a FORTH programming
environment. It is very simple and fast, yet maintains the many
advantages of FORTH. 1Its simplicity, makes possible real~time execution
speeds. FORPS potentially possesses the power of a traditional
production system and, since it is extensible, additional capabilities
can be added if such needs become evident. Furthermore, the experienced

FORTH programmer can learn and implement it easily.

Because of its uniqua qualities, FORPS makes possible the
application of rule-based Al programming techniques to real-time control
problems such as the ASM obstacle avoidance system, which runs in real
time to assist the operator in transporting the ASM through its
obstructed environment. Similar opportunities exist for applying FORPS
to other FORTH~based systems in which it may be necessary or desirable
to add a degree of intelligent control. By combining the real-time
input/output capabilities of FORTH with a rule production structure, a
tool is now available to apply Al techniques to real-time, real-world

problems.

References

(1] Kuban, D. P., and H. L. Martin, "An Advanced Remotely
Maintainable Force-Reflecting Servomanipulator Concept," Proceedings,
1984 ANS Topical Meeting on Robotics and Remote Handling in Hostile
Environments, 407-15 (1984).

(2] Winston, P. H., Artificial Intelligence (2d Ed.),
Addison-Wesley, 1984,

(3] Barr. A., and E, A. Feigenbaum (Eds.), The Handbook of
Artificial Intelligence, Vol. 1, William Kaufman, Inc., 190-199
(1881-82).

(4] Brodie, Leo, Starting FORTH, Prentice-Hall, 1981.

(5] Martin, H. L., et al., "Control and Electronic Subsystems for
the Advanced Servomanipulator," Proceedings, 1984 ANS Topical Meeting
on Robotics and Remote Handling in Hostile Environments, 417-24
(1984),

APPENDIX A

FORPS Source Code

14

460 LIST

0 ¢ FORPS -- a FORth-Dased Production Jystem) { CJX 8/19/8%)
1 1 3 »THRU

% EXIT

4 FORPS is under the co Ivrtt. of Martin Mariette Eno:g! Systess.
S ia in the E ic domain and may bs ussd free

] [1) long a8 _no {-1.0 claina sre nade to ita uuthor-hlp.

? Author: Chrt-to har J. Matheus

8 University of lllinocia

9 222 Digital COIEut-r Lad

10 1304 W. Strtnz ald Ave.

%% Urbana,

13 This softwars waa developad at Oak Ridge Netionesl Laborstory,
{g Oak Ridge, TN, under thopCon.olldltod uel Reprocesaing Prozron.
461 LIST

[} { FORPS constants and variable { CIN=8/195/8%)
1 10 CONSTANT MAX-WRULES 16 CDNSTANT RULE-~LEM .

2 VARIABLE NQ-ACTIVITY YARIABLE ‘S VARIABLE ‘NOOP

3 VARIABLE >RULE-TABLE VARIABLE >LAST-RULE VARTABLE CYCLE

4 VARIABLE HIGH-PRI VARIABLE BEST-ACTIVE-RULE

2 CREATE RULE-TASLE MAX-#RULES RULE-~LEN = ALLOT

7 ¢ >ACTION (e -a) 4+

8 : >FIRE-CELL (a -a) 8 0 3

9 ¢ >PRIORITY e -a) 12 :

10 : HALT NO- ACTIVITY i
11 ¢ »ERRORw 1 ABORT" no RU ES LOADED* :

12 ¢ “RESET-FORPS»s RULE ~TABLE DUP >RULE-TABLE t nnx MRULES
13 RULE-LEN » ERASE (’3 ~ERROR- RULE-TABLE RESET-FORPSe
}g s NOOP ; * NOOP “NOOP 1 ooP ¢~ @ CDHSTAﬁT COLDH-CF
462 LIST

0 { FORPS ruzo dofinln word (CIN+8/15/8%)
1 : COND~PFA! HER)RULE—TABLE t

2 : ACTION-PFA! (.) HERE >RULE-~-TABLE @& >Ac 10

3 & RULE! >RULE-TABLE RULE-LEN / MAX-MRULES = ABORT“ no room*
4 CURRENT W@ CONTEXT Wt CREATE COND-PFAt -4 ALLOT

S COLON-CFA , SMUDGE)

6 ¢ PRIORITY: >RULE-TABLE i ~* 1F NUMBER ELSE DROP EXECUTE THEN
7 SwaP >PRIORITY Ul H IHHED!A

8 ! =ifem -1 4~ ’Sp-

9 ¢ =lFe >RULE- TABLE [] >FIRE-CELL (COMPILE) LITERAL

10 CONPILE »ife ; IMME DI

11 : sthens ¢ an) -1 -1 20l IF @ ’3 DO AND 4 +LOOP SWAP ! ;
12 : *THENe COMPILE ethene* COMPILE EXIT COLON-CFA ,

