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1. Introduction 

If one were to pick the most notified pesticide of the turn of the millennium, the choice 
would most likely be glyphosate. Although DDT remains to be the all-time star in the Hall 
of Fame of pesticides, the second most admitted pesticide active ingredient must be the 
phosphonomethylglycine type compound of Monsanto Company, glyphosate. 

Indeed, the two boasted pesticides show certain similarities in their history of discovery and 

fate. Both were synthesised first several decades prior to the discovery of their pesticide 

action. DDT and glyphosate were first described as chemical compounds 65 and 21 years 

before their discovery as pesticides, respectively. Both fulfilled extensive market need, 

therefore, both burst into mass application right after the discovery of their 

insecticide/herbicide activity. They both were, to some extent, connected to wars: a great 

part of the use of DDT was (and remains to be) hygienic, particularly after Word War II, but 

also the Vietnam War; while glyphosate plays an eminent role in the “drug war” (Plan 

Colombia) as a defoliant of marijuana fields in Mexico and South America. And last, not 

least, ecologically unfavourable characteristics of both was applauded as advantageous: the 

persistence of DDT had been seen initially as a benefit of long lasting activity, and the 

zwitterionic structure and consequent outstanding water solubility of glyphosate, unusual 

among pesticides, also used to be praised, before the environmental or ecotoxicological 

disadvantages of these characteristics were understood. 

Yet there are marked differences as well between these two prominent pesticide active 
ingredients. Meanwhile the career of DDT lasted a little over three decades until becoming 
banned (mostly) worldwide, the history of glyphosate has gone beyond that by now, since 
the discovery of its herbicidal action (Baird et al., 1971). And while DDT is the only Nobel 
prize laureate pesticide, glyphosate was the “first billion dollar product” of the pesticide 
industry (Franz et al., 1997). Moreover, meanwhile the course of DDT was rather simple: 
rapid rise into mass utlilisation, discovery of environmental persistence, development of 
pest resistance, loss of efficacy, and subsequent ban; the history of glyphosate is far more 
diverse: its business success progressed uncumbered, receiving two major boosts. First, the 
patent protection of glyphosate preparations was renewed in the US in 1991 for another 
decade on the basis of application advantages due to formulation novelties, and second, its 
sales were further strengthened outside Europe with the spread of glyphosate-tolerant (GT) 
genetically modified (GM) crops. This market success has been limited significantly neither 
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by the recognition of the water-polluting feature of the parent compound, nor by the 
emerging weed resistance worldwide. 

It is not a simple task to predict whether glyphosate continues to rise in the near future, or 
its application will be abating. To facilitate better assessment of these two possibilities, the 
present work attempts to provide a summary of the utility and the environmental health 
problems of glyphosate applications. 

2. Glyphosate and its biochemistry 

2.1 The discovery of glyphosate 

The molecule N-(phosphonomethyl)glycine was first synthesised in 1950 by a researcher of 

the small Swiss pharmaceutical firm Cilag, Henri Martin (Franz et al. 1997). Yet, showing no 

pharmaceutical perspective, the compound has not been investigated any further. A decade 

later through the acquisition of the company, it was transferred to the distributor of 

laboratory research chemicals, Aldrich Chemical Co., along with research samples of Cilag. 

This is how it came to the attention of Monsanto Company (St. Louis, MO) in the course of 

its research to develop phosphonic acid type water-softening agents, through testing over 

100 chemical substances related to aminomethylphosphonic acid (AMPA). Monsanto later 

extended the study of these compounds to herbicide activity testing, and observed their 

potential against perennial weeds (Dill et al., 2010). N-(phosphonomethyl)glycine (later 

termed glyphosate) was first re-synthesised and tested by Monsanto in 1970. Its herbicidal 

effect was described by Baird and co-workers in 1971, the subsequent patent (US 3799758), 

followed by numerous others, was claimed and obtained by Monsanto, and was introduced 

as a herbicide product Roundup® (formulation of the isopropylamine salt of glyphosate 

with a surfactant). Upon its introduction in the mid seventies, glyphosate jumped to a 

leading position on the pesticide market, became the most marketed herbicide active 

ingredient by the nineties, and more or less holds that position ever since. A great change 

came about, when the original patent protection expired in many parts of the world outside 

the United States in 1991. As a result, an almost immediate price decline occurred (by 30% in 

one year, 40% in two years and about 50% in two decades (Cox, 1998). Upon the expiration 

of the patent protection also in the United States in 2000, sales of generic preparations 

intensively expanded (main international producers include Dow, Syngenta, NuFarm, etc.), 

but the leading preparation producer remained Monsanto (Duke & Powles, 2008). 

The current situation of the international active ingredient producers shows a rather 
different picture. Recently, Chinese chemical factories (e.g., Zhejiang Wynca Chemical Co., 
Zeijang Jinfanda Biochemical Co. and Hubei Xingta Chemical Group., Nantong Jiangshan 
Agrochemical and Chemical Co., Sichuan Fuhua Agricultural Investment Group, Jiangsu 
Yangnong Chemical Group, Jiangshu Good Harvest-Welen, etc.) gained leading parts of this 
business. At present, the global glyphosate production capacity is 1.1 million tonnes, while 
the global demand is only 0.5 million tonnes. The overall glyphosate production capacity of 
Chinese companies rose from 323,400 tonnes in 2007 to 835,900 tonnes in 2010, by a 
compounded annual growth rate of 37 percent (Yin, 2011). China has enough glyphosate 
capacity to satisfy the global demand even if all other glyphosate manufacturers cease 
production. The domestic demand of China is only 30-40 thousand tonnes, about 0.3 million 
tonnes of glyphosate is produced for export. Presently Chinese glyphosate production 
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facilities have been suspended being limited by the market demand. Extended use of GT 
plants in the Word would help on this problem, even if Europe is hesitant to allow 
commercial cultivation of this kind of GM plants. The overall situation has led to 
continously decreasing glyphosate prices on the Word market, and has significant effects on 
dispread of GT plants. 

2.2 Mode of action 

Glyphosate is a phosphonomethyl derivative of the amino acid glycine. It is an amphoteric 
chemical substance containing a basic secondary amino function in the middle of the molecule 
and monobasic (carboxylic) and dibasic (phosphonic) acidic sites at both ends (Fig. 1). 
Containing both hydrogen cation (H+) donor (acidic) and acceptor (basic) functional groups, it 
can form cationic and anionic sites within the small molecule, the dissociation constants (pKa) 
of these three functional groups are 10.9, 5.9 and 2.3, and therefore, similarly to amino acids, 
glyphosate can form a zwitterionic structure (Knuuttila & Knuuttila, 1979). This is reflected in 
excellent water solubility (11.6 g/l at 25 oC). Consequently, its lipophilicity is very low (logP < 
-3.2 at 20 oC, pH 2-5), and is insoluble in organic solvents e.g., ethanol, acetone or xylene 
(Tomlin, 2000). To further increase its already good water solubility it is often formulated in 
form of its ammonium, isopropylammonium, potassium, sodium or trimethylsulphonium 
(trimesium) salts. The order of water solubility is glyphosate << ammonium salt < sodium salt 
< potassium salt < isopropylammonium salt < trimesium salt, the solubility of the trimesium 
salt being two orders of magnitude higher than that of glyphosate. 

 

N
H

P
OH

O

OH

OH
O   

Fig. 1. The chemical structure of N-(phosphonomethyl)glycine, glyphosate, containing a 
basic function (amine) in the middle of the molecule and two acidic moieties (carboxylic and 
phosphonic acids) at both ends. 

It has been known since the early seventies that glyphosate acts by inhibiting aromatic 
amino acid biosynthesis in plants (Jaworski, 1972; Amrhein et al., 1980), and elaborate 
research has revealed that the responsible mechanism is blocking a key step in the so-called 
shikimate pathway (Herman & Weaver, 1999), responsible for the synthesis of aromatic 
amino acids and critical plant metabolites. Glyphosate exerts this effect by inhibiting the 
activity of the enzyme 5-enolpyruvyl shikimate 3-phosphate synthase (EPSPS) catalyzing 
the transformation of phosphoenol pyruvate (PEP) to shikimate-3-phosphate (S3P) 
(Amrhein et al., 1980). This metabolic pathway exists in plants, fungi, and bacteria, but not 
in animals (Kishore & Shah 1988). Although higher order living organisms lack this 
metabolic route, therefore, are not expected to be directly affected by this herbicide, the 
environmental consequences of the widespread use of glyphosate have been reported (Cox, 
2000; Santillo et al., 1989). 

