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ABSTRACT 
In this paper we extend the continuum model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor interdigital dielectrometry sensors and pro- 
pose a new, direct technique for estimating material electrical properties from measurements. 
Interdigital sensors consist of alternating pairs of long, thin electrodes on a plane. An ideal 
model assumes that the periodic structure extends to infinity and the electrodes have no thick- 
ness. We extend this ideal analysis to account for the physical thickness of the electrodes. We 
also present the model in a matrix form which is amenable to linear algebraic analysis tech- 
niques. In particular, the ’inverse problem’ of estimating material properties is formulated as a 
generalized Eigenvalue problem, which avoids the convergence problems of previous iterative 
algorithms. 

1 INTRODUCTION 

NTERDIGITAL sensors are used for a wide range of applications in- I cluding humidity sensors [I], the monitoring of cure processes [2], 
chemical sensors [3-61, and others. Research is being conducted on 
their potential use as land-mine detectors [7]. Our research group has 
been developing interdigital sensors primarily for monitoring moisture 
dynamics in transformer insulation for the purpose of better under- 
standing the ‘flow electrification’ failure mechanism [8,9]. 

Interdigital electrode sensors serve as useful tools for monitoring 
the moisture diffusion process for several reasons. When the mois- 
ture distribution changes in the material, the electrical conductivity and 
permittivity will change correspondingly. The sensors are convenient 
because they only require access to one side of the test material, and, 
importantly, by combining the measurements from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo or more sen- 
sors, one can determine the spatial profile of electrical properties. From 
this information, the spatial profile of moisture can be inferred. 

To understand the operation of this type of sensor, consider the 
generic sensor shown in Figure 1 in which the sensor’s copper ’fingers’ 
are shown in black as is the ’ground plane’ underneath the sensor. A 
half-wavelength physical and electrical model is shown in Figure 2. 

The material to be tested contacts the sensor on the top (in Figure 1) 
from only one side of the material under test. A sinusoidal (in time) 
’drive’ voltage is applied to one set of the electrodes, denoted by V, in 
Figure 1, and a ’sensed signal’ is measured on the other set of electrodes. 
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Figure 1. Interdigital Sensor. 

Earlier work loaded the sensing electrode with a known capacitor, 
and the magnitude and phase of the floating voltage VS of the sensing 
electrode was measured. Our Most recent work has shown better sig- 
nal to noise characteristics by virtually grounding the sensing electrode 
at the input of an op-amp and measuring the op-amp output voltage 
across a known feedback capacitor. The imposed drive and sense volt- 
ages create a nearly periodic voltage profile on the sensor surface which 
is the fundamental characteristic of these sensors. 
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Figure 2. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhalf-wavelength cross section of an interdigital sensor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' ~ Guard plane 

The usefulness of a periodic voltage profile can be seen under ide- 
alized physical conditions. Consider an infinite plane sensor spanning 
the z and y directions on which the surface voltage distribution is a 
perfect sinusoid in space in the z direction and which is uniform in 
the y direction. The fundamental spatial frequency of the sinusoid is 
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkl = 27r/X where X is the spatial period. A homogeneous 
test material of infinite thickness is placed on top of the sensor. The 
solution to Laplace's equation in the material requires that the voltage 
decreases exponentially from the sensor plane/material interface (in the 
z direction) with an exponential decay rate of -27r/X. Consequently 
the electric field also decreases exponentially as exp( -27rz/X) being 
periodic in the z direction and uniform in the y direction. Since the 
electric field decays away from the interface, a sensor that measures a 
terminal current at the sensor surface, which depends on the electric 
field normal to the surface through conduction and displacement cur- 
rents, will only 'see' as far as the electric field lines effectively penetrate 
the material. This 'penetration depth' depends on the spatial wave- 
length of the sinusoidal voltage in the sensor plane. The electric field 
will penetrate further for longer wavelength sensors than for shorter 
wavelength sensors as illustrated in Figure 3. 

D - Dnven Electrode ' &im- 
S - Sensing Electrode 

Figure 3. Multiple wavelength penetration depths. 

This notion, that a one-sided application of a spatially sinusoidal 
voltage will give rise to electric fringing fields that penetrate into a 
material to a certain effective penetration depth which depends on the 
wavelength, can be exploited to probe into a material at different pen- 
etration depths. By analyzing data taken from several sensors with 
different spatial wavelengths, one can gain information about proper- 
ties at different depths in the material, allowing the determination of 
spatial profiles of a material's dielectric properties. 

