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1 . INTRODUCTION

The purpose of this paper is to present several FORTRAN

subroutines for updating the QR decomposition of a matrix. Let

A € Rmxn , m > n, have a QR decomposition A = QR , where Q g (R
mxn has

orthonormal columns, and R G IR is upper triangular. Assume that

the elements of Q and R are explicitly known. Let A £ R x
, p > q,

be obtained from A by inserting or deleting a row or a column, or let

A be a rank-one modification of A, i.e., A = A + vu , where u £ R n
,

v G Rm . Then a QR-decompos it i on of A , A = QR, where Q £ RPxQ has

orthonormal columns and R £R x is upper triangular, can be computed

in 0(mn) arithmetic operations by updating Q and R; see Daniel et al

.

[5] . The updating is done by applying Givens reflectors. The

operation count for updating Q and R compares favorably with the

0(mn ) arithmetic operations necessary to compute a QR decomposition

of a general mxn matrix.

Algol procedures for computing Q and R from Q and R are presented

by Daniel et al . [5] . Buckley [2] translated these procedures into

FORTRAN. Our FORTRAN subroutines implement modifications of the

Algol procedures in [5] . These modifications speed up the

subroutines and make them suitable for use on vector computers. This

is illustrated by timing experiments.

Several program libraries, such as LINPACK [6] and NAG [14] ,

provide subroutines for updating R only, but contain no routines for

updating the complete QR decomposition. Advantages of updating both

Q and R include that downdating can be carried out stably, and that

the individual elements of projections are easily accessible; see

LINPACK [6, p. 10.23], Daniel et al . [5], and Stewart [17].



The first comprehensive survey of updating algorithms was

presented by Gill et al. [8] , and a recent discussion with references

to applications can be found in Golub and Van Loan [10, Chapter

12.6] . The applications include linear least squares problems.

regression analysis, and the solution of nonlinear systems of

equations. See Allen [1] , Goldfarb [9] , Gragg and Stewart [11] , More

and Sorensen [13] . The algorithms would also appear to be applicable

to recursive least squares problems of signal processing: see Ling et

al . [12] .

We also present a subroutine which implements the rank revealing

QR decomposition method recently proposed by Chan [3] . in this

method the QR decomposition A = QR is updated to yield the QR

decomposition A = QR. where A is obtained from A by column

permutation. This permutation is selected so that, in general, the

element (s) in the lower right corner of R are small if A has nearly

linearly dependent columns. The subroutine can be used to solve the

subset selection problem; see Golub and Van Loan [10] . Table 1.1

lists the FORTRAN subroutines for updating the QR decomposition. All

subroutines use double precision arithmetic and are written in

FORTRAN 77. Section 2 contains programming details for the

subroutines of Table 1.1 and for certain auxiliary subprograms. For

all subroutines of Table 1.1. except DRRPM , the numerical method as

well as Algol procedures have been presented in [5] . For these

subroutines we will only discuss differences between our FORTRAN

subroutines and the Algol procedures. These differences stem in part

from the algorithms being sped up, as well as from the use of simple

subroutines, BLAS , for elementary vector and matrix operations.



Subroutine Purpose

DDELC Computes Q,R from Q,R when A is obtained from A by
deleting a column; see [5] .

DDELR Computes Q,R from Q,R when A is obtained from A by
deleting a row; see [5]

.

DINSC Computes Q,R from Q,R when A is obtained from A by
inserting a column; see [5] .

DINSR Computes Q,R from Q,R when A is obtained from A by
inserting a row; see [5] .

DRNK1 Computes Q,R from Q,R when A is a rank-one
modification of A; see [5]

.

DRRPM Computes Q,R from Q,R when A is obtained by
permuting the columns of A in a manner that
generally reveals if columns of A are nearly
linearly dependent; see [3] .

Table 1.1: Subroutines for updating a QR decomposition A = QR
to yield a QR decomposition A = QR.

