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Forward-and-Backward Diffusion Processes for
Adaptive Image Enhancement and Denoising

Guy Gilboa, Nir Sochen, and Yehoshua Y. Zeevi

Abstract—Signal and image enhancement is considered in the
context of a new type of diffusion process that simultaneously en-
hances, sharpens, and denoises images. The nonlinear diffusion co-
efficient is locally adjusted according to image features such as
edges, textures, and moments. As such, it can switch the diffusion
process from a forward to a backward (inverse) mode according
to a given set of criteria. This results in a forward-and-backward
(FAB) adaptive diffusion process that enhances features while lo-
cally denoising smoother segments of the signal or image. The pro-
posed method, using the FAB process, is applied in a super-resolu-
tion scheme.

The FAB method is further generalized for color processing via
the Beltrami flow, by adaptively modifying the structure tensor
that controls the nonlinear diffusion process. The proposed struc-
ture tensor is neither positive definite nor negative, and switches
between these states according to image features. This results in
a forward-and-backward diffusion flow where different regions of
the image are either forward or backward diffused according to
the local geometry within a neighborhood.

Index Terms—Adaptive denoising, anisotropic diffusion,
Beltrami flow, color processing, image enhancement, inverse
diffusion, scale–space.

I. INTRODUCTION

I MAGE denoising, enhancement, and sharpening are impor-
tant operations in the general fields of image processing and

computer vision. The success of many applications, such as
robotics, medical imaging, and quality control depends in many
cases on the results of these operations. Since images cannot be
described as stationary processes, it is useful to consider locally
adaptive filters. These filters are efficiently modeled as solutions
of partial differential equations (PDE).

The scale–space approach and other PDE techniques have
been extensively applied over the last decade in signal and image
processing. As Witkin [39] pointed out, the diffusion process
(or heat equation), widely used in this context, is equivalent to
a smoothing process with a Gaussian kernel. A major drawback
of the linear scale–space framework is its uniform filtering of
local signal features and noise. This problem was addressed by
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Perona and Malik (P-M) [20], who proposed a nonlinear dif-
fusion process, where diffusion can take place with a variable
diffusion in order to control the smoothing effect.

The diffusion coefficient in the P-M process was chosen to
be a decreasing function of the gradient of the signal. This op-
eration selectively lowpass filters regions that do not contain
large gradients (singularities such as step jumps or edges and
thin lines in the case of images). Results obtained with the P-M
process paved the way for a variety of PDE-based methods that
were applied to various problems in low-level vision (see [31]
and references cited therein).

Some drawbacks and limitations of the original model have
been mentioned in the literature [2], [17], [38]. Catteet al. [2]
proved the ill-posedness of the diffusion equation, imposed by
using the P-M diffusion coefficient, and proposed a regularized
version wherein the coefficient is a function of a smoothed gra-
dient. Weickertet al. [37] investigated the stability of the P-M
equation by spatial discretization, and proposed [23] a general-
ized regularization formula in the continuous domain.

The aim of this study is to further extend the nonlinear
PDE-based filtering methods, and to apply them in signal and
image enhancement and sharpening. We focus on enhancing
and sharpening blurry signals, while still allowing some
additive noise to interfere with the process. We minimize
the effect of amplification of noise—an inherent byproduct
of signal sharpening—by combining backward and forward
diffusion processes. We then generalize the analysis of [14] by
the introduction of a generalized local adaptive criterion for the
forward-and-backward diffusion in sharpening and denoising
of color images.

II. FORWARD-AND-BACKWARD DIFFUSION PROCESSES

A. Introduction: Enhancement by Diffusion

Most of the PDE-based studies have been devoted to de-
noising of images, attempting to preserve the edges. Both
forward linear and nonlinear diffusion processes converge (as

) to a trivial constant solution (i.e., the mean value
of the signal, assuming Neumann boundary conditions). To
preserve singularities, previous studies relied primarily on
slower diffusion in the vicinity of singularities. Such is the P-M
nonlinear diffusion equation of the form

(1)

where is a decreasing function of the gradient,
, Neumann boundary conditions.

According to the “Minimum–Maximum” principle, no new
local minima or maxima should be created at any time in the
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one-dimensional (1-D) case, in order not to produce new arti-
facts in the diffused signal. Moreover, the value of the global
minimum (maximum) along the evolution of the signal in time
is bounded by that of the initial data in any dimension, and is a
nondecreasing (nonincreasing) function. These conditions were
obeyed by the P-M and most other nonlinear diffusion processes
that were subsequently introduced in image processing. This
guaranteed the stability of the PDE, avoiding explosion of the
nonlinear diffusion process.

