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S U M M A R Y

We present forward and adjoint spectral-element simulations of coupled acoustic and

(an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Simulations

benefit from recent advances in hexahedral meshing, load balancing and software optimiza-

tion. Meshing may be accomplished using a mesh generation tool kit such as CUBIT, and

load balancing is facilitated by graph partitioning based on the SCOTCH library. Coupling

between fluid and solid regions is incorporated in a straightforward fashion using domain

decomposition. Topography, bathymetry and Moho undulations may be readily included in

the mesh, and physical dispersion and attenuation associated with anelasticity are accounted

for using a series of standard linear solids. Finite-frequency Fréchet derivatives are calculated

using adjoint methods in both fluid and solid domains. The software is benchmarked for a

layercake model. We present various examples of fully unstructured meshes, snapshots of

wavefields and finite-frequency kernels generated by Version 2.0 ‘Sesame’ of our widely used

open source spectral-element package SPECFEM3D.

Key words: Tomography; Interferometry; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

We present a new software package, SPECFEM3D Version 2.0

‘Sesame’, capable of simulating forward and adjoint seismic wave

propagation on fully unstructured hexahedral meshes of arbitrary

shaped model domains. In view of unrelenting growth in compu-

tational power, it has become more and more important to develop

software capable of harnessing powerful computers to address a

broad range of seismological forward and inverse problems. A well-

established numerical technique for solving such problems in a fast

and highly accurate manner is the spectral-element method (SEM).

The SEM was originally developed in computational fluid dynam-

ics (Patera 1984; Maday & Patera 1989) and has been successfully

adapted to address problems in seismic wave propagation. Early

seismic wave propagation applications of the SEM, utilizing Leg-

endre basis functions and a perfectly diagonal mass matrix, include

Cohen et al. (1993), Komatitsch (1997), Faccioli et al. (1997),

Casadei & Gabellini (1997), Komatitsch & Vilotte (1998) and

Komatitsch & Tromp (1999), whereas applications involving

Chebyshev basis functions and a non-diagonal mass matrix include

Seriani & Priolo (1994), Priolo et al. (1994) and Seriani et al. (1995).

The SEM is a continuous Galerkin technique, which may be

made discontinuous (Bernardi et al. 1994; Chaljub 2000; Kopriva

et al. 2002; Chaljub et al. 2003; Legay et al. 2005; Kopriva 2006;

Wilcox et al. 2010; Acosta Minolia & Kopriva 2011); it is then close

to a particular case of the discontinuous Galerkin technique (Reed

& Hill 1973; Arnold 1982; Falk & Richter 1999; Hu et al. 1999;

Cockburn et al. 2000; Giraldo et al. 2002; Riviére & Wheeler 2003;

Monk & Richter 2005; Grote et al. 2006; Ainsworth et al. 2006;

Bernacki et al. 2006; Dumbser & Käser 2006; De Basabe et al.

2008; de la Puente et al. 2009; Wilcox et al. 2010; De Basabe &

Sen 2010; Etienne et al. 2010), with optimized efficiency because

of its tensorized basis functions (Wilcox et al. 2010; Acosta Minolia

& Kopriva 2011).

An important feature of the SEM is that it can accurately han-

dle very distorted mesh elements (Oliveira & Seriani 2011), and

C© 2011 The Authors 721
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thus conforming non-structured mesh doubling bricks can effi-

ciently accommodate mesh size variations (Komatitsch & Tromp

2002a, 2004; Lee et al. 2008, 2009a,b). The method has very good

accuracy and convergence properties, such as a spectral rate of

convergence (Canuto et al. 1988; Maday & Patera 1989; Seriani

& Priolo 1994; Deville et al. 2002; Cohen 2002; De Basabe &

Sen 2007; Seriani & Oliveira 2008). In this sense the SEM is

close to the family of pseudo-spectral methods (see e.g. Canuto

et al. 1988; Carcione et al. 1988a, 1992; Carcione & Wang 1993;

Komatitsch et al. 1996), but combined with the flexibility of fi-

nite elements, in particular in terms of mesh design. For reviews

of the SEM in seismology, see for example, Komatitsch et al.

(2005), Chaljub et al. (2007), Tromp et al. (2008) and Fichtner

(2010).

The SEM is well suited to parallel implementations on very large

supercomputers (Komatitsch & Tromp 2002a; Komatitsch et al.

2003; Tsuboi et al. 2003; Komatitsch et al. 2008; Carrington et al.

2008; Komatitsch et al. 2010b) as well as on clusters of GPU accel-

erating graphics cards (Komatitsch et al. 2009, 2010a, Komatitsch

2011). Tensor products inside each element may be optimized to

reach very high efficiency (Deville et al. 2002), and mesh point and

element numbering may be optimized to reduce processor cache

misses and improve cache reuse (Komatitsch et al. 2008). The

SEM can handle triangular (in 2-D) or tetrahedral (in 3-D) ele-

ments (Wingate & Boyd 1996; Taylor & Wingate 2000; Komatitsch

et al. 2001; Cohen 2002; Mercerat et al. 2006), as well as mixed

meshes, although with increased cost and reduced accuracy in these

non-tensorized elements, as in the discontinuous Galerkin method.

In many cases of practical seismological interest, using a con-

forming mesh and a continuous formulation are sufficient, because

in most geological models material property contrasts are not too

dramatic. When this ceases to be true, requiring a discontinuous for-

mulation, one can either turn to a discontinuous version of the SEM

(Bernardi et al. 1994; Chaljub 2000; Kopriva et al. 2002; Chaljub

et al. 2003; Legay et al. 2005; Kopriva 2006; Wilcox et al. 2010;

Acosta Minolia & Kopriva 2011) or to a discontinuous Galerkin

technique. A discontinuous formulation is particularly suitable for

dynamic rupture simulations, because high frequencies or super-

shear rupture need to be accommodated near the fault, where a

significantly denser mesh and a more sophisticated (upwind) time

scheme are required, thereby suppressing the amplification of un-

stable modes (see e.g. Benjemaa et al. 2007, 2009; de la Puente

et al. 2009; Tago et al. 2010). Another example that may require

a discontinuous formulation involves the resolution of a shallow

geotechnical layer, in which seismic shear wave speeds may be

reduced by an order of magnitude.

For seismological applications, the SEM has been success-

fully implemented for 3-D global- and regional-scale simulations

(Komatitsch & Vilotte 1998; Paolucci et al. 1999; Chaljub 2000;

Komatitsch & Tromp 2002a,b; Capdeville et al. 2003; Chaljub &

Valette 2004; Fichtner et al. 2009a), as well as local-scale simu-

lations in complex and/or densely populated regions, for example

in southern California, USA (Komatitsch et al. 2004; Tape et al.

