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ABSTRACT 

An analysis of the recently measured photon-proton total cross 

sections is performed. Smooth fits to the cross sections are obtained and used 

to calculate, by means of the forward dispersion relation, the real part of the 

spin-averaged forward amplitude. The resulting predictions for the real part 

are given. At high energies the fits to the present total cross section data 

together with the calculated real part suggest the presence in the high energy 

behavior of an extra real constant in addition to what one would have predicted 

from.Regge theory and the high energy behavior of the imaginary part. This 

extra real constant, which is consistent in sign and magnitude with the Thomson 

limit, - Q/MN, could correspond to a fixed pole at J=O in Regge pole language. 

Possible ways to test the forward dispersion relation are discussed. 
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1. INTRODUCTION 

In the fifteen years that have passed since the introduction of dis- 

persion relations into elementary particle physics, originally within the context 

of quantum field theory, a large literature has grown up on’ their theoretical 

basis, on extensions and applications to new processes, and on their comparison 

with experiment. While first proposed for the amplitudes in forward Compton 

scattering by Gell-Mann, Coldberger, and Thirringl, dispersion relations were 

soon written down and proved, with varying degrees of rigor, for forward pion- 

nucleon scattering, other forward amplitudes, various off-shell amplitudes and 

vertex functions, and for non-forward amplitudes’. These integral relations 

‘between the dispersive and absorptive parts of the scattering amplitude have 

been most thoroughly tested experimentally in the case of forward pion-nucleon 

scattering. Starting with the work of Anderson et al. 
3 

-- in the resonance region 

and proceeding through the recent high energy-measurements of the real part 

of the forward amplitude and its comparison with the predictions of the forward 

4 
dispersion relations by Foley et al. , -- the pion-nucleon dispersion relations have 

been subjected to extensive testing by comparison with both low and high energy 

experiments. 

While all these tests in strong interactions have been successful, 

somewhat surprisingly the first such relations to be written down, those for 

forward Compton scattering, are still essentially untested. First, this is be- 

cause the imaginary part of the forward Compton amplitude, in the form of 

total photoabsorption cross sections, has not been systematically measured 

until this past year. Previously, one only had the results of integrating the 



single pion photoproduction differential cross sections over all angles to obtain 

the total cross section near threshold and inthe first resonance region (say, 

up to 1.300 GeV center of mass energy) and some scattered bubble chamber 

measurements at higher energies. Second, the real part of the forward ampli- 

tude for Compton scattering was, and still is, unmeasured in both magnitude 

and sign. 

Within the past year this situation has changed rather dramatically. 

We now have good systematic measurements of the unpolarized total photo- 

absorption cross section (and therefore the imaginary part of the spin-averaged 

forward Compton amplitude) from threshold up to laboratory photon energies 

of almost 20 GeV. This permits one to calculate rather accurately the real 

part of the spin-averaged forward amplitude using the dispersion relation 

originally proposed by Gell-Mann,’ Goldberger, and Thirring’. The result of this 

calculation can be compared in magnitude with forthcoming measurements at SLAC 

of the forward Compton scattering differential cross section. Furthermore, it 

now appears possible that by observing the interference between the known 

Bethe-Heitler amplitude for producing electron-positron pairs and the Compton 

contribution to pair production, both the sign and magnitude of the real part of 

the Compton amplitude may be determined5. 

With all this in mind we have done a careful analysis of, and fit to, 

the total photoabsorption cross section measurements, and have calculated 

the real part of the forward Compton amplitude, both to look for places and 

ways to test the forwar’d dispersion relation and to investigate certain questions 

of theoretical interest concerning the asymptotic behavior of the real part. In 

Section II we discuss kinematics, the definition of the relevant amplitudes, 

and the corresponding dispersion relations. We follow this with an analysis 
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of, and fits to, the total photoabsorption cross sections at low and high energies 

in Section III, in preparation for the actual calculation of the real part of the 

spin-averaged forward amplitude in Section IV using the dispersion relation. 