13 ACTION-PFAPF : IMMEDIATE
14 : «ENDe« RULE-LEN >RULE-TABLE +t COMPILE EXIT SMUDGE
15 R> DROP ; INMEDIATE
463 LIST

0 (FORPS Inferencs cng < CJH~8/15/85)
1 : SET-DEFAULT -1 HIG -PRI l ‘NODP BEST-ACTIVE-RULE t :

2 ¢ RT-LINITS ¢ ~n n) >LAST- RULE RULE- T BLE

3 { CLEAR-FIRES RT-LINITS DO O IRE-CEL, ﬁL E-LEN +LOOP :
4 3 TEST-RULE-CONDS RT-LINITS DO I OEX:CUTE RULE ~LEN +LOOP ;

S ¢ SELECT-BEST~RULE NO-~ACTIVITY TRUE SET-DEFAULT

6 RT~LIMITS DO I DUP >FIRE-CELL @

7 IF DUP >PRIORITY wc DUP HIGK-PRI

8 HIGH-PRI ! >ACTION DEST-ACTIVE RULE ¢

9 NO~ACTIVITY FALSE
10 LSE 2DROP THEN
11 ELSE DROP_THEN ULE-LEK cLOOP 1

12 : FIRE-RULE BEST-ACTIVE-RULE @ @E E UTE
13 : FORPS >RULE-TAB E 8 4- >LAST-RULE CL

14 BEGIN 1 CYCLE +! CLEAR-FIRES T!ST-RUL!- NS

15 SELECT-BEST~RULE FIRER-RULE NO-ACTIVITY @ UNTIL :

8/21/8% AINS System Software ORNL Proprietary

—— e e

15

1060 LIST

FORPS -- FORth-based Production Systes
FORPS ia a aisple Production Syatem designed to take full
adventage of the powsrs of FORTH. Basic production-like rules
are constructed using the words RULE:, »IFs, »THEN= and eENDe,
These rules are put into s table of the £oliou1ng foraat:d

C
four bytea | four bytea | four bytee | two bytes
Rul, 1 . 3 . »

Rule n . [L4 -

The COND. pfa ia the gfc of the conditional poxrtion of the
rule snd tho ACTION pfa la the action portion’s pfs. The FIRE
cell holds the result of the conditional pfe’a execution.
PRIORITY is & number between O and 63524 uased in the choosing
of the best-active-rule during “conflict-resolution™.

LR2RNMOVBVNNIALNNG

500 0 10 ot b

1061 LIST

FORPY constants and variablea
MAX-#RULES maximun nuber of rulea allowed in table

RULE-LEN length of & aingle rule table .ntr;

NO-ACTIVITY true if no rules fired during the cycls

*SP-IF ssves the para. stesck addr. st atert of cond.
SRULE-TABLE pointer lnto the rule tabla

>LAST-RULE eddress of last rule in table

CYCLE number of cyclesa executed

HIGH-PRI highest priority of all rulea fired
BEST~ACTIVE-RULE action gf. of highest priority sctive rule
>ACTION, >FIRE_FLAG, >PRIORITY offsets into rule-table

HALT sets NO_AUTIVITY t6 true -- casues FORPS to terminate
«ERRQR* atored aa lst rule when RESET -~ sbosts from FORPS
»RESET# Clesra rule-table end loads =ERROR» ss lat rule
NOOP no-operstion, ueed ss default BEST-ACTIVE-RULE

COLON-CFA cfe of : -~ the contents of the cfs of ! words

VaON-OVERNORLWDNKS

0 s b 0 o

1062 LIST

FORPS rule worda
COND~PFA! atores condition-pfa of rule into table
ACTION-PFAl storea -ction-r & of rule into table
RULE: sedde s rule to the dictionary -~ crsates two words
with one head: firet is cond word, second ia action word
PRIORITY: losds the rule’s prio:iiy cell with the velue of
the next word in the input atress (usually a nuaber)
elfn runtise version of «IFe, ssvea stack pointer and putas
& -1 on stack for subsiquent use b{ sthene
nIE» congllo. 88 @ literal a pointer to the rule’s
fire~cell (for use by sthsnw), and co-pilou wife
sthen® runtiae version of oTHERe -- AND’s the cond, atach
itens and atorea the result in the rule’s FIRE cel
aTHEN® coapilea »thens calgilcs EXIT to stop cond. word,
end Toapilas COLON-CFA to bagin rule‘s sction word
sENDe incras. rule counter and ends rule coampilstion