2009, 2010), Taipei, Taiwan (Lee et al. 2008, 2009a,b), Caracas,

Venezuela (Delavaud et al. 2006) and Grenoble, France (Chaljub

et al. 2005; Stupazzini et al. 2009; Chaljub et al. 2010). The SEM

may also be used to study elastic wave propagation on smaller

scales, for instance the propagation of ultrasonic waves in crystals

(van Wijk et al. 2004).

Two complementary SEM software packages—namely,

SPECFEM3D_GLOBE for global and regional simulations,

and SPECFEM3D for local simulations—are feature-rich, well

benchmarked and documented implementations. Data parallelism

in the SEM is efficiently exploited using the Message-Passing

Interface (MPI) standard, crucial for modern high-performance

computing. These open source packages are freely available via the

Computational Infrastructure for Geodynamics (CIG) and widely

used by the seismological community.

To extend the range of local-scale applications, easing the task of

mesh generation is paramount. The two community software pack-

ages separate a simulation into two distinct steps: first, creation

of a hexahedral mesh, and second, solution of the seismic wave

equation. This separation avoids the overhead of remeshing when

running multiple simulations for the same region, for example, re-

peated simulations at the same resolution. Focussing on local-scale

simulations, previous versions of SPECFEM3D used an internal

mesher which was explicitly tied to the specific purposes of the

package: all geological models were based on a layercake model.

Consequently, the solver was restricted by its internal mesher. It was

impossible to run spectral-element simulations on more complex 3-

D models without significant recoding, nor was it possible to run

such simulations in regions of interest for on- and off-shore explo-

ration seismology, because acoustic wave propagation in fluids was

not supported by the package.

The purpose of this paper is to present forward and ad-

joint simulations in various 3-D models using the new soft-

ware package, SPECFEM3D Version 2.0 ‘Sesame’, thereby illus-

trating its current capabilities. The original SPECFEM3D pack-

age for local simulations was extended, improved and opti-

mized in various ways. The Version 2.0 ‘Sesame’ release in-

cludes a more flexible internal mesher and accommodates more

powerful external meshers, such as CUBIT (Blacker et al.

1994; White et al. 1995; Mitchell 1996; Casarotti et al. 2008).

Adding such external meshers into the workflow greatly in-

creases flexibility for high-performance applications, as illustrated

by the GeoELSE software package (Casadei & Gabellini 1997;

Stupazzini et al. 2009; Chaljub et al. 2010). Advantages of

GeoELSE include the accommodation of viscoplastic and non-

linear rheologies, whereas benefits of SPECFEM3D include cou-

pled fluid-solid domains and adjoint capabilities; the latter enable

one to address seismological inverse problems. Load balancing par-

allel simulations in SPECFEM3D is accomplished based on the

graph partitioning software package SCOTCH (Pellegrini & Ro-

man 1996; Chevalier & Pellegrini 2008). The new package facili-

tates coupled forward and adjoint acoustic/(an)elastic simulations,

which are especially interesting for problems in exploration seismol-

ogy, ocean acoustics and medical tomography. The new software is

freely available under the GNU GPL Version 2 license via CIG.

2 G OV E R N I N G E Q UAT I O N S

Let us briefly summarize the equations governing seismic wave

propagation implemented in SPECFEM3D. For more technical

details, the reader is referred to Komatitsch & Tromp (1999).

SPECFEM3D Version 2.0 ‘Sesame’ implements wave propagation

in coupled (an)elastic and acoustic materials on local scales. We

may thus safely neglect additional effects that would arise from

self-gravitation and rotation (Komatitsch & Tromp 2002b, 2005;

Chaljub et al. 2007), which are important at longer periods. In the

following, we first discuss (an)elastic wave propagation and subse-

quently consider acoustic waves.

C© 2011 The Authors, GJI, 186, 721–739
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2.1 Elastic domain

For elastic materials, the displacement wavefield s(x, t) is governed

by

ρ ∂2
t s = ∇ · T + f, (1)

where ρ denotes mass density, T the stress tensor and f the seismic

source. On free surfaces, the traction vector must vanish, that is,

n̂ · T = 0, (2)

where n̂ denotes the unit outward normal on the surface. On bound-

aries between different elastic materials, both traction n̂ ·T and dis-

placement s need to be continuous. On boundaries between elastic

and acoustic domains, traction n̂ · T and the normal component of

displacement n̂ · s need to be continuous. The initial conditions are

s(x, 0) = 0, ∂t s(x, 0) = 0. (3)

We thus initiate the simulation in a medium at rest. To accommodate

simulations under pre-stressed conditions, these initial conditions

may be modified in an appropriate manner.

For elastic materials, the force f in eq. (1) represents the earth-

quake, which for a simple point source may be written as

f = −M · ∇δ(x − xs) S(t), (4)

where M denotes the moment tensor, xs the source location, δ(x −xs)

the Dirac delta distribution located at xs and S(t) the source-time

function. The software also accommodates kinematic rupture sim-

ulations, which may be captured by prescribing a moment-density

tensor field.

The stress tensor T is linearly related to the strain via the consti-

tutive relationship

T = c : ∇s , (5)

where c denotes the stiffness tensor that describes the elastic prop-

erties of the medium. The implementation is general and can handle

a fully anisotropic tensor with 21 independent parameters (Chen &

Tromp 2007; Sieminski et al. 2007a,b). Using a linear constitutive

relationship is valid under the assumption that perturbations to the

reference state are small. Note that non-linear effects are sometimes

observed, for example, non-linear soil amplification, and non-linear

constitutive relationships become important for studying such ef-

fects, for example, for risk mitigation (Xu et al. 2003; Dupros et al.

2010).

In an anelastic medium, we approximate an absorption-band solid

using a series of L standard linear solids (Liu et al. 1976), and model

the time evolution of the isotropic shear modulus μ by

μ(t) = μR

[

1 −
L

∑

l=1

(

1 −
τ ǫ

l

τ σ
l

)

e−t/τσ
l

]

H (t) , (6)

where μR denotes the relaxed modulus, H(t) the Heaviside function

and τ σ
l & τ ǫ

l the stress and strain relaxation times of the lth standard

linear solid. Experience shows that three solids generally suffice

for simulating an absorption band (Emmerich & Korn 1987). For

further details, see Carcione et al. (1988b), Robertsson (1996),

Day & Bradley (2001), Moczo & Kristek (2005), Komatitsch et al.

(2005), Carcione (2007) and Savage et al. (2010). Simulations of

seismic wave propagation in laboratory-scale rock samples or in the

context of medical tomography involve very high frequencies (in

the kHz or even MHz range), and strong attenuation must be taken

into account.

The SEM solves the equations of motion in the weak form, which

is obtained by dotting the momentum eq. (1) with an arbitrary test

vector w and integrating by parts over the model volume �. We focus

on elastic domains and consider coupling interfaces with acoustic

domains. Thus, we obtain
∫

�

ρ w · ∂2
t s d3x =

∫

∂�

n̂ · T · w d2x −
∫

�

∇w : T d3x

+ M : ∇w(xs) S(t) . (7)

Note that in this formulation the traction-free surface condition is

implicitly accounted for by setting the contribution from the free

surface to zero.