The results of this calculation lead us to a discussion of the probable existence 

in the high energy behavior of the forward amplitude of an extra real constant 

part in addition to what one would have predicted from Regge theory and the 

behavior of the imaginary part. This could be due to a fixed pole at J = 0 in 

Regge language; such a real constant part is detectable both by a direct cal- 

culation of the real part of the amplitude using the dispersion relation, and by 

certain sum rules discussed in Section V. Finally, conclusions and suggestions 

for further experimental measurements are given in Section VI. 

II. THE FORWARD COMPTON AMPLITUDES 

If the S-matrix element for the process y (kl) + N(pl) - y h) + N(p2) is 

written as 

‘fi = 6fi + (2n)4is(4)@2 ‘$-PI-$) “(~2) Tu$) 3 (1) 

where kl and pl cd, and p,) are the four-momenta of the initial (final) photon 

and nucleon, respectively, then the differential cross section in the center of 

mass frame is given by 

.krn = I fCM I 
2 

with the center of mass scattering amplitude, fern, being 

f 
cm MN - 

= 4n~ u (P2) T”(pI) l 

(2) 

(3) 
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I 

Here W is the total center of mass energy; w2= (q+l~~)~ = (p2 +k2,2. If we 

specialize to the case of forward scattering, then there is only one remaining 

continuous variable on which the scattering depends. We take this to be W as 

defined above, or instead of W, we will often use the energy of the photon in the 

laboratory, ZJ , which is related to W by 

V 

2-dN 
= 

2MN ’ (4) 

It will, in fact, generally be convenient to work in terms of laboratory quantities. 

To this end we define the forward scattering amplitude in the laboratory, f(v), 

which is related to the center of mass amplitude by a.simple factor of W/MN: 

f(v) = -El fC”. 
MN 

(5) 

Written out between the Pauli spinors of the initial and final nucleons, which 

are at rest in the laboratory, f(v) must have the form’ 

f(v) = x; [p(v) 5’ 5 + iF* (F2*x 5 ) f2 ( V)] x i 03 

where el and c2 are the polarization vectors of the initial and final photons, 

respectively. Clearly, if we average .over nucleon spins in the amplitude we 

are left only with fl(v) which we therefore call the spin-averaged forward 

amplitude. The amplitudes fl(v) and f,(v) are separable if we are able to do 

experiments with polarized photons: fl(v) corresponds to parallel and f2 (v) 

to perpendicular linear polarization vectors of the initial and final photons 

respectively. 
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Another way of discussing the relationship between fl and f2 is to relate 

them to the two independent helicity amplitudes for forward scattering. If the 

photon and proton spins are parallel (i. e. , photon helicity = + 1, nucleon helicity = 

- 4 in the center of mass frame) then we have 

fpW = 
W cm 

- fl-*, 1-4 P) 
MN 

= f,(v) - f2(v) ; (74 

while if the spins are anti-parallel (i. e. , photon helicity = + 1, nucleon helicity = 

+ 4 in the center of mass) we have 

faW = = fp) + yv, l VW 

It is the amplitudes fp and fa which are then relatea simply by the optical 

theorem to the total cross sections for photon + nucleon - hadrons (we shall 

work only to order e2 in the amplitude) when the photon spin is parallel or anti- 

parallel to the nucleon spin: 

JmfpP) = & apP) 

Jmfa(v) = & %(V) . 

Thus we have 

Imfl(V) = & 
*aP) + fJpP) 

2 = 5 UT(V) , 

where gT(v) is the spin-averaged total cross section, and 

@a) 

t8b) 

CW 

CJW 



Again, in the absence of both a circularly polarized photon beam and a polarized 

proton target, it is only the combination of cross sections corresponding to 

Imfl(v) which is measured experimentally. Note also that while Imfp, lc”fa, 

and therefore Jm fl are positive above threshold for ‘pion photoproduction, Imf2 

may be either positive or negative there. 

