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Abstract

People go to fortune tellers in hopes of learning things
about their future. A future career path is one of the
topics most frequently discussed. But rather than rely
on “black arts” to make predictions, in this work we
scientifically and systematically study the feasibility of
career path prediction from social network data. In par-
ticular, we seamlessly fuse information from multiple
social networks to comprehensively describe a user and
characterize progressive properties of his or her career
path. This is accomplished via a multi-source learning
framework with fused lasso penalty, which jointly reg-
ularizes the source and career-stage relatedness. Exten-
sive experiments on real-world data confirm the accu-
racy of our model.

Introduction

With the proliferation of social network services, an increas-
ing number of individuals are involved in multiple social
networks at the same time. This trend has been witnessed
by a recent survey: multi-platform use is on the rise, and
52% of online adults now use multiple social media ser-
vices (Cohen 2014). Following this trend, multi-platform ap-
plications have attracted many researchers’ attention due to
the fact that multiple social networks can characterize the
same user from different perspectives. For example, Twit-
ter reflects users’ casual activities and personal opinions;
Facebook exposes users’ social connections and daily events
explicitly; and Linkedin uncovers users’ professional skills
and career paths. The heterogeneous information distributed
across those diverse social networks is usually complemen-
tary rather than conflicting. Hence, as compared to single so-
cial network, appropriate aggregation of multiple social net-
works could provide a better way to understand users com-
prehensively, and consequently facilitate many applications,
such as the inference of users’ age, gender, race, occupation,
personality and political orientation.

With the help of those multiple social networks, in this
paper, we scientifically study an ancient problem, the for-
tune teller, specifically in the field of career path prediction.
A user’s career path, in this work, refers to the user’s occu-
pational growth in his or her career life. It comprises sev-
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eral distinct career stages, and each stage contains a set of
equivalent occupational titles. The objective of this work is
to predict the future career stages of a given user, the so-
called career path modeling, which can provide potential
benefits for employees, employers and headhunters. For em-
ployees, they can get information about their current career
stages, the time point for their next job-hopping, as well as
the whole picture of their own career paths. For employers,
they will be informed of the career progressions of their em-
ployees and decide what would be the best time to promote
their employees or increase their salaries. When it comes to
headhunters, they could be advised of the appropriate time
to talk to their target customers as well as the proper job po-
sitions for their customers. These efficient and accurate job
hunting and recommendation processes will greatly facili-
tate headhunting and reduce their efforts considerably. As a
consequence, career path modeling is a research topic with
high potential and has many real-world applications.

Despite its significant value, career path modeling from
multiple social networks is a non-trivial task due to the fol-
lowing reasons. (1) Source Fusion. The information from
multiple social networks of the same user describes his or
her characteristics from various views, but it should reflect
his or her career progression consistently. Thus, how to
seamlessly and effectively fuse such heterogeneous informa-
tion is a tough challenge. (2) Temporal Relatedness Mod-
eling. A user’s career path normally comprises a sequence of
occupations. Instead of mutual independence, they are cor-
related with each other in chronological order. Therefore,
how to temporally characterize such relatedness poses an-
other challenge. (3) Influential Factors Identification. Dif-
ferent career paths have different influential factors. For ex-
ample, education background may play an important role in
the academic career path, but it might not be so crucial to
an acting career. Furthermore, even within the same career
path, the influential factors for different career stages also
vary. For instance, publications might be key factors to re-
search fellows, while research community services may be
a more significant consideration for full professors. Hence,
learning the stage-sharing and stage-specific features in each
career path presents another crucial challenge.

To tackle the above challenges, we present a multi-source
learning framework with a fused lasso penalty (MSLFL).
It co-regularizes the following factors: (1) Source Consis-
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tency. In particular, the predicted results from individual
sources should be the same or similar. Thus their disagree-
ments should be penalized. (2) Temporal Smoothness. The
career path is equally split into multiple time intervals, and
each of them is treated as a task. A career path is gener-
ally a gradual process, and hence sudden changes of career
stages between neighboring time points should be penalized.
For instance, it is much more smooth for a research fellow
to become an assistant professor rather than a full professor
in their next position. (3) Feature Learning. Features ex-
tracted from multiple sources are in high-dimension spaces.
We employ a fused lasso to control sparsity and identify the
task-sharing and task-specific features, which will identify
the influential factors that affect a user’s career progression
at different stages. This enhances the interpretation of influ-
ential factors.

