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A = QR. where () € R™" has orthonormal columns. and R € R™" is upper
triangular. Assume that (] and R are explicitly known. We present
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stable manner when A is modified by a matrix of rank one., or when a
row or a column is i1inserted or deleted. These subroutines are
modifications of the Algol procedures in Daniel et al. [5]. We also
present a subroutine that permutes the columns of A and updates the
QR decomposition so that the elements in the lower right corner of R
will generally be small if the columns of A are nearly linearly
dependent. This subroutine is an implementation of the rank
revealing (R decomposition scheme recently proposed by Chan [3]. The
subroutines have been written to perform well on a vector computer.
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1. INTRODUCTION

The purpose of this paper is to present several FORTRAN
subroutines for updating the (R decomposition of a matrix. Let
A€ R™, m > n, have a QR decomposition A = QR, where ) € R™" has

Rnxn

orthonormal columns, and R € is upper triangular. Assume that

the elements of Q and R are explicitly known. Let A € RPX9, p > q,

be obtained from A by inserting or deleting a row or a column, or let

T

A be a rank-one modification of A, i.e., A = A + vu', where u € R",

v € R™. Then a QR-decomposition of A, A = QR, where Q € R"*? has

R is upper triangular, can be computed

orthonormal columns and R €
in O(mn) arithmetic operations by updating (Q and R; see Daniel et al.
[5]. The updating is done by applying Givens reflectors. The
operation count for updating @ and R compares favorably with the
O(mn2) arithmetic operations necessary to compute a (R decomposition
of a general mxn matrix.

Algol procedures for computing {J and R from () and R are presented
by Daniel et al. [5]. Buckley [2] translated these procedures into
FORTRAN. QOur FORTRAN subroutines implement modifications of the
Algol procedures in [5]. These modifications speed up the
subroutines and make them suitable for use on vector computers. This
is illustrated by timing experiments.

Several program libraries, such as LINPACK [6] and NAG [14],
provide subroutines for updating R only, but contain no routines for
updating the complete (QR decomposition. Advantages of updating both
Q@ and R include that downdating can be carried out stably, and that

the individual elements of projections are easily accessible; see

LINPACK [6, p. 10.23], Daniel et al. [5], and Stewart [17].




The first comprehensive survey of updating algorithms was
presented by Gill et al. [&], and a recent discussion with references
to applications can be found in Golub and Van Loan [10. Chapter
12.6]. The applications include linear least squares problems.
regression analysis, and the solution of nonlinear systems of
equations. See Allen [1]. Goldfarb [9], Gragg and Stewart [11]. More
and Sorensen [13]. The algorithms would also appear to be applicable
to recursive least squares problems of signal processing: see Ling et
al. [12].

We also present a subroutine which implements the rank revealing
QR decomposition method recently proposed by Chan [3]. In this
method the QR decomposition A = (QR is updated to yield the QR
decomposition A = QR. where A is obtained from A by column
permutation. This permutation 1s selected so that. in general. the
element(s) in the lower right corner of R are small if A has nearly
linearly dependent columns. The subroutine can be used to solve the
subset selection problem: see Golub and Van Loan [10]. Table 1.1
lists the FORTRAN subroutines for updating the QR decomposition. All
subroutines use double precision arithmetic and are written in
FORTRAN 77. Section 2 contains programming details for the
subroutines of Table 1.1 and for certain auxiliary subprograms. For
all subroutines of Table 1.1. except DRRPM. the numerical method as
well as Algol procedures have been presented in [5]. For these
subroutines we will only discuss differences between our FUORTRAN
subroutines and the Algol procedures. These differences stem in part
from the algorithms being sped up. as well as from the use of =simple

subroutines, BLAS. for elementary vector and matrix operations.



Subroutine Purpose

DDELC Computes {,R from Q,R when A is obtained from A by
deleting a column: see [5].

DDELR Computes .R from Q,R when A is obtained from A by
deleting a row; see [5].