In the absence of polarized targets or beams one simply measures 

the differential cross section 

= I f(v) I 2 = I fl(V) 1 2 + I f2 I 2 (loa) 
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or 

da 
z 

= 2 I f(v) I2 = 
t=o V2 

16n -I- f I Refl(W2 + s I f2(v)12 (lob) 
V V 

where t is minus the square of the four-momentum transfer. We have explicitly 

i s o 1 at e d t h e term proportional to 
2 

, which has now been systema- 

tically measured experimentally, to emphasize the remaining terms on the right 

hand side of Rq. (lob), which are~uncal;cula&xl and unmeasured up to now, 

If we know their imaginary parts, we may calculate Refl(v) and 

Ref2(v) by means of dispersion relations. Using the fact that f,(v) is even and 

f2(v) is odd under crossing (i. e. , v--r -v ) we have’ 

2 co &d2 
Refl(v) = fl(0) + t P s 

hfi(v ‘) 

v’2-v2 vf2 
, @a) 

“0 

and / 
m 

Ref2(v) = $ P J 
dv’ 

vt2- y2 
knf2(v’) . tllb) 

vO 
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Both integrals start at v. = mn + mc/2MN, the threshold for photoproducing 

single pions. In hopes that we can get away without a subtraction, and since 

we know of no experimental or theoretical reason for one, we have written an 

unsubtracted dispersion relation for fi(v). The amplitude fl (v) on the other 

hand requires a subtraction, both because of the observed behavior of Imfi(v) 

for large v and because an unsubtracted dispersion relation for fl(v) would 

predict fl(0) > 0, contradicting the Thomson limit, fl(0) = - CY/M~ We in fact 

know from rather general theorems6 ‘7that as v - 0 

fltv) - fl(o) = -“/MN , 

the Thomson limit, while 

f2 WV - f$O) = - 
“1Uanom)2 

2 . 

2MN 

PW 

(12b) 

The second result, Eq. (l2b), together with the dispersion relation (lib) gives 

rise to the sum rule 

4M2 
(II anom)2 = - 2 pj hnf2(v’) = & I.$ c”p(“) - ca(v)] l 08) 

0 0 

This is just the Drell-Hearn-Gerasirnov sum rule8, which appears to be 

satisfied when saturated with low lying resonances’. Unfortunately, the lack 

of direct experimental measurements of hn f2 (v) means that one must construct 

it from partial wave analyses of nN (and if one is brave enough, 7A) photo- 

production 8’g. While this is probably adequate for calculating 9(O), the , 
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difficulties and ambiguities in this procedure even in the resonance regionpresently 

make evaluation of the dispersion relation for f2(v) a meaningless exercise for 

values of v greater than a few hundred MeV. We will return to the question of 

measuring f2(v) in the final section, and turn our attention now to the evaluation 

of the dispersion relation for fl(v), which, with the low energy theorem value 

for fl(0) now reads 

or 

2 O” 
Refl(v) = -s+$-p f 

&,B l[m fltv’,) 

MN voyp_y2 -7- 

(14) 

III. FITS TO THE TOTAL PHOTOABSORPTION CROSS SECTIONS 

In order to carry out the principal value integral in Eq. (14) we need 

the total cross section measurements 
10,11,12,13,14 shown in Figure 1. In fact, 

we need them in a locally smoothed form in order to carry out the limiting 

procedure inherent in the definition of a principal value integral, and further- 

more, at least in principle, we need to know the cross sections out to infinite 

values of the energy. 

At least this last difficulty is notdifficulftoovercome ifwe are willing 

to assume that at high energies the behavior of total cross sections with energy is 

smooth (say, a sum of powers of v to good approximation). In particular, .this 

is the case in Regge pole theory where at high energies one writes for the imaginary 
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part of the amplitude at t =O: 

c. 
IKnfl(V) = cc ) 

aito) 
iiv ’ tW 

so that 

UT(V) = c civ 
cyi(0).l 

, 
i 

06) 

where the ci are constants and the a,(O) are the t = 0 intercepts of the Regge 

trajectories, ari(t), which can be exchanged in the t-channel. Such parametriza- 

tions give very good fits to the energy dependence of purely hadronic total cross 

sections (like r*p, I?p, etc. ). ..There it is found that the leading isospin = 0 and 1 

trajectories (those with’ ai > 0) are the Pomeron (corresponding to dif- 

fraction scattering and constant total cross sections) which has a,(O) = 1 and 

the P’, AZ’ p and w trajectories, all of which have a(O) = 0.5 as determined 

either from drawing the usual linear Regge trajectories (with slope M l/Gfd 

through the observed physical particle positions or from fits to the hadron- 

hadron total cross sections at high energies 
15 

. For Compton scattering only 

t-channel trajectories withC = + 1 contribute, so we can restrict our attention 

here to only the P’ and A2 trajectories in addition to the Pomeron. We take 

ap(0) = 1 and the effective intercept at t = 0 of the Pi and A2 to be $ , i. e. , 

ap,(0) = QA2(0) = 8 . 