In signal enhancement, sharpening, and restoration, we do not
want to restrict ourselves to the global minimum and maximum
of the initial signal. On the contrary, we would like the points of
extrema to be emphasized and “stretched” (if they indeed rep-
resent singularities and are not generated by the noise). There-
fore, a different approach should be adopted. If we consider the
gray-level value at a pixel to be analogous to the amount of par-
ticles, each having one unit of “mass,” stacked at the pixel, then
in order to emphasize large gradients, we would like to move
mass from the lower part of a “slope” upwards. This process can
be viewed as moving back in time along the scale space, or re-
versing the diffusion process and applying it backward. Mathe-
matically, this can be simply accomplished by changing the sign
of the diffusion coefficient

(2)

where is the flux.
Note that this is different from what was defined as “inverse

diffusion” in previous studies (e.g., [2] and [21]). There, near
a point where the derivative of the flux was negative, the
process was defined as inverse diffusion, because the diffusion
equation could be written in that neighborhood as

(3)
We refer to such processes as having localimplicit inverse

diffusion properties. Although it has the form of an inverse dif-
fusion process, it is weaker since it does not have the important
inverse diffusion property of moving signal or image “particles”
upward along the slope of the gradient, at points of extrema.
With positive diffusion coefficient , this could never happen,
and therefore, the minimum–maximum principle is preserved,
for instance. Thus, signal sharpening requires further modifica-
tion of the diffusion process. Specifically, to deblur and enhance
singularities,explicit inverse diffusion with negative diffusion
coefficient must be incorporated into the process.

The question is, can one simply use a linear inverse diffu-
sion? Clearly, the linear inverse diffusion is a highly unstable
process. As was mentioned earlier, the linear forward diffusion
is analogous to convolution with a Gaussian kernel. Hence, the
linear backward (inverse) diffusion is analogous to a Gaussian
deconvolution, where the noise amplification explodes with fre-
quency. Application of such a deconvolution process results in
oscillations (ringings) that grow with time until they reach the
limiting minimum and maximum saturation values and the orig-
inal signal is completely lost (see Figs. 1 and 2 for 1-D and
two-dimensional (2-D) examples of these phenomena).

Three major problems associated with the linear backward
diffusion process must be addressed: the explosive instability,

Fig. 1. Linear inverse diffusion in 1-D.

Fig. 2. Two-dimensional linear inverse diffusion. From top left (clockwise):
original image, blurred, inversely diffused at times 0.5, and 1, respectively.

noise amplification, and oscillations. To avoid the effect of an
explosive instability, one can diminish the value of the inverse
diffusion coefficient at high gradients. In this way, after the sin-
gularity exceeds a certain gradient it does not continue to af-
fect the process any longer. One can also terminate the diffusion
process after a limited time, before reaching saturation. In order
not to amplify noise, which after some presmoothing, can be re-
garded as having mainly medium to low gradients, it is desirable
to diminish the inverse diffusion process at low gradients.

To minimize the effect of oscillations, they should be sup-
pressed the minute they are introduced. For this reason, we com-
bine a forward diffusion force that smoothes low gradients. This
force also smoothes some of the original noise that contami-
nates the signal from the beginning. Unfortunately, low gradi-
ents which are not due to noise, like those that are characteristic
of certain textures in images, are also affected and smoothed out
by this force.
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The conclusion derived from this intuitive analysis is that we
basically need two opposing forces of diffusion, acting simul-
taneously on the signal: one is a backward force (at medium
gradients, where singularities are expected), and the other is
a forward one, used for suppressing oscillations and reducing
noise. To benefit from both, we combine them into one back-
ward-and-forward diffusion force with a diffusion coefficient
(which is a function of the gradient’s magnitude) that assumes
both positive and negative values.

B. Diffusion Coefficient

Consider the following formula of the diffusion coefficient in
the form of:

(4)

Our original formulation (used in [10], [11], and [26]) was

otherwise
(5)

and its smoothed version

(6)

where denotes convolution and is a Gaussian of standard
deviation . The proposed coefficient (4) is of similar nature,
and its parameters play similar roles. This formulation, though,
appears to have the following better properties: Processes with
smoother diffusion coefficients are better immuned against
noise (as indicated by our computational experiments); (4)
is easier to implement (no thresholding is needed) and its
mathematical analysis is afforded. In our implementation, the
exponent parameters were chosen to be for
and for , and for both. The P-M diffusion
coefficient, in comparison is

(7)

Plots of the coefficients and respective fluxes of (4), (5), and (7),
are shown in Figs. 3–5, respectively.

A diffusion process defined bysuch as in (4)–(6), or by an-
other process of their type, switches adaptively between forward
and backward diffusion processes. Therefore, we refer to it as a
forward-and-backward(FAB) diffusion process.

The coefficient has to be continuous and differentiable. In
the discrete domain, (5) could suffice (although it is only piece-
wise differentiable). Equations (4) and (6) can fit the general
continuous case. Other formulas with similar nature may also
be proposed.

Compared with the P-M equation (7), where an “edge
threshold” is the sole parameter, we now have a parameter
for the forward force , two parameters for the backward
force (we defined them by the center and width ), and the
relations between the strength of the backward and forward
forces (a ratio we denoted by). We therefore discuss some
rules for determining these parameters (for all three coefficient

Fig. 3. Coefficientc and the corresponding flux, plotted as a function of the
gradient magnitude.

Fig. 4. Coefficientc and the corresponding flux, plotted as a function of the
gradient magnitude.

Fig. 5. c
{

and the corresponding flux as a function of the gradient
magnitude.

equations). The parameter —is essentially the limit of
gradients to be smoothed out, and is similar in nature to the
role of the parameter of the P-M diffusion equation. The
parameters and define the range of backward diffusion,
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and should be determined by the values of gradients that one
wishes to emphasize. In the proposed formula, the range is
symmetric, and we restrain the width of the backward diffusion
to avoid overlapping the forward diffusion.