When and where necessary, we use Clayton–Engquist–Stacey

absorbing conditions (Clayton & Engquist 1977; Stacey 1988;

Quarteroni et al. 1998) to absorb outgoing waves on fictitious

boundaries of the mesh, thereby representing a semi-infinite do-

main. It would be more efficient to use a Perfectly Matched Layer

(PML) (see e.g. Komatitsch & Martin 2007, 2008c; Martin &

Komatitsch 2009), but a parallel implementation with good load-

balancing properties is challenging because additional equations

need to be solved. This issue becomes important when high-order

time marching is required to reduce numerical dispersion in dif-

ficult case studies that involve complex media with poroelastic or

viscoelastic rheologies (Martin et al. 2008b, 2010) or Newtonian

compressible fluids (Martin & Couder-Castaneda 2010). Conse-

quently, additional computations need to be performed in PML

layers, in particular in corners, where contributions along several

directions are summed (Komatitsch & Martin 2007).

At a solid–fluid boundary, the interface integral over the coupling

surface ∂� is used to exchange pressure from the fluid pfluid to the

solid: n̂ · T = −pfluid n̂.

2.2 Acoustic domain

We define a scalar potential φ such that the displacement s may be

written as

s = ρ−1 ∇φ . (8)

The equation of motion in terms of the potential φ becomes

κ−1 ∂2
t φ = ∇ · (ρ−1 ∇φ) + f, (9)

where κ denotes the bulk modulus. It follows that velocity v and

pressure p may be expressed as

v = ρ−1 ∇∂tφ , (10)

p = −κ ( ∇ · s) = −∂2
t φ . (11)

The resulting formulation for pressure p is the reason why we choose

to define the potential φ as in eq. (8). Since pressure is continuous

across first-order discontinuities, it follows that ∂2
t φ and thus φ must

be continuous, a requirement which is honoured automatically by

the basis functions of the SEM. The source f may be expressed in

terms of pressure P acting at location xs.

f = −κ−1 P(t) δ(x − xs) . (12)

Note that the source is multiplied by a factor κ−1 due to the formu-

lation used in eq. (9).

Using Gauss’ theorem and a scalar test function w , the weak

form becomes
∫

�

κ−1 w ∂2
t φ d3x =

∫

∂�

ρ−1 w n̂ · ∇φ d2x

−
∫

�

ρ−1 ∇w · ∇φ d3x − κ−1 P(t) w (xs).

(13)

C© 2011 The Authors, GJI, 186, 721–739
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724 D. Peter et al.

Figure 1. Workflow for running spectral-element simulations with

SPECFEM3D Version 2.0 ‘Sesame’.

At the free surface ∂� we set the pressure p = −∂2
t φ = 0, thereby

enforcing φ = 0, ∂ tφ = 0 and ∂2
t φ = 0, that is, we implement

a Dirichlet boundary condition along the surface. At a fluid–solid

boundary, the interface coupling integral may be used to exchange

the normal component of displacement between fluid and solid:

ρ−1 n̂ · ∇φ = n̂ · ssolid.

3 M E S H I N G , M E S H PA RT I T I O N I N G

A N D L OA D B A L A N C I N G

The first step in a SEM consists of constructing a high-quality mesh

for the region of interest. In this section, we outline the key issues

based on various 3-D examples. Fig. 1 draws the schematic workflow

from meshing and partitioning to finally running spectral-element

simulations. We discuss each phase separately, focussing on the use

of an external mesher, in our case CUBIT (Blacker et al. 1994).

3.1 Hexahedral meshing

We subdivide the model volume � into a set of non-overlapping,

hexahedral elements. We impose that the discretization creates a

conforming mesh, that is, elements match on a full face or edge,

and the mesh cannot be discontinuous. Using the SEM with hex-

ahedral elements leads to computational benefits over tetrahedral

finite elements (Komatitsch et al. 2001; Mercerat et al. 2006; Vos

et al. 2010). Especially for parallel implementations, taking advan-

tage of the diagonal mass matrix and optimized tensor products is

critical in terms of computational speed (Komatitsch et al. 2003;

Carrington et al. 2008; Vos et al. 2010). Hexahedral meshing is also

attractive for the SEM because it benefits from reduced errors and

generally smaller element counts compared to tetrahedral meshing

(Hesthaven & Teng 2000; Komatitsch et al. 2001; Vos et al. 2010).

Unfortunately, automatic 3-D hexahedral mesh generation

is more demanding than unstructured tetrahedral meshing

(Shepherd & Johnson 2008; Staten et al. 2010). To construct hex-

ahedral meshes, our examples make use of an external hexahedral

mesher, such as CUBIT (Blacker et al. 1994). We focus on this

particular mesh generation tool kit because it is a well-documented

and feature-rich package, on which most of our own experience is

based. One may readily use other meshing tools, such as Abaqus

(SIMULIA 2008), ANSYS (ANSYS 2011), GOCAD (Mallet 1992;

Caumon et al. 2009), GiD (Gardia-Donoro et al. 2010; Ribó et al.

2011), Gmsh (Geuzaine & Remacle 2009), TrueGrid (Noble &

Nuss 2004; Rainsberger 2006) or Salome (Ribes & Caremoli 2007;

Bergeaud et al. 2010).

Fig. 2 shows several examples of fully unstructured hexahe-

dral meshes. In the Mount St Helens region, the mesh employs

a mesh tripling layer to increase resolution at the topographic sur-

face. Tripling is the default refinement in CUBIT for subdividing

hexahedral elements in a conforming fashion. Surface topography is

imported using Shuttle Radar Topographic Mission (SRTM) data,

converted to Universal Transverse Mercator (UTM) coordinates

with an original resolution of 90 m (Jarvis et al. 2008). Meshing is

performed automatically by CUBIT using a sweep algorithm. The

resolution of the mesh enables seismic wave simulations with fre-

quencies up to ∼1.5 Hz. The Mesh for the L’Aquila region, Italy,

consists of ∼7 M hexahedra with an element size of ∼90 m at

the top surface. This mesh facilitates simulations of seismic wave

propagation up to ∼5 Hz. For the exploration geophysics model,

the hexahedral mesh honours a salt dome body inside a 3-D model

capped by a water layer. The mesh for asteroid 433-Eros with a

close-bound surface has a resolution of roughly 300 m. Finally, the

filled coffee cup model discretized into hexahedra couples an elastic

domain for the cup with an acoustic domain for the coffee inside

the cup.

To ensure compatibility with previous versions of SPECFEM3D

(see e.g. Komatitsch et al. 2004; Liu et al. 2004), the in-house

mesher based on analytical linear interpolation from the top to the

bottom of the mesh has been adapted to the new code structure. It

facilitates the design of simpler, alternative meshes for layercake

models.