We summarize the contributions as follows:

• As far as we know, this is the first work on career path
modeling and prediction by exploring multiple social net-
work sources. It can serve as a lifelong career mentor for
every professional.

• We present a novel multi-source learning framework with
fused lasso penalty to integrate multiple social network
sources and model a career path. In addition, this model
is able to identify the influential factors of career paths.

Related Work

It is worth mentioning that several research efforts have
been dedicated to occupation analysis from social net-
works (Preoţiuc-Pietro, Lampos, and Aletras 2015; Fila-
tova and Prager 2012; Sloan et al. 2015). For example,
Preoţiuc-Pietro et al. (2015) inferred the occupation of a
user based upon user profiles and social contents. However,
they mainly used the information from one single source,
which makes it difficult to comprehensively characterize a
user’s personality from various aspects. Instead of learn-
ing from a single source, multi-source learning has been
proposed and has demonstrated its success in user mod-
eling, profiling and behavior analysis with the assumption
that information extracted about the same user from differ-
ent sources may complement one another (Abel et al. 2011;
2013; Meo et al. 2013; Xiang et al. 2013; Huang et al. 2014;
Song et al. 2015a; 2015b). For instance, Huang et al. (2014)
proposed a multi-source integration framework to infer a
user’s occupation by combining both content and network
information from Sina Weibo. However, as compared to oc-
cupation inference, career path modeling is much more com-
plex, since it exhibits dual heterogeneities. In particular, be-
sides comprehensive user description, a career path com-
prises a sequence of occupations and progressively develops
from junior to senior stages. Multi-source learning fails to
consider these progressions, and thus their performance is
far from satisfactory.

Multi-task learning is a learning paradigm that jointly
learns multiple related tasks and has demonstrated its ad-
vantages in handling dynamic progression problems in many
domains, such as medical science and transportation (Zhang
and Yeung 2010; Chang and Yang 2014; Zhou et al. 2011;

2012; Liu et al. 2015; Zheng and Ni 2013). In this frame-
work, the prediction at each time point is treated as a task,
and the intrinsic correlations among different time points are
automatically learned, which could capture the dynamics ef-
fectively. For example, Zhou et al. (2011) proposed a multi-
task learning model to capture the intrinsic temporal related-
ness for disease progression prediction. However, most ex-
iting efforts on multi-task learning failed to consider the ap-
propriate source fusion, which usually leads to suboptimal
performance.

Thus, multi-view multi-task learning is proposed to ex-
plore both source relatedness and task relatedness simulta-
neously (Zhang and Huan 2012; He and Lawrence 2011;
Jin et al. 2013). For instance, He et al. (2011) proposed a
graph-based iterative framework (GraM2) for multi-view
multi-task learning and obtained impressive results in text
categorization applications. However, as far as we know,
the literature on multi-view multi-task learning is relatively
sparse, and very few efforts have been applied to career path
modeling. In contrast, our MSLFL model provides a natu-
ral way to fuse information from different sources by pe-
nalizing their disagreements. Moreover, MSLFL can better
capture the dynamic progressions of career paths and learn
the stage-sharing and stage-specific features via fused lasso
penalty.

Data Collection and Preprocessing

Social Accounts Alignment. To the best of our knowledge,
there is no available benchmark dataset suitable for career
path modeling. We thus created new datasets by crawling
four popular career paths, namely software engineer, sales,
consultant and marketing. Each career path is an individual
dataset. Social accounts assignment is the key challenge in
this data collection, which aims to build the links among
different social network accounts of the same user (Abel
et al. 2011; 2013; Meo et al. 2013). Towards this end, we
employed the social service About.me1, which encourages
its users to list their multiple social accounts explicitly in
their personal profiles. We collected the data from About.me
by searching keywords corresponding to the career paths.
Considering the software engineer dataset as an example,
we used “software engineer”, “programmer” and “program
developer” as the keywords to search from About.me and
got 6, 284 candidates. Then we retained only those candi-
dates who provided their Twitter (Tw), Facebook (Fb) and
Linkedin (Lk) accounts as the software engineer dataset.
The dataset statistics2 are presented in Table 1.