Practical finite-size sensors and measuring environments differ from 

1. the voltage distribution of the sensor cannot extend to infinity in the z 

2. the voltage is not completely uniform in the y direction, 
3. the test material is not infinitely thick, and 
4. a perfect spatial sinusoidal voltage is difficult, if not impossible, to im- 

Nevertheless, finite size interdigital sensors have the same benefi- 
cial features as the ideal. They only require access to one side of the 
material, and they have fringing fields that penetrate into the test mate- 
rial. Mathematical modeling and physical approximations can be used 
to account for the non-ideal geometric aspects of the sensors. To min- 
imize end effects due to the truncation of the applied periodic voltage 
on the electrodes in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII: direction, only the sensing electrodes in the 
center of the structure are used in the measurement. Figure 4 shows 
a three-wavelength sensor where an isolated lead comes for the sens- 
ing electrodes in the middle of the structure for each wavelength. The 
'guard fingers' at the ends of the structure are held at the same potential 
as the middle sensing fingers to make the voltage and electric fields ap- 
pear in the center region as they would if the structure extended further 
in the z direction. Laboratory tests have shown that the four end guard 
fingers shown in Figure 4 reduce end effect errors to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl% [7]. End ef- 
fects in the y direction are accounted for in the analysis stage using an 
empirically derived relation and finite-element computer simulations 
which are presented in [lo] and which we use in Section 4 of this paper. 

the ideal in at least four significant ways: 

direction, 

pose on the sensor surface. 

Figure 4. Three-wavelength interdigital sensor. 

The last two points, the finite thickness of the test material and the 
periodic, but not sinusoidal, nature of the voltage requires us to be 
careful about the solution to Laplace's equation, but do not pose funda- 
mental limitations on the use of the sensor. The periodic voltage can be 
represented by a Fourier series with harmonics indexed by wavenum- 
ber k, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27rn/X. For each spatial harmonic denoted by R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 the 
voltage will give rise to electric fields that essentially decay at an ex- 
ponential rate, with exponent equal to the negative of the wavenumber 
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exp( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ICnz). The deepest penetration depth occurs for the fundamen- 
tal spatial wavelength with n=1. The only qualitative difference intro- 
duced by the Fourier series representation is for the zeroth-harmonic 
n=O. The corresponding electric field is then spatially given by the av- 
erage surface voltage divided by the test material thickness, which is 
zero for an infinitely thick sample. In most of our laboratory experi- 
ments this zero-harmonic component is small and does not provide a 
reliable means to probe the sample. 

In previous work a continuum model was developed to analyze the 
response of interdigital sensors. We review this model in Section 2. We 
mention here that one of the simplifying assumptions used in the orig- 
inal development is to treat the electrodes as having no height. That is, 
they are assumed to exist only in the plane of the sensor surface and will 
not extend out of it. Our sensors are fabricated using an etching process 
and consequently the electrodes have heights of order 9 to 35 pm. In 
our laboratory work it was determined that the effect of the electrode 
height, creating a ’gap’ between the electrodes, is not negligible, espe- 
cially for smaller wavelength sensors [ll]. One of the contributions of 
the present paper is to extend the continuum model to account for the 
finite height of the electrodes. 

The other main contribution we offer in this paper is an improved 
method for using the model to estimate material properties from the 
measured signal. As we shall see in Section 2, the continuum model 
is well-suited for solving the ’forward problem’ of predicting the mea- 
surement, given the sensor geometry and knowledge of the electrical 
properties of all the materials (substrate and test sample). In practice, 
the purpose of the sensor is to estimate a test material’s electrical prop- 
erties from measurements and knowledge of the sensor’s geometry. Pre- 
viously, this ’inverse problem’ was accomplished by repeatedly solving 
the forward problem, adjusting the estimate at each iteration until the 
predicted response matched the measurement. This approach did not 
always work well because it would not always converge or would con- 
verge to an answer that was obviously not physical. Additionally, as 
implemented, the analysis software did not provide error bounds on the 
estimates due to errors in the measurements. In Section 4 we demon- 
strate that the continuum model admits many solutions to the inverse 
problem and we present a method based on ’generalized Eigenanalysis’ 
to h d  them all. From the complete set of mathematically admissible 
solutions, one can quickly identify the physically possible solutions and 
discard the rest. With little extra work, one can also obtain error bounds 
on the estimate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 THE CONTINUUM MODEL 

In this Section we review the continuum model. As in the original 
work [12,13] we derive the model in the context of solving the ’forward 
problem’. Given the sensor geometry and known conductivities and 
permittivities of relevant materials, we compute the expected response 
of the sensor. Our presentation differs from earlier work in that we 
consider both a short-circuit and floating voltage measurement mode 
response, we do not discuss the physics in terms of complex surface 
capacitances, and we emphasize a matrix formulation which we will 
exploit when discussing the inverse problem. 