3.2 Partitioning and load balancing

Balancing the computational load and distributing the mesh on a

large number of cores is crucial for optimized high-performance

simulations (Martin et al. 2008a). To do so, we make use of an

external partitioner, namely SCOTCH (Pellegrini & Roman 1996;

Chevalier & Pellegrini 2008), which we use to balance spectral-

element computations on an arbitrary number of cores. An alter-

native partitioner able to fulfill these tasks is METIS (Karypis &

Kumar 1998), but SCOTCH is more actively maintained (Chevalier

& Pellegrini 2008) and performs better in many cases that we have

tested.

Especially for simulations involving coupled elastic and acoustic

domains, balancing the mesh becomes paramount. Most of the com-

putation time is spent resolving the divergence of the stress tensor

in each element. The computational cost for an elastic element is

approximately four times larger than for an acoustic element, which

may be established by running simulations for one domain at a time.

During partitioning, we therefore weight each element according to

its associated domain type and computational cost to balance the

overall numerical cost rather than simply the number of elements

between partitions. The major improvement in SPECFEM3D code

performance focuses on these tensor products, using highly effi-

cient algorithms developed by Deville et al. (2002) and optimizing

cache usage. Another key aspect of mesh partitioning is minimiza-

tion of the number of edge cuts, because this reduces the amount

of MPI communications between processor cores (an edge cut oc-

curs when two contiguous elements are assigned to distinct cores).

On machines comprising a very large number of cores, it is cru-

cial to resort to non-blocking communications between compute

nodes, for instance using non-blocking MPI message passing, to

obtain good performance scaling (Danielson & Namburu 1998;

Komatitsch et al. 2008; Martin et al. 2008a).
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SPECFEM3D Version 2.0 ‘Sesame’ 725

Figure 2. Mesh examples: (a) Mount St Helens meshed by hexahedral elements. The mesh honours surface topography and includes a mesh tripling layer in

the middle of the model. The smallest element size is approximately 280 m. (b) L’Aquila, Italy, region discretized for high-frequency simulations. The mesh

honours surface and Moho topography and includes two mesh tripling layers. The yellow and blue volumes denote slower and faster than average wave speeds,

respectively. (c) Salt dome body meshed inside an exploration model for a SEG/EAGE benchmark test. (d) 3-D hexahedral mesh of the asteroid 433 Eros. (e)

Arbitrarily shaped mesh for coupled solid–fluid simulations involving a coffee cup.

Fig. 3 presents a simple example of partitioning and load

balancing the mesh around Mount St Helens, as shown in Fig. 2.

For illustrative purposes, we decompose the mesh onto four cores

using the SCOTCH library. The total number of spectral-elements

is ∼24 000, such that each partition contains ∼6000 elements after

decomposition. Partitioning and load balancing equally distributes

the elements over the different cores, since the whole domain is

purely elastic. A partitioner such as SCOTCH can also load balance

computationally more complex meshes, for example, containing

PML elements along absorbing boundaries of the model; this is the

subject of future research.

In a final, separate step we generate mesh databases for each

partition needed for the spectral-element solver. These databases

contain Gauss–Lobatto–Legendre (GLL) points for all spectral el-

ements. Material properties are assigned to these GLL points, and

thus sampling resolution of a geological model not only depends

on element size but also on polynomial degree. Furthermore, the

generation of mesh databases automatically detects interfaces be-

tween elastic and acoustic domains, needed for coupling seismic

waves from one domain to another. Load-balancing of the simu-

lation persists, because we keep the polynomial degree fixed for

all spectral elements. Note that this final step of generating mesh

C© 2011 The Authors, GJI, 186, 721–739
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726 D. Peter et al.

Figure 3. Mount St Helens mesh partitioned and load balanced to run in parallel on four cores. The four partitions are indicated by different colours.

Figure 4. Outer (highlighted) and inner (transparent colours) elements for the mesh shown in Fig. 3. Outer elements have at least one point in common with

an element from another slice and must therefore be computed first, before initiating non-blocking MPI communications. While MPI messages are travelling

across the computer network, simultaneous computations are performed on inner elements. Non-blocking MPI communication is crucial to obtain good scaling

results for simulations running on a large number of parallel cores.

databases provides additional freedom in assigning and changing

wave speeds, which is important for seismic inversion procedures.

3.3 Overlapping computation and communication

The elements that compose the mesh slices shown in Figs 2 and 3 are

in contact through a common face, edge or point. To allow for over-

lap of communication between compute nodes with computations

within each mesh slice—thereby speeding up the simulation—a

list of all elements in contact with any other mesh slice through

a common face, edge or point is created. Members of this list are

termed ‘outer’ elements, and all other elements are termed ‘inner’

elements, as illustrated in Fig. 4.

Once the outer elements have been identified following a stan-

dard procedure (see e.g. Danielson & Namburu 1998; Martin et al.

2008a; Micikevicius 2009; Michéa & Komatitsch 2010; Komatitsch

2010a, 2011), MPI buffers are filled and a non-blocking MPI call

is issued, which initiates communication and returns immediately.

While MPI messages are travelling across the network, computa-

tions are performed on inner elements. Achieving effective overlap

requires that the ratio of the number of inner to outer elements is suf-

ficiently large, a condition which is satisfied for suitably large mesh

slices. Under these circumstances, MPI data transfer will generally

finish before the completion of computations on inner elements.

4 S A M P L E S I M U L AT I O N S

In this section, we present various simulations with increasing

complexity to highlight the flexibility of our new spectral-element

package. We start with a layercake model and finish with an example

of an arbitrarily shaped model.

4.1 Validation example: two-layer model

The SEM has been well benchmarked against discrete wavenum-

ber methods for layercake models by Komatitsch & Tromp (1999).

Here we compare their two-layer model solution (Fig. 8, left-hand

side) against the solution obtained by the new code. The model has

a horizontal size of 134 km × 134 km, with a depth of 60 km.

We discretize the model into 70 200 elements, using an approxi-

mate element size of 1000 m at the top and 4500 m at the bottom.

A mesh tripling layer is placed below the upper layer, between

3 km and 10 km, with the wave speed properties of the lower layer.

We use SCOTCH to partition the model onto six cores, each with

11 700 elements. The final mesh is generated using GLL points for

a polynomial degree N = 5, which results in 9 025 941 global mesh

points.

A vertical force is placed at a depth of 25.05 km in the middle

of the model. The source–time function is a Ricker wavelet with

a dominant frequency of 0.4 Hz. The simulation uses a time step

of 6.5 ms and propagates for 6000 steps. We compare our solution

with seismograms obtained by Komatitsch & Tromp (1999, Fig. 9).

The mesh and seismograms are shown in Fig. 5. The seismograms

match very closely with the reference solutions, exhibiting almost

identical displacements. Maximum waveform differences reach

∼0.3 per cent, arising from differences in mesh geometry and source

implementation.