Being an amino acid (glycine) derivative itself, glyphosate inhibits the formation of the main 
intermediate, by binding as an analogue of the substrate PEP to its catalytic site on the 
enzyme. The inhibition of this catabolic pathway blocks the synthesis of triptophan, 
phenylalanine and tyrosine, and in consequence, the synthesis of proteins. The lack of the 
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synthesis of these essential amino acids and the proteins that contain them leads to rapid 
necrosis of the plant. Because this metabolic pathway is present in all higher order plants, 
and because the amino acid sequence of the active site of the EPSPS is a very conservative 
region in higher plants, the herbicidal effect is global among plant species. 

Moreover, through its excellent solubility features glyphosate is a systemically active 
herbicide ingredient. As it is capable to be transported in the plant from the leaves towards 
the roots, it belongs to the relatively uncommon group of basipetally translocated herbicides 
(Ashton & Crafts, 1981). Its uptake and translocation is relatively rapid in diverse species 
(Sprankle et al., 1975). 

2.3 Transition state analogue theory of enzyme inhibition 

A unique feature of the mechanism of the inhibition of EPSPS by glyphosate is that glyphosate 
is reported to show close similarity in its structure to the tetrahedral phosphoenolpyruvoyl 
oxonium ion derivative of PEP, formed during its catalytic conversion to S3P, and the adduct 
formation with EPSPS has been verified by nuclear magnetic resonance spectroscopy 
(Christensen & Schaefer, 1993). Therefore, it has been proposed that glyphosate exerts its 
inhibitory activity as transition-state analogue (TSA) of the putative phosphoenolpyruvoyl 
oxonium ion derivative of PEP from plants (Anton et al., 1983; Steinrücken & Amrhein, 1984; 
Kishore & Shah, 1988) and bacteria (Du et al., 2000; Arcuri et al., 2004). 

The so-called transition state theory has been advanced by Pauling (1948) to explain the 
mechanism of enzymatic reactions. Enyzmes are catalysts therefore they accelerate a 
reaction without influencing its equilibrium constant. One way to achieve that is to diminish 
the energy barrier of the reaction by lowering the energy of the transition state, transient, 
unstable intermediate of the reaction. This may be accomplished through stabilizing the 
transition state by binding to it as soon as it has occurred, and thus facilitating its formation. 
This results in the enzymatic effect that lowers the activation energy of the catalyzed 
reaction. Based on this idea, extremely potent inhibitors can be developed for a given 
enzymatic reaction if one can synthesize “transition state analogues” or “transition state 
mimics”: stable chemical compounds resembling the transition state (Wolfenden, 1969). The 
TSA theory has therefore been successfully applied to the development of various 
biologically active substances, including insect control agents (Hammock et al., 1988), 
sulfonylurea microherbicides (Schloss & Aulabaugh, 1990) or compounds relatd to 
glyphosate (Marzabadi et al., 1992; Anderson et al., 1995). 

The TSA hypothesis as it applies to the mechanism of the inhibition of EPSPS by glyphosate, 
became widely accepted as it has been evidenced in numerous studies that glyphosate forms 
a tight ternary complex with EPSPS (Herman & Weaver, 1999). It is easy to understand, 
however, that a classical TSA inhibitor would cause irreversible inhibition of the enzyme, 
competeable (although possibly with a low affinity) by the natural substrate of the enzyme. 
In later studies, it has been evidenced by biochemist researchers of Monsanto that 
glyphosate was an inhibitor of EPSPS uncompetitive with EPSP, and therefore, the TSA 
hypothesis has been reconsidered (Sammons et al., 1995; Schönbrunn et al., 2001; Alibhai & 
Stallings, 2001; Funke et al., 2006). The effects of glyphosate on aromatic amino acid 
synthesis in Escherychia coli have been attributed to chelation of Co2+ and Mg2+ (Roisch & 
Lingens, 1980), cofactors for enzymes in this pathway. Moreover, it is interesting, that 
glyphosate does not inhibit the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase 
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(Samland et al., 1999), structurally and mechanistically closely related EPSPS, and playing a 
key role in the biosynthesis of UDP-muramic acid. 

2.4 Other biochemical effects of glyphosate 

Various biochemical interactions of glyphosate, besides its identified mode of action, in 
plants and microorganisms were summarised by Hoagland and Duke (1982). The authors 
refer to numerous secondary or more complex indirect effects of glyphosate, and point out 
that a compound with such a powerful growth retardant effect or strong phytotoxicity will 
ultimately affect virtually all biochemical processes in the affected cells. 

The effects of glyphosate in the plant possibly include influences on the regulation of 
hormonal processes. Methionine levels are greatly reduced by glyphosate (Duke et al., 1979), 
which suggests that this herbicide may alter ethylene biosynthesis. Results of Baur (1979) 
suggest that glyphosate may inhibit auxin transport by increasing ethylene biosynthesis. 
Glyphosate may also affect the biosynthesis of non-aromatic amino acids. Nilsson (1977) 
suggested that the build-up of glutamate and glutamine in glyphosate-treated tissue might 
be due to blocked transamination reactions. 

It has been hypothesised that glyphosate lower phenylalanine and tyrosine pools not only 
by its primary mode of action, but possibly also by induction of phenylalanine ammonia-
lyase (PAL) activity. Indeed, pronounced PAL activity has been detected in glyphosate-
treated maize and soy (Duke et al., 1979; Cole et al., 1980), yet not by direct effect according 
to in vitro tests. Therefore, although glyphosate has been evidenced to cause profound 
effects on extractable PAL, substrate(s) and end products, increased PAL activity has been 
evaluated as a secondary effect (Hoagland & Duke, 1982). 

Glyphosate did not appear to cause direct effects on photosynthesis, but its possible effect 
on chlorophyll biosynthesis has been considered, and its strong inhibitory effect on 
chlorophyll accumulation has been shown (Kitchen et al., 1981). Experimental result 
indicated that the effect of glyphosate on chlorophyll may be indirect through 
photobleaching and/or peroxidation of chlorophyll. 

Glyphosate has been shown to significantly affect the membrane transport of cellular 
contents only at very high concentrations (Brecke & Duke, 1980; Fletcher et al., 1980). 
Phosphorous uptake was retarded (Brecke & Duke, 1980), but loss of membrane integrity, 
decrease in energy supply or external ion chelation were excluded as causes. Moreover, 
uptake of amino acids, nucleotides and glucose were also found to be retarded by 
glyphosate in isolated cells (Brecke & Duke, 1980). Other studies (Cole et al., 1980; Duke & 
Hoagland, 1981) found inhibition of amino acid uptake by glyphosate not severe. 
Glyphosate has been reported to uncouple oxidative phosphorylation in plant (Olorunsogo 
et al., 1979) and mammalian (Olorunsogo & Bababunmi, 1980) mitochondria, the latter is 
likely to be due to altered membrane transport processes, as glyphosate was found to 
enhance proton permeability of mitochondrial membranes in a concentration-dependent 
manner (Olorunsogo, 1990). 

3. Pre-emergent application technology of glyphosate 

Glyphosate, exerting global herbicidal action, has originally been intended to pre-emergent 
weed control treatments of field vegetation and weed control of orchards and ruderal areas. 
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Post-emergent applications are impossible solely with glyphosate-based herbicide 
formulations due to the phytotoxicity of the compound to the crop as well. 

Common first visible phytotoxicity effects of glyphosate include rapid (within 2-10 days 
upon application) chlorosis, usually followed by necrosis (Suwannamek & Parker, 1975; 
Putnam, 1976; Campbell et al., 1976; Fernandez & Bayer, 1977; Marriage & Khan, 1978; 
Segura et al., 1978; Abu-Irmaileh & Jordan, 1978), possibly accompanied with morphological 
leaf deformities (Marriage & Khan, 1978), root and rhizome damage (Suwannamek & 
Parker, 1975; Fernandez & Bayer, 1977). Glyphosate accumulation has been reported in the 
meristems (Haderlie et al., 1978). It is rather surprising that although glyphosate inhibits 
seedling growth as well, it did not exert significant effect on the germination of various 
species (Haderlie et al., 1978; Egley & Williams, 1978). 

3.1 Formulated glyphosate-based herbicides 

Glyphosate-based formulations such as Roundup®, Accord® and Touchdown® represent the 
most common types used for agricultural purposes (Franz et al., 1997). These formulated 
herbicides can be used for weed control in agricultural practice, including in no-till 
agriculture to prepare fields before planting, during crop development and after crop 
harvest; as well as in silvicultural, urban and, lately, aquatic environments. The main 
herbicide products currently distributed are listed in Table 1. These preparations contain 
glyphosate as formulated in form of its ammonium (AMM), dimethylammonium (DMA), 
isopropylammonium (IPA), potassium (K) or trimesium (TRI) salts. The very first 
formulations containing IPA, sodium and ammonium salts were patented by Monsanto in 
1974. A unique form is the trimesium salt of outstanding water solubility, patented by ICI 
Agrochemicals (later Zeneca Agricultural Products Inc, then Novartis CP, and after 2000 
Syngenta) in 1989 (Tomlin, 2000). 