Consider Figure 5,  where one-half spatial wavelength of a cross sec- 
tion of the sensor is shown in detail. We relate this to the ideal sensor 

;=o -~~ 

4) 
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by assuming the electrode structure is infinitely periodic with a spatial 
period equal to the wavelength, and the electrodes are infinitely long 
in the y direction which is normal to the z-z cross section shown in 
the Figure. In practice, we account for the end effects due to the fi- 
nite length of the electrodes with an empirical correction factor, and 
the guard electrodes serve to increase the periodicity of the electrode 
structure in the z direction [7]. Consistent with previous work, in this 
Section we assume that the electrode height is negligible [12,13]. In 
Section 3 we correct for the electrode height. 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_c””7.x .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU8 4 
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To calculate the current leaving the sensing electrode we first cal- 
culate the electric field normal to the electrode surface. We observe 
that this calculation is a simple exercise if we know the potential on 
the sensor/sample interface. Due to the periodic structure of the elec- 
trodes, this potential will have a Fourier series representation, and due 
to the even symmetry due to the choice of the placement of the origin 
in Figure 5, it has a cosine series representation 

m 

V(z, z = 0) = vn cos (ICnz) (1) 

(2) 

n=O 

where 
27rn 
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC, = - 

and A is the electrode fundamental spatial period. 

The voltages in the homogeneous sensor substrate and the homoge- 
neous sample layer satisfy Laplace’s equation, V2V=0, in both regions 
and is continuous across the interface. It is easily shown that the volt- 
ages that satisfy the zero potential boundary conditions at the sensor 
guard plane at z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-do and at the top ground plane at z = d l  and 
Laplace’s equation are given by the following relations 

vsu(lc, -do 5 z I O )  = 

sinh (ICn(z + do))  
vn cOs(knz) (3) 

n=O sinh(k,do) 
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We pause to mention some notation that we will use throughout this 
paper. The subscripts 'su' and 'sa' indicate values in the substrate and 
test sample materials respectively. While this distinction is not abso- 
lutely necessary for the scalar potential in (3) and (4), it will provide 
clarity for other quantities in subsequent equations. From (3) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz component of the electric field normal to the sensing electrode 
can be readily evaluated. In the substrate 

Ez,su(x,z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5 )  

sinh (k,do) 
n=O 

and in the sample, 

The complex amplitude of the total current density at radian fre- 
quency w due to the conduction and displacement current densities 
onto the electrode surface is given by 

J = (osu + i u s u ) E z , s u ( x ,  z = 0) 

and is uniform along the length of the electrode (y direction). A one- 
dimensional current per unit length in the y direction for half of each 
sensing electrode can be calculated by integrating (7)  along the half 
width of the electrode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z direction) and is given by 

(7) 
- (gsa + iwEsa)Ez,sa(x,  = 0) 

x - 

J,  = J d x =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
- 

(sin(+) - sin(?)) 
The total sensing electrode current measured from the sensor is then 
obtained by 

where Leff is twice the effective length of the sensing electrode struc- 
ture since (8) only calculates the current over one half of the sensing 
electrode. 

As we mentioned earlier, obtaining result (8) is an elementary exer- 
cise once the voltage on the sensor/sample interface is known so that 
V, are known for all n. Note that not all periodic voltage profiles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1s JsLff (9) 

are allowed on this interface, and the method of measurement, sensing 
electrode short-circuit mode or floating voltage mode, will affect the 
voltage profile. The electric field across the interface must satisfy the 
continuity equation (neglecting surface effects here) 

(gsu  + i w ~ s u ) E z , s u  (asa + iwEsa)Ez,sa 

x 3x 
for -<XI-, z = O  

8 -  8 - " 
Using a capacitively loaded floating voltage measurement, the mea- 
sured sensing electrode current and voltage are constrained by 

Is = iwCLVs (11) 
where CL is the value of the capacitance for the known load capaci- 
tor. In short circuit measurement mode the sensing electrode voltage is 
simply 

(12) vs = 0 
The challenge is to find a voltage profile on the interface that si- 

multaneously satisfies the applied driven electrode potential, the con- 
tinuity, Equation (lo), and the relevant terminal constraint given by 
(11) or (12). In this paper, as in previous work [12-141, this is accom- 
plished by approximating the voltage profile by a piecewise continuous 
function as shown in Figure 6. Under this approximation the prob- 
lem reduces to determining the values of the voltages at the 'colloca- 
tion points', X I ,  5 2 ,  and 5 3  in Figure 6, where X/8 < x, < 3x18. 
More generally we choose p collocation points where p depends on 
the desired accuracy of the representation. The collocation points may 
be distributed uniformly on the surface, however, typically the points 
should be placed more densely near the electrodes where the voltage 
is expected to undergo larger changes. Mathematically, to determine 
unknown voltages at p collocation points, we require p independent 
constraint equations to solve. To this end we require the continuity 
equation to be satisfied over an interval surrounding each collocation 
point. Specifically we require for each 1 5 z 5 p 

" Z + l + Z %  

/((asu + iwEsu)Ez,su(x,  2 = 0) 
Tt-- l+"% 

2 

- (asa + iwEsa)Ez,sa(x,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0 ) ) d ~  1 0 (13) 
where xo = X/4 - x1 and xp+l = 3x14 - xp to make the endpoints 
occur at the electrode edges. 