Career Stages and Occupation Variants. Based on prior
knowledge, we roughly split each career path in our col-
lected datasets into four stages, where each stage represents
a milestone within the whole career path. Take software en-
gineer as an example. We define it to compose four stages,
namely software developer, senior software developer, man-
ager and CEO. It is worth noting that due to vocabulary vari-

1https://about.me/
2The size of dataset depends on two factors: the total number of users returned

from about.me and the number of returned users with three accounts (Twitter, Face-
book and Linkedin) available at the same time.
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Table 1: Statistics of our collected benchmark dataset.
career path # of users

crawled
# of matching users

with Lk, Fb, Tw
software engineer 6,284 2,478

sales 4,359 1,412
consultant 13,067 3,567
marketing 8,974 4,884

ations, different users utilize different occupational titles to
refer to the same career stage. For instance, in the marketing
career, product managers and marketing coordinators may
be used to refer to the same stage as marketing executive,
and we thus manually mapped all these semantically similar
occupations to the same career stage. Table 2 demonstrates
the career stage partition and occupational title variants for
the same career stage. Due to limited space, we are unable
to list all title variants.

Table 2: Career stage partitions and term variants for the
same career stage.

Career stages

software
engineer

software engineer/developer/programmer
senior software engineer/developer
principal/manager/leader/director

CEO/CTO/founder/owner

sales

sales executive
senior sales executive/team lead/assistant manager

sales director/manager
founder/CEO/vice president/president

consultant

analyst/associate/consultant
senior associate/engagement manager/senior consultant

principal/senior manager/director
partner/founder/co-founder

marketing

marketing executive/product managers/marketing coordinators
senior marketing executive/marketing manager/brand manager

marketing director/CMO
founder/owner/CEO

Ground Truth Construction. To simplify the computa-
tion, we quantized the four career stages in different career
paths from junior to senior as 1 to 4. For instance, software
developer, senior software developer, manager and CEO in
the software engineer path are mapped to 1, 2, 3 and 4, re-
spectively. In addition, for each career path, we defined sev-
eral time stamps with equivalent time period. In particular,
we chose the start time of a user’s first job as the first time
stamp. For example, for a given user u, his/her first work is
a software developer; we thus labeled his/her career stage
at time t0 as 1. Assuming that the gap between two neigh-
boring time stamps in the software engineer path is three
years, then four years later the occupational title in his/her
Linkedin is senior software developer. We thus label his/her
career stages at time t1 as 2. On the other hand, from users’
Linkedin profiles, we can obtain their working experiences,
including occupational titles and corresponding time periods
(i.e., the career stage and time stamp). Figure 1 depicts the
ground truth construction for the career datasets.

Programmer -- 1 Developer -- 1 Senior Developer -- 2 Manager -- 3

� � � � �

Developer  -- 1 Senior Developer -- 2 Manager -- 3 Manager -- 3

� � � � �

� � � � �

Senior Developer -- 2 Senior Developer -- 2 Manager -- 3 Founder -- 4

Career Stages in Users’ Linkedin Profiles

Figure 1: Illustration of ground truth construction.

Career Path Modeling

Notation

We first define some notation. In particular, we use bold cap-
ital letters (e.g., X) and bold lowercase letters (e.g., x) to de-
note matrices and vectors, respectively. We employ non-bold
letters (e.g., x) to represent scalars, and Greek letters (e.g.,
λ) as parameters. Unless stated, otherwise, all vectors are in
column form.

Let us assume that we have N labeled users for a given
career path. This career path can be split into M time points
and each time point is aligned with a task. Meanwhile,
each user is described by S ≥ 2 sources. Xs ∈ R

N×Ds

denotes the feature matrix extracted from the s-th source,
where Ds is the feature dimension of the corresponding
source. The whole data matrix can be written as X =
{X1,X2, . . . ,XS} ∈ R

N×D, where D =
∑S

s=1 Ds. The
label matrix is denoted as Y = {y1, y2, . . . , yM} ∈ R

N×M ,
and ym = (y1m, y2m, . . . , yNm)T ∈ R

N is the label vector of
the m-th task.