As the actual active ingredients of the formulations are salts, differing from each other in the 
cation(s) and consequently the molecular mass of the salts, active ingredient concentrations 
are specified as glyphosate equivalent, in other term acid equivalent (a.i.) referring to the 
free acid form of glyphosate. This provides instant comparability among various 
formulations. Moreover, the use of a.i. units is common practice in residue analysis of 
glyphosate as well. 

3.2 Formulating agents 

Formulated glyphosate-based herbicides contain various non-ionic surfactants to facilitate 
their uptake by the plants (Riechers et al., 1995). These components, as all other pesticide 
additives and diluents, are assumed to be inert, which as it turns out, is not the case for 
several such ingredients. The most common surfactant applied in combination with 
glyphosate is polyethyloxylated tallowamine (POEA), which itself has been found to exert 
ecotoxicity, also in synergy with glyphosate, causing the formulated herbicide (e.g., 
Roundup) more toxic than its technical grade active ingredient (Folmar et al., 1979; 
Atkinson, 1985; Wan et al., 1989; Powell et al., 1991; Giesy et al., 2000; Tsui & Chu, 2003; 
Marc et al., 2005; Benachour et al., 2007; Benachour & Séralini, 2009). 

The apparent synergistic toxic effects of the assumedly inert ingredients with glyphosate 
triggered a legal case between Monsanto and the New York Attorney General’s Office in 
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Manufacturer a.i. salt a Product b 

AAKO B.V. IPA Akosate
Agriliance LLC IPA Cornerstone
Agro-Chemie Ltd. IPA Fozát
Albaugh Inc./Agri Star IPA Aqua Star, Gly Star Original
Astrachem Ltd. IPA Tiller
Barclay Chem. Mfg. Ltd. IPA Gallup
Calliope S.A. IPA Kapazin
Chemical Products 
Technologies LLC

IPA ClearOut; ClearOut Plus 

Cheminova IPA Glyfos; Glyfos X-tra
Control Solutions Inc. IPA Spitfire
Crystal Chem. Inter-America IPA Glifonox

Dow AgroSciences 
IPA 

Dominator; Durango; Glyphomax; Glyphomax Plus; 
GlyPro; Panzer; Ripper; Rodeo; Vantage

DMA Durango DMA; Duramax

Drexel Chem. Co. 
IPA Imitator
K DupliKator

FarmerSaver.com LLC IPA Glyphosate 4
Griffin LLC IPA Glyphosate Original
Growmark Inc. IPA FS Glyxphosate Plus

Helena Chemical Co. 
IPA Rattler

IPA + AMM Showdown
Helm Agro US Inc. IPA Glyphosate 41%; Helosate Plus
Loveland Products Inc. IPA Mad Dog; Mirage

Makhteshim-Agan IPA 
Eraser, Gladiator; Glyphogan; Hardflex; Herbolex; 
Taifun

Micro Flo IPA Gly-Flo

Monsanto Co. 
IPA 

Accord; Aquamaster; Azural; Clinic; Glialka; Honcho; 
Ranger Pro, Roundup Bioforce / Classic / Original / 
UltraMAX

K 
Roundup Forte / Mega / PowerMAX / WeatherMAX; 
VisionMAX

Nufarm 
IPA Amega; Credit; Credit Extra

IPA + MA Credit Duo
Oxon Italia S.p.A. AMM Buggy
Pinus TKI d.d. IPA Boom Efekt
Sinon Corporation IPA Glyfozat; Total

Syngenta AG 

AMM Medallon Premium 

DMA Touchdown IQ 

K Refuge; Touchdown HiTech / Total; Traxion 

TRI Coloso; Ouragan 

Tenkoz Inc. IPA Buccaneer 

UAP IPA Makaze 

Universal Crop Protection 

Alliance LLC 
IPA Gly-4 

Winfield Solutions LLC IPA Cornerstone 

a AMM = ammonium; DMA = dimethylamine; IPA = isopropylamine; K = potassium; TRI = trimesium 
b Formulations containing only glyphosate salts as active ingredient are listed, herbicide combinations 

are not included 

Table 1. Formulated herbicide preparations containing glyphosate as active ingredient. 
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1996 (Attorney General of the State of New York, 1996). The toxicological basis of the legal 
claim was that Monsanto inaccurately implied toxicity data of the active ingredient 
glyphosate on the formulated product Roundup. As a result of the lawsuit, Monsanto was 
fined, and agreed to drop description of being “environmentally friendly” and 
“biodegradable” from the advertisements of the herbicide. 

Concerns about application safety, triggered by the above studies and findings on 
teratogenic effects (see 6.3 Teratogenic activity of glyphosate), have brought re-registration 
of glyphosate and its formulated products in focus in the European Union, as part of the 
regular pesticide revision process due to take place in 2012. Nonetheless, the EU 
Commission dismissed these findings, based on a rebuttal by the EU “rapporteur” member 
state for glyphosate, Germany, provided by the German Federal Office for Consumer 
Protection and Food Safety (BVL), and postponed the review of glyphosate and 38 other 
pesticides until 2015 (European Commission, 2010). To protest against such delay in re-
evaluation of these 39 pesticides, the Pesticides Action Network Europe and Greenpeace 
brought a lawsuit against the EU Commission, and the dismissal of the reported 
teratogenicity data from the official current evaluation has been judged by several 
researchers as irresponsible act (Antoniou et al., 2011). 

4. Post-emergent application technology of glyphosate 

A group so far of the highest financial importance within GM crops has been modified to be 
tolerant to this active ingredient, outstandingly broadening its application possibilities. 

4.1 Glyphosate-tolerant crops 

Upon pre-emergent applications of the global herbicide glyphosate, the majority of the 
weeds decays, perishes, and does not get consumed by wild animals. This situation has been 
changed tremendously by the appearance of GT crops, leading to increasing environmental 
herbicide loads due to approved post-emergent treatments (2-3 applications in total). Of 
these crops, the varieties of Monsanto became most publicised, under the trade mark 
Roundup Ready® (RR), indicating that these plants can be treated with the herbicide 
preparation of Monsanto, Roundup® containing glyphosate as active ingredient even, after 
the emergence of the crop seedlings. Similar varieties by Bayer CropScience, Pioneer Hi-
Bred and Syngenta AG are termed Gly-TolTM, Optimum® GAT® and Agrisure® GT, 
respectively. Two strategies have been followed by plant gene technology in the 
development of GT varieties: either the genes (cp4 epsps, mepsps, 2mepsps) of mutant forms of 
the target enzyme less sensitive to glyphosate or genes (gat, gox) of enzymes metabolizing 
glyphosate have been transferred into the GM plant varieties (Table 2). The genetically 
created tolerance to glyphosate does not alter the mode of action of the compound: the 
molecular mechanism of glyphosate tolerance has been elucidated (Funke et al., 2006), and 
the sole mechanism of inhibition remains blocking of the shikimate pathway when applied 
at very high doses on GT soybean and canola (Nandula et al., 2007). 

The first GT crop was RR soybean by Monsanto in 1996, followed by GT cotton, GT maize, 
GT canola, GT alfalfa and GT sugarbeet (Dill et al., 2008). GT crops allow a new form of 
technology, post-emergent application of glyphosate. The utilizability of post-emergent 
applications was systematically tested in 2002 and 2003 in field experiments in the United 
States (Parker et al., 2005). The extensive study involving GT maize and GT soybean sites at 
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Variety owner Crop Genetical event Transgene introduced a 

Bayer CropSience
(part of Sanofi-Aventis)

Cotton GHB614 2mepsps 

Monsanto Co.