We have therefore made fits to the high energy data ( v > 2 C&V) of 

the form: 

(17) 
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In Figure 2 we see the high energy total cross section data from the extra- 

polation of electron scattering to q2= 0. They are plotted against l/v* so that 

if Eq. (l7) is to be a good fit to the data points, they should fall on a straight 

line. In Figure 2 the solid line represents aT(v)‘= 107.5 + 64.0/v*, which is 

a best fit statistically of the form of Eq. (17) to the data from the extrapolation 

of electron scattering. In Figure 3 we have the data from the direct measure- 

ments of the counter and bubble chamber experiments, The solid line is a 

best fit to these counter andbubble chamber experiments of the form (TV = 

99.2 + 59.6/v% Also shown in Figures 2 and 3 is a dashed line, corresponding 

to a best fit to all the high energy data of the form o,(v) = 96.6 + 70.2/v*. 

It seems from the figures that the data from electron scattering is 

systematically and/or statistically high by about 8 pb compared to the other data, 

but has about the same slope as a function of energy. This is all well within 

the quoted” f 8% overall systematic error alone of the electron scattering extra- 

polation. It is difficult to know, however, whether the ~1true” total cross 

sections should agree with one of the present set of measurements or another 

since each method of measurement has different kinds of systematic errors 

associated with it and an estimate of these errors is not always quoted in the 

experimental papers. For this reason,we have kept three different fits of the 

form of Eq. (l7) to the high energy (v > 2 GeV) total cross sections in doing 

the dispersion integral: a fit to the electron scattering extrapolation cross 

sections alone (labelled A), a fit to the counter and bubble chamber measure- 

ments alone (labelled B), and a fit to all the total cross section measurements 

(labelled A & B). If we were to show a prejudice for one fit over another it 

3 would be in favor of the fit (B) to the counter and bubble chamber measurements 



whichwhen extrapolated to lower energies, joins on better to the total cross 

section measurements at the end of the resonance region coming from both the 

electron scattering extrapolation to q2= 0 and from the counter and bubble 

chamber measurements. 

It is also to be noted that the size of the present experimental error 

bars does not permit one accurately to determine a(O) in a fit to the total photo- 

absorption cross sections of the form a,(v) = cl + c2 v Q(O)-1 . While values of 

a(O) equal to zero or one are probably already ruled out by the present data, 

fits with values of ~(0) ranging from 0.3 to 0.7 were tried and the resulting 

values of chi squared of the best fit for each value of a(O) were not significantly 

different. We thus have to rely on the much more accurate hadronic total cross 

section data to determine a(O). This is no great tragedy since: (l) the strong 

interaction data is accurate enough to show that in a fit of the form a,(v) = 

I+ + c2 v*(o)-1 that 0.35 o!(O) 5 0.7 for the Pi and A2 ; (2) there is no reason to 

assume, in contradiction to Regge pole theory, that the value of crpl(0) or ‘YA (0) 
2 

changes in going from one process to another; (3) a fit of the form of Rq. (l7) is 

an excellent fit to the photoproduction data, particularly the counter and bubble 

chamber data with small error bars in Figure 3. In any case, the exact value 

of a(O) makes little difference in the calculated values of Refl(v) at low energy 

and we shall return to the question of the sensitivity of the calculation at high 

energy to the value of a(O) in Section V. 