Problem Formulation

The career status of users at the m-th time point can be lin-
early predicted from the s-the source as follows:

fs
m(Xs) = Xsw

s
m, (1)

where ws
m ∈ R

Ds denotes the linear mapping function for
the task m with source s. Without prior knowledge on the
contributions of different sources, we assume that all sources
contribute equally. Thus, the final prediction model of all
sources for task m is obtained by the following late fusion:

fm(X) =
1

S

S∑
s=1

fs
m(Xs). (2)

Information distributed in various sources in fact de-
scribes the inherent characteristics of the same user from
various views, and hence their predicted results should be
forced to be similar. In a sense, we can reinforce the learning
performance of individual sources. Considering the least-
squares loss function, we can define the following objective
function:

min
ws

m

1

2

M∑

m=1

‖ym − 1

S

S∑

s=1

Xsw
s
m‖2

2 +
λ

2

M∑

m=1

S∑

s,s′=1

‖Xsw
s
m − Xs′w

s′
m‖2

2.

(3)
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To consider the temporal smoothness of career progres-
sions and learn descriptive features, we expand the model in
Eqn. (3) to incorporate a fused lasso penalty. This penalty
ensures a small deviation between two tasks at successive
time stamps and automatically selects task-specific and task-
sharing features for career path modeling. In particular, the
fused lasso penalty comprises a temporal lasso and a regu-
lar lasso. Let W = {w1,w2, . . . ,wM} ∈ R

D×M denote the
overall weight matrix, where wm = {w1

m,w2
m, . . . ,wS

m}T ∈
R

D. The overall objective function can be restated as

min
Ws

m

1

2

M∑
m=1

‖ym − 1

S

S∑
s=1

Xsw
s
m‖22 + γ

M−1∑
m=1

‖wm+1 − wm‖1

+
λ

2

M∑
m=1

S∑
s,s′=1

‖Xsw
s
m − Xs′w

s′
m‖22 + θ‖W‖1,

(4)
where λ, γ and θ are regularization parameters. ‖·‖1 denotes
the entry-wise matrix �1-norm.

Optimization

The optimization of our overall objective function is not easy
due to the two non-smooth terms: temporal lasso and regular
lasso. To solve this problem, we first rewrite the second term
in Eqn. (4) as,

TL =

M−1∑
m=1

‖wm+1 − wm‖1

= ‖WH‖1 ≡ max
‖A‖∞≤1

〈A,WH〉, (5)

where H ∈ R
M×(M−1) is defined as follows: Hij = −1

if i = j, Hij = 1 if i = j + 1, and Hij = 0 other-
wise. 〈U,V〉 ≡ tr(UT V) denotes a matrix inner product;
A = {A|‖A‖∞ ≤ 1,A ∈ R

D×(M−1)} is an auxiliary matrix
associated with ‖WH‖1; and ‖ · ‖∞ is the matrix entry-wise
�∞-norm. Eqn. (5) is still a non-smooth term. We approxi-
mate it by the following smooth one (Chen et al. 2011),

TLμ(W) = max
‖A‖∞≤1

〈A,WH〉 − μd(A), (6)

where d(A) is defined as d(A) = 1
2‖A‖2F . We can obtain an

analytical solution of A in Eqn. (6). It is obvious that TLμ

in Eqn. (6) is a lower bound of TL in Eqn. (5), and the pa-
rameter μ controls the gap between the two:

G =
1

μ
max

‖A‖∞≤1
d(A) =

1

2μ
‖A‖2F =

1

2μ
D(M − 1). (7)

The gradient of TLμ(W) is computed by

∇TLμ(W) = A
∗
H

T , (8)

where A∗ is the optimal solution of Eqn. (6) and is computed
by

A
∗ = Ψ(

WH

μ
), (9)

where Ψ is a defined as follows: For x ∈ R, Ψ(x) = x if
−1 < x < 1; Ψ(x) = 1, if x ≥ 1; and Ψ(x) = −1, if
x ≤ −1. For matrix A, Ψ(A) applies Ψ on each entry of A.