Cotton MON 1445 cp4 epsps, nptII, aad 

Cotton MON 88913 cp4 epsps 

Maize MON 88017 cp4 epsps, cry3Bb1 

Maize NK603 cp4 epsps 

Rape GT 73 cp4 epsps, gox 

Soybean MON40-3-2 cp4 epsps 

Soybean MON 87705 cp4 epsps, FAD2-1A, FATB1-A 

Soybean MON 89788 cp4 epsps 

Sugar-beet b A5-15 cp4 epsps, nptII, 

Sugar-beet c H7-1 cp4 epsps 

Pioneer Hi-Bred
(part of DuPont)

Maize DP-98140 Gat4601, als 

Soy DP-356043 gat4601 

Syngenta Maize GA21 mepsps 

a aad – gene of Escherchia coli origin, encoding resistance against aminoglycoside antibotics 
(streptomycin and spectinomycin); als – gene (zm-hra) of maize origin, enhancing tolerance of ALS 
inhibiting herbicides (e.g., chlorimuron and thifensulfuron); cry3Bb1 – gene of Bacillus thuringiensis 
origin, encoding Cry3 toxin; FAD2-1A – gene of soy origin, encoding fatty acid desaturease enzyme, 
silencing of which enhances the proportion of monounsaturated fatty acids; FATB1-A – gene of soy 
origin, encoding medium-chain fatty acid thioesterase, silencing of which reduces the proportion of 
saturated fatty acids; cp4 epsps – epsps gene of Agrobacterium sp.; mepsps – epsps gene of maize origin; 
2mepsps – double mutated epsps gene of Mexican black, sweet maize origin; gat4601 – gene of Bacillus 
lichiformis origin, encoding glyphosate acetyltransferase enzyme; gox – gene of Ochrobactrum anthropi 
origin, encoding glyphosate oxidase enzyme; nptII – gene of Escherichia coli K12 origin, encoding 
neomycin phosphostransferase, causing neomycin and kanamycin resistance. 
b together with Danisco Seeds and DLF Trifolium as variety owners 
c together with KWS Saat Ag. as variety owners 

Table 2. Glyphosate tolerant crop variety groups under registration process in the European 
Union. 

seven locations, as well as regular or directed post-emergent applications of 10 formulated 
glyphosate preparations (ClearOut 41 Plus™, Gly Star™, Glyfos®, Glyfos® X-tra, 
Glyphomax™, Roundup Original™, Roundup UltraMAX®, Roundup WeatherMAX™, 
Touchdown® and Touchdown Total™) containing isopropylamine or potassium salts of 
glyphosate found no herbicide efficacy or produce quality differences, no phytotoxicity to 
maize and medium phytotoxicity to cotton at high doses in some instances, and therefore 
proposed post-emergent glyphosate applications. As a result, the use of glyphosate has 
expanded almost 20-fold by 2007 in the United States (Pérez et al., 2011). 

Another impact of GT crops on agricultural practices is the spread of no-till agriculture. As 
the crop tolerates the active ingredient, intensive herbicide treatments are possible to be 
carried out, instead of former tillage practices, to eradicate vegetation in the field. This has 
greatly increased herbicide use and consequent chemical pressure on the environment. No-
till practice is particularly common in GT crop cultivating areas in South America, including 
Brazil, Argentina, Paraguay and Uruguay (Altieri & Pengue, 2006). 

An interesting detail is that in parallel to industrial development of GT crops, illegal genetic 
modification projects are also being carried out to achieve “crops” that are resistant to 
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glyphosate e.g, a new marijuana (Canabis sp.) hybrid that can be cultivated all year and 
cannot be controled with herbicides (Anonymous, 2006). The GT marijuana hybrid, first 
appeared in Mexico in 2004, allows 8-9-times higher yields than “conventional” varieties, 
and became the plant of choice for drug traffickers in Michoacan. 

4.2 The effect of glyphosate-tolerant crops on glyphosate residues 

As a result of the combined effect of the expiration of the patent protection of glyphosate (in 
2000 in the United States) and the spread of cultivation of GT GM crops (since 1996 in the 
United States), the use of glyphosate products is again increasing (Woodburn, 2000). Besides 
GT GM crops, energy crop cultivation is also an and emerging source of glyphosate 
contamination (Love et al., 2011). Moreover, due to the modified metabolic pool in the GT 

GM crops, residues of the systemic glyphosate active ingredient are expected to 

occur in the surviving plants. In case of EPSP-mutant (RR and Agrisure GT) varieties, the 
residue composition is expected to be similar to those seen at regular glyphosate 
applications, while in the case of the boosted glyphosate metabolizing (regardless whether 
epsps or gox transgene based) varieties, increased amounts of N-acetylglyphosate (NAG) 
(Optimum GAT variety) or aminomethylphosphonic acid (AMPA) (RR and Agrisure GT 
varieties) are expected in the plants. In turn, residue patterns not yet seen in food and feed 
are to be expected. Summarizing the results of their studies in Argentina between 1997 and 
1999, Arregui and co-workers (2004) reported glyphosate residue levels after 2-3 glyphosate 
applications as high as 0.3-5.2 mg glyphosate/kg and 0.3-5.7 mg AMPA/kg in the leaves 
and stem of RR soy during harvest, and 0.1-1.8 mg glyphosate/kg and 0.4-0.9 mg AMPA/kg 
in the produce. In turn, glyphosate occurred as surface water, soil and sediment 
contaminant in a GM soybean cultivating area in Argentina (Peruzzo et al., 2008). 

5. The environmental fate of glyphosate 

5.1 Residue analysis of glyphosate 

Present analytical methods developed for the detection of glyphosate are mostly based on 
separation by liquid chromatography (LC), as previous methods utilizing gas 
chromatography (GC) have become of much lesser importance than they used to be (Stalikas 
& Konidari, 2001). The main obstacle in the GC detection of glyphosate and its main 
metabolite AMPA is the polaric and zwitterionic structure of these compounds, which 
required laborious sample preparation steps prior to instrumental analysis. The earliest 
method accredited for authoritative analytical determination of glyphosate (US FDA, 1977) 
employed aqueous extraction, anion and cation exchange purification, N-acetylation 
derivatisation with trifluoroacetic acid and trifluoroacetic anhydride, and subsequent 
methylation of both the carboxylic acid and phosphonic acid moieties on the parent 
compound, followed by GC analysis with phosphorous-specific flame ionisation detection. 
Recoveries above 70% were achieved by the method in plant samples, the limit of detection 
(LOD) was 0.05 mg/kg. The basis of the protocol was the GC-MS derivatisation method 
developed by Monsanto (Rueppel et al., 1976). A later method by Alferness and Iwata (1994) 
also employs aqueous extraction, followed by washing with dichloromethane/chloroform, 
purification on cation exchange column, derivatisation to trifluoroacetate and 
heptafluorobutyl ester, followed by GC analysis with mass spectrometry (MS) detection, 
and a similar methods have also been developed (Tsunoda, 1993; Natangelo et al., 1993; 
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Royer et al., 2000; Hudzin et al., 2002). Validated LC methods also resulting in similar 
analytical parameters (Cowell et al., 1986; Winfield et al., 1990; DFG, 1992) utilise washing 
with chloroform and hydrochloric acid, purification on ion exchange column, and upon 
neutralisation and derivatisation with o-phthalic aldehyde and mercaptoethanol, 
determination by high performance liquid chromatography (HPLC) with fluorescence 
detection. Yet the LOD of the official method (Method 547) established by the U.S. 

Environmental Protection Agency is as high as 6 g/l in reagent water and 9 g/l in surface 
water (Winfield et al., 1990). Ninhydrin or 9-methlyfluorenyl chloroformiate have also been 
applied as derivatising agents (Wigfield & Lanquette, 1991; Sancho et al., 1996; Nedelkoska 
& Low, 2004, Peruzzo et al., 2008). More recent LC procedures with somewhat simplified 
sample preparation steps offer rapid and more economic analytical methods than GC 
procedures always requiring complex, often several step derivatisation. As a result, GC 
methods remain being used solely due to their analytical parameters, including sensitivity. 
Nonetheless, LODs of LC and ion chromatographic methods were achieved to be lowered 
(Mallat & Barceló, 1998; Vreeken, 1998; Bauer et al., 1999; Grey et al., 2001; Patsias et al., 
2001; Lee et al., 2002a; Nedelkoska & Low, 2004; Ibáñez et al., 2006; Laitinen et al., 2006; 
Hanke et al., 2008; Popp et al., 2008) to meet the strictening maximal residue levels (MRLs) 
in environmental and health regulations. The most recent LC-MS methods using 
electrospray ionisation (Granby et al., 2003; Martins-Júnior et al., 2011) easily meet the MRL 
by the EU for given pesticide residues in drinking water, 0.1 µg/l, but the instrumentation 
demand of these methods is substantial. 