One way to determine these parameters in the discrete
case, without having any prior information, is by calcu-
lating the mean absolute gradient (MAG). For instance,

. Local adjustment of the
parameters, can be done by calculating the MAG value in a
window. The parameters vary
gradually along the signal, and enhancement is accomplished
by inducing different thresholds in different locations. This is
indeed required in cases of natural signals or images because
of their nonstationary structure. Usually, a minimal value of
forward diffusion should be kept, so that large smooth areas do
not become noisy. An example implementing the local param-
eter adjustment is depicted by the parrot image (Fig. 10). In
the deer image (Fig. 11) we adjusted the parameters according
to the gradient magnitude of the initial image convolved by a
Gaussian (instead of the MAG) obtaining similar results.

The parameter determines the ratio between the backward
and forward diffusion. If the backward diffusion force is too
dominant, the stabilizing forward force is not strong enough to
avoid oscillations. One can avoid the developing of new sin-
gularities over smooth areas in the 1-D case by bounding the
maximum flux permissible in the backward diffusion to be less
than the maximum of the forward one. (A proof is given in Sec-
tion II-F.) Formally, we say

(8)

In the case of our proposed coefficients, simple bounds for
satisfying the inequality, are obtained. (These hold for most
choices of positive integer exponent parameter combinations

.) In the case of , we have

for any (9)

and for and

for any (10)

In practical applications, the above bounds can usually be in-
creased and even doubled in value without experiencing major
instabilities.

There are a few ways to regularize this PDE-based approach.
Given ana priori information on the smallest scale of interest,
one can smooth smaller scales in a noisy signal by prepro-
cessing. As we enhance the signal afterwards, the smoothing
process does not affect the end result that much. This enables
operation in a much noisier environment. Another possibility is
to convolve the gradient used for calculating the diffusion co-
efficient with a Gaussian, following the regularization method
proposed by Catteet al. [2]. Using relatively smooth diffusion
coefficients (low exponent parameters ) also reduces the
sensitivity of the process to noise.

C. Comparison With Shock Filters

In this section, we will clarify the differences between our
scheme and the PDE-based enhancement process of Alvarez
and Mazorra (A-M) [1]. The latter procedure couples a diffu-
sion term with the shock filter of Osher and Rudin (O-R) [19],
yielding an equation of the form

(11)

where is a positive constant, is the direction of the gradient
( ), and is the direction perpendicular to the gradient. The
first term on the right side creates solutions approaching piece-
wise constant regions separated by shocks at the zero-crossings
of the smoothed second derivative of. The second term is an
anisotropic diffusion along the level-set lines.

The main differences between this scheme and ours are: the
scheme of (A-M) is limited to the minimum and maximum gray-
level values of the original image; it is therefore more stable but
cannot achieve real contrast enhancement. Their scheme is not
adaptive with respect to the gradient’s magnitude, it is targeted
for enhancement everywhere, including smooth regions. Equa-
tion (11) contains a diffusion term along the level-sets (a curva-
ture-flow process); therefore, small features are sometime elim-
inated and rounding of objects occurs. Edges are determined by
the zero-crossings of the smoothed second derivative along the
gradient direction, whereas we use the P-M model of gradient
dependent diffusivity. The first method may well serve edge de-
tection purposes, but may not necessarily be useful as a means
of controlling an enhancement process: indicating edges by the
zero-crossing is a binary decision process (and not a fuzzy one)
and may be therefore less immuned against noise. The Gaussian
convolution may help to some extent but many false edges will
still be enhanced (as the gradient magnitude is not considered).
Applying a very wide Gaussian to increase robustness will dis-
locate edges and wipe out many image details. In the following
section, we compare, by means of an example, the scheme of
(A-M) with ours.

D. Examples

We used the explicit Euler scheme with a forward differ-
ence scheme for the time derivative, and the central difference
scheme with a 3 3 kernel for the spatial derivatives. Exam-
ples of signal and image restoration using the selective inverse
diffusion are shown in the following.

A blurred and noisy step signal [Fig. 6(b)] was processed, as-
suming the availability of some prior information regarding the
expected range of noise power and the approximate size of the
original step. Enhancement of the step and denoising the rest of
the signal are clearly depicted in Fig. 6(e). The second example
illustrates simultaneous denoising and enhancement of a blurred
multistep signal contaminated by uniform noise (Fig. 7).

The FAB is also effective in the enhancement of images, as is
illustrated in Figs. 8, 10, and 11. In Fig. 8, we compare our re-
sults with those obtained by the application of the A-M process
[(11)]. The A-M process indeed enhances the objects and forms
clear edges, but small details are lost (the teddy bear’s shirt pat-
terns, for example). It consequently appears as though the image
has lost its natural appearance. Also, relatively smooth regions
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Fig. 6. FAB processing of a single-step noisy signal (from top to bottom):
blurred step; signal contaminated by white Gaussian noise (SNR= 7 dB);
results of FAB diffusion process after 1, 3, and 30 time steps, respectively.
[k ; k ; w] = [1=6; 1; 1=3].

Fig. 7. FAB processing of multiple-step noisy signal (from top to bottom):
original signal (with both positive and negative discontinuities); blurred signal
contaminated by white uniform noise (SNR= 8 dB); results of FAB diffusion
process obtained after 2, 4, and 16 time steps, respectively.[k ; k ; w] =
[0:1; 0:8; 0:2].

(like the table) are erroneously enhanced, creating artificial tex-
tures. A plot of a horizontal line from the middle of the image
(Fig. 9) highlights in some more detail the different behavior
of the two enhancement processes. In Figs. 8 and 11, a fidelity
term was added to the evolution equation ( ).