DINSC Computes Q,R from Q,R when A is obtained from A by
inserting a column; see [5].

DINSR Computes @ ,R from Q,R when A is obtained from A by
inserting a row; see [5].

DRNK1 Computes Q,R from Q,R when A is a rank-one
modification of A; see [5].

DRRPM Computes Q,R from Q,R when A is obtained by
permuting the columns of A in a manner that

generally reveals if columns of A are nearly
linearly dependent; see [3].

Table 1.1: Subroutines for updating a QR decomposition A = QR
to yield a QR decomposition A = QR.

The BLAS are discussed in Section 3. They have been written to
vectorize efficiently on a IBM 3090-200VF computer using the
vectorizing compiler VS FORTRAN 2.3.0 without special compiler
directives. Most BLAS were obtained by modifying LINPACK BLAS [6].
We hope that the provided BLAS vectorize well without excessive
timing increases also on other vector computers. Section 4 contains
output from a driver illustrating the use of the subroutines. A
listing of the source code of the driver is provided in the Appendix.

Section 4 also contains some timing results.




2. THE UPDATING SUBROUTINES
We consider the subroutines of Table 1.1 in order. These
subroutines use auxiliary subroutines which we need to introduce

first. They are listed in Table 2.1.

Auxiliary Called by Purpose
subroutine subroutine
DORTHO DINSC, DRNK1 Compute s: = QTw. v: = (I-QQ7)w

with reorthogonalization for
arbitrary vector w.

DORTHX DDELR Compute s: = QTe.. v: = (I—QQT)%W
with reorthogonaﬁization for axis

vector er

DINVIT DRRPM Compute approximation of a right
singular vector corresponding to a
least singular value of R. A first

approximation is obtained from the
LINPACK condition number estimator
DTRCO. and is improved by inverse
iteration.

DTRLSL DINVIT Solve lower triangular system of
equations with frequent rescalings in
order to avoid overflow. Similar to

part of DTRCO.

DTRUSL DINVIT Solve upper triangular linear syvstem
of equations with frequent rescalings
in order to avoid overflow. Similar

to part of DTRCO.

Table 2.1: Auxiliary subroutines.

2.1 Subroutines DORTHO and DORTHNX

Given a matrix Q € R™", m > n, with orthonormal columns and a
vector w € R™, the subroutine DORTHO computes the Fourier
coefficients s: = Q'w and the orthogonal projection of w into the

null-space of QT~ Vg = (I-QQT)W. At most one reorthogonalization is

ot



carried out. Since the subroutine DORTHO differs from the
corresponding Algol procedure ”orthogonalize” in [5] we discuss
DORTHO and i1ts use in some detail.

Subroutine DORTHO is called by routine DINSC, which updates the

QR factorization of a matrix A = QR € R™", m > n, when a column w is
inserted into A. Updating may not be meaningful if w is nearly a
linear combination of the columns of (. Therefore DORTHO computes
the condition number of the matrix Q: = [Q,w/iwl] € Rm“n+ﬂ, where the
norm || || is the Euclidean norm. Using Q'Q = I, we obtain the
following expressions for the singular values o, > 0, > ... 2> onyq of
Q:

oy = (1 + 1QTwlI/IwID Y2, (2.1a)

o; = 1, 2 < j £ n, (2.1b)

T /

onpr = (1 - [QTwII/IWID Y2, (2.1¢)
Further, for v: = (I-QQ7)w/|wl,

vl = 010n41 - (2.2)

Since 1 < o¢; £ y2, Ong1 is also an accurate estimate of the length of
the orthogonal projection of w/|w| into the null-space of QT. In
order to avoid severe cancellation of significant digits in (2.1c) we
determine first ¢, from (2.1a) and then oq5,; from (2.2).

Subroutines DINSC and DORTHO have an input parameter RCOND which
is a lower bound for the reciprocal condition number. The
computations are discontinued and an error flag is set if

RCOND < onyy/0y. On exit, RCOND: = ony,/0;.