Among novel innovative analytical methods for the detection of glyphosate, mostly 

capillary electrophoresis (CE) and immunoanalytical methods are to be mentioned. Initial 

drawbacks of the CE methods included relatively high LOD and the need for derivatisation 

or external fluorescent labeling (Cikalo et al., 1996; You et al., 2003; Kodama et al., 2008), 

later solved by coupling CE with MS (Goodwin et al., 2003) and microextraction techniques 

(Hsu and Whang 2009; See et al., 2010). Among various immunoanalytical techniques, 

enzyme-linked immunosorbent assays (ELISAs) gained the highest utility. While in the early 

nineties we considered yet that effective antibodies are not produced against glyphosate and 

similar zwitterioninc compounds due to their low immunogeneity (Hammock et al., 1990), 

difficulties in immunisation have been overcome within a decade, and sensitive ELISAs, 

also employing derivatisation, were developed (Clegg et al., 1999; Lee et al., 2002b; Rubio et 

al., 2003; Selvi et al., 2011), proven to be of great utility in environmental analytical studies 

for glyphosate (Mörtl et al., 2010; Kantiani et al., 2011). On the basis of the immunoassay 

principle, sensors using glyphosate-sensitive antibodies (González-Martínez et al., 2005) or 

molecularly imprinted polymers (MIPs) (Zhao et al., 2011) were also developed. 

5.2 Glyphosate and its decomposition products 

Decomposition of glyphosate takes place mostly by two processes: decarboxylation or 

dephosphorylation, and the corresponding intermediate metabolites are AMPA or glycine, 

respectively. The first pathway is catalyzed by oxidoreductases, the second by C–P lyases 

cleaving the carbon-phosphorous bond. Both pathways occur in environmental matrices 

(water, soil) and plants, but the main metabolite in all cases is AMPA (Fig. 2). The 

environmental fate, behaviour and analysis of both AMPA and glyphosate has received 

considerable attention (Stalikas & Konidari, 2001). 
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Fig. 2. Possible fate of glyphosate by various metabolizing pathways. Oxidative 
decomposition (solid arrows), non-hydrolytic decomposition (dashed arrows), inactivation in 
plants (dotted arrow). Processing enzymes (Italics letters) – GOX: glyphosate oxidoreductase, 
GAT: glyphosate N-acetyltransferase, CPL: C–P-liase, SOX: sarcosin oxidase, TAM: 
transaminase, MADH: methylamine dehydrogenase. 

AMPA has been reported to be rapidly formed microbiologically, but not by chemical 
action, in water and in various loam soils (Drummer silty clay loam, Norfolk sandy loam, 
Ray silt loam, Lithonia sandy loam) (Rueppel et al., 1977; Aizawa, 1982; Mallat & Barceló, 
1998), and was shown to be degraded subsequently completely to carbon dioxide (Sprankle 
et al., 1975, Rueppel et al., 1977; Moshier & Penner, 1978). Chemical processes of 
degradation are ineffective because of the presence of a highly stable carbon-phosphorus 
bond in the compound (Gimsing et al., 2004). Which pathway is predominant in the 
microbial degradation depends on bacterial species. The first (AMPA) pathway is 

www.intechopen.com



 
Forty Years with Glyphosate 

 

259 

commonly seen in mixed soil bacterial cultures (Rueppel et al., 1977) and certain 
Flavobacterium sp. The glycine pathway is characteristic to certain Pseudomonas and 
Arthrobacter sp. strains (Jacob et al., 1988). AMPA is further metabolised, providing 
phosphorus for growth, although the amount eliminated is typically set by the phosphorus 
requirement of the bacterium in question. Sarcosine and glycine are other possible main 
degradation products in soils (Rueppel et al., 1977). 

As for decomposition in water or soil, the stability of glyphosate depends of a number of 
parameters. It strongly interacts with soil components by forming tight complexes with 
numerous metal ions in solution and by being adsorbed on soil particles, including clay 
minerals. Adsorption is strongly influenced by cations associated with the soil (Carlisle & 
Trevors, 1988), and it is mainly the phosphonic acid moiety that participates in the process, 
therefore, phosphate competes with glyphosate in soil adsorption (Gimsing & dos Santos, 
2005). As a result of its adsorption on clay particles and organic matter present in the soil, 
upon application glyphosate remains unchanged in the soil for varying lengths of time 
(Penaloza-Vazquez et al., 1995). Adsorption of chelating agents by surfaces has been shown 
to decrease biodegradability. It can be expected that phosphonates with their higher affinity 
to surfaces are much slower degraded in a heterogeneous compared to a homogeneous 
system, as seen for glyphosate (Zaranyika & Nyandoro, 1993). 

Therefore, differences have been observed between half-lives (DT50) of glyphosate 
determined in laboratory or field studies. Half-lives were found quite favourable in 
laboratory, 91 days in water and 47 days in soil. Nonetheless, half-life of the parent 
compound ranged between a few days to several months or even a year in field studies, 
depending on soil composition. A reason of such delayed decomposition is partly binding to 
the soil matrix, through which glyphosate absorbed on soil particles can form complexes 
with metal (Al, Fe, Mn, Zn) ions (Vereecken, 2005). By the increased solubility of its various 
alkali metal, ammonium or trimesium salts, the active ingredient can leach into deeper soil 
layers, in spite of its rapid decomposition and strong complex formation capability under 
certain conditions (Vereecken, 2005). Its primary metabolite AMPA is more mobile in soil 
than the parent compound (Duke & Powles, 2008). 

Moreover, decomposition dynamics of glyphosate is greatly dependent on the microbial 
activity of soil, with mostly Pseudomonas species as most important microbial components 
(Borggaard & Gimsing, 2008). If microbial activity is elevated, glyphosate is degraded with 
reported laboratory and field half-life of < 25 days and 47 days, respectively (Ahrens, 1994). 
Moreover, glyphosate itself affects the survival of soil microorganisms (Carlisle & Trevors, 
1988; Krzysko-Lupicka & Sudol, 2008). Studies of glyphosate degrading bacteria have 
involved selection for, and isolation of pure bacterial strains with enhanced or novel 
detoxification capabilities for potential uses in biotechnology industry and biodegradation 
of polluted soils and water. Microorganisms known for their ability to degrade glyphosate 
in soil and water include Pseudomonas sp. strain LBr (Jacob et al., 1988), Pseudomonas 
fluorescens (Zboinska et al., 1992), Arthrobacter atrocyaneus (Pipke et al., 1988) and 
Flavobacterium sp. (Balthazor & Hallas, 1986). Soil microbial activity, however, depends on a 
number of additional parameters, including soil temperature, abundance of air and water, 
and a number of not yet defined factors, creating rather variable conditions for the 
decomposition of glyphosate (Stenrød et al., 2005; 2006). Other studies have also shown that 
soil sorption and degradation of glyphosate exhibit great variation depending on soil 
composition and properties (de Jonge et al., 2001; Gimsing et al., 2004a, 2004b; Mamy et al., 
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2005; Sørensen et al., 2006; Gimsing et al., 2007). Laitinen and co-workers (2006; 2008) 
reported that phosphorous content in the soil affects the environmental behaviour of 
glyphosate e.g., its absorbance on soil particles, and its occurrence in surface waters. Weaver 
and co-workers (2007) claim that its effects on soil microbial communities are short and 
transient, and that decomposition characteristics of glyphosate do not change significantly 
in lower soil layers in Mississippi with various tilling methods (Zablotowicz et al., 2009). 
Outstandingly different result were obtained in an environmental analytical study carried 
out in Finland, who detected 19% of the applied glyphosate undecomposed and 48% in form 
of AMPA 20 months after application in Northern European soils of low phosphorous 
content (Laitinen et al., 2009). This also sheds a light on the high reported glyphosate 
contamination levels in Scandinavian surface waters (Ludvigsen & Lode, 2001a; 2001b). The 
phosphorous content of the soil may also play a key role in the low decomposition rate seen 
through its effect on microbial communities, as soil phosphorous has been shown to be able 
to stimulate decomposition of glyphosate (Borggaard & Gimsing, 2008). An interesting 
interaction observed is that persistence of glyphosate significantly increased in soils treated 
with Cry toxins of Bacillus thuringiensis subsp. kurstaki, while a similar effect was not seen 
when soils were treated with purified Cry1Ac toxin (Accinelli et al., 2004; 2006). Therefore, it 
is worthwhile reconsidering the fate of glyphosate in soils, including sorption, degradation 
and leachability. 

Due to its strong sorption and relatively fast degradation in soil, glyphosate has been 

claimed to cause very limited risk of leaching to groundwater (Giesy et al., 2000; Busse et al., 

2001; Vereecken, 2005; Cox & Surgan, 2006). Yet, other investigations indicates possible 

leaching and toxicity problems with its use (Veiga et al., 2001, Strange-Hansen, 2004; Kjær, 

2005; Landry et al., 2005; Relyea, 2005b; Torstensson et al., 2005; Siimes et al., 2006) and 

consequent effects on aquatic microbial communities (Pérez et al., 2007; Pesce et al., 2009; 

Vera et al., 2010; Villeneuve et al., 2011), except cyanobacteria (Powell et al., 1991). Just like 

soil bacteria, aqueous microorganisms e.g., microalgae may also utilise glyphosate as source 

of phosphorous (Wong, 2000). An interesting detail is that glyphosate may be formed 

during water treatment for purification from organic micropollutants. Glyphosate and 

AMPA were found to be formed during ozonisation of dilute aqueous solution of the 

complexing agent ethylenediaminetetra(methylenephosphonic acid) (Klinger et al., 1998; 

Nowack, 2003). The wide use, and hence ubiquity of glyphosate makes great demands on 

glyphosate safety, i.e. the absence of any harmful environmental effect except on target 

organisms (the undesirable weeds). 