In the second example (Fig. 10), we implemented the au-
tomatic adjustment of local parameters, explained previously.
This was needed to enhance gradients at different locations
differently. For example, the gradients near the parrot’s beak
are very large, whereas those around the eye are much smaller.
Enhancing both regions without blurring important details on
one hand, and maintaining stability on the other hand, required
a completely different set of parameters ( ). In the
process of implementing automatic adjustment, the parameters
vary gradually with image location, and the enhancement
appears to be natural. In Fig. 11, we compare the different
results of constant versus spatially varying parameters, where

Fig. 8. Comparison between regularized shock filter (A-M) and FAB. Top:
original, middle: shock filter (� = 1; c = 0:5), and bottom: FAB process
([k ; k ; w] = [2; 20; 10]).
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Fig. 9. Plot of gray level values obtained along one line of Fig. 8: top: original,
middle: shock, and bottom: FAB.

(a) (b)

(c) (d)

Fig. 10. FAB diffusion process applied to parrot image, with local parameter
adjustment using the MAG measure: Top left: original image, right: blurred
image, and bottom (from left): diffusion process after time steps 1 and 8,
respectively.

by using the latter method, the deer, as well as the trees behind
them, are enhanced. We should comment that the process is not
suited too well for the handling of textures, as seen in the spots
created at the textured ground.

E. Feature-Based Diffusion Coefficient

We further extend and generalize the nonlinear PDE-based
filtering method, and apply it as a combined feature-based
enhancement and denoising mechanism. In order to avoid
smoothing out important features of the image such as textures,
we should ideally have a local feature detector that will slow
down or even reverse the diffusion process in the vicinity of
important features.

Fig. 11. FAB diffusion process applied to the deer image. From top: original
image, result of processing with constant parametersk = 2; k = 50; w =
10; magnitude of smoothed gradient of original imageT (x; y) = jrI �G j,
(� = 3); result of processing with spatially varying parametersk (x; y) =
0:1T; k (x; y) = 6T; w(x; y) = 2T .

We minimize the amount of noise induced by the processing,
which is inherently a byproduct of signal enhancement, by
our generalized forward-and-backward diffusion processes.
Moreover, important features are not filtered out by the forward
diffusion process, enabling a complementary image processing
mechanism to enhance them at a later stage, whenever it is
necessary.

We propose the following general feature enhancing and de-
noising mechanism: let
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where the local feature estimators
can be selected from a broad range of choices introduced in
the fields of image processing and computer vision, e.g., edge
detectors (already introduced implicitly under the gradient cri-
terion), noise estimators, texture, scale, orientation, curvature,
local power-spectrum, moments estimators, etc. The logic dic-
tating the value of the diffusion coefficientshould be as fol-
lows: Forward diffuse features that should be filtered out be-
cause they are corrupted by noise and are of no importance to
the image understanding or appearance. Backward diffuse fea-
tures that should be enhanced. Avoid diffusion where either dif-
fusion processes (forward or backward) would distort important
features.

In cases where there is somea priori knowledge of the type
of images to be processed, the diffusion process may be much
better controlled.

To illustrate this feature-dependent diffusion, consider, for
example, an urban scene, primarily comprised of buildings.
In this case, one would like to preserve most vertical and
horizontal lines and edges, significant wall textures and ad-
ditional dominant edges at all orientations. To incorporate
these requirements into our diffusion process, let us define by
the symbols the local
estimators that stand for edges, wall textures, vertical-lines,
and horizontal-lines, respectively. An appropriate diffusion
coefficient for the process is, in this case, given by

(12)

where denotes the relative weight required to balance the
desired effect of each estimator. In this simplified example, it
is clear that the diffusion process will slow down considerably
whenever the output of at least one of the weighted estimators
is much larger than 1 , . In other
areas of the image, a stronger forward diffusion will reduce the
noise.

F. Stability of Smooth Regions in 1-D

Problem definitions:
• The flux is defined as follows:

(Note that flux in physical problems is usually defined
with an opposite sign.) We assume a diffusion coefficient
of the type , leading to the flux properties

and the antisymmetry relation .
• The nonlinear diffusion equation, with its initial and

boundary conditions, is

Fig. 12. Nonmonotonic flux of a forward diffusion process and its critical
pointsM andr.

Lemma 1: If is a local maximum (minimum) in
the spatial domain, then ( ).

Proof:

If is a local maximum, then . If
is a local minimum, then .

In Theorem 1, we regard the simpler case of positive diffusion
coefficient with nonmonotonic flux. We prove that
once a gradient gets into the smooth band , where

is the point of maximum flux, it remains trapped there.
The maximum of the flux (see Fig. 12) is defined by

Theorem 1 (Smooth Band “Trap”):If
, , and , then
for any .

Proof: Let us assume that at a time we would have
. From the continuity of the gradient in time, it

follows that there should be a certain time, ,
such that

However, since must be a local maximum, it
follows fromLemma 1that , which contradicts
our assumption.

Similarly, the assumption that at time we would have
cannot hold.

Theorem 2is the version ofTheorem 1, adapted to our pro-
posed FAB coefficient, having both positive and negative values
of .

The points of extrema of flux, in a FAB diffusion process, are
defined as follows (see Fig. 13):
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Fig. 13. Flux and critical points of the FAB process.