The BLAS are discussed in Section 3. They have been written to

vectorize efficiently on a IBM 3090-200VF computer using the

vectorizing compiler VS FORTRAN 2.3.0 without special compiler

directives. Most BLAS were obtained by modifying LINPACK BLAS [6]

.

We hope that the provided BLAS vectorize well without excessive

timing increases also on other vector computers. Section 4 contains

output from a driver illustrating the use of the subroutines. A

listing of the source code of the driver is provided in the Appendix

Section 4 also contains some timing results.



2. THE UPDATING SUBROUTINES

We consider the subroutines of Table 1.1 in order. These

subroutines use auxiliary subroutines which we need to introduce

first. They are listed in Table 2.1.

Auxi

1

iary
subrout i ne

DORTHO

DORTHX

DINVIT

DTRLSL

DTRUSL

Called by
subrout i ne

DINSC, DRNK1

DDELR

DRRPM

DINVIT

DINVIT

Purpose

Compute s: = Q w, v: — (I-QQ )w
with reorthogonal ization for
arbitrary vector w.

Compute s: = Q e:, v: = (I-QQT )ej,

with reorthogonal i zat i on foir ax i s
vector e:

Compute approximation of a right
singular vector corresponding to a
least singular value of R. A first
approximation is obtained from the
LINPACK condition number estimator
DTRCO . and is improved by inverse
iterat i on

.

Solve lower triangular system of
equations with frequent rescalings in
order to avoid overflow. Similar to
part of DTRCO.

Solve upper triangular linear system
of equations with frequent rescalings
in order to avoid overflow. Similar
to part of DTRCO

.

Table 2.1: Auxil iary subroutines

2.1 Subroutines DORTHO and DORTHX

Given a matrix Q £ in > n, with orthonormal columns and a

vector w £ Rm , the subroutine DORTHO computes the Fourier

coefficients s: = Q w and the orthogonal projection of w into the

null -space of Q
T

, v: = (I-QQT )w. At most one reorthogonal i zat i on is



carried out. Since the subroutine DORTHO differs from the

corresponding Algol procedure " orthogonal i ze" in [5] we discuss

DORTHO and its use in some detail.

Subroutine DORTHO is called by routine DINSC, which updates the

QR factorization of a matrix A = QR G Rmxn , m > n, when a column w is

inserted into A. Updating may not be meaningful if w is nearly a

linear combination of the columns of Q. Therefore DORTHO computes

the condition number of the matrix Q: = [Q,w/||w||] £ Rmx(n+1 , where the

norm is the Euclidean norm. Using Q Q = I, we obtain the

following expressions for the singular values a^ > cr 2 > ... > ^n+i °~f

Q:

a, = (1 + ||Q
T
w||/||w||)

l/2
, (2.1a)

<Tj = 1, 2 < j < n, (2.1b)

<r n+ 1
= (1 - ||Q

T
w||/!|w||) l/2

. (2.1c)

Further, for v: = ( I -QQ
T

) w/||w|| ,

IM| = o-i^n+i- (2.2)

Since 1 < <7^ < n2 , 0"n+ i
is also an accurate estimate of the length of

the orthogonal projection of w/||w|| into the null-space of Q . In

order to avoid severe cancellation of significant digits in (2.1c) we

determine first a-^ from (2.1a) and then 0"n+i from (2.2) .

Subroutines DINSC and DORTHO have an input parameter RCOND which

is a lower bound for the reciprocal condition number. The

computations are discontinued and an error flag is set if

RCOND < an+1 /a 1
. On exit, RCOND: = <rn+1 /<r1 .



Assume now that the input value of RCOND > cr n ,

l / (r
l

. Then hMRTHO

computes s: = Q w and v: = (I-QQ )w by a scheme analogous to the

method described by Parlett [15, p. 107] for orthogonal izing a vector

against another vector. For def i n i teness , we present the

orthogonal i zat i on scheme. References to a^ , a n l
, and RCOND are

neglected for simplicity.