Once we have a fit of the form of Eq. (17) to the high energy data, we 

use it to give us the total cross section over the entire high energy region for 

use in doing the dispersion integral. We also join on to it the data in the low 

energy region, .which we take to be from threshold, W = 1.08 GeV (v = 0.150 GeV), 
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to a center of mass energy W = 2.01 GeV (v = 1.68 GeV), where the systematic 

measurements of a,(v) in steps of 0.015 GeV in center of mass energy by the 

electron scattering group end. This includes the region of the four prominent 

resonances in pion-nucleon scattering at W = 1.236, 1.520, 1.690, and 1.920 GeV, 

respectively. To the total cross sections determined by extrapolation of electron 

scattering we have added the total cross section data up to W = 1.32 GeV obtained 

by integrating single pion photoproduction data . 
16 

We have then smoothed, again with the use of some physics: We fit 

this low energy data to a sum of Breit-Wigner resonance forms plus a poly- 

nomial background, demanding that at W = 2.01 GeV the fit join on smoothly to 

one of the high energy fits discussed above. Specifically, we used five Breit- 

Wigner resonance forms and a sixth order polynomial in (W-Wthreshold) to 

obtain our best fits to the data. The masses of the first three resonance forms 

were only roughly constrained (to within f 0.100 GeV) to lie in the vicinity of the 

prominent resonance bumps, and their widths were also only roughly constrained 

(to be less than 0.5 GeV). The fourth resonance was fixed with a mass and width 

of 1.920 and 0.200 GeV, respectively, since it otherwise had a tendency to wander 

to lower energies. The fits were improved if the fifth resonance mass was con- 

strained to lie between 1.400 and 1.470 GeV, i. e. , in the region of the Roper 

resonance, in order to fit the shoulder in the data on the low energy side of the 

second resonance. Otherwise all masses, widths and strengths of the resonances 

were left free to vary, as were all the coefficients in the polynomial in 

W-Wthreshold’ 

Thefittothelow energy data which joins on to cT(v) = 96.6 + 70.2/v’, 

the best fit to all the high energy data, at W = 2.01 GeV (where oT= 151 pb) is 
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shown in Figure 4. Obviously we have a very good (as statistical tests also 

show} smooth fit,to the total cross section data. Its stability is shown by the 

fact that changing the form of the high energy cross section from one of our 

fits to another (so that at W = 2.01 GeV, the energy at which we join the low 

energy to high energy cross sections, aT(W = 2.01 GeV) changes by - 3% or 

N 5 pb) does not change the fit by more than 1% at any point up to W = 1.95 GeV. 

The fit is stable as well against taking a lower degree polynomial to describe 

the background. Also the values of the resonance widths which come out of the 

fit are in good agreement with the accepted ones. Armed with our smooth fits 

to both the low and high energy total cross sections, we are ready to do the 

dispersion integral. 

IV. CALCULATION OF THE REAL PART OF!fl(z’) 

For each of our three fits to the high energy data we have made a fit 

to the low energy data which joins on smoothly at W = 2.01 GeV, and then haveused 

the total smoothed fit over the whole energy range from threshold to infinite 

energy as input to a computer calculation of the dispersion integral for Refl(% 

We have tested our program for doing the principal value integrals by taking 

explicit forms for the total cross section for which we were capable of doing 

the principal value integral analytically and then comparing the analytic solution 

with the computer calculation. In particular 
/ * 

5 Imfl(V) = aT(u) =(a) ($-1)“” for v 2 v. 

= 0 for v < v. , 
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where o is a constant leads to 

Re flW = f$O) + 

for Y > v. and 

forv < vo. For a!=$ we find that our program gives Refi(“) in agreement 

with the analytic solution to better than 1% accuracy from v = 0 to 50 GeV with 

the exception of a small region near threshold (0.9 v. c: v 5 1.1 vo) where 

dfi(v)/dv is discontinuous for the analytic solution and where the finite step 

size (= 0.1 vo) in our integration routine gives a computed real part which is 

20% less than the exact analytic solution. 