The performance of the code is summarized in Fig. 6, using

simulations with the optimized routines by Deville et al. (2002)
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SPECFEM3D Version 2.0 ‘Sesame’ 727

Figure 5. Validation for a two-layer mesh (left, top panel), using six partitions (left, bottom panel), and seismograms recorded at the surface at horizontal

distances of 2.39 km (right, top panel) and 31.11 km (right, bottom panel). Plotted are radial displacements (SEM, red) against reference solutions (REF, black)

from Komatitsch & Tromp (1999), as well as their exaggerated differences (blue).

Figure 6. CPU scaling results for the model shown in Fig. 5, (a) using a fixed total problem size (strong scaling) and (b) a fixed problem size per processor

(weak scaling) for up to 256 cores. Perfect weak scaling deviates slightly from a straight line, because a larger number of processors involves more MPI buffers

and therefore more computational overhead.

and a polynomial degree N = 4. We are interested in how the

code behaves when the number of calculations is decreased linearly

with the number of CPU cores (strong scaling), and how perfor-

mance varies when the number of calculations on each core is kept

constant while increasing the total number of CPU cores (weak

scaling). To assess strong scaling, we fix the total mesh size but

vary the number of CPU cores used for the simulation. We run the

simulation for a duration of 4000 time steps and show the corre-

sponding average elapsed time per time step in Fig. 6(a). More in-

teresting for high-performance applications, we assess weak scaling

by fixing the problem size per processor and varying the number of

CPU cores. This leads to higher mesh resolutions for an increasing

number of CPU cores but should keep the average elapsed time per

time step constant. We summarize the simulation times in Fig. 6(b).

The computations were performed on a high-performance cluster

with compute nodes consisting of two Intel Nehalem quad-core

processors; each core has 3 GB of RAM. The code scales lin-

early within ∼90 per cent up to 256 CPU cores for both strong

and weak scaling, achieving excellent performance on this par-

allel system. Note that for the strong scaling examples shown

here, simulations using more than 64 CPUs see a performance de-

crease since communications no longer overlap, thus they no longer

profit from the default non-blocking MPI scheme (Martin et al.

2008a).
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728 D. Peter et al.

Figure 7. Wavefield snapshots around Mount St Helens. Plotted are vertical displacements (up/down coloured red/blue, respectively) at the free surface of the

model.

Figure 8. Wavefield snapshots for the 2009 April 6, L’Aquila earthquake, taken after 6 s, 11 s, 16 s and 21 s. Plotted are vertical displacements (up/down as

red/blue).

4.2 Mount St Helens example: layercake model with

surface topography

To include surface topography, we import SRTM data with an orig-

inal resolution of 90 m (Jarvis et al. 2008) and convert it to UTM

coordinates for the corresponding UTM zone. We read in this data

set using CUBIT and create a surface honouring these data points.

A 3-D volume is built manually with topography on top.

The simulation uses an explosive source at a depth of 5 km. In

Fig. 7, we show the vertical displacement field at the free surface

at consecutive times. Note that once the wavefield hits the model

boundary, it gets absorbed by the Clayton–Engquist–Stacey absorb-

ing boundary conditions.

4.3 L’Aquila example: layercake model honouring surface

and Moho topography

The purpose of this example is to show that additional surfaces

may be honoured by the mesh, for example the Moho. We import

not only surface topography, but also create a Moho surface that is

honoured by the boundaries of the spectral elements. The mesh

for the L’Aquila region was built using an additional ‘Python’ li-

brary that semi-automates the mesh creation process with CUBIT

(Casarotti et al. 2008). Once these mesh files are constructed, the

default partitioning and database generation process may be used

to create fully load-balanced spectral-element simulations on an

arbitrary number of parallel processors.

Fig. 8 shows several snapshots of the seismic wavefield at con-

secutive times for an anelastic material, using a kinematic source

description for the 2009 April 6, L’Aquila earthquake. Simulations

are accurate up to 5 Hz and may be used to discriminate between dif-

ferent wave speed models and/or kinematic source solutions. These

high-frequency simulations may be used to assess the response of

engineered structures and may guide the development of better seis-

mic building codes for the L’Aquila region.

4.4 SEG/EAGE salt dome example: exploration model

Our new spectral-element package can combine acoustic and

(an)elastic simulations by coupling these distinct domains. In this

C© 2011 The Authors, GJI, 186, 721–739
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SPECFEM3D Version 2.0 ‘Sesame’ 729

Figure 9. Wavefield snapshots for an exploration geophysics simulation taken after 5 s, 10 s, 15 s and 20 s. Plotted are vertical velocities at the free surface of

the water layer.

example, we generate acoustic waves in the top water layer and

propagate them down through a salt dome body included in the

lower, anelastic domain. The mesh honours the surface of the salt

dome and the fluid–solid boundary, that is, the bathymetry.

Fig. 9 shows the acoustic wavefield at the free surface of the water

layer at different times. The source is a pressure source, located

slightly below the free surface in the water layer, with a Ricker

source–time function. The wavefield is reflected and refracted by

the salt dome in the anelastic domain below the water layer. Note

how these reflected/refracted waves, which include P-to-S converted

waves, are recorded in the water layer.

4.5 Asteroid example: arbitrarily shaped model

This final example shows that our new software package may be

used for simulating wave propagation in arbitrarily shaped models,

such as asteroid Eros, which was imaged by the NEAR spacecraft in

2000–2001. This silicated asteroid is 34 km long with a peanut-like

shape and is thought to be covered with a regolith layer, correspond-

ing to a blanket of loose material crushed by impacts (Richardson

et al. 2005). We meshed the asteroid with 5 797 440 hexahedral ele-

ments having an approximate resolution of 70 m. To simulate a thin,

70 m regolith layer superimposed on strong bedrock, as suggested

by Robinson et al. (2002), we assigned a low wave speed material

to the elements touching the free surface and a high wave speed

material to elements inside the asteroid, representing solid bedrock.

We simulated the propagation of seismic waves from a source

represented by a point force normal to the surface. The source–time

function corresponds to a Dirac pulse low-pass filtered up to a cut-off

frequency of 5 Hz. Fig. 10 displays wavefield snapshots for the first

∼10 s of the simulation. It shows the propagation of P, S and surface

waves with a refocusing effect on the opposite side. The regolith

layer strongly increases physical dispersion of surface waves. Peak

ground accelerations are plotted in Fig. 11 for a simulation without

a regolith layer, showing that refocussing occurs on the asteroid.

5 A D J O I N T S E N S I T I V I T Y K E R N E L S

An important goal in seismology is to use differences between

observed and simulated seismograms to improve Earth and source

models, that is, we are interested in the inverse problem. An elegant

way to address this issue is to take advantage of adjoint methods

(Tarantola 1984; Tromp et al. 2005) to calculate Fréchet derivatives

for a pre-defined objective function. These derivatives may then

be used in a conjugate-gradient approach to minimize differences

between data and synthetics. The key ingredients of such an adjoint

approach are sensitivity kernels. Following Tromp et al. (2005), Liu

& Tromp (2006, 2008) and Tromp et al. (2010), we show examples

of sensitivity kernels for various models using our new software

package.