Then the overall objective function can be approximated
by

Γ̃ = L+ λC + γTLμ + θL1. (10)
With the discussion above, it is easy to show that Eqn. (10)
is a convex function with three smooth terms and one non-
smooth lasso penalty. We define

h(W) = L+ λC + γTLμ,

g(W) = θL1. (11)
We can thus use the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) (Beck and Teboulle 2009) to solve it.
One of the key steps in using FISTA is to solve the proximal
step:

W
(k) = argmin

W
{g(W) +

Lk

2
‖W − (V(k) − 1

Lk
∇h(V(k)))‖2F }, (12)

where V(k) is the search point and is defined by the affine
combination of W(k−1) and W(k−2); and Lk is a scalar that
can be determined by the line search method (Beck and
Teboulle 2009). The gradient ∇h(W) in Eqn. (12) can be
computed as

∇h(W) =
1

S
X

T (
1

S
XW − Y) + PW + γA

∗
H

T , (13)

where P ∈ R
D×D is a sparse block matrix with S×S blocks,

and its entries are defined as,{
Pss = λ(S − 1)XT

s Xs,

Pss′ = −λXT
s Xs′ .

(14)

As Eqn.(12) is computed in every FISTA iteration, it needs
to be solved efficiently. Specifically, it can be reformulated
as

W
(k) = argmin

W
{1
2
‖W − B‖2F + β‖W‖1}, (15)

where B = V(k) − 1
Lk

∇h(V(k)) and β = θ
Lk

. It is easy
to show that Eqn.(15) has a closed-form solution (Wright,
Nowak, and Figueiredo 2009),

W
(k) = max(0, 1− β

‖B‖1 )B. (16)

We thus can solve Eqn.(12) quite efficiently.

Experiments

Experimental Settings

To validate our model, we first need to define the time
stamps. In particular, we treated the start time of a user’s
first job as the first time stamp (time t0), and set three years
as the time window between two neighboring time stamps,
since three years appears to be a typical period of time be-
tween transitions in a person’s career path. In this work, we
examined four successive time stamps for each user, since
we believe that nine years should be long enough to re-
flect a person’s career progressions effectively (Veiga 1981).
Meanwhile, each time stamp is aligned with a task. We kept
the same settings for all careers we considered. In addition,
we employed the average classification accuracy over these
four tasks in each career as our performance metric. The ex-
perimental results reported in this paper are based on 10-fold
cross-validation. The parameters were selected using grid
search on each career dataset.
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Feature Extraction

We extracted some career-oriented features from multiple
social networks to informatively represent each user.
• Demographic features. As reported previously (Stacy

2003), some demographic characteristics, such as educa-
tion and participation, are important factors that influence
the speed of users’ career progression. We thus extracted
a rich set of demographic features including gender, edu-
cation level, relationship status, and the number of social
connections from users’ Linkedin and Facebook profiles.

• LIWC features. LIWC is a widely-used psycholinguis-
tic analysis tool for investigating the relationship between
word use and psychological variables, and it has been suc-
cessfully applied to identify personality and social traits
of users in many social applications (Paek et al. 2010).
It has been reported that personality and social traits are
strongly correlated to a user’s career path (Kafetsios et
al. 2009; Judge and Kammeyer-Mueller 2007). The main
component of LIWC is a dictionary that contains mapping
from words to 72 psychologically meaningful categories.3
For a given document, LIWC calculates the frequency of
words related to the particular category and represents the
document as a 72-dimensional feature vector.

• User topic features. According to our observation, the top-
ics discussed by users are strong indicators of their career
stages. For example, software engineers may frequently
talk about programming skills, while CEOs may be inter-
ested in the topic of company management or business.
This drives us to explore the topic distributions of their
social posts. In particular, we employed Latent Dirichlet
Allocation (LDA) (Blei, Ng, and Jordan 2003) to gener-
ate topic distributions, which has been proven to be effec-
tive in latent topic modeling (Hu et al. 2012; Li, Huang,
and Zhu 2010). With the assistance of this tool4, we ulti-
mately obtained 85-, 45- and 130-dimensional topic-level
features from users’ Twitter, Facebook and Linkedin pro-
files, respectively. The number of topics over each source
were separately tuned by optimizing the perplexity met-
ric (Blei, Ng, and Jordan 2003).

Learning Model Comparison

To demonstrate the effectiveness of our MSLFL model, we
compared our model with the following five baselines:
• SVM: The first baseline is the Support Vector Ma-

chine (SVM), which is a mono-source mono-task learn-
ing method that concatenates the feature vectors from all
sources to form a single feature vector and then learns
each task individually. We selected a linear kernel and
implemented this method based on LIBSVM (Chang and
Lin 2011).