[ad]

VGAaWNHOVRINBAWN

et

1063 LIST

Inference engine

SET-DEFAULT sets BEST-ACTIVE-RULE to NOOP, clears priorit

RT-LIMITS puts the rule-table’s sddr. lismita on the stec

CLEAR-FIRES cClears the fire flags of all rules

TEST-RULE-CONDS executes in order each rules condition pfa

EXECUTE~-ACTIVE~RULES executes the sction of the highest
priority rule which has fired. If no rules fired NO-ACTIVITY
will ba set to true and the FORPS loop will terainste

.FIRE-RULE fires the BEST-ACTIVE-RULE

FORPS the main inference loop of the g:oductton system.
After resetting WRULES end CYCLES, the inference loop ia
enteraed and continuee until s cyclo psasesa in which no
rules have fired. The inference loop hea three functiona: it
incresents the cycle counter, clears all fire cells, tasts
th:‘eondﬁftonnl clsuses, sand exscutes the higheast priority,
sctive © .

VaWN-OVBNARAWNLO

0 4 0 b ok bt

0.JD. pfs | ACTION pfe | FIREK cell [PRIORITY value

8/21/83 AIN3 Systea Joftwere ORNL Proprietary

APPENDIX B

Obstacle Avoldance Productions

17

280 LIST
Q0 ¢ Celln R PS constanta & varisbles CIN«8/09/8%)
1 1 CONSTAMT WALL 7 CONSTANT LOU-OBS 2 CONSTANT HIGH~OI3
g 1CLOSE 40 + CONSTANT ROMOT-POS
4 VARIABDLE STARTED VARIABLE NEWDIR WVARIABLE DIR-CONTENTS
3 VARIABLE XDIR VARIABLE YDIR VARIABLE ZDIR
6 VARIABLE CELL~- EXIT VARIABLE CPAD-STATE
z VARIABLE OVERID
9
10 2 TRAN_CELL_MAP STARTED FALSE FORPY
11 = - { TRAN_CELL _MAP -aniy axecutes
}g the production aystes rula asat)}
14
13
381 LIST
? (Cellmep input wordas) HEX (CIN=8/09/8%3)
2 ¢ ?MENU~SEL PAD_VALUE @ aooooooo ANB NOT H
3 ¢ ?CELL-PAD PAD_VALUE @ 3FFFFFF ND & =
4 ¢ ?2CELL~-CMD PAD_VALUE @ DUP 3rrrrrrr AND ﬁAD VALUE t
-] 40000000 AND
6 :~CPAD-ALLOW 8 0 PAD_VALUE +3 :
7 ¢ READ-JOYSTICK ¢ --n/n) FFFF!O C. 1F AND 1F X9R
8 FFFF42 cc 3 ND 3 XOR
9 : READ-QVERID FFFF42 CA F AND DUP 7 = SWAP B, = OR
%? DUP 1IF OVERIDE TRUB THEN PAUSE :
12
13
14
13
382 LIST

(Cellmap menu words (CIN"8/09/8%)>

CPAD-ACCENT _~200 100 uovnns 1 PRMFIL WHITE COKP
3% 3% RECREL UNCOMP ;
ACCEHT CPAD ?CELL-PAD IF CPAD~STATE @ NOT
IF CPAD-ACCENT 1 CPAD-STATE ! THEN
ELSE CPAD-STATB . IF CPAD-ACCENT O CPAD-STATE ! THEN THEN
CPADCHECK uiSEL IF ACCENT-CPAD 7CELL-CND IF 1CELL-PAD
IF 1 CELL~- EXIT YU TRER THEN CPAD-ALLQW THEN ;
cELL PRD T266 100 HOVABS CYAN 32 16 MOVREL
3 0 TEXTC V." EXIT* 90 TEXTC
CELL-MAP-INIT 1 nnrrL L-EXIT 1 O CPAD-STATE ¢
BLACK gkoggngsLtLgnc csLL-caAn RESTARER GELL-PAB 2 0 TEXTC
CELL nap EXIT BLACK FLOOD 0 0 CLOAD 4 O O CLDAD CR
CUR_REPORT STAT_INIT KEAD_ !NXT 0 1 MENU STATUS HANDLER :

PEWNEOVENOBAWN-O
.