Assume now that the input value of RCOND > ony1/01-  Then DORTHO
computes s: = QTw and v: = (I—QQT)W by a scheme analogous to the
method described by Parlett [15, p. 107] for orthogonalizing a vector
against another vector. For definiteness, we present the
orthogonalization scheme. References to o,. ontq1. and RCOND are

neglected for simplicity.

Orthogonalization algorithm: input Q € R™" (Q has orthonormal

columns), m,n (m > n). w € R™ (w # 0): output v (v = (I—QQT)W).

s (s = QTw):

wr o= w/ll:
s: = Q'Ww: v: = w-(Qs; (2.3)
if ||v|]] > 0.707 then
vi = v/Ivlls s: = slvlls exit: = vl = 1. QTv = 0 =
éT: = QTV; vii = v-Qs'; (2.4)

if ||V € 0.707|v|] then

{— * w lies in span{(} numerically =
v

v: = 0; s: = (s+s!)|w]]: set flag: exit:

|: exit: = |[v[ = 1. QTv = 0 =

= (vt /IveVls st = (stsD v

The proof in Parlett [15. pp. 107-108] that one reorthogonalization
suffices carries over to the present algorithm., using that QTQ = 1.
We note that there are other ways to carry out the computations
on lines (2.3)-(2.4). In [5], v and v! are updated immediately after
a component of s is computed. QOur scheme has the advantages of being
faster on vector computers. since it allows matrix vector operations.

and it is also., generally. more accurate, since rounding errors



accumulate less. The latter can easily be shown, and we omit the
details.

We turn to subroutine DORTHX. This is a faster version of
subroutine DORTHO. DORTHX assumes that w in the orthogonalization

algorithm 1s an axis vector. This simplifies the computations in

(2.3). DORTHX may perform nearly twice as fast as DORTHO.

2.2 Subroutines DINVIT, DTRLSL and DTRUSL

Given a nonsingular upper triangular matrix U = [/‘jk] € R™ and a
vector b = [B;] € R", DTRUSL solves Ux = bp, where |[p] < 1 is a
scaling factor such that |%p/gﬁl < 1 for all j. The scaling factor
is introduced in order to avoid overflow when solving very ill-
conditioned linear systems of equations. DTRLSL is an analogous
subroutine for lower triangular systems.

DTRLSL and DTRUSL are called by DINVIT, a subroutine for
computing an approximation of a right singular vector belonging to a
least singular value of a right triangular matrix R. If R is
singular then such a singular vector is computed by solving a
triangular linear system of equations. Otherwise an initial
approximate right singular vector ale) - {oj(o) ;___1 is obtained by the
LINPACK condition number estimator DTRCO, and inverse iteration with
R'R is used to obtain improved approximations aU), J = 1,2, . SNMBIG
where NMBIT is an input parameter to DINVIT and DRRPM. On exit from
DINVIT and DRRPM, IPOS(j) contains the least index k such that

|OE)| > |a?)|, 1 ¢ < n, 0 < j < NMBIT. On return from DINVIT and

DRRPM the parameter DELTA is given by DELTA: = |[RTRa{NMBIT)|| /| o(NMBIT))

Hence, DELTA is an upper bound for the least singular value of R.

(03]




2.3 Updating subroutines

We are in a position to consider the subroutines of Table 1.1.
The vectorization is mainly done in the BLAS of the next section. but
some loops of the subroutines of Table 1.1 vectorize as well.
Comments in the source code reveal which loops vectorize or are
eligible for vectorization on an IBM 3090-200VF computer with
compiler VS FORTRAN 2.3.0 to where the default vectorization
directives are used. For applications to particular problem classes.
changing the default vectorization by compiler directives may
decrease the execution time.