Orthogonal izat ion algorithm : input Q G Rmxn (Q has orthonormal

columns), m , n (m > n), w e Rm (w ^ 0); output v (v = (I-QQT )w),

s (s = Q w) ;

w : = w/||w||
;

s: = Q
Tw ; v: = w-Qs; (2.3)

H ||v|| > 0.707 then

v: = v/||v|| ; s: = s||w|| ; exit; * ||v|| = 1. Q v = *

s': = Q
T v; v' : = v-Qs'; (2.4)

if ||v'|| < 0.707||v|| then

* w lies in span{Q} numerically *

v: =0; s: = (s+s ) ||w|| ; set flag; exit;

v: = ( v+v')/||v+v'|| ; s: = (s+s')||w||; exit; * ||v|| = 1, Q
T v = *

The proof in Parlett [15, pp. 107-108] that one reorthogonal i zat ion

suffices carries over to the present algorithm, using that Q Q = I.

We note that there are other ways to carry out the computations

on lines (2. 3) -(2. 4). In [5], v and v are updated immediately after

a component of s is computed. Our scheme has the advantages of being

faster on vector computers, since it allows matrix vector operations,

and it is also, generally, more accurate, since rounding errors



accumulate less. The latter can easily be shown, and we omit the

detai 1 s

.

We turn to subroutine DORTHX . This is a Taster version oT

subroutine DORTHO . DORTHX assumes that w in the orthogonal i zat i on

algorithm is an axis vector. This simplifies the computations in

(2.3). DORTHX may perform nearly twice as fast as DORTHO.

2.2 Subroutines DINVIT, DTRLSL and DTRUSL

Given a nonsingular upper triangular matrix U = [Mjk] € R nxn and a

vector b = [/?j] G R n
, DTRUSL solves Ux = bp , where \p\ < 1 is a

scaling factor such that
| (3p/p \

< 1 for all j. The scaling factor

is introduced in order to avoid overflow when solving very ill-

conditioned linear systems of equations. DTRLSL is an analogous

subroutine for lower triangular systems.

DTRLSL and DTRUSL are called by DINVIT, a subroutine for

computing an approximation of a right singular vector belonging to a

least singular value of a right triangular matrix R. If R is

singular then such a singular vector is computed by solving a

triangular linear system of equations. Otherwise an initial

approximate right singular vector a° = {a- }? , is obtained by the

LINPACK condition number estimator DTRCO , and inverse iteration with

R R is used to obtain improved approximations a , j = 1,2,... ,NMBIT,

where NMBIT is an input parameter to DINVIT and DRRPM . On exit from

DINVIT and DRRPM, IPOS(j) contains the least index k such that

l

a
k I

> \<*\
;

I» 1 <^< n>°<J< NMBIT. On return from DINVIT and

DRRPM the parameter DELTA is given by DELTA: = ||R
TRa(NMBIT) ||/||a

(NMBIT)
||

.

Hence, DELTA is an upper bound for the least singular value of R.

8



2.3 Updating subroutines

We are in a position to consider the subroutines of Table 1.1.

The vector izat ion is mainly done in the BLAS of the next section, but

some loops of the subroutines of Table 1.1 vectorize as well.

Comments in the source code reveal which loops vectorize or are

eligible for vector i zat ion on an IBM 3090-200VF computer with

compiler VS FORTRAN 2.3.0 to where the default vector izat i on

directives are used. For applications to particular problem classes,

changing the default vector i zat ion by compiler directives may

decrease the execution time.

We list the differences between the subroutines of Table 1.1 and

the corresponding Algol procedures of [5] . Some of these

modifications were suggested in [5] but not implemented in the Algol

procedures [5] . In subroutine DDELC . the column deleted in A: = QR

is determined optionally. Not computing this column saves 0(mn)

arithmetic operations. In subroutine DDELR , the auxiliary subroutine

DORTHX is used instead of D0RTH0 . As indicated in Section 2.1 the

former subroutine may perform nearly twice as fast. In subroutine

DINSC, a column w is inserted into A: = QR only if the reciprocal

condition number of the matrix [Q«w/||w|| is larger than a bound given

by the parameter RCOND on entry. The parameter RCOND can be used to

prevent updating when w/||w|| is nearly in the range of Q. Finally,

DRNK1 performs slightly faster if the updated matrix A + vu is such

that v lies numerically in the range of A.