This theorem states that, in the 1-D case, a pointwith an
initial gradient magnitude below will not assume a gradient
magnitude larger than (i.e., will stay “smooth”) through the
entire forward-and-backward diffusion process, provided the
forward maximum flux, , is larger than the backward one,

.
Theorem 2 (Stability of Smooth Regions):If , then,

for every for which , the derivative stays
bounded at all times, i.e., for any .

Proof: Follows directly from Theorem 1, letting
, and . The fact that can also have nega-

tive values does not affect the proof.
In the case where , is not guaranteed to be a

local maximum.

G. Analysis of Theorem 2 in the Discrete Case

As the equations are solved numerically, we must first see if
the theorem holds also in the discrete case. The main property,
that we relied on in proving our theorem, is the continuity of the
gradient in time, which applies only in the continuous domain.
We therefore have to analyze the implications of the discrete
case. Starting with the original diffusion equation

we replace the first temporal derivative by the forward differ-
ence, with a time step of

[for brevity, we use instead of ]. Assuming
is in the positive “smooth band,” that is ,

according to our theorem, it cannot get out of this band in the
next time step, hence the following condition must be satisfied:

(13)

where we regard only the case of positivewithout loss of
generality. Replacing the second spatial derivative by the central
difference with a step , and using the Euler method, the
condition changes to

Assigning , , ,
and using the flux bound it is sufficient to prove that

and finally

(14)

In order to maintain numerical stability in any such scheme, the
known CFL bound [6] must be obeyed, i.e., (in the 1-D case)

and therefore we must only ensure that

If is monotonically decreasing in the range
(this condition is satisfied by our proposed coefficients

and by other proposed gradient-based nonlinear schemes), it is
clear that

Substituting , our proof amounts to showing the
simple relation of

and since for any , we may conclude that the
theorem holds for the discrete case.

Otherwise, if is not monotonically decreasing,
(14) provides a bound for the time step.

III. SUPER-RESOLUTION BY THE FAB PROCESS

The FAB diffusion process is useful in applications requiring
simultaneous enhancement and smoothing. We present a simple
super-resolution (SR) scheme, incorporating two main subsys-
tems: an interpolator and an enhancer–denoiser, as shown in
Fig. 14.

A. Some Background: What is SR?

By SR, we refer to the process of artificially increasing the
resolution of an image, using side information about the struc-
ture of any specific subset of images or of natural images in gen-
eral. The processed image should not only have more pixels, but
more importantly, be characterized by a wider band than that of
the original image.
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Fig. 14. Super-resolution processor.

Most applications of SR use several images obtained from
the same scene or object, taken from slightly different angles or
locations. After proper registration, a higher resolution image
can be obtained from the low-resolution images by exploiting
the combined information available at the different sets of sam-
pling points. Examples of such SR procedures can be found in
studies conducted at NASA on satellite images [4], by Schultz
and Stevenson [25] processing a series of movie frames, and by
[8].

B. Proposed Scheme: Single Image SR

We elaborate an approach suitable for SR based on a single
image, similarly to [32]. Instead of using a sequence of video
frames or multiple exposure, we exploit the properties common
to a wide range of natural images. Obviously, there are cases
where only one image is available, and one would still like to
enhance the resolution.

Our assumption is that images can be segmented into regions
falling into one of the following three categories: smooth areas,
edges, and textured regions. At this point, we simplify our model
and consider only images that are not endowed by significant
textural attributes, that is, they can be approximated by piece-
wise-smooth segments separated by edges.

The proposed scheme receives a low-resolution image as an
input, with possibly some prior information about the structure
of the scene. The processing is executed in two steps. First,
the image is interpolated to the new desired size. In our im-
plementation, we used cubic B-spline interpolation, but other
methods may also be used. The first step provides good results
over smooth areas, but edges are smeared. The interpolated im-
ages often depict ringing effects, with low spatial oscillations.
The purpose of the second processing step is to enhance the
edges and denoise the interpolation byproducts. This is accom-
plished by using the FAB diffusion process. In our implementa-
tion, the parameters were locally adjusted according
to the mean gradient criterion.

C. Resolution Enhancement—An Example

Consider a narrow-band system, such as a cellular phone, that
permits the communication of only low-resolution images at a
reasonable rate. We wish to enhance the resolution of an image
at the receiving end of the communication channel in such a
way that it will appear as though a high-resolution image was
transmitted over a wideband channel.

We downsample an input of a high-resolution image by four
in each dimension and send the low-resolution “blocky” image
(that is, 1/16 of the original size). At the receiving end, we
apply the proposed SR process: the image is up-sampled and
enlarged back to its original size. The FAB process is then ap-
plied. The end result [Fig. 15(d)] looks more like the original
image [Fig. 15(a)] than the low-resolution image [Fig. 15(b)].

A considerable improvement can be gained by transmitting
some side information in addition to the image itself. Such
side information may include suitable parameters of the
FAB process, specification of segments where enhancement
should be avoided or emphasized, etc. Whenever the original
high-resolution image is available at the transmitting end of the
channel, one can find much more easily the optimal parameters
suitable for the task.

In the previous example (Fig. 15), we assumed that additional
information was available, specifying where enhancement
should be avoided. Such image segments are typically blurry
and fuzzy in the first place, clouds for instance. In Fig. 15(e),
we show the result of avoiding enhancement of most of the sky
(above a certain horizontal line in the image). This results in
fuzzy clouds, whereas the mountains below are crisp and sharp.
To compare with, in the global enhancement [Fig. 15(d)], the
clouds are also sharpened and lose their natural appearance.