" 7  

Driven XI XI XI ' Sensing X Driven XI XI XI ' Sensing X 

Figure 6. Collocation point voltages (adapted from [14]). 
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Note that Ez,su(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) and Ez,sa(x, z = 0) are expressed 

in terms of the Fourier series representation for the voltage in (5) and 
(6). The relationship between the Fourier series coefficients and the col- 
location point voltages is easily obtained (131. Assuming a truncated 
Fourier series with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm + 1 terms, the relationship between the colloca- 
tion point voltages can be expressed in matrix form by 

where VD and VS represent the driven and sensing electrode voltages 
respectively. Matrix T E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR( (m+l)x(p+2)) (a real-valued m+l by 
p + 2 matrix) and the values of the elements are listed in the Appendix. 

In terms of harmonic coefficients, constraint (13) can also be written 
in matrix form as 

[(asu + iwEsu)A - (asa  + i~~sa)B] [ y ]  = [ :] (15) 

where the elements of A E R ( p x ( m  + 1)) and B E R ( p x ( m  + 1)) 
are 

vm 

and 

- sin (IC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-))I 
Combining (14) and (15) gives 

which represents p equations in terms of p + 1 unknowns since Vo is 
known. 

The relation for J3 is already given by (8); in matrix form this is 

where 

and 
&,n = cosh(knd1) . 

smh( IC,dl) [ sin ( ICn -  ;") -s in ( IC,- ?)] (21) 

Along with the sensing electrode terminal constraint given by ei- 
ther (11) or (12), Equations (18) and (19) can be solved for the values of 
V(z1) . . . V ( z p )  and Js, using straightforward linear algebra. 

We pause to mention that this presentation emphasizes the explicit 
dependence on (assa + iwEsa) which we will exploit in Section 4 to 
solve the 'inverse problem'. In summary, the solution to (18) represents 
a piecewise continuous sensor/sample interface voltage profile which 
satisfies the continuity Equations (13), and (19) gives the solution for 
the sensing electrode current density 

In practice, the purpose of the sensor is to determine the electrical 
properties (asa + iwEsa) from a knowledge of the sensor/sample geom- 
etry and a measurement of the sensing electrode short-circuit current. 
This is typically accomplished by repeatedly solving the 'forward prob- 
lem' defined by Equations (18) and (19) and the terminal constraint (11) 
or (12). The value of (asa + iwEsa) at each iteration is adjusted to reduce 
the difference between the predicted and measured responses. 

This approach has several shortcomings. Firstly, from extensive ex- 
perimentation it has been determined that the physical height of the 
electrodes cannot be neglected. The gap between the electrodes can in- 
troduce a noticeable error in the calculations and needs to be included 
in the model. Secondly, the iterative procedure outlined above will not 
always converge, or will sometimes converge to an incorrect and phys- 
ically impossible answer. 

In this paper we augment the model to take into account the height 
of the electrodes and present an efficient method to find all possible 
mathematical solutions to the "inverse problem" for the single un- 
known layer case from which all physically reasonable solutions can be 
extracted. 

3 ELECTRODE HEIGHT 
In this Section we augment our model to account for the height of 

the electrodes. We again follow the ideas of the continuum model by ap- 
proximating the voltage on the sensor/sample interface by a piecewise 
continuous function determined by the voltages at certain collocation 
points. However, now we define two surfaces: one level with the bot- 
tom of the electrodes at z = 0 and another level with the top of the 
electrodes at z = h (Figure 7). 

In each of the three homogeneous regions, the 'substrate', 'gap', and 
'sample', the voltages satisfy Laplace's equation. The voltages on the 
surfaces z = 0 and z = h can be represented by a Fourier cosine 
series 

m 

Vs"(Z, 2 = 0) = VO,, cos(IC,z) (22) 

Vsa(x, z = h) = Vh,n cos(k,z) (23) 

n=O 
m 

n=O 

The notational subscripts '0' and 'h' are used to refer to the levels 
( z  = 0) and ( z  = h) respectively. In this Section we also introduce 
the subscript 'gap' to denote quantities in the region between the elec- 
trodes. 

It can be shown easily that the potential in the substrate region is 
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
KU(x, -do 5 z 5 0) = 
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Figure 7. One half wavelength cross section of an interdigital sensor 
and sample. This is not shown to scale, rather, it is drawn to empha- 
size the relevant structure including the height of the electrodes. 

Likewise, the voltage in the sample region can be expressed as 

In the 'gap' region between the electrodes it is convenient to employ a 
different representation for the voltages at the gap/sample interface at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = h and the gap/substrate interface at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz=O. These are given by 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 n=l  

4 n= 1 

The terms linear in z in (26) and (27) represent a particular solution 
to Laplace's equation that satisfies the boundary conditions at the elec- 
trode surfaces at z = X/8 (V = VD) and x = 3X/8 (V = VS). To 
this we add a sine series representation to match the boundary condi- 
tions at z = 0 and z = h in the gap region. Since the contribution of 
the sine series to the voltage must be zero at z = X/8  and z = 3X/8, 
the lowest fundamental frequency for the series is 2kn which corre- 
sponds to a half-wavelength (in the sine series) equal to the size of the 
X/4 gap between the electrodes. Thus, sin(21cn(x - X/8)) = 0 at 
z = X/8 and z = 3X/8 for all n. 