Glyphosate is very stable in higher plants (Putnam, 1976; Zandstra & Nishimoto, 1977; 

Chase & Appleby, 1979; Gothrup et al., 1976; Wyrill & Burnside, 1976). Through its 

metabolism, AMPA has been identified as the main metabolite in plants as well e.g., in 

montmorency cherry (Prunus cerasus L.) leaves, field bindweed (Convolvulus arvensis L.), 

henge bindweed (Convolvulus sepium L), Canada thistle (Cirsium arvense (L) Scop.), tall 

morning glory (Ipomea purpurea (L.) Roth.) and wild buckwheat (Polygonum convolvulus L.) 

(Sandberg et al., 1980; Aizawa, 1982; Aizawa, 1989). 

Besides AMPA, its certain derivatives e.g., N-methyl-AMPA or N,N-dimethyl-AMPA have 
been also found as metabolites, mostly in plants (FAO/WHO, 2006). Decomposition in GT 
plants is even more complex, as some of these plants have been designed for enhanced 
degradation of glyphosate. In such plants, further AMPA derivatives e.g., N-acetyl-AMPA, 
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N-malonyl-AMPA, N-glyceryl-AMPA and various conjugates of AMPA have also been 
identified (FAO/WHO, 2006). 

5.3 Environmental monitoring of glyphosate 

Glyphosate shows unique characteristics in soil as compared to other pesticide active 
ingredients. With predominantly apolar groups pesticides typically bind to the organic matter 
in soil (Borggaard & Gimsing, 2008). In contrast, glyphosate is of amphoteric (zwitterionic) 
character, analytical determination of which is to date a great challenge to analytical chemists. 
As a result of the unusual chemical behaviour of the parent compound (N-
phosphonomethylglycine) and its metabolite (AMPA), routine environmental analytical 
methods do not detect them with sufficient sensitivity. It is also due to the difficult analytical 
procedure that glyphosate is often not targeted or overlooked in environmental studies, or has 
been considered of neglectable level. Certain studies, however, report frequent occurrence. In 
the United States, surface water contamination has been reported due to run-off from 
agricultural areas (Edwards et al., 1980; Feng et al., 1990) or pesticide drift (Payne et al., 1990; 
Payne, 1992). Glyphosate has been listed among pesticides of potential concern in surface 
water contamination in the Mediterranean region of Europe in the mid’ nineties (Barceló & 
Hennion, 1997), and glyphosate and AMPA were found as contaminants in two small 
tributaries of the river Ruhr in North-Rhine-Westphalia, Germany at up to 590 ng/l 
concentration (Skark et al., 1998). A monitoring study carried out in Norway found frequent 
occurrence of glyphosate and its metabolite AMPA in surface water samples. In 54% of the 540 
surface water samples collected between 1995 and 1999 glyphosate or AMPA was detected. 
The maximal concentration was 0.93 µg/l (average 0.13 µg/l) for glyphosate, and 0.2 µg/l 
(average 0.06 µg/l) for AMPA (Ludvigsen & Lode, 2001a; 2001b). The monitoring study, 
therefore, indicated broad occurrence of glyphosate and its metabolite at low concentrations. 
In a study carried out in surface waters of the Midwest in the United States in 2002 glyphosate 
was detected in 35-40% of the samples (maximal concentration 8.7 µg/l) and AMPA in 53-83% 
of the samples (maximal concentration 3.6 µg/l) (Battaglin et al., 2005), and both glyphosate 
and AMPA were detected in vernal snow-flood at concentrations up to 328 and 41 g/l, 

respectively, in 2005-2006 in four states of the US (Battaglin et al., 2009). Analysing water 
samples from 10 wastewater treatment plants in the United States, the U.S. Geological Survey 
detected AMPA in 67.5% and glyphosate in 17.5% of the samples (Kolpin et al., 2006). The 
study concluded that urban use of glyphosate contributes to glyphosate and AMPA 
concentrations in streams in the United States. In a study carried out in Canada in 2004-2005, 
21% of the analysed 502 samples contained glyphosate with a maximum concentration of 41 
µg/l, and the peak concentration of AMPA was 30 µg/l glyphosate equivalent (Struger et al., 
2008). In France, glyphosate and AMPA were detected in 2007 and 2008 due to urban runoff 
effect (Batta et al., 2009). In fact, Villeneuve et al. (2011) adjudge glyphosate to be one of the 
herbicides most often found in freshwater ecosystems worldwide, and state that AMPA is the 
most often detected and glyphosate is the third most frequent pesticide residue in French 
streams. Elevated glyphosate levels were detected in surface water, soil and sediment samples 
due to intensive herbicide applications in a GM soybean cultivating area in Argentina 
(Peruzzo et al., 2008). These studies are warning signs indicating that this herbicide active 
ingredient of intensive use, that is expected to further expand with the commercial cultivation 
of GM crops, became an ubiquitous contaminant in surface waters, and therefore, a permanent 
pollutant factor, which deserves pronounced attention by ecotoxicology. 

www.intechopen.com



 
Herbicides – Properties, Synthesis and Control of Weeds 

 

262 

6. Adverse environmental effects of glyphosate 

6.1 Glyphosate and Fusarium species 

Sanogo and co-workers (2000) observed that crop loss in soy due to infestation by Fusarium 
solani f. sp. glycines increased after glyphosate applications. Kremer and co-workers (2005) 
described a stimulating effect of the root exsudate of GR soy sampled after glyphosate 
application on the growth of Fusarium sp. strains. Treatments caused concentration 
dependent increase on the mycelium mass of the fungus. Nonetheless, Powel and Swanton 
(2008) could not confirm these observations in their field study. Kremer and Means (2009) 
claim that certain fungi utilise glyphosate released from plant roots into the soil as a 
nutritive, which facilitates their growth. Soil manganese content also affects the above 
consequence of glyphosate through chelating with the compound and thus, modifying its 
effects. Considering the fact that numerous plant pathogenic Fusarium species produce 
mycotoxins, an increasing proportion of these species is far not favourable as a side-effect. 
Johal and Huber (2009) lists numbersome plant pathogens (e.g., Corynespora cassicola or 
Sclerotinia sclerotiorum on soy) they claim to grow increasingly after glyphosate treatments, 
and the list contains several Fusarium species (F. graminearum, F. oxysporum, F. solani). They 
hypothesize that glyphosate causes disturbances in microelement metabolism in plants, and 
in parallel, deteriorate the defense system of the plants, thereby increasing the virulence of 
certain plant pathogens. Zobiole and co-workers (2011) confirmed the above effects by their 
observation that glyphosate treatments facilitate colonisation of Fusarium species on the soy 
roots, but reduces the fluorescent Pseudomonas fraction of the rhizosphere, the level of 
manganese reducing bacteria and of the indoleacetic acid producing rhizobacteria. As a 
combined result of these effects, root and overall plant biomasses were found to be reduced. 

6.2 Toxicity of glyphosate to aquatic ecosystems and amphibians 

Substances occurring in surface waters deserve special attention by ecotoxicologists, as they 
enter a matrix that is the habitat of numerous aqueous organisms and the basis of our 
drinking water reserves. Drinking water is an irreplaceable essential part of our diet, and is 
a possible vehicle for chronic exposure (the basis of chronic diseases) in daily 
contact/consumption. 

Glyphosate has been known to cause toxicity to microalgae and other aquatic 
microorganisms (Goldsborough and Brown 1988; Austin et al., 1991; Anton et al., 1993; 
Sáenz et al., 1997; DeLorenzo et al., 2001; Ma 2002; Ma et al., 2002; Ma et al., 2003), in fact a 
green algal toxicity test has been proposed for screening herbicide activity (Ma & Wang, 
2002). In contrast, cyanobacteria have been found to show resistance against glyphosate 
(López-Rodas et al., 2007; Forlani et al., 2008). Tsui and Chu (2003) tested the effect of 
glyphosate, its most common polyoxyethyleneamine (POEA) type formulating materials, 
polyethoxylated tallowamines, and the formulated glyphosate preparation (Roundup) on 
model species from aquatic ecosystems, bacteria (Vibrio fischeri), microalgae (Selenastrum 
capricornutum, Skeletonema costatum), protozoas (Tetrahymena pyriformis, Euplotes vannus) and 
crustaceans (Ceriodaphnia dubia, Acartia tonsa). The most surprising result of the study was 
that the assumedly inert detergent formulating agent, POEA was found to be the most toxic 
component. In light of this it is far not surprising that Cox and Surgan (2006) and Reuben 
(2010) propounded the question, why tests only on the active ingredients are necessary to be 
specified in the documentation required by the Environmental Protection Agency of the 
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Unites States (US EPA), when several of the used formulating components are known to 
exert biological activity. 