5.1 Elastic sensitivity kernels

Following Tromp et al. (2005), we may write the variation of a misfit

function χ as

δχ =
∫

V

(

Kρ δ ln ρ + Kc jklm
δc jklm

)

d3x, (14)

where δ ln ρ = δρ/ρ denotes relative perturbations in density and

δcjklm denotes perturbations in the elastic tensor. The misfit kernels

are given by

Kρ = −ρ

∫ T

0

s†(T − t) · ∂2
t s(t) dt, (15)
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730 D. Peter et al.

Figure 10. Wavefield snapshots for an asteroid simulation taken after 3 s, 4.5 s, 6.5 s and 10.5 s. Plotted is the norm of the velocity at the free surface of the

asteroid.

Figure 11. ShakeMap views for an asteroid simulation. Plotted are different views of the peak ground accelerations at the free surface of the asteroid.

Kc jklm
= −

∫ T

0

ǫ
†
jk(T − t) ǫlm(t) dt, (16)

where ǫlm and ǫ
†

jk denote elements of the strain and adjoint strain

tensors, and where we have suppressed the spatial dependence to

avoid clutter.

In an isotropic model, we have cjklm = (κ − 2μ/3) δjkδlm + μ (δjl

δkm + δjmδkl), and thus eq. (14) may be rewritten as

δχ =
∫

V

(

Kρ δ ln ρ + Kμ δ ln μ + Kκ δ ln κ
)

d3x . (17)

The isotropic misfit kernels K μ and K κ are defined by

Kμ = −2μ

∫ T

0

D†(T − t) : D(t) dt, (18)

Kκ = −κ

∫ T

0

[

∇ · s†(T − t)
]

[ ∇ · s(t)] dt, (19)

where D = 1
2
[ ∇s + ( ∇s)T ] − 1

3
( ∇ · s) I and D† = 1

2
[ ∇s† +

( ∇s†)T ]− 1
3
(∇ · s†) I are the traceless strain deviator and its adjoint,

respectively. In terms of a parametrization involving compressional

wave speed α, shear wave speed β and density ρ, the corresponding

kernels are given by a linear combination of these primary kernels

(Tromp et al. 2005, eq. 20):

Kα = 2

(

κ + 4
3
μ

κ

)

Kκ ,

Kβ = 2

(

Kμ −
4

3

μ

κ
Kκ

)

, K ′
ρ = Kκ + Kμ + Kρ . (20)

Note that a suitable parametrization for isotropic inversions is to

use bulk sound wave speed � =
√

κ/ρ, shear wave speed β and

density ρ (Tarantola 1987). Bulk sound and shear wave speeds are

independent combinations of the bulk and shear moduli κ and μ.

The corresponding kernels are given by

K� = 2Kκ , K ′
β = 2Kμ, K ′

ρ = Kκ + Kμ + Kρ . (21)

We place an explosive source at a depth of 7 km and a horizontal

distance of 16 km from the receiver in a homogeneous model with

topography around Mount St Helens. The P wave at the receiver is

used to construct a traveltime adjoint source for the kernel simula-

tion. Fig. 12(a) shows the isotropic kernels K κ , K μ and K ρ , and

Fig. 12(b) the isotropic kernels K α , K β and K ′
ρ for the same model

and source–receiver geometry.

Note that although we construct the adjoint source using the P

wave, significant non-zero S-wave sensitivity is visible in the K β

and K μ kernels. We interpret these areas of high sensitivity as

C© 2011 The Authors, GJI, 186, 721–739
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SPECFEM3D Version 2.0 ‘Sesame’ 731

Figure 12. Traveltime sensitivity to elastic structure. Fréchet derivatives for isotropic parametrizations (a) K κ , K μ & K ρ and (b) K α , K β & K ′
ρ are compared

in a model of Mount St Helens using traveltime adjoint sources for the P wave. Shown are vertical cross-sections through the source–receiver line and

perpendicular to this line.

P-to-S scattering locations, which affect the signal within the cho-

sen time window. As may be observed in Fig. 12, such scattering

sensitivity is especially strong at the free surface close to the re-

ceiver.

5.2 Acoustic sensitivity kernels

Liu & Tromp (2008) calculated global sensitivity kernels, which in-

clude sensitivity to the liquid outer core. In this section, we present

acoustic sensitivity kernels for general local- or regional-scale mod-

els. Such kernels may be used, for example, in ocean acoustics,

non-destructive testing and medical tomography.

For acoustic simulations, the kernels are given by

Kρ = ρ−1

∫ T

0

[ ∇∂tφ
†(T − t)] · [ ∇∂tφ(t)] dt, (22)

Kκ = −κ−1

∫ T

0

∂2
t φ†(T − t) ∂2

t φ(t) dt, (23)

where φ and φ† denote the acoustic scalar potential and adjoint

potential, respectively. To illustrate these kernels, we use a model

with acoustic and elastic regions. The model combines a water layer

on top of a homogeneous elastic layer, separated by a bathymetric

surface. The dimensions of the model volume are approximately

2 km × 2 km horizontally and 1 km in depth. Bathymetry is taken

from a location in front of Pearl Harbor (Hawaii, USA), with a

resolution of ∼11 m. For the forward simulation, we use a pressure

source in the form of an explosion with a Gaussian source–time

function, and record pressure variations at the receiver. Both source

and receiver are in the acoustic domain at a depth of 10 m and

∼1.1 km apart from each other. We use the simulated pressure

C© 2011 The Authors, GJI, 186, 721–739
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732 D. Peter et al.

Figure 13. Waveform sensitivity to acoustic and elastic structure in a coupled fluid–solid simulation. The bathymetric surface of the Pearl Harbor model,

separating the two media, is shown in grey together with a vertical cross-section through source (right-hand side) and station (left-hand side). Plotted are

combined acoustic and elastic kernels using a parametrization (a) K κ , K μ & K ρ and (b) K α , K β & K ′
ρ .

variation within the measurement window as the pressure misfit for

the adjoint source, as explained in Section A1 of the Appendix.

Fig. 13 shows the corresponding combined acoustic and elastic

kernels. The kernels highlight how the pressure waveform in the

chosen measurement window is affected by a head wave (a Scholte

wave) travelling along the seafloor. Since the acoustic region does

not support shear waves, the kernels K μ and K β are zero in this

upper domain. However, they do exhibit non-zero sensitivity in the

elastic domain, due to P-to-S coupling along the seafloor.