The solution to Laplace's equation in the gap region is given by 

- 2 sinh(2kn(z - h ) )  

sinh(2knh) Vg,O,n sin [2kn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;)I 
n=l 

As in Section 2, we approximate the voltage profile at these two sur- 
faces by piecewise continuous functions described by the potentials at 
certain collocation points. We choose p collocation points on each sur- 
face denoted by x0,1 . . . 5 0 , ~  and z h , 1  . . . 2 h , p .  Assuming a truncated 
Fourier series representation of (ml + 1) harmonics for (22) and (23) 
and (mz + 1) harmonics for (26) and (27), one can relate the collocation 
point voltages and Fourier series coefficients through 

V D  
v ( x h , l )  [ "h"] =T2 [ ; ] 

%,h,mz v ( x h , p )  

[ '0" ] = T2 I ; 1 
where Matrix T1 is identical to T in (14) and T1 and T2 are given in 
the appendix. 

There are 2p unknown collocation point voltages and we form 2p 
continuity constraint equations, p at each surface; for 1 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 p 

V S  

V ( X 0 , l )  

Vg,O,ms V ( X 0 , P )  

V D  

(32) 

V S  

5 0 , 2 + 1 + " 0 , 2  

2, 

(33) 
o =  J ((oSu + iWEsu)Ez,su(x, z = 0 )  

5 0 , 2 - 1  +"fl,% 

- (ag + iweg)Ez,g(x, z = 0 ) )  dx 
2 

" h , z + l + ' h , z  

(34) 
o =  j ((0s + iWEsa)Ez,sa(z ,  = h) 

5h,z- l+"h,z  2 

- (og + iuEg)Ez,g(z, z = h))dz 
In terms of the Fourier series coefficients, 

m1 - 
cos(k,x) (35) 

sinh(lc,do) E z , s u ( x ,  z = 0) = 
n = O  
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m2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcosh (2knh) 
sinh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2knh) 

Combining with (29) to (32) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ 2knVg,O,n sin(2kn(z - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ) )  

n=l 

Using (35) to (38), the constraint equations in matrix form can be 
written as 

(asu + i w E s u ) A s u  

%h,O 

Vg,O.mz 6,h,mz 

kgl [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'0" ] + Ag2 [ ; ] ] = 0 (39) 

and 

(ass + iWEsa)Asa  

K N J  [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Agz [ '0'' ] - A,, [ ; ] ] = 0 (40) 

Vg,O,mz  %Am2 

where 

where 
vo = [vo v(z0,l). ' .  V(X0,n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvs]' 

vh = [VD v ( x h , l )  ' '  ' v (zh ,n )  VS]' 
(46) 

(47) 

Equation (45) represents 2 n  equations in terms of 2 n  unknown col- 
location point voltages since VD is known and Vs is constrained by 
either (11) or (12). 

The one-dimensional current density leaving the sensing electrode is 
also easily calculated as before. Note that we need to take into account 
the contribution on the side of the electrodes at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC = 3X/8. The electric 
field here is given by 

z < h ) = - -  
3x 

= -,0 < 
8 -  

+ 2 s inh (2kn(z - h)) 
2kn%,O,n COS(%+) (48) sinh (2knh) 

n=l 

The one-dimensional current density is obtained from the integra- 
tion of (8) plus an integration over the gap height 

h 

1 

sinh(2knh) 
Ag2,i,n = cosh (2k,h) - 1 -2 n=l ( sinh(2knh) 
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Equation (50) can be conveniently written in matrix form in terms 

of collocation point voltages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [(a,, + iuEsu) [%Ti 01 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ag + img) [Bgo + BgiTz . -BgiT2] (51) 

+ (ass + iWEsa) [O -BsaTi] ] [;E] 
where 

(52) 

(53) 

g l ,  > sinh(2k,h) cos(2kn a) (55) 
( c o ~ h ( 2 k ~ h )  - 1) 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi n = -  

Equations (45) and (51) along with the sensing electrode terminal 
constraint, (11) or (12), constitute an extended continuum model that 
accounts for the height of the sensor electrodes. As expressed here in 
matrix form, they are easily solved using straightforward linear algebra. 
In the next section we explore how the matrix form of this model can 
be exploited to efficiently solve the inverse problem. 

4 THE INVERSE PROBLEM FOR 

Interdigital sensors are intended to be used to measure a sample 
material’s electrical properties. Thus, the unknown in the model is 
(asa + iWEsa), and J ,  ismeasured or calculated from measurements as- 
suming we are conducting a short-circuit mode measurement (Vs=O). 
To study the possible solutions to this problem we combine (45) and 
(51) into the following form 

SHORT-CIRCUIT MODE 

[A - (asa + ~ w E ~ ~ ) B ] v  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:I (56) 

J s  

where 

Matrix A combines all known quantities in (45) and (51) and B com- 
bines all the known matrices scaled by the unknown (ass + iWEsa). 