The subroutine DRRPM implements an algorithm presented by Chan

[3]. The computation of an approximate right singular vector

corresponding to a least singular value is done by subroutine DINAH



and has already been discussed. The position of a component of

largest magnitude of this singular vector has to be determined, and

we found, in agreement with Chan's suggestion [3] , that two inverse

iterations suffice. In fact, in all computed examples, one inverse

iteration was sufficient, even for problems with multiple or close

least singular values. The subroutine permutes the order of columns

I through k of All where k is an input parameter, A G Rmxn , m > n, and

II is a permutation matrix. DRRPM is typically called with

k = n,n-l,n-2,... until no further permutat ion is made or unt i 1 the

computed upper bound DELTA for the least singular value of the matrix

consisting of the first k columns of All is not small .

The subroutines of Table 1.1 do neither require nor produce a

factorization with nonnegative diagonal elements of the upper

triangular matrix.

3. THE BLAS

Much computational experience on a variety of computers led

Dongarra and Sorensen [7] to conclude that nearly optimal performance

of numerical linear algebra subroutines can be achieved if the sub-

routines for the basic matrix and vector operations, such as multi-

plication, addition and inner product computation, are written to

perform well on vector computers. We wanted to write a code that

performs well on an IBM 3090-200VF computer, and that would not

require excessive tuning when moved to other (vector) computers.

Therefore we designed the code to vectorize well without special

compiler instructions, since the latter would be machine dependent.

10



A feature of the VS FORTRAN 2.3.0 compiler is that unnecessary

vector loads and stores are avoided by introducing a temporary scalar

variable, denoted by ACC in the subroutine DAPX in Example 3.1.

During execution ACC should be thought of as a vector variable stored

in a vector register. Timings for DAPX and comparison with code with

explicitly unrolled loops have been carried out by Robert and

Squazzero [16] . These timings show subroutine DAPX to perform better

than equivalent subroutines with explicitly unrolled loops.

Example 3.1. Subroutine for matrix vector multiplication.

SUBROUT I NE DAPX ( A , LDA , M , N , X , Y)
C
C DAPX COMPUTES Y:=A*X.
C

INTEGER LDA, M.N. I .J

REAL*8 A(LDA,N) ,X(N) ,Y(M) , ACC
C
C OUTER LOOP VECTORIZES.
C

DO 10 1 = 1 ,M
ACC=0D0
DO 20 J=l ,N

ACC=ACC+A ( I , J) *X ( J)
20 CONTINUE

Y(I )=ACC
10 CONTINUE

RETURN
END

Temporary scalar variables have also been used in others of the 17

BLAS used

.

4. COMPUTED EXAMPLES

Example 4.1. In this example the QR decomposition of a 4 x 3 matrix

A is updated. The use of all subroutines of Table 1.1 is

illustrated. The main program producing this output is listed in the

Append ix

.

1 1
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Example 4.2. Execution times for subroutines DDELCO and DRNK1 are

compared for scalar and vector arithmetic. The measured cpu times

differed somewhat between different executions of the same code.

Therefore the reported times are rounded to one significant digit and

the quotient of measured cpu times are rounded to the nearest

multiple of 1/2.

Table 4.1 shows the cpu times for DDELCO. This routine and its

subroutines have been compiled with the VS FORTRAN 2.3.0 compiler.