• RLS: Regularized least square (RLS) is a multi-source
mono-task learning method, which learns each task sep-
arately by minimizing 1

2N ‖ym − 1
S

∑S
s=1 Xsws

m‖22 +
λ
2 ‖wm‖22.

3http://www.liwc.net/
4http://nlp.stanford.edu/software/tmt/tmt-0.4/

• MTL: Multi-task learning (MTL) is a mono-source multi-
task learning approach (Zhang and Yeung 2010), and it is
able to capture pairwise task relatedness.

• FL: Fused Lasso (FL) (Tibshirani et al. 2005) is a mono-
source multi-task approach, which aims to capture dy-
namic progressions by minimizing the objective function
1
2‖Y − XW‖2F + α

∑M−1
m=1 ‖wm+1 − wm‖1 + β‖W‖1.

• regMVMT: The regularized multi-view multi-task learn-
ing model (regMVMT) (Zhang and Huan 2012)
jointly regularizes source consistency and uniform task
relatedness.
The experimental results are summarized in Table 3. From

this table, we have the following observations: 1) The last
four multi-task learning methods stably outperform the first
two mono-task learning methods, which verifies that the
tasks are not independent and that jointly learning them can
boost learning performance. Moreover, it is not unexpected
that SVM achieves the worst performance. This may be due
to two reasons. First, appending the features from different
sources directly may lead to suboptimal performance, since
they may belong to different feature spaces. Second, certain
tasks may hold insufficient training samples. 2) As com-
pared to MTL, our model and regMVMT achieve higher ac-
curacies due to the fact that MSLFL and regMVMT can in-
corporate heterogeneous information from different sources,
which may help to improve overall performance. 3) FL per-
forms better than MTL and regMVMT. This is because MTL
and regMVMT assume uniform task relatedness, while FL
captures the temporal relatedness between neighboring time
points and is more suitable for progressive applications. In
addition, FL automatically discovers task-sharing and task-
specific features for a better representation. This further con-
firms the correctness of our hypothesis that there exist cer-
tain temporal patterns in career path progression and that
the fused lasso penalty is effective for capturing these dy-
namic progressions. 4) The MSLFL model significantly out-
performs regMVMT in sales and marketing and shows su-
periority in software engineer and consultant, which un-
derscores the complex career progressions in various ca-
reers paths. For instance, sales and marketing may exhibit
stronger progressive trends than software engineer and con-
sultant. In addition, our model outperforms FL. This demon-
strates that our model is able to leverage source relatedness
and further improve performance.

Source Comparison

To demonstrate the descriptiveness of multiple social net-
works, we compared the performance of our model over in-
dividual social networks and their various combinations.

The results are presented in Table 4. From this table, we
observe that the combinations of two distinct social net-
works outperform each individual one, and that the “Twit-
ter+Facebook+Linkedin” combination achieves the best per-
formance over the others. This observation reveals that the
more sources fed to our model, the better the performance
that can be achieved. This verifies that information from var-
ious sources are complementary to each other instead of con-
flicting, and that information fusion from multiple sources
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Table 3: Performance comparison among various approaches over different career paths. The p-values are the pairwise signifi-
cance test between the MSLFL model and each of the baselines based on 10-fold cross-validation results.

Career paths software engineer sales consultant marketing
Approaches Accuracy (%) P-value Accuracy (%) P-value Accuracy (%) P-value Accuracy (%) P-value

SVM 56.94± 1.08 4.8e-5 64.11± 1.21 2.0e-6 50.95± 1.21 8.0e-8 55.45± 1.07 1.5e-7
RLS 57.08± 2.28 8.0e-4 67.86± 2.32 3.9e-4 56.76± 0.76 1.6e-6 60.03± 0.74 4.3e-6
MTL 59.90± 1.38 4.6e-3 69.78± 1.91 1.2e-3 59.58± 0.43 3.8e-4 62.45± 0.38 1.0e-4
FL 61.19± 1.59 5.0e-2 72.43± 1.57 3.8e-2 61.66± 0.76 4.7e-2 63.70± 0.59 3.9e-2

regMVMT 60.68± 2.08 4.2e-2 70.84± 1.76 3.9e-3 60.72± 0.58 1.3e-3 62.63± 0.98 4.6e-3
MSLFL 63.43 ± 1.48 - 74.56 ± 1.11 - 62.78 ± 0.77 - 64.60 ± 0.57 -

Table 4: Performance illustration of the MSLFL model over different source combinations on various career paths. The p-values
are the pairwise significance test between the outputs of different source combinations.