[

383 LIST
< Db-t-clo dot-ctton words { CIM=B8/09/8%)
WORST ¢ n n) OVER 1 - ER 1 = OR IF 2DROP 1 ELSE

OVER 2 = OVER 2 s QR IF 20ROP 2 LSE
7 SWAP 7 = OR IF ELSE O THEW THEN THEN ;
R @ YDIR .
« + ROBOT-PDS + C. >R
"
-

-o
.
[]

e
u
Q
>
=
[
o
"

» ROBOT-POS -~
+ ROBOT-POS + C. R) R> WORST WORST

PAS-TEXT O TEXTC -200 -20 MQVABS

BELL 7 E
oo T
T COMPILE viot"™ 34 STRING

T
CX 1 PEFIL 190 1% RECREL

. CONp
COHPILE NT
CLEAR-MSG W

GAWUNFHOOENOTRAWN

£

~ o
-
o
3
0
Q
x
-3
”m

RD Lans

o

1 48 b b gt

8/21/88 AINS Sysa' a4 Software ORNL Proprietary

18

364 LIST
? ¢ KAPPER PS constants & verisbles) { CIN=8/09/8%)
2 ¢ CUR>INC ¢ ~xyz) ZDIR @ NEWZ @ ¢« PLEGAL NEWZ 1
3" "xpir @ Y. YDIR‘. NEHY [R4 XY TLEGAL NEWY 1t
S : cORSXYZ & n/meonsg/a) o o
H n/ne-x
& Dup 2 = IF DROP -1 HEH 6 SWAP
rd UP & = IF DROP O -1 ELSE DUP 4 = IF DROP ~1 O ELSE
8 DUP 2 = IFDROP L1 O ELS DUP £t = IF DROP O 1 ELSK
9 DR | 4 o Q@ THEN THEN THEN THEM ROT :
10 ¢ READ JOYSTICK~CHD ~-n) PAUSE READ~JOYSTICK OVER 16 <
11 CUR>XYZ ELSE QDROP 1 CELL-EXIT t 0 O
%g ZDIR t- OVER OVER YDIR t XDIR t OR ZDIR @ OR PAUSE :
14
1S
3838 LIST
Q Obstescle svoidance rules (CIN=8/09/8%)
% -RESET -PSe (clear PS rule tnbl.)
3 RULE: START-UP PRIORITY: 10 (initialize cell map)
4 o IFe NOT¢ STARTED ®)
-] oTHEN® CELL-MAP-INIT
) . STARTED TRUE NEWDIR FALSE CELL-EXIT FALSE
g «END»
9 RULE: GET-DIR PRIORITY: O { get new direction request)
10 #IF® NOQT(NEWDIR @)
11 «THEN» CPAD-CHECK :
12 READ-OVERIDE IF CLEAR-M3G W.” OYVER~-RIDE"™ THEN
13 READ-JOYSTICK-CMD IF CLEAR-MSG SCAN-DIR
14 NEWDIR TRUE THEN
13 «END#
386 LIST
o { Direction chocklng rulun)
1 RULE: RED-0BJ PRIOR estination obstructed)}
2 »IFes NEWDIR @ DIR- CONTENTS C® HIGH-OBS =
3 »THEN® QVERID
4 IF DIR-CONTENTS FALSE
2 “END= ELSE NEWDIR FALSE W."™ OBSTRUCTED PATH BELL THEN
7 RULE: YELLOU DBJ PRIORITV‘ 1 { ds lttnaticn hczardou-]
8 wIFw WDIR @ DIR-CONTENTS C@ LOW-0BS
9 -THEN- w " HAZARDOUS AREA“ BELL
%? <ENDe® DIR-CONTENTS FALSE
12 RULE: UHITE—OBJ PRIORITY: 1 dclttnution blocked by wall)
13 »IF» NEWDIR @ DIR-C NTENTS C@ WAL
14 «THENe W.*" BLOCKED BY WALL"™ BELL NEUDIR FALSE
15 *END»
387 LIST
? (Nove ok rule) ¢ CIK=8/09/8%)
2 RULE: HAKE-HOVE PRIORITY: 1 { dontinutton clear - make mave)
3 »IFes NEWDIR @ NOT(DIR-CONTENTS C@®)
; -Egﬁl- CUR>INC RUNNING DOVERIDE FALSE NEWDIR FALSE
. De
6
7 RULE: EXIT-HMAP PRIORITY: S { exit from cell map |}
8 eIFe CELL-EXIT @
9 sTHEN® CELL-NAP-EXIT HALT
1Q sENDe
11
12
13
14
13

8/21/85

AINS System Software ORNL Proprietery

Fig. 1. Concept of the Advanced Integrated Maintenance System

Fig. 2. The Advanced Servomanipulator (ASM).

Fig. 3. Graphic cell map display.

GRNL-DWG 85-6865R

THE ADVANCED INTEGRATED MAINTENANCE SYSTEM

HO11IS0d HOLY NG N