We list the differences between the subroutines of Table 1.1 and
the corresponding Algol procedures of [5]. Some of these

modifications were suggested in [5] but not implemented in the Algol

procedures [5]. In subroutine DDELC. the column deleted in A: = (R
is determined optionally. Not computing this column saves 0(mn)
arithmetic operations. In subroutine DDELR. the auxiliary subroutine

DORTHX is used instead of DORTHO. As indicated in Section 2.1 the
former subroutine may perform nearly twice as fast. In subroutine
DINSC, a column w is inserted into A: = (R only if the reciprocal
condition number of the matrix [Q.w/|w|]] is larger than a bound given
by the parameter RCOND on entry. The parameter RCOND can be used to
prevent updating when w/|w|| is nearly in the range of (J. Finally.

T is such

DRNK1 performs slightly faster if the updated matrix A + wvu
that v lies numerically in the range of A.
The subroutine DRRPM implements an algorithm presented by Chan

[8]. The computation of an approximate right singular vector

corresponding to a least singular value is done by subroutine DINVIT



and has already been discussed. The position of a component of
largest magnitude of this singular vector has to be determined, and
we found, in agreement with Chan’s suggestion [3], that two inverse
iterations suffice. In fact. in all computed examples, one inverse
iteration was sufficient, even for problems with multiple or close
least singular values. The subroutine permutes the order of columns
1 through k of ANl where k is an input parameter, A € R™", m > n, and
I is a permutation matrix. DRRPM is typically called with
k = n,n-1,n-2,... until no further permutation is made or until the
computed upper bound DELTA for the least singular value of the matrix
consisting of the first k columns of AIl is not small.

The subroutines of Table 1.1 do neither require nor produce a
factorization with nonnegative diagonal elements of the upper

triangular matrix.

3. THE BLAS

Much computational experience on a variety of computers led
Dongarra and Sorensen [7] to conclude that nearly optimal performance
of numerical linear algebra subroutines can be achieved if the sub-
routines for the basic matrix and vector operations, such as multi-
plication, addition and inner product computation, are written to
perform well on vector computers. We wanted to write a code that
performs well on an IBM 3090-200VF computer, and that would not
require excessive tuning when moved to other (vector) computers.
Therefore we designed the code to vectorize well without special

compiler instructions, since the latter would be machine dependent.

10




A feature of the VS FORTRAN 2.3.0 compiler is that unnecessary
vector loads and stores are avoided by introducing a temporary scalar
variable, denoted by ACC in the subroutine DAPX in Example 3.1.
During execution ACC should be thought of as a vector variable stored
in a vector register. Timings for DAPX and comparison with code with
explicitly unrolled loops have been carried out by Robert and

Squazzero [16]. These timings show subroutine DAPX to perform better

than equivalent subroutines with explicitly unrolled loops.

Example 3.1. Subroutine for matrix vector multiplication.

SUBROUTINE DAPX(A,LDA.M /N.,X.Y)
C
C DAPX COMPUTES Y:=AxX.
C

INTEGER LDA . M.N.T.J
REAL+& A(LDA.N).X(N).Y(M),ACC

OUTER LOOP VECTORIZES.

Q00

DO 10 I=1.M
ACC=0DO
DO 20 J=1,N
ACC=ACC+A (1.J)=X(J)
20 CONTINUE
Y (I)=ACC
10 CONTINUE
RETURN
END 0O

Temporary scalar variables have also been used in others of the 17

BLAS used.

4. COMPUTED EXAMPLES

Example 4.1. In this example the QR decomposition of a 4 x 3 matrix
A is updated. The use of all subroutines of Table 1.1 is
illustrated. The main program producing this output is listed in the

Appendix.

11
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Example 4.2. Execution times for subroutines DDELCO and DRNK1 are
compared for scalar and vector arithmetic. The measured cpu times
differed somewhat between different executions of the same code.
Therefore the reported times are rounded to one significant digit and
the quotient of measured cpu times are rounded to the nearest
multiple of 1/2.