Note that some minor linear algebra is required to obtain (56) since VD 
appears twice in (45) and (51), in both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvo and Vh, and VS = 0. 

To see how (56) can be solved for (osa + iWE,,) we move the J ,  
term from the right side of the equation into Matrix A 

v = [VD V(Z0,l) . . .  V(x0,n) V(Zh,l) . . .  V(Zh,,)lT (57) 

0- 0 . . .  0 - [. - 1 0 0 . . .  i] - (asa + imSa)B] v = [ i] (58) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 0 . . .  0 
V D  

or more compactly written 
0 

[A’ - (ass + ~ w E ~ ~ ) B ]  v = [ 11 (59) 

Equation (59) is in the form of a ’generalized Eigenvalue problem’ 
[15] commonly written in the form 

ma tion Algorithms of Interdigital Dielectrometry Sensors 

[M - XE]V = 0 (60) 
where X is called a ’generalized Eigenvalue’ and v is called a ’general- 
ized right Eigenvector’. Techniques for efficiently solving for X and v 
are known and included in common software packages. 

Thus, once we have our model in the form given by (59), we can 
solve for the possible values for the unknown sample’s electrical prop- 
erties - they are the generalized Eigenvalues of (59). The correspond- 
ing Eigenvectors are generically unique subject to a scaling. Choos- 
ing a scaling such that the first entry is VD, the other elements of the 
Eigenvector give the values of the collocation point voltages. We note 
that depending on the ranks of A’ and B, (59) admits many gener- 
alized Eigenvalues. Therefore the solution to the inverse problem, as 
described by the continuum model, is not unique. For the type of prob- 
lem considered in this paper, a single homogeneous layer sample, there 
tends to be a single reasonable solution and many non-physical solu- 
tions introduced by the discretization. 

This Eigenvalue approach allows us to evaluate how errors in the 
measurement of J ,  affect the estimate of (asa + iw,,). Let v be the 
generalized right Eigenvector associated with the generalized Eigen- 
problem 

[A’ - (asa + iWEsa)B 1 v = 0 

wT [A’ - (asa + iWEsa)B 1 = 0 

(61) 

and let w be the generalized left Eigenvector associated with the gen- 
eralized Eigenproblem defined by 

(62) 

The sensitivity of (gsa + L E s a )  to small variations in Matrix A’ is 
given by - 

W ~ A A ’ ~  
(Aasa + iwAE,,) = 

wTBv 

Note that the measurement only appears in a single entry of A‘, 
and that (63) can be written as 

wnu1 AJs -~ - 

wTBv (T) - 

At this point it is necessary to discuss how the current is measured 
to relate uncertainties in the actual measurements to the estimates. The 
short circuit current density is not measured directly, rather a voltage 
proportional to the short circuit current is measured. The short circuit 
current is related to its density by 

where ML is the nominal ’meander length‘ of the sensing electrodes 
and the 1.2X term is an empirically determined correction factor to ac- 
count for the end effects of the electrodes [lo]. The short circuit current 
is measured by the circuitry shown in Figure 8. The measured voltage 
is related to the current and the current density by 

(66) V L = - - -  

I ,  = Js ( M L  + 1.2X) (65) 

-I, - -J, ( M L  + 1.2X) 
iWCF iWCF 
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Description 

substrate thickness 
nominal electrode height 
nominal meander length 
substrate permittivity 
substrate conductivity 
sample thickness 

spatial wavelength 

Drive Voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Drive Frequency 
Feedback Capacitance 

CF 
Symbol 

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

M L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
usu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
di 

W / 2 X  

V D  

CF 

IS + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. Sensing circuitry. 

The sensitivity of the computed short-circuit density J,  to variations 
in the voltage phasor VL is expressed by 

-iwCF 
A J  - AVL 

- (MI, + 1.2X) 
We find it convenient to consider the voltage phasor in polar co- 

ordinates with the magnitude given in decibels and the phase in de- 
grees. Likewise, our knowledge of uncertainty in our measurements is 
in terms of the voltage magnitude in decibels and phase in degrees. De- 
note the voltage magnitude in decibels by V d / d ~  and the phase by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$v. 
Then the measured voltage phasor in rectangular coordinates is given 
bv 

The sensitivity of the measured voltage to uncertainty in the mea- 
sured voltage magnitude in decibels is 

ln(1O) 
20 AVL = VL- A v d B  

and the sensitivity to the phase is 
7ri 

180 . 
AV' = VL-A~, 

Equations (64) and (67), along with (69) and (70), can be used to 
calculate uncertainties in the estimates due to uncertainties in the mea- 
surements of voltage magnitude and phase. A 'worst case' estimate 
of uncertainty combines the effects of both the magnitude and phase 
uncertainties. 