Although acute toxicity and genotoxicity of glyphosate have been evidenced to certain fish 
(Langiano & Martinez, 2008; Cavalcante et al., 2008), glyphosate shows favourable acute 
toxicity parameters on most vertebrates, and therefore, has been classified as III toxicity 
category by US EPA. The European discretion is stricter, listing the compound among 
substances causing irritation (Xi) and severe ocular damage (R41). It has to be noted, 
however, that that model species of neither amphibians, not reptilians are represented in the 
toxicological documentations required nowadays. It may not be surprising, therefore, that 
after atrazine (Hayes et al., 2002; 2010), glyphosate is the second herbicide active ingredient 
that is questioned due to its detrimental effects on the animal class, considered the most 
endangered on Earth, amphibians. 

Mann and Bidwell (1999) studied the toxicity of glyphosate on tadpoles of four Australian 
frogs (Crinia insignifera, Heleioporus eyrei, Limnodynastes dorsalis and Litoria moorei). The 
toxicity of Roundup and its 48-hour LC50 values were found to be 3-12 mg glyphosate 
equivalent/l. Tolerance of the adult frogs was substantially greater. A glyphosate-based 
formulated herbicide preparation (VisionMAX) caused no significant effects on the juvenile 
adults of the green frogs (Lithobates clamitans) when applied at field application doses, only 
marginal differences in statistics of infection rates and liver somatic indices in relation to 
exposure estimates (Edge et al., 2011). Chen et al. (2004) observed that the toxicity of 
glyphosate on the frog species Rana pipiens was greatly affected by lacking food resources 
and the pH of the medium as stress factors. Relyea (2005a) reported tadpole (Bufo 
americanus, Hyla versicolor, Rana sylvatica, R. pipiens, R. clamitans and R. catesbeiana) mortality 
related to glyphosate applications. The effect, occurred at 2-16 mg glyphosate equivalent/l 
concentrations, was linked with the stress caused by the predator of the tadpoles, 
salamander Notophthalmus viridescens. Later Relyea and Jones (2009) included further frog 
species (Bufo boreas, Pseudacris crucifer, Rana cascadea, R. sylvatica) into the study, and found 
LC50 values to be 0.8-2 mg glyphosate equivalent/l. Testing four salamander species 
(Amblystoma gracile, A. laterale, A. maculatum and N. viridescens), the corresponding values 
ranged between 2.7 and 3.2 mg glyphosate equivalent/l. In this case, glyphosate was 
formulated with detergent POEA. Further studies also shed light on the fact that another 
stress factor, population density, playing an important part in the competition of the 
tadpoles increased the toxic effect of glyphosate (Jones et al., 2010). Lajmanovich and co-
workers (2010) detected lowered enzymatic activities (e.g., acetylcholine esterase and 
glutathion-S-transferase) in a frog species, Rhinella arenarum upon glyphosate treatments. 

Sparling and co-workers (2006) detected lowered fecundity of the eggs of the semiaquatic 
turtle, red-eared slider (Trachemys scripta elegans) if treated with glyphosate at high doses. 

6.3 Teratogenic activity of glyphosate 

The teratogenicity of the pesticide preparations containing glyphosate deserves special 
attention. The very first examples of observed teratogenicity of glyphosate preparations 
have also been linked to amphibians. Using the so-called FETAX assay, Perkins and co-
workers (2000) observed a formulation dependent teratogenic effect of glyphosate on 
embryos of the frog species Xenopus laevis. The concentrations that triggered the effect were 
relatively high (the highest dose applied in the study was 2.88 mg glyphosate equivalent/l), 
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but not irrealisticly high with respect to field doses of glyphosate, indicating, that high 
allowed agricultural doses cause glyphosate levels close to the safety margin. Lajmanovich 
and co-workers (2005) studied the effects of a glyphosate preparation (Glyfos) on the 
tadpoles of Scinax nasicus, and found that a 2-4-day exposure to 3 mg/l glyphosate caused 
malformation in more than half of the test animals. The treatment was carried out nearly at 
the LC50 level of glyphosate. Dallegrave and co-workers (2003) found fetotoxic effects on rats 
treated with glyphosate at very high, 1000 mg/l concentration on the 6th-15th day after 
fertilisation. Nearly half of the newborn rat progeny in the experiments were born with 
skeletal development disorders. 

Testing the effects of glyphosate preparations on the embryos of the sea urchin, 
Sphaerechinus granularis, Marc and co-workers (2004a) observed a collapse of cell cycle 
control. Inhibition affects DNA synthesis in the G2/M phase of the first cell cycle (Marc et 
al., 2004b). The authors estimate that glyphosate production workers inhale 500-5000-fold 
level of the effective concentration in these experiments. A marked toxicity of the 
formulating agent POEA has also been observed on sea urchins (Marc et al., 2005). The very 
early DNA damage was claimed to be related to tumour formation by Bellé and co-workers 
(2007), and the authors consider the sea urchin biotest they developed as a possible 
experimental model for testing this effect. Jayawardena and co-workers (2010) described 
nearly 60% developmental disorders on the tadpoles of a Sri Lanka frog (Polpedates cruciger) 
upon treatment with 1 ppm glyphosate. 

The teratogenicity of herbicides of glyphosate as active ingredient have been tested lately on 
amphibian (X. laevis) and bird (Gallus domesticus) embryos. Applied with direct injection at 
sublethal doses caused modification of the position and pattern of rhobomeres, the area of 
the neural crest decreased, the anterior-posterior axis shortened and the occurrence of 
cephalic markers was inhibited at the embryonic development stage of the nervous system. 
As a result, frog embryos became of characteristic phenotype: the trunk is shortened, head 
size is reduced, eyes were improperly or not developed (microphthalmia), and additional 
cranial deformities occurred in later development. Similar teratogenic effects were seen on 
embryos of Amniotes e.g., chicken. These developmental disorders may be related to 
damages of the retinoic acid signal pathway, resulting in the inhibition of the expression of 
certain essential genes (shh, slug, otx2). These genes play crucial roles in the neurulation 
process of embryogenesis (Paganelli et al., 2010). These findings were later debated by 
several comments. On behalf of the producers, Saltmiras and co-workers (2011) questioned 
certain conclusions in the work of Paganelli and co-workers (2010), claiming that the 
standardised pilot teratogenicity tests, carried out under good laboratory practice (GLP) by 
the manufacturers, have been evaluated by independent experts of several international 
organisations. They also considered the dosages used by Paganelli and co-workers 
exceedingly high, and the mode of application (microinjection) irrealistic in nature. Similar 
criticism has been voiced by Mulet (2011) and Palma (2011). In his answer, Carrasco (2011) 
emphasised their opinion that the company representatives ignore scientific facts 
supporting teratogenicity of atrazine, glyphosate and triadimefon through retinoic acid 
biosynthesis. He also emphasized that of 180 research reports of Monsanto, 150 are not 
public, or have never been presented to the scientific community. He also included that they 
obtained similar phenotypes in their studies with microinjection, than by incubation of the 
preparations. As a follow-up, Antoniou and co-workers (2011) compiled an extensive review 
of 359 studies and publications on the teratogenicity and birth defects caused by glyphosate, 
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and heavily criticize the European Union for not banning glyphosate, but rather postponing 
its re-evaluation until 2015 (European Commission, 2010). 

6.4 Genotoxicity of glyphosate 

Occupational exposure to pesticides, including glyphosate as active ingredient, may lead 
to pregnancy problems even through exposure of men (Savitz et al., 1997). Such 
phenomenon has been first described in epidemiology with Vietnam War veterans 
exposed to Agent Orange with phenoxyacetic acid type active ingredients contaminated 
with dibenzodioxins. Although glyphosate has been claimed not to be genotoxic and its 
formulation Roundup “causing only a week effect” (Rank et al., 1993; Bolognesi et al., 
1997), Kale and co-workers (1995) observed mutagenic effects of Roundup in Drosophila 
melanogaster recessive lethal mutation tests. Lioi and co-workers (1998) described 
increasing sister chromatide exchange in human lymphocytes with increasing glyphosate 
doses. Walsh and co-workers (2000) detected in murine tumour cells the inhibitory 
activity of Roundup on the biosynthesis of a protein (StAR) participating in the synthesis 
of sex steroids. This reduced the operation of the cholesterol – pregnenolon – progesteron 
transformation pathway to a minimal level. As it often happens in exploring mutagenic 
effects of chemical substances, additional studies have not found glyphosate mutagenic, 
and therefore, it is not so listed in the GAP2000 program compiled from US EPA/IARC 
databases. However, Cox (2004) describes chronic toxicity profile of several substances 
applied in the formulation of glyphosate. 