The actual results for Refl(W), computed from the fits to the mea- 

sured total cross sections (where at high energies we use the fit (A & B) to 

all the high energy data of the form oT(v) = 96.6 + 70.2/v&) is shown in Figure 5 

for W < 2.2 GeV in the form of an Argand diagram. Clear circles due to the 

first, second, third and fourth resonances are seen. A close inspection also 

reveals a r~wiggle~f near W = 1.430 GeV due to the shoulder on the low energy 

side of the second resonance, which could be due to the Roper resonance. A 

similar, but smaller, wiggle appears near threshold due to the large s-wave 

shoulder on the low energy side of the first resonance. Using a different fit 

to the high energy total cross sections leaves Figure 5 essentially unchanged - 

the only noticeable change is in the size of the loop due to the fourth resonance 
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and involves changes in’Refl(“) of less than 10% for any given value of v . The 

numeriCal values of the input total cross sections, Imfl(W), and the resulting 

. values of Refl(W) appear in Table I in steps of 0.015 GeV in W up to W = 2.01 

GeV, and then in steps of 1.0 GeV in v up to v =2O GeV. 

Near ZJ = 0, we have from the dispersion relation that 

‘Lim 
f,(v, - fl(o) 1 

v-o 

$ =;; $i a,tv’) l 

From our fit to the data we find 

co 

f 
q oT(v’) = 72 pb/GeV , 

u. VI 

with a 2% variation depending on exactly which combination of low and high 

energy data we use for the total cross section. Clearly the integral converges 

quickly and its magnitude depends very weakly on the high energy data. Near 

‘v = 0 we thus have for forward photon-proton scattering: 

= I fl(V) I2 + I fo(v) I2 0 
o! .2 -- 

v-0 ( 1 MN 

a2 -- 
v-0 ( 1 MN 

At high energies calculated values of Refi(v) are shown by the solid 

j lines in Figure 6 for the three cases of high energy fits to (TV of the form: 
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‘,(‘) 

uTtV) 

a,(v) 

107.5 + 64.0/v* (labelled A) ; 

99.2 + 59.6/v+ 

96.6 + 70.29 (labelled A & B) . 

t2W 

(labelled B) ; WW 

t2w 

In addition, the ratio of real to imaginary parts at high energies is shown in 

Figure 7. Also shown in Figure 6 by the dashed lines are the real parts we 

might have naively expected on the basis of the imaginary part of the amplitude 

(the total cross sections) and Regge behavior for the whole amplitude. In other 

words, if we have that 

% hnfl(V) = uT(V) -) C ‘iv 
ai( 

asv--, 
i 

we expect that such an hnfi(v) came from a Regge expression for the full ampli- 

tude of the form: 

fp4 - 
-1-e 

c( 

-i7rai(0) c 
. 

v-00 i sin rai(0) I( ) 

aito) 

fv ’ (24) 

where’we have simply restored the signature factors due to the exchange of even 

signature (P, P’ and A2) trajectories. Thus we expect: 
2 

cri(O) 
. (25) 
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For our particular fits, ,which are of the form oT(v) - cl + c2/vt, we then 

expect that 

(26) 

which is represented by the dashed lines in Figure 6 for each of our high 

energy fits. For our high energy fits of the form (17) this is clearly not the 

, 
case, there being always a constant difference of, about - 3 pb-GeV between 

the real part calculated from the dispersion relation and the real part in Eq. 

(26) which is predicted naively from Regge theory and the behavior of the ima- 

ginary part of the amplitude. That we should have expected (as in actuality we 

did) such a constant difference between the calculated real part and the real 

part predicted from Regge theory and the high energy behavior of the imaginary 

part of the amplitude is shown in the next section. 

V. ASYMPTOTIC BEHAVIOR OF Refl(v) 

Suppose we have an amplitude f(v) which has the high energy behavior 

fW - c 
-1-e 

-inai(0) 
ci 

i, ai > 0 
sin no,(O) ( 1 

aito) 

4nV . 

(27) 

+ C + (terms which go to zero as v - =J) , 

where we have explicitly separated the term C (which is a real constant) 

which corresponds to a term in the sum with ai(O) = 0. The behavior of the 

real and imaginary parts following from Eq. (27) is 
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Ref(v) = 

+ C + (terms which go to 

(2 W 

zero at 7~ - a) , ,. 

+ (terms which go to zero as v - a) . 

Now let us define f(R)(v) for all v as: 

-iacui(0) c 

f(R)(v) = 2 
-1-e 

. 

i, ai(O) > 0 
sin7rai(0) ( 1 zi v 

“i(O) 
+ c. 