5 DEMONSTRATIONS 

In this Section we demonstrate some of the observations and claims 
of previous Sections. Using the extended continuum model of Section 3 
we calculate the response of an interdigital sensor in air for a range of 
electrode thicknesses. For a demonstration of the inverse problem we 
calculate all the generalized Eigenvalues, each representing a possible 
solution, and show that for the case of a single homogeneous layer, 
only a single solution is physically meaningful and the rest are artifacts 
of the discretization. For the physically meaningful solution, we also 
include an uncertainty analysis. 

Table 1. Values used by the continuum model in Section 5.  

1317 

40 (20 per surface) 
500 
500 

model also are the same for all studies. For easy reference, these values 
are given in Table 1. There are a number of useful ways to represent 
the sensed signal. Most directly, it can be given as a complex phasor as 
presented by VL in (66). Since the sensed signal is typically small, it is 
convenient to express it in polar coordinates with the magnitude given 
in decibels and the phase given in degrees. For an arguably more phys- 
ically meaningful presentation we can calculate the transconductance 
and transcapacitance relating the drive electrode voltage and the sense 

One must be cautious with this representation. Because the system 
has four terminals, it is possible to obtain physically meaningful values 
of Gos  and COS that are negative even though for passive dielectrics 
the permittivity and conductivity must be positive. See [16] for a dis- 
cussion of our experience in this area. 

In Figure 9 we present the calculated transcapacitance between the 
driving and sensing electrodes as a function of the electrode height for 
a sensor in air = eg = E ~ ,  asa = ag = 0). It is evident that the 
effect of the electrode height is important. There is a 10% difference in 
the capacitance calculated for zero height and for the nominal height of 
14 pm. At 40 pm the difference exceeds 20%. 

4 

Figure 9. Transcapacitance between the driving and sensing elec- 
trodes for a 1 mm wavelength sensor as a function of electrode height. 

We use the same sensor geometry, drive voltage and frequency, and 
feedback capacitor for all studies presented in this Section. The col- 
location points and the number of harmonics used for the continuum 

To demonstrate the multiple solutions of the inverse problem and 
sensitivity calculations using generalized Eigenanalysis-we perform 
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a study using a material with non-zero conductivity. We calculate 
the expected response, assuming the electrical properties of a liquid 
test material (so that it fills the electrode gap region), as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ iwe = 

~ ~ ~ ~ ( 3 . 6 1 4  + i3.015w/w0) (corresponding to the electric properties 
of corn oil: 3.015 relative permittivity and 3.614 normalized conductiv- 
ity where the normalized conductivity is scaled by W,E, and wo=l). 
Next, we use the techniques presented in Section 4 to calculate all pos- 
sible solutions to the inverse problem. 

The values of relative permittivity and normalized conductivity that 
come from the solution of the inverse problem are shown in Figure 10. 
There are twenty solutions on the plot. The solution corresponding to 
the initial forward problem is at coordinates (3.614,3.015). There is a 
cluster of artificial solutions around the point (-3.614, -3.015). It 
should be clear that the only physical solution is the one with posi- 
tive values of conductivity and permittivity. It is interesting that the 
artificial solutions are clustered near a point opposite the true solution 
(scaled by -1). This is possibly due to the symmetry evident in the 
problem, but should be investigated further. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 10. Solutions to the inverse problem; 'normalized conductiv- 
ity' is conductivity scaled by W,E, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,=l radls. 

We also calculate the sensitivity of the estimate to uncertainties in 
the measurements. The required relations are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(64), (67), (69), 
and (70). 

Assuming a +LO dB error in the measurement of the response mag- 
nitude and a k1.0 degree error in phase, we find the following lim- 
its on the estimated normalized conductivity and relative permittivity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3~523<~~a<3~705,2.970<~,~/~,<3.061, since the material is a liquid and 
the electrical properties of the gap region are equal to the electrical 
properties of tlie sample region. 

We have observed that the uncertainty in the estimate depends on 
the temporal drive frequency. At high frequencies where the permit- 
tivity of the test material dominates the response, the estimate of the 
conductivity is sensitive to small variations in phase. At low frequen- 
cies, where the conductivity of the test material dominates the response, 
the estimate of the permittivity is sensitive to small variations in phase. 
Figures 11 and 12 show the estimate for the permittivity and conduc- 
tivity for the material studied above over a wide range of frequencies. 
Error bars are included that additively account for f 1.0 dB in mea- 
sured voltage magnitude and f 1.0" in phase. Since we are interested 

in physical solutions, we do not extend the error bars below 1 for the 
relative permittivity, or below 0 for the normalized conductivity. 

2 0 4 
Logarithm of Frequency (IOgiO(Hz)) 

Figure 11. Estimated normalized conductivity including error bars. 

-1 n 2 1 

Logarithm of Frequency (loglO(Hz)) 

Figure 12. Estimated relative permittivity including error bars. 

6 CONCLUSIONS 

N this paper we have improved the continuum model by allowing I electrode height, calculating the response for the short circuit CUT- 

rent measurement mode, and proposed a new non-iterative approach 
to solving the inverse problem of estimating material properties from a 
measurement. 