The times for vector arithmetic are obtained from code generated with

compiler option vlev = 2, which makes the compiler generate code that

utilizes the vector registers and arithmetic. The times for scalar

arithmetic are obtained from code generated with compiler option vlev

= 0, which makes the compiler generate code that does not use vector

instructions. Given a QR decomposition of a matrix A £ Rmxn . Table

4.1 shows the cpu time required by DDELCO to compute the QR

decomposition of A £ Rmx n " obtained by deleting column one of A.

cpu time in seconds

scalar arithmetic vector arithmetic seal ar—1 1 me
vector time

4-10"4 4-1CT4
1

4-10"4 4-10" 4
1

5-10"4 4-1 0"4 1.5

6-10"4 4-10"4 1.5

8-lCT4 4-10"4 2

1-10"3 5-10"4 2

7-10" 3 2-10" 3 3.5

9-10" 3 3-10"3 3.5

Table 4.1: Timings for DDELCO

m n

10 10

20 10

30 10

50 10

75 10

128 10

1024 10

1280 10

13



m n

16 12

32 25

64 50

128 100

1024 100

Table 4.2 is similar to Table 4.1 and contains execution times for

DRNK1 . The reduction in execution time obtained by using vector

instructions is of the same order of magnitude for the other updating

routines, too.

cpu time in seconds

scalar arithmetic vector arithmetic scalar—t lme
vector time

1-iO" 3 1-10" 3
1

4-10" 3 3-10" 3 1.5

2-10" 2 7-10" 3 2

6-10" 2 2-10" 2 2.5

4-10" 1 8-10"2 4.5

1250 100 5-10" 1 9-10" 1 5

Table 4.2: Timings for DRNK1

Example 4.3. Execution times for subroutines written by Buckley [2]

and those of Table 1.1 are compared. The vectorized and scalar codes

were generated as explained in Example 4.2. We found that

vector izat ion of the subroutines in [2] did not change the execution

times significantly, generally less than 20%. In all computed

examples the vectorized subroutines in [2] required at least twice as

much execution time than the vectorized subroutines of Table 1.1.

For certain problems our vectorized code executed up to 95 times

faster than the vectorized code in [2] . For scalar code the

differences in execution time often decreased with increasing matrix

size. Tables 4.3-4.6 present some sample timings.
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m

time for
DDELR

t i me Tor
DELROW [2]

t ime for DDELR

10 3-10" 5 9-10"4 3.510 1

64 7-10" 5 2-10" 3 2-10 1

128 8-10"4 3-10" 3 3

1024 4-10"3 2-10" 2 4

Table 4.3: The first row of A = QR is deleted. Cpu times for
vectorized code for updating Q and R are given in

seconds; n = 10.

time for DELCOL [2]
time for DDELC

2

7.5-10 1

9.5-10 1

time for time for
m n DELC DELCOL [2]

1024 10 1-10"4 2-10"4

1024 100 110"4 7-10" 3

1280 100 1-10" 4 910" 3

Table 4.4: The last column of A = QR is deleted. Cpu times for
vectorized code for updating Q and R are given in
seconds. DDELC does not compute the last column of

A, i.e., IFLAG = on entry.

time for INSCOL [2]
time for DINSC

2

2

2.5

time for time for
m DINSC INSCOL [2]

64 1-10" 3 2-10" 3

128 1-10" 3 3-10" 3

1024 7-10" 3 2-10" 2

Table 4.5: A new first column is inserted into A = QR . Cpu times
for vectorized code for updating Q and R are given in

seconds; n = 10.

Tables 4.3-4.5 present timings for vectorized code. The next table

shows timings for scalar code for the same updatings as in Table 4.3

Table 4.6 shows that, without vector i zat i on , DELROW [2] requires 50%

more cpu time than DDELR for moderately large problems.
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m

t ime for
DDELR

time for
DELROW [2]

t l me for DDELR

10 2-10" 5 6-10"4 3-10 1

64 1-10" 3 2-10" 3
1 .5

128 2-10" 3 3-10" 3
1 .5

024 1-10" 2 210"2
1 .5

Table 4.6: The first row of A = QR is deleted. Cpu times for
scalar code for updating Q and R are given in seconds;
n = 10.
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