We should emphasize here that this resolution enhancement
process does not come to replace ordinary image compression.
It can be used as an additional tool that improves the overall
performance in terms of bandwidth of the final image that is
displayed. Indeed, the image of Fig. 15(d) [or Fig. 15(e)] is of a
wider band than that of the transmitted one [Fig. 15(b)].

IV. COLOR PROCESSING

A. Beltrami Framework

The original study of Sochenet al. [27] unifies several ap-
proaches by means of the Beltrami framework, and offers new
definitions and solutions for various image processing tasks.
According to the extended Beltrami framework, images, visual
objects, and their characteristics of interest such as derivatives,
orientations, texture, disparity in stereo vision, optical flow, and
more, are described as embedded manifolds. The embedded
manifold is equipped with a Riemannian structure, i.e., a metric
that encodes the geometry of the manifold. Nonlinear operations
are acting on these objects according to the proper local geom-
etry. Iterative processes are considered in this context as evolu-
tion of manifolds. The latter is a consequence of the action of a
nonlinear diffusion process or another type of a nonlinear PDE.
No global (time-wise) kernels can be associated with these non-
linear PDEs. Short time kernels for these processes were derived
recently in [29] and [40].
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(a)

(b)

(c)

(d)

(e)

Fig. 15. Application of the SR process: (a) original high-resolution image,
(b) low-resolution blocky input image with 1/16 of the original pixels,
(c) the image shown in (b) upsampled and interpolated by a cubic B-spline,
(d) image obtained after FAB processing, and (e) FAB processing with
additional side information, avoiding enhancement of most of the sky area.

We follow the studies presented by Perona and Malik [20],
Sochenet al. [27], Kimmel et al. [14], Sochen and Zeevi [28],
[30], and Weickert [33], and show how one can design a struc-
ture tensor that controls the nonlinear diffusion process starting
from the induced metric that is given in the Beltrami framework.
The proposed structure tensor is nondefinite positive, or nega-
tive, and switches between these states according to image fea-
tures. This results in aFAB diffusion flow, and different regions
of the image are either forward or backward diffused, according
to the local geometry within a neighborhood. The adaptive prop-
erty of the process, that finds its expression in the local decision
on thedirectionof the diffusion and on itsstrength, is the main
novelty of this section.

B. Geometric Measure on Embedded Maps

1) Images as Riemannian Manifolds:According to the
geometric approach to image representation, images are con-
sidered to be 2-D Riemannian surfaces embedded in higher
dimensional spatial-feature Riemannian manifolds [13]–[15],
[27], [28], [30]. Let be the local coordinates on the
image surface, and let , be the coordinates
of the embedding space; then, the embedding map is given by

(15)

Riemannian manifolds are endowed with a bilinear pos-
itive-definite symmetric tensor which constitutes ametric.
Let denote the image manifold and its metric,
and denote the spatial-feature manifold and its
corresponding metric. Then, according to Polyakov, the map

has the following weight [22]:

(16)

where the range of indices is , and
, and where we use the Einstein summa-

tion convention: identical subscript and superscript indices are
summed over. We denote bythe determinant of and
by the inverse of . The measure is an area
element of the image manifold, and
is a generalization of the norm for gradients, from Euclidean
spaces to manifolds. The last two expressions do not depend on
the choice of local coordinates.

A gradient descent evolution along the feature coordinates is
derived from the respective Euler–Lagrange equations, multi-
plied by a strictly positive function and a positive definite ma-
trix, in order to gain reparameterization invariance

(17)

Given a Euclidean embedding space, with Cartesian coordi-
nate system, the variational derivative ofwith respect to the
coordinates of the embedding space is given by

(18)

where , referred to as theBeltrami operator[16], is a gener-
alization of the Laplacian from flat surfaces to manifolds.
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Assuming an isometric embedding, the image manifold
metric can be deduced from the mappingand the embedding
space’s metric

(19)

It is called theinduced metric.
2) Metric as a Structure Tensor:There have been a few

studies using anisotropic diffusion processes. Cottet and
Germain [5] used a smoothed version of the image to orient the
diffusion, while Weickert [34], [35] smoothed also the structure
tensor and then manipulated its eigenvalues to steer the
smoothing orientation. Elimination of one eigenvalue from a
structure tensor, first proposed as a color tensor in [7], was used
in [24], in which case the tensors are not necessarily positive
definite. In [33] and [36], the eigenvalues are manipulated
to result in a positive definite tensor. (See also [3], where
the diffusion is in the direction perpendicular to the maximal
gradient of the three color channels; a direction that is different
from that of [24].)

We will follow and generalize the analysis elaborated by
Kimmel et al. in [14]. For completeness, we reiterate some of
the relations developed in that study. Let us first show that the
direction of the diffusion can be deduced from the smoothed
metric coefficients and may thus be included within the
Beltrami framework under the right choice of directional
diffusion coefficients.

The induced metric is a symmetric positive definite
matrix that captures the geometry of the image surface. Let
and be the large and the small eigenvalues of , respec-
tively. Since is a symmetric positive matrix, its corre-
sponding eigenvectors and can be chosen orthonormal.
Let , , and therefore

(20)

Let us define

(21)

and

(22)

Our proposed enhancement procedure controls the above de-
termined eigenvalues adaptively, so that only meaningful edges
are enhanced, whereas smooth areas are denoised.