For use in our studies with multiple wavelength sensors several 
practical additions to the model are necessary. In Figures 3 and 4, and 
throughout this paper, we assume the electrode widths are X/4. This 
is the nominal value, but it may vary within manufacturing tolerances. 
We determine an average value for the electrode width using a cali- 
bration procedure before using the sensor. The changes to the model 
presented in this paper are straightforward, but perhaps tedious. One 
rederives the equations while specifying the electrode width as a pa- 
rameter. We also do not take into account surface effects in this presen- 
tation. This is again straightforward; the necessary modification to the 
continuity equations can be found in [12,13]. It should be noted that the 
continuum model does not account for the physically observed 'double 
layer' capacitance that typically occurs at low frequency. Future work 
may take this into account. 
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The use of multiple wavelength sensors for multi-layer samples de- 

serves more discussion. The use of multiple wavelength sensors allows 
us to probe materials to different penetration depths and enables us to 
determine material properties of multilayer materials or to estimate dis- 
cretizations of smooth stratifications of materials. The necessary mod- 
ifications to the model are included in [12,13]. and are not derived in 
detail here. We would like to note that the fusion of data from different 
wavelength sensors poses an interesting mathematical challenge when 
solving the inverse problem. The 'multi-parameter' Eigenvalue prob- 
lem arising from the continuum model will have the following form 
(similar to (59) in Section 4) for a two layer problem 

(72) 

(73) 

The matrices depend on the width of the layers and the geometry of 
the sensor. The goal is to find the conductivities and permittivities of the 
individual layers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02, el, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAea. There are references that discuss 
this Eigenvalue problem [17,18] but a general solver is not available 
in common software packages. In our laboratory we have developed 
an iterative method for finding a solution to the two-layer problem but 
more work needs to be done in this area. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[A; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (a1 + iwel)B1 - (02 + iwE2)Cl v1 = 0 

[A; - (01 + iwe1)Bz - (02 + iwez)Cz vz = 0 
1 
1 

7 APPENDIX 

In this Appendix we present the entries for T, TI, and TZ used in 
Sections 2 and 3. 

Matrix T of Section 2 and Matrix TI of Section 3 are identical and 
relate the collocation point voltages of a piecewise continuous represen- 
tation of a surface voltage profile to coefficients of a truncated Fourier 
series representation (see Equation (14)). In the following presentation 
of the entries of T, are the collocation points 1 5 i 5 p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xo = X/8 and xP+l = 3X/8. Relating the contribution of the driven 
voltage to the zero harmonic Fourier cosine series coefficient 

T1,l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 x + a) (74) 

The terms relating the driven voltage to the n-th Fourier series co- 
efficient are given by 

The entries of TZ relate the collocation point voltages to a sine se- 
ries representation of part of a piecewise continuous description of the 
surface voltage profile in the gap region between the electrodes (see (31) 
and (32)). Matrix Tz is easily understood and constructed as a product 
of two matrices 

Tz = TbTa. (80) 

Matrix Ta subtracts out the linear portion of the voltage represen- 
tation along the surface from the driven electrode to sensing electrode. 
The first column of Tar related to the driven electrode voltage, is given 

by 
Ta,1,1 = 0 (81) 

- 
4 

Ta,p+z,l = 0 (83) 

Ta,l,p+z = 0 (84) 

where 1 5 i 5 p .  The last column is given by 

(Xi - $) 
Ta,i+l,p+z = -~ x - 

4 

Ta,p+Z,p+z = 0 (86) 

Ta,i+l,i+l = 1 (87) 

and the diagonal entries are given by 

All other entries are zero. 

Matrix Tb gives the sine series coefficients. By definition, a Fourier 
sine series has zero average value; the first row of the matrix is identi- 
cally zero 

Likewise, the endpoints do not contribute to the series since they are 
zero by definition; the first and last columns of the matrix are identically 
zero 

Tb,l,i = 0 (88) 

Tb,n,l = 0 (89) 

Tb,n,p+Z = 0 (90) 
The nonzero entries in Tb are given by 

-8 sin(2knsZ) sin(2k,z2) + 
(91) 

X ( 2 M 2  (G - X2-1) (%+1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 )  

I - 

[ Tb,n+l,i+l = ~ 

Relating the contribution of the i-th collocation point voltage to the zero 
harmonic Fourier cosine series coefficient - sin(2k,zZ- 1) sin( 2k,zZ+l) 

(&+1 - z 2 )  ( 2 2  - Xz-1) 

The terms relating the ith collocation point voltage to the n-th Four- 
ier series coefficient are given by 

COS(k,Xz) cos(k,zz) 
xlc; (Xi - s2-1) (XZ+l - Xi) 

cos( k , X i -  1 )  - cos( knZi+l ) 
( X i  - Xi-1) (%+I - Xci) 

Tn+l,i+l = - + 
(77) 

4 (  

- 

The terms for the sensing electrode are 

Tl,p+2 = 1 x + ;) 
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