Clearly, f (R) (v) differs from f(v) only in terms which go to zero as v - 0~. 

This new function obeys the dispersion relation 

co 

f(R)(v) = c + 2 f 
dvt2 

, 
lr 0 vf2- v2- ie 

(2 8b) 

(29) 

(30) 

as is easily verified by explicit calculation., while it is assumed that the original 

amplitude f(v) obeys a dispersion relation of the form: 

f(v) (31) 
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Now, from the way in which f (R)(v) was defined and Eq. (27) we 

have that 

f(v) - f(R)(v) -0 as*-*. 

Subtracting Eq. (30) from Eq. (31), and letting v - 00, we then obtain 

00 
0 = f(0) - ; J 

*2 
v. F hnf(v’) - c + 4 

or 

“0 

c = f(0) + + f 
,2 

o!$- 
rmf(R)(VO -I- p + hn(f(R)(v) - f(v)) l 

5-j *,’ 

(32) 

(33) 

The last term in Eq. (33) involves a convergent integral because f tR+v) - f(v) 

goes to zero is v - 00. In fact, in an actual calculation one usually assumes 

that for sufficiently large values of v , say v >- N, one has hnf(v) = Imf 
(R) (v) 

to arbitrarily high accuracy if N is chosen large enough. This is, of course, 

just what we have done in our calculation .of Refl(v) when we used our Regge fits 

to the high energy total cross sections above W = 2.01 GeV in evaluating the 

dispersion relation. If we use the assumption that Irnf(R)(v) = hnf(v) for 

v Z N in Eq. (33), then it becomes 

N N 

c = f(0) + ; e$ Iynf(R+,l) - 5 f dv’ 7 of 
*0 

@a) 
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or N 

f 
“0 

dv’ aT( v”)’ = , (3-W 

‘17 
so that it has the form of a finite energy sum rule . Eq. (33) for the case 

f(v) = fl(v) was first derived in this form by Creutz, Drell and Paschos”. 

Eq. (33) or (34) tells us that. purely from a knowledge of the imaginary 

part of f(v) and f(O), we can determine C, i. e. , from the behavior of hn f(v) at 

high energies we can determine Tmf (R)(v) and then an integral over all energies 

of Im(f(v)-f CR) (v)) gives us C if we know f(0); AL1 this of course should be no 

surprise - given the imaginary part of f(v) and f(O), the dispersion relation 

gives us Ref(v) and we can then determine the constant C by comparison with 

Ref (W (v). This in fact is just what we did in the last section. What all the 

above manipulation does for us is to bypass the actual calculation of the principal 

value integral and to give us a simple sum rule, Eq. (34), from which we can 

calculate C immediately by doing an ordinary integral over total cross sections. 

For the particular amplitude we are interested in, we have fi(0) = 

- o/MN = - 3.0 pb-GeV. Furthermore, from the measured total cross sections 

we see that above W M 2 GeV ImfIfv) appears to be rather smooth. This is also 

the point at which systematic measurements in small steps ‘of W stop at the 

present time and at which we have joined the power law fits to the high energy 

data onto the low energy data in doing our ca%ulation of the dispersion integral. 

We are thus assuming that above W = 2.01 GeV the power law fits are a good 

representation of the total cross sections, i. e., above W = 2.01 GeV (V = 

1.68 GeV) we are assuming Imf(v) - hnf(R)(v) = 0. The sum rule, Eq. (34), 

thus becomes : 
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0.68 Gev) 

f 

(1.68 Gev) 

c = -AL+2 
MN r 0 f 

+g Imfl(V’) . (35) 

“0 

For the quantity, 

(1.68 GeV) 
o! 2 v-m- 

f 
MN T v. 

$g Imfl(V’) , 

which just involves performing an integral over the total cross section data, we 

obtain - 19.9 f 0.1 pb. The “error ” includes the answers obtained by taking dif- 

ferent computer smoothed fits to the low energy data (which join onto different 

high energy behaviors), taking the unsmoothed data, or taking hand smoothed 

fits to the data. The value of 

(1.68 Gev) 
2 
n f 0 

$ In-l fiR)(v’) 

depends on exactly what kind of power law fit we make to which subset of the 

high energy data. We list the parameters for fits to the high energy data sub- 

sets A, B, and A & B of the form a,(v) = cl + c2(v/GeV) a(ok1 for a(O) = 0.6, 
2 1.68 ~vdvt 

0.5, and 0.4 in Table II, together with the values of ; l (-) Im fi(R)(v’) 
o’ v’ 

and C which they imply. 