C. Adaptive Structure Tensor

1) Controlling the Eigenvalues:From the previous deriva-
tion of the induced metric , it follows that the larger eigen-
value corresponds to the eigenvector in the gradient direc-
tion [in the three-dimensional (3-D) Euclidean case: ].
The smaller eigenvalue corresponds to the eigenvector per-
pendicular to the gradient direction [in the 3-D Euclidean case:

]. The eigenvectors are equal for both and its in-
verse , whereas the eigenvalues have reciprocal values. We
can use the eigenvalues as a means to control the Beltrami flow
process. For convenience, let us define . As the

first eigenvalue of (that is ) increases, so does the dif-
fusion force in the gradient direction. Thus, by changing this
eigenvalue, we can reduce, eliminate, or even reverse the diffu-
sion process in the gradient direction. Similarly, changing

controls the diffusion in the level-set direction.
What is the best strategy to control the diffusion process via

adjustment of the relevant parameters? The following require-
ments may be considered as guidelines:

• the enhancement should essentially be with relevance to
the important features, while smooth segments should not
be enhanced;

• the contradictory processes of enhancement and noise re-
duction by smoothing (filtering) should coexist;

• the process should be as stable as possible, though restora-
tion and enhancement processes are inherently unstable.

Let us define as a new adaptive eigenvalue to be con-
sidered instead of the original . We propose an eigenvalue that
is a function of the determinant of the smoothed metric. The for-
mulation of the new eigenvalue is the same as the FAB diffusion
coefficient, that is

(23)

where is defined by (4) and, here, is chosen to be a func-
tion of the smoothed metric: .

2) Algorithm for Color Image Enhancement:To implement
the flow for color image enhancement, we modify
and generalize the algorithm of [14] as follows.

1) Compute the metric . For the channel case (for con-
ventional color mapping ) we have

(24)

2) Diffuse the coefficients by convolving them with a
Gaussian of variance, thereby

(25)

3) Compute the inverse smoothed metric . Change the
eigenvalues of the inverse metric , ( ), of

to , respectively. The new second eigen-
value should be in the range , preferably min-
imal ( ) when the image is not noisy. This yields a
new inverse structure tensor that is given by

(26)

4) Calculate the determinant of the new structure tensor.
Note that can now have negative values.

5) Evolve the th channel via the Beltrami flow

(27)

Remark: In this flow, we do not get imaginary values, though
we have the term , since in cases of negativethe constant
imaginary term will be canceled.
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3) Comparison to Previous Studies:There are two impor-
tant differences between our scheme and that of Kimmelet al.
[14, last section]. These concern the possible choice of eigen-
values that control the process. As will be illustrated by exam-
ples, our choice of eigenvalues may substantially improve the
sharpening of natural images.

Let us first return to some analysis of the eigenvalues. For
the sake of simplicity, we analyze the eigenvalues in the context
of the structure tensor of the smoothed image (instead
of the smoothed structure tensor). We examine (27) for a single
channel ( ), where and are arbitrary eigenvalues of

. For the degenerate case of , we get . It
can be shown that for any other than zero, we can write the
equation as

(28)

where

where a tilde above any expression indicates that it has been
convolved with a Gaussian of standard deviation(e.g.,

). For large enough, we can assume the relation
, and similarly for the rest of the second derivatives. This re-

lation holds especially at regions of high frequencies—typically
those image regions containing edges, textures, or noise, as high
frequencies decay exponentially by the Gaussian convolution.
Thus, of (28) is small in comparison to the other terms. The
end result is that we get an anisotropic diffusion process with a
diffusion coefficient in the direction of the smoothed gradient

and with a different diffusion coefficient,
, in the perpendicular direction.
This analysis holds for Weickert’s coherence enhancing dif-

fusion, Kimmelet al.’s scheme, and our modification (
should not necessarily be constants). It may be concluded at this
point that controls the measure of directionality of the pro-
cesses as follows:

• for small , a close to isotropic diffusion takes place, con-
trolled by ;

• for large , a strong anisotropic diffusion occurs and it is
being controlled by in the smoothed gradient direction,
and by in the smoothed level-set direction;

• for constant , the process shifts (according
to ) from linear forward diffusion to strong coherence
enhancing diffusion;

• for constant , the process shifts from
linear backward (inverse) diffusion to a Gabor-type
process [9], where both processes are unstable.

The relation of anisotropic diffusion, using a tensor diffu-
sivity, to Gabor’s idea was mentioned previously in a few studies
(such as [14] and [18]), yet, to the best of our knowledge, the re-
lation of (28) has not been stated before.

From a numerical viewpoint, the CFL condition in explicit
schemes for any (in 2-D) is . There-
fore, it is a good practice to limit both eigenvalues to be smaller
than one.

Let us now return to the differences of our scheme to that of
[14]. In the latter study, the focus is on the first eigenvalue and
on its manipulation. Therefore, the following constraint is pro-
posed: . Choosing , one
gets . When , the process is completely dom-
inated by the second eigenvalue (e.g., for the diffu-
sion force in the level set direction is 10times stronger, and the
sign of practically does not affect the process). Smoothing
along the level-set lines can be effective in images endowed
with orientational structure, such as those characteristic of fin-
gerprints. In general, though, smoothing along level set curves
has the effect of turning nondirectional textures (and noise!) into
artificial zebra-type stripes, which is a drawback for a general
sharpening process. The examples of the Mandrill and Buttons
images in [14] clearly depict this effect.