Table 4.1 shows the cpu times for DDELCO. This routine and its
subroutines have been compiled with the VS FORTRAN 2.3.0 compiler.
The times for vector arithmetic are obtained from code generated with
compiler option vlev = 2., which makes the compiler generate code that
utilizes the vector registers and arithmetic. The times for scalar
arithmetic are obtained from code generated with compiler option vlev
= 0, which makes the compiler generate code that does not use vector
instructions. Given a QR decomposition of a matrix A € R™", Table

4.1 shows the cpu time required by DDELCO to compute the QR

decomposition of A € Rmxhvﬂ obtained by deleting column one of A.

cpu time in seconds

scalar time

m n scalar arithmetic vector arithmetic :
vector time
10 10 4.10% 4.10™ 1
20 10 4.10% 4.-10%
30 10 5.1074 4.10% 1.5
50 10 6-104 4.10% 1.
75 10 .10 4.10™% 2
128 10 1-1073 5.107% 2
1024 10 7.1073 2.1073 3.5
1280 10 9-1072 3.10°3 3.5

Table 4.1: Timings for DDELCO
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Table 4.2 is similar to Table 4.1 and contains execution times for
DRNK1. The reduction in execution time obtained by using vector
instructions is of the same order of magnitude for the other updating

routines, too.

cpu time in seconds
scalar time

m n scalar arithmetic vector arithmetic .
vector time
16 12 -7 oo 1
32 25 4.1073 3.1073 1.5
64 50 2.1072 OO 2
128 100 6-1072 2. 10 2.5
1024 100 4.1071 (0 4.5
1250 100 5-1071 9.107! 5
Table 4.2: Timings for DRNK1
O
Example 4.3. Execution times for subroutines written by Buckley [2]
and those of Table 1.1 are compared. The vectorized and scalar codes

were generated as explained in Example 4.2. We found that
vectorization of the subroutines in [2] did not change the execution
times significantly, generally less than 20%. In all computed
examples the vectorized subroutines in [2] required at least twice as
much execution time than the vectorized subroutines of Table 1.1.

For certain problems our vectorized code executed up to 95 times
faster than the vectorized code in [2]. For scalar code the
differences i1n execution time often decreased with increasing matrix

size. Tables 4.3-4.6 present some sample timings.
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time for DELROW [2]

SRRt L s Time for DDELR
m DDELR DELROW [2]
10 3-107° 9.-107 3.5-10!
61 7-107° 2.1073 2.101
128 8107 3.1073 3
1024 4.1073 DEOR 4

Table 4.3: The first row of A = QR 1s deleted. Cpu times for
vectorized code for updating  and R are given in

seconds: n = 10.
time for time for tiﬁimZOQORFEEEELIQJ
m n DELC DELCOL [2]
1024 10 1-107 2.107° 2
1024 100 1-107% 7-1073 7.5-10%
1280 100 1-107 9.1073 9.5.10!

Table 4.4: The last column of A = QR is deleted. Cpu times for
vectorized code for updating (Q and R are given in
seconds. DDELC does not compute the last column of

A, 1.e.. IFLAG = O on entry.

time for INSCOL [2]

time for time for time for DINSC
m DINSC INSCOL [2]
64 1.1073 2.1072 2
128 1-1073 3.1073 2
1024 7-1073 2.1072 2.5

Table 4.5: A new first column is inserted into A = (JR. Cpu times
for vectorized code for updating (J and R are given in

seconds: n = 10.

Tables 4.3-4.5 present timings for vectorized code. The next table
shows timings for scalar code for the same updatings as in Table 4.3.
Table 4.6 shows that, without vectorization, DELROW [2] requires 50%

more cpu time than DDELR for moderately large problems.
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time for DELRPW [2]

time for time for Time for DDELR
- DDELR DELROW [2]
10 2.10° 6-107" 3-10!
64 1.10°3 2.1073 1.5
198 2.1073 3.10°3 1.5
1024 1-107? 2:107 15

Table 4.6: The first row of A = QR is deleted. Cpu times for
scalar code for updating Q and R are given in seconds;
m =2 10
O
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