5.3 Noise sensitivity kernels

As demonstrated by Tromp et al. (2010), noise cross-correlation

sensitivity kernels may also be calculated based on an adjoint

method, and the new package has the necessary capabilities to

perform such calculations. Consider two receivers located at xα

and xβ . In seismic interferometry, ensemble sensitivity kernels are

calculated in terms of interactions between an ensemble forward

wavefield �
α , generated at location xα , and an ensemble adjoint

wavefield �
†αβ , generated at xβ and triggered by the differences

between simulated and observed ensemble-averaged cross correla-

tions at xα and xβ . The isotropic ensemble sensitivity kernels are

given by

〈Kρ〉 = −
∫

ρ
[

�
†αβ (−t) · ∂2

t �
α(t) + �

†βα(−t) · ∂2
t �

β (t)
]

dt,

(24)

〈Kμ〉 = −
∫

2μ
[

D†αβ (−t) :Dα(t) + D†βα(−t) :Dβ (t)
]

dt, (25)

〈Kκ〉 = −
∫

κ [ ∇ · �
†αβ (−t) ∇ · �

α(t)

+ ∇ · �
†βα(−t) ∇ · �

β (t)] dt, (26)
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Figure 14. Noise cross-correlation sensitivity to elastic structure. Shown are (a) first, (b) second and (c) summed contributions to the 〈K β 〉 Fréchet derivative in

a homogeneous isotropic model. Plotted are vertical and horizontal cross-sections through the line connecting the two receivers (white dots) and perpendicular

to this line.

where

Dα =
1

2
[ ∇�

α + ( ∇�
α)T ] −

1

3
( ∇ · �

α) I, (27)

D†αβ =
1

2
[ ∇�

†αβ + ( ∇�
†αβ )T ] −

1

3
( ∇ · �

†αβ ) I, (28)

denote the traceless ensemble strain deviator and corresponding

adjoint.

Fig. 14 shows the isotropic kernel 〈K β〉 calculated according to

eq. (20) using the primary isotropic ensemble sensitivity kernels

given. Plotted are the two contributions from ensemble wavefields

generated at the first receiver location, xα , and the second receiver

location, xβ , as well as the combined ensemble sensitivity kernel

〈K β〉, which is the sum of the two contributions. The two receivers

are placed at a distance of 65 km from each other on top of a

homogeneous block model with dimensions of 134 km × 134 km

horizontally and 60 km in depth. We smooth the kernel contributions

using a 3-D Gaussian filter with a standard deviation of 2 km in the

horizontal and vertical directions. Note that these noise sensitivity

kernels exhibit strong 3-D variability. Depth sensitivity is controlled

by the period range (5–100 s in this example).

6 C O N C LU S I O N S A N D F U T U R E W O R K

We have taken advantage of recent advances in high-performance

computing, fully unstructured hexahedral meshing, load balanc-

ing and mesh partitioning to facilitate forward and adjoint sim-

ulations of seismic wave propagation in coupled fluid and solid

domains. Our new open source software package, SPECFEM3D

Version 2.0 ‘Sesame’, performs acoustic and (an)elastic simula-

tions of seismic wave propagation in complex geological mod-

els. Hexahedral meshes may be generated based on packages such

as CUBIT, Abaqus, ANSYS, GOCAD, GiD, Gmsh, TrueGrid or

Salome, but the simple in-house mesher used in previous versions

of SPECFEM3D remains available for backcompatibility.

Partitioning and load balancing meshes may be accomplished

based on graph partitioning software, such as SCOTCH. By cou-

pling acoustic and (an)elastic wave propagation, we are able to

calculate related sensitivity kernels, which are useful for wave-

form inversions in off-shore exploration seismology, ocean acous-

tics, non-destructive testing and medical tomography. Attenuation

is important on all scales of seismic wave propagation and is accom-

modated based on a series of standard linear solids. In particular for

simulations in medical tomography, strong attenuation and related

dispersion play a dominant role. Finally, the new package can be

used to calculate finite-frequency noise cross-correlation sensitiv-

ity kernels, which may be used for seismic interferometry. In future

work, we will add C-PML and GPU support to the package. Vis-

coplastic and non-linear elastic rheologies (e.g. Xu et al. 2003; di

Prisco et al. 2007) are accommodated by the GeoELSE software

package (Stupazzini et al. 2009; Chaljub et al. 2010), and we will

consider such non-linear constitutive relationships in future releases

of SPECFEM3D.

The next grand challenge involves the development of 3-D seis-

mic imaging and inversion tools for the characterization of earth-

quakes, Earth ‘noise’ and mapping of the Earth’s interior on all

scales, that is, to address the seismological inverse problem. The

goal is to harness the power of forward and adjoint modelling tools,

such as SPECFEM3D, together with modern computers to enhance

the quality of images of the Earth’s interior and the earthquake

rupture process. Most traditional tomographic methods utilize trav-

eltime or phase information measured by comparing data with sim-

ulations, and interpret such measurements based on ray theory or

other approximate methods. Because of the limitations of these ap-

proximate theories, only parts of seismograms can be used, and

initial models are generally restricted to be spherically symmet-

ric. With the new generation of modelling tools we can go beyond

C© 2011 The Authors, GJI, 186, 721–739
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classical tomography by using fully 3-D initial models (e.g. Akçelik

et al. 2002, 2003; Askan et al. 2007; Chen et al. 2007; Fichtner et al.

2009b; Fichtner 2010), and utilizing as much information contained

in seismograms as possible (e.g. Maggi et al. 2009; Valentine &

Woodhouse 2010). Our approach will be to minimize frequency-

dependent phase and amplitude differences between simulated and

observed seismograms based on adjoint techniques in combination

with conjugate gradient methods, an approach we refer to as ‘adjoint

tomography’ (Tape et al. 2009, 2010). The development of such ca-

pabilities will affect the fields of exploration geophysics, regional &

global seismology, ocean acoustics, non-destructive testing, medi-

cal tomography and helioseismology.
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Sciences - Mécanique, 339, 125–135, doi:10.1016/j.crme.2010.11.007.

Komatitsch, D. & Martin, R., 2007. An unsplit convolutional Perfectly

Matched Layer improved at grazing incidence for the seismic wave equa-

tion, Geophysics, 72(5), SM155–SM167.

Komatitsch, D. & Tromp, J., 1999. Introduction to the spectral-element

method for 3-D seismic wave propagation, Geophys. J. Int., 139(3),

806–822.

Komatitsch, D. & Tromp, J., 2002a. Spectral-element simulations of global

seismic wave propagation—I. Validation, Geophys. J. Int., 149(2), 390–

412.

Komatitsch, D. & Tromp, J., 2002b. Spectral-element simulations of global

seismic wave propagation—II. 3-D models, oceans, rotation, and self-

gravitation, Geophys. J. Int., 150(1), 303–318.

Komatitsch, D. & Vilotte, J.P., 1998. The spectral-element method: an ef-

ficient tool to simulate the seismic response of 2D and 3D geological

structures, Bull. seism. Soc. Am., 88(2), 368–392.