Another important property of the present study that is
missing in the one reported in [14] is the adaptive characteristic
of the first eigenvalue, implemented in the present study ac-
cording to the FAB principles. Whereas in [14] the enhancement
is being implemented everywhere, even in smooth regions, the
process proposed in the present study does it selectively. In our
scheme, the enhancement is directed to locations of edges and
some dominant textures. Global enhancement with a constant
negative causes a considerable noise amplification and the
creation of artificial edges at smooth regions. Examples of
these phenomena can be found in the experimental results of
the subsequent Section IV-D.

Regarding stability, for the scheme of [14] behaves
like 2-D inverse diffusion, whereas our scheme behaves like a
2-D FAB process (which is much more stable). For large, in
regions where the gradient direction stays constant, the scheme
proposed in [14] behaves like 1-D inverse diffusion along this
direction, whereas our scheme behaves like a 1-D FAB process.

D. Experimental Results

We applied three Beltrami-type processes to the Iguana color
image: the original scheme of [14]; a modified version of [14],
where the second eigenvalue is small; and our Beltrami–FAB
process. The results presented in Fig. 16 show that in the first
process, smoothing along the edges is very dominant, creating
snake-like features at places of nonorientational textures (like
the sand). The second process (using a small value of), cre-
ates strong sharpening effects but amplifies noise at smooth re-
gions (like the sea), as is clearly depicted in the enlargement
(Fig. 17). Our Beltrami–FAB process seem to behave well in
this relatively complex natural image.

In Fig. 18, we show the effects of enhancement on a com-
pressed image. The Tulip image was highly compressed ac-
cording to the JPEG standard. A known byproduct of JPEG
compression is the blocking effects created at smooth regions.
Indeed, the original and modified schemes of [14] enhanced the
8 8 block boundaries whereas our scheme smoothed them out.

(The color images are available at http://visl.technion.ac.il/
ip-fab.)
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Fig. 16. Iguana image processed by three Beltrami-type processes. From
top: original, scheme of [14] (� = 0:3; � = � ), modified [14]
with small � (� = 0:3; � = 0:01), and Beltrami–FAB process
(� = � (s); [k ; k ; w; �] = [10; 2000; 1000; 0:5]; � = 0:01). All
processes ran 13 iterations,dt = 0:1, � = 2.

V. DISCUSSION ANDCONCLUSIONS

Sharpening and denoising are contradictory requirements in
image enhancement. We show how they can be reconciled by
a local decision mechanism that controls the orientation, type,

Fig. 17. Enlargement of a segment of the iguana’s head, with the sea at the
background. From left: original; image processed by a modification of [14] with
small� ; and by the Beltrami–FAB. Note that smooth regions like the sea are
not becoming noisy due to processing by our scheme.

Fig. 18. Segment of the compressed tulip image processed by three
Beltrami-type schemes. Top (from left): original; result of processing by the
scheme of [14] with� = 0:5; � = � ; processed by a modified [14] with
small� (� = 0:5; � = 0:1); and processed by the Beltrami-FAB process
with � = � (s); [k ; k ; w; �] = [30; 300; 200; 0:5]; � = 0:1. All
processes ran ten iterations,dt = 0:1, � = 1. Note that the JPEG blocking
artifacts are not enhanced by the Beltrami–FAB process.

and extent of the diffusion process. The combined FAB diffu-
sion process offers practical advantages over previously pro-
posed studies in enhancement of image quality.

One of the important aspects of any attempt to implement
a truly backward diffusion process in image processing (i.e., a
process where the diffusion coefficient becomes negative) is the
inherent instability. Since the physical diffusion and heat propa-
gation occur only as a forward process, the mathematical model
that well represents the physics becomes ill-posed when the dif-
fusion coefficient changes its sign. As is well known, stability is
not well-defined in ill-posed problems. It is therefore important
to take a note of the fact that stability is afforded over certain
regimes in the case of the FAB diffusion. We have proven sta-
bility for small gradient bands in the 1-D case, and verified the
feasibility of our approach on a variety of signals and images.
Intuitively, the stability in the backward process is afforded by
its limitation to small areas of very few pixels, surrounded by
larger areas of many more pixels, where the forward diffusion
provides a “safety belt” that avoids explosion. Indeed, since the
majority of pixels in natural images are characterized by low
gradients and mainly singular edges give rise to the reversal of
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the diffusion coefficient sign, stability is achieved. This argu-
ment does not hold any longer when the FAB diffusion process
encounters a highly textured or extremely noisy image.

Yet another related facet of the present study is the gener-
alization of the framework of the Beltrami flow foradaptive
processingof color images. This is accomplished by replacing
the eigenvalues of the color image metric by an adaptive co-
efficient that locally controls the orientation and extent of the
diffusion. The decision of where and how to adapt the coeffi-
cient is based on the edge’s direction and strength, defined by
the eigenvectors and determinant of the smoothed image metric,
respectively. FAB diffusion process takes place in the direction
of the gradient and forward diffusion takes place in the perpen-
dicular direction.

Examples illustrate that this approach works, and that sharp-
ening and denoising can be combined together in the enhance-
ment of gray-level and color images.
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