Career paths software engineer sales consultant marketing
Social network combinations Accuracy (%) P-value Accuracy (%) P-value Accuracy (%) P-value Accuracy (%) P-value

Twitter 60.42 ± 1.16 7.3e-3 71.12 ± 0.98 8.3e-4 61.62 ± 0.67 3.4e-2 63.69 ± 0.51 2.9e-2
Facebook 60.98 ± 1.71 4.1e-2 72.36 ± 1.33 2.2e-2 61.42 ± 0.67 1.6e-2 63.66 ± 0.64 3.9e-2
Linkedin 57.81 ± 0.98 1.0-4 68.32 ± 1.71 1.3e-4 48.85 ± 0.43 4.0e-10 53.90 ± 1.13 6.0e-8

Twitter+Facebook 62.27 ± 1.30 2.2e-1 73.62 ± 1.18 2.3e-1 62.21 ± 0.84 2.9e-1 64.13 ± 0.38 1.6e-1
Twitter+Linkedin 61.61 ± 0.82 4.3e-2 72.63 ± 1.32 3.6e-2 62.00 ± 1.12 2.3e-1 64.08 ± 0.77 2.6e-1

Facebook+Linkedin 61.79 ± 1.09 8.2e-2 72.86 ± 1.96 1.2e-1 61.91 ± 0.59 7.9e-2 63.90 ± 0.84 1.6e-1
Twitter+Facebook+Linkedin 63.43 ± 1.48 - 74.56 ± 1.11 - 62.78 ± 0.77 - 64.60 ± 0.57 -

can comprehensively capture users’ characteristics. In addi-
tion, we observed that the performance of MSLFL on Twit-
ter and Facebook is better than that on Linkedin. This may
be caused by the data sparsity in Linkedin, since most of the
users update their Linkedin profiles less frequently. More-
over, even on the same source, the predictive performance
of the model over different career paths is completely differ-
ent, which implies that the capability of source description
varies from career to career.

Computational Complexity Analysis

In this section, we discuss the computational complexity for
solving the MSLFL model. For the optimization of W, the
main computational cost comes from calculating the gradi-
ent ∇h(W) in each FISTA iteration. In particular, as XT X,
XT Y and P remain unchanged in every FISTA iteration, we
can pre-compute and store them with time complexity of
O(ND2+NMD). For each FISTA iteration, computing the
gradient in Eqn. (8) takes O(M2D) time, and therefore the
total time complexity for calculating the gradient ∇h(W) in
Eqn. (13) is O((D+M)DM). On the other hand, computing
the closed-form solution in Eqn.(16) takes O(DM) time for
W(k). Hence, the complexity for each iteration in the FISTA
algorithm is O((D+M)DM). Meanwhile, the FISTA algo-
rithm converges within O(1/ε2) iterations, and the total time
cost of FISTA for solving MSLFL is O( (D+M)DM

ε2 ), where
ε is the desired accuracy. Thus, the MSLFL model can be
solved efficiently. Moreover, the per-iteration complexity of
FISTA for solving MSLFL is independent of the sample size
N , which demonstrates that our model has the potential to
scale to large-scale Web data.

Conclusion and Future Work

This work has presented a scientific fortune teller for career
path prediction. The algorithm behind it is a novel multi-
source multi-task learning model. This model fuses informa-
tion distributed over multiple social networks to characterize
users from multiple views. Meanwhile, it jointly penalizes
disagreements among sources and the sudden changes be-
tween tasks on two neighboring time points. In addition, it
is able to learn the task-sharing and task-specific features si-
multaneously. Extensive experimental results have demon-
strated its superiority over the state-of-the-arts competitors.

In the future, we will extend our model to consider the
source descriptiveness and learn the source confidence adap-
tively. Moreover, we will explore model-based approaches
for title standardization, which may help our approach scale.
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