Studying the activity of dehydrogenase enzymes in the liver, heart and brain of pregnant 
rats, Daruich and co-workers (2001) concluded that glyphosate causes various disorders 
both in the parent female and in the progeny. According to results of the study by 
Benedettia and co-workers (2004), aminotransferase enzyme activity decreased in the liver 
of rats, impairing lymphocytes, and leading to liver tissue damages. In in vitro tests 
McComb and co-workers (2008) found that glyphosate acts in the mitochondria of the rat 
liver cells as an oxidative phosphorylation decoupling agent. Mariana and co-workers (2009) 
observed oxidative stress status decay in the blood, liver and testicles upon injection 
administration of glyphosate, possibly linked to reproductional toxicity. 

Prasad and co-workers (2009) detected cytotoxic effects, as well as chromosomal disorders 
and micronucleus formation in murine bone-marrow. Poletta and co-workers (2009) 
described genotoxic effects of Roundup on the erythrocytes in the blood of caimans, 
correlated with DNA damages. 

According to the survey of De Roos and co-workers (2003), the risk of the incidence of non-
Hodgkin lymphoma is increased among pesticide users. As the authors found it, this applies 
to herbicide preparations with glyphosate as active ingredient. Focusing the study solely on 
glyphosate preparations a year later in the corn belt of the United States, of the majority of 
malignant diseases, only the incidence of abnormal plasma cell proliferation (myeloma 
multiplex, plasmocytoma) showed a slight rise (De Roos et al., 2004). Myeloma represents 
approximately 10% of the malignant haematological disorders. Although the cause of the 
disease is not yet known, its risk factors include autoimmune diseases, certain viruses (HIV 
and Herpes), and the frequent use of certain solvents as occupational hazard. On the basis of 
murine skin carcinogenesis, George and co-workers (2010) reported that glyphosate may act 
as a skin tumour promoter due to the induction of several special proteins. 
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6.5 Hormone modulant effects of glyphosate and POEA 

Studying chronic exposure of tadpoles of Rana pipiens, Howe and co-workers (2004) found 
that in addition to developmental disorders, gonads in 15-20% of the treated animals 
developed erroneously, and these animals showed intersexual characteristics. Arbuckle and 
co-workers (2001) registered increased risk of abortion in agricultural farms after glyphosate 
applications. In addition, excretion of glyphosate has been determined in the urine of 
agricultural workers and their family members (Acquavella et al., 2004). 

Richard and co-workers (2005) evidenced toxicity of glyphosate on the JEG3 cells in the 

placenta. Formulated Roundup exerted stronger effect than glyphosate itself. Glyphosate 

inhibited aromatase enzymes of key importance in estrogen biosynthesis. This effect has also 

been evidenced in in vitro tests by binding to the active site of the purified enzyme. The 

formulating agent in the preparation enhanced the inhibitory effect in the microsomal 

fraction. Benachour and co-workers (2007) tested the effect of glyphosate and Roundup 

Bioforce on various cell lines, and also determined the aromatase inhibiting effect of 

glyphosate and the synergistic effect of the formulating agent. They suppose that the 

hormone modulant effect of Roundup may affect human reproduction and fetal 

development. Testing these human cell lines, Benachour and Séralini (2009) found that 

glyphosate alone induces apoptosis, and POEA and AMPA applied in combination exert 

synergistic effects, similarly to the synergy seen for Roundup. The synergy was reported to 

be further acerbated with activated Cry1Ab toxin related to that produced by insect resistant 

GM plants, raising concern regarding stacked genetic event GM crops exerting both 

glyphosate tolerance and Cry1Ab based insect resistance (Mesnage et al., 2011). Moreover, 

the combined effect caused cell necrosis as well. Effect enhancement is likely to be explained 

by the detergent activity of POEA facilitating the penetration of glyphosate through cell 

membranes and subsequent accumulation in the cells. The aromatase inhibitory effect of the 

formulated preparation was four-fold, as compared to the neat active ingredient. The 

authors consider it proven, that POEA, previously believed to be inert, is far not inactive 

biologically. As the authorised MRL of glyphosate in forage is as high as 400 mg/kg, 

Gasnier and co-workers (2009) studied in various in vitro tests, what effects this may cause 

in a human hepatic cell line. All treatments indicated a concentration-dependent effect in the 

toxicity tests were found genotoxic in the comet assay for DNA damages, moreover, 

displayed antiestrogenic and antiandrogenic effects. 

6.6 Glyphosate resistance of weeds 

Frequent applications of glyphosate and the spread of GT crops outside of Europe escalate 

the occurrence of glyphosate in the environment, exerting severe selection pressure on the 

weed species. It has been well known that certain weeds have native resistance against 

glyphosate e.g., the common lambsquarters (Chenopodium album), the velvetleaf (Abutilon 

theophrasti) and the common cocklebur (Xanthium strumarium). 

The first population of GT Lolium rigidum was described in 1996 by Pratley and co-workers 
in Australia. This was followed in 1997 by GT goosegrass (Eleusine indica) in Malaysia (Lee & 
Ngim, 2000), GT horseweed (Conyza canadensis) in the United States (VanGessel, 2001), GT 
Italian ryegrass (Lolium multiflorum) in Chile (Perez & Kogan, 2003). Further known GT 
weed species include Echinochloa colona (2007), Urochloa panicoides (2008) and Chloris truncata 
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(2010) in Australia; Conyza bonariensis (2003) and ribwort plantain (Plantago lanceolata, 2003) 
in South Africa; ragweed (Ambrosia artemisifolia, 2004), Ambrosia trifida (2004), Amaranthus 
palmeri (2005), Amaranthus tuberculatus (2005), summer cypress (Bassia scoparia, 2007) and 
annual meadow grass (Poa annua, 2010) in the United States; Conyza sumatrensis (2009) in 
Spain; Johnsongrass (Sorghum halepense) (2005), Italian ryegrass (Lolium perene, 2008) in 
Argentina; Euphorbia heterophyla (2006) in Brazil; Parthenium hysterophorus (2004) in Colombia 
and Digitaria insularis (2006) in Paraguay (Heap, Epubl). GT Johnsongrass was reported in a 
continuous soybean field in Arkansas, United States (Riar et al., 2011). Price (2011) claims 
that agricultural conservation tillage is threatened in the United States by the rapid spread 
of GT Palmer amaranth (Amaranthus palmeri [S.] Wats.) due to wide range cultivation of 
transgenic, GT cultivars and corresponding broad use of glyphosate. GT amaranths were 
first identified in Georgia, and later reported in nine states, Alabama, Arkansas, Florida, 
Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee, and a 
closely related GT amaranth, common waterhemp (Amaranthus rudis Sauer) in four states, 
Illinois, Iowa, Minnesota, and Missouri. Moreover, GT Italian ryegrass populations collected 
in Oregon, United States appeared to show cross-resistance to another phosphonic acid type 
herbicide active ingredient, glufosinate (Avila-Garcia & Mallory-Smith, 2011). 

Powles and co-workers (1998) described a L. rigidum population resisting 7-11-fold dosage 
of glyphosate in Australia. Shrestha and Hemree (2007) found GT subpopulations of 5-8 leaf 
stage Conyza canadensis surviving only 2-4-fold glyphosate doses. According to Powles 
(2008), it is not coincidental that in countries, where GT crops are on the rise (Argentina and 
Brazil), the occurrence of GT weeds is more frequent. Moreover, he considers this one of the 
main obstacles of the spread of GT crops in the agricultural practice. Glyphosate tolerance is 
an inherited property, therefore, accumulation of weeds in the treated areas is to be 
expected. Genomics studies of the GT populations revealed that mutation of the gene (epsps) 
encoding the target enzyme responsible for tolerance is not infrequent in nature. (The 
mutant alleles (mepsps, 2mepsps) responsible for tolerance has been found in maize as well, 
see Table 2.). Reduced or modified uptake or translocation of glyphosate has also been 
observed, and the metabolic fate of the compound may also become altered in the cell 
(Shaner, 2009), possibly resulting in GT populations. It is not difficult to predict, that 
prolonged cultivation of GT crops will necessitate supplemental herbicide administrations 
with active ingredients other than glyphosate. 
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