Komatitsch, D., Coutel, F. & Mora, P., 1996. Tensorial formulation of the

wave equation for modelling curved interfaces, Geophys. J. Int., 127(1),

156–168.

Komatitsch, D., Martin, R., Tromp, J., Taylor, M.A. & Wingate, B.A.,

2001. Wave propagation in 2-D elastic media using a spectral element

method with triangles and quadrangles, J. Comput. Acoust., 9(2), 703–

718.

Komatitsch, D., Tsuboi, S., Ji, C. & Tromp, J., 2003. A 14.6 billion de-

grees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the

Earth Simulator, Proceedings of the ACM/IEEE Supercomputing SC’2003

Conference, Phoenix, AZ, pp. 4–11.

Komatitsch, D., Liu, Q., Tromp, J., Süss, P., Stidham, C. & Shaw, J.H., 2004.

Simulations of ground motion in the Los Angeles basin based upon the

spectral-element method, Bull. seism. Soc. Am., 94(1), 187–206.

Komatitsch, D., Tsuboi, S. & Tromp, J., 2005. The spectral-element method

in seismology, Geophys. Monogr., 157, 205–228.
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A P P E N D I X A : A C O U S T I C A D J O I N T E Q UAT I O N S

A1 Pressure waveform misfit kernels

For acoustic tomographic studies, it is convenient to define a pressure misfit function

χ =
1

2

∑

i

∫

∣

∣

∣

∣p
syn
i (m) − pobs

i

∣

∣

∣

∣

2
dt , (A1)

where psyn
i is the numerically computed pressure and pobs

i the observed pressure at location xi. The variation in pressure may be written in

terms of the variation in the potential φ as

δp = −∂2
t δφ, (A2)

which follows from the definition of the scalar potential φ in eq. (11). The corresponding action in the acoustic case is given by

χ =
1

2

∑

i

∫

∣

∣

∣

∣p
syn
i − pobs

i

∣

∣

∣

∣

2
dt −

∫ ∫

�

λ
[

κ−1 ∂2
t φ − ∇ ·

(

ρ−1 ∇φ
)

− f
]

d3x dt, (A3)

where λ denotes a scalar Lagrange multiplier. Setting �pi = psyn
i − pobs

i and taking the variation of the action, we obtain

δχ =
∑

i

∫

�pi δpi dt −
∫ ∫

�

[

δκ−1 λ ∂2
t φ − ∇ ·

(

δρ−1 λ ∇φ
)

− λ δ f
]

d3x dt

−
∫ ∫

�

[

κ−1 ∂2
t λ − ∇ ·

(

ρ−1 ∇λ
)]

δφ d3x dt −
∫ ∫

∂�

n̂ ·
(

ρ−1 ∇λ
)

δφ d2x dt . (A4)
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Since eq. (A4) must be stationary when no model perturbations are present, that is, δρ = 0, δκ = 0 and δ f = 0, we obtain
∫ ∫

�

[

κ−1 ∂2
t λ − ∇ ·

(

ρ−1 ∇λ
)]

δφ d3x dt

=
∫ ∫

�

∑

i

�pi δ(x − xi ) δp d3x dt −
∫ ∫

∂�

n̂ ·
(

ρ−1 ∇λ
)

δφ d2x dt

= −
∫ ∫

�

∑

i

�pi δ(x − xi ) ∂2
t δφ d3x dt −

∫ ∫

∂�

ρ−1 n̂ · ∇λ δφ d2x dt

= −
∫ ∫

�

∑

i

∂2
t �pi δ(x − xi ) δφ d3x dt −

∫ ∫

∂�

ρ−1 n̂ · ∇λ δφ d2x dt, (A5)

where xi is the station location of the corresponding ith measurement. Note that the last integration by parts of the first term is valid under

the assumption that �pi and ∂ t�pi vanish at the limits of the time integration, that is, for a given measurement window [0, T ], �pi(x, 0) =
�pi(x, T ) = 0 and ∂ t�pi(x, 0) = ∂ t�pi(x, T ) = 0. This is generally true because we taper the ends of the misfit window.

Let us define the adjoint scalar potential as

φ†(x, t) ≡ λ(x, T − t) . (A6)

It follows from (A5) that φ† must satisfy the adjoint wave equation

κ−1∂2
t φ† − ∇ ·

(

ρ−1 ∇φ†
)

= f †, (A7)

where the adjoint source is given by

f †(x, t) = −
∑

i

∂2
t �pi (T − t) δ(x − xi ). (A8)

The initial conditions for the adjoint potential must satisfy φ†(T ) = 0 and ∂ tφ
† (T ) = 0. The corresponding fluid–solid boundary conditions

involve terms with ρ−1n̂ · ∇φ†.

For acoustic simulations, there is no shear contribution and we may set K μ = 0. Using

∇ · s = −κ−1 p = κ−1 ∂2
t φ, (A9)

∇ · s† = κ−1 ∂2
t φ†, (A10)

the kernel K κ given in eq. (18) becomes

Kκ = −
∫ T

0

κ−1 ∂2
t φ†(T − t) ∂2

t φ(t) dt . (A11)

It is this last kernel expression that is actually implemented, since the values for ∂2
t φ and ∂2

t φ
† are obtained at each time step in the Newark

time scheme used to propagate acoustic waves.

A2 Pressure traveltime adjoint sources

Instead of measuring waveform misfits, one may also define a traveltime misfit for pressure signals, that is,

χ =
1

2

∑

i

∣

∣

∣

∣T
syn

i (m) − T obs
i

∣

∣

∣

∣

2
, (A12)

where T syn
i (m) denotes the arrival time in the synthetic pressure records computed for model m, and T obs

i the arrival time of the observed

pressure wave. The variation in traveltime δT may be written to first order in terms of perturbations in pressure as δ p (Hung et al. 2000)

δT =
1

N

∫

∂t p δp dt, (A13)

where N =
∫

p ∂2
t p dt . Using δ p = −∂2

t δφ, this leads to

δT = −
1

N

∫

∂t p ∂2
t δφ dt . (A14)

Defining �Ti ≡ T syn
i (m) − T obs

i , the variation of the action becomes

∑

i

�Ti δTi = −
∑

i

1

N
�Ti

∫

∂t p ∂2
t δφ dt (A15)

= −
∫ ∫

�

∑

i

1

N
�Ti δ(x − xi ) ∂t p ∂2

t δφ d3x dt. (A16)
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Under the assumption that ∂ t p(0) = ∂ t p(T ) = 0 and ∂2
t p(0) = ∂2

t p(T ) = 0 (which can be achieved by carefully selecting and tapering the

measurement time windows), we find after some further manipulation that the adjoint source for a traveltime misfit between observed and

simulated pressure signals is given by

f †(x, t) = −
∑

i

1

N
�Ti ∂3

t p(x, T − t) δ(x − xi ). (A17)
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