From Table II it appears that (at least if a(0) L 0.5) C = -3 /.&b-GeV, 

i. e. , it has the magnitude and sign of the Thomson limit, fl(O), a possibility 

first suggested by Creutz, Drell and Paschos 18 
. For the case o!(O) = 4, the 

values of C computed in Table II agree with those found in the previous section 

(see Figure 6) by direct computation of Refl(v) and comparison with the real 

part expected from Regge theory and the behavior of Imfl(v) at high energies. 
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The errors contained in such a calculation of C are mainly of a 

systematic kind and hence difficult to estimate. The integral over the low 
2 1.68 &v&,, 

energy total cross section measurements, ;; $ (yr) hnfl(vf), involves 

over 60 data points with an assigned error of aL!ut 10%. If these were purely 

statistical errors, the error on the value of the integral would be - 1%. 

Similarly, given a value of a(O), the errors in cl and c2 in the fit to the high 

energy total cross sections (induced from the quoted errors on oT) lead to an 
1.68 @v&,’ 

uncertainty in + $ 
0 - 

(vl) hnf/R)(vl) of from 5% (for fits to data set B) 

to 10% (for fits to data set A). 

To change the value of C from - 3 pb-GeV to zero requires a 20% 

change in one or the other (or some combination) of the two integrals discussed 

above. For the integral over the low energy total cross sections this can only 

happen due to a systematic overall shift (downward) from the present data. We 

think such a large systematic shift is unlikely because the total cross sections 

obtained from the extrapolation of electron scattering agree rather well in the 

first resonance region with those obtained by directly integrating over single 

pion photoproduction differential cross sections. 

A change in the value of the integral over the Regge fit to the data 

could come about either because of a systematic shift (upward, particularly at 

the low energy end, in order to give more energy dependence to aT(v)) in the 

high energy total cross section measurements or a value of o(O) M 0.4. A 

systematic shift in the high energy data certainly cannot be ruled out, but such 

a shift upwards would be difficult to reconcile with a smooth joining on to the 

low energy data, particularly if one also wants to help decrease the magnitude 

of C by a systematic shift downward in that same low energy data. It should 
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also be noted that the fits (B) to only the counter and bubble chamber experi- 

ments at high energies, which have the smallest quoted errors, give the largest 

magnitude for C. As for the value of o(O), which is representing here the 

effective Regge trajectory intercept of the Pf ‘and A2, we note first of all that 

19 
the most important of these two trajectories for the case at hand appears to 

be the P’. Secondly, the best fits to the hadronic data of the form aT = 

Cl + c2 P(O)-*, 20 
especially recent fits using both finite energy sum rules and 

the hadronic total cross section data, show that opt(O) y 0.5 or greater, E 

smaller. 

Thus, while the possibility exists that a combination of systematic 

shifts in the data and/or a change in Regge parameters will result in making C 

21 
consistent in magnitude with zero , it is suggested by the present data and our ’ 

high energy Regge fits to it that C # 0, and in fact that C = -3 pb-GeV, the 

value of the Thomson limit. In Regge language, such a real constant term in 

the high energy forward amplitude could correspond to a Regge pole with o(O) = 0. 

Whether o(t) 3 0, so that we are dealing with a fixed pole at J = 0, can only be 

established by calculations for t # 0, which are outside the scope of this paper. 

Jn any case, the presence of such an extra real constant term at t = 0 already 

has some interesting consequences theoretically for other calculations and sum 

22 
rules . 



VI. CONCLUSION 

Under the assumption that the forward dispersion relation for fl(v) 

of Gell-Mann, Goldberger and Thirring is correct we have calculated Refl(v) 
,’ 

from the measurements of the total photoabsorption cross section. In the pro- 

cess we have made smooth fits to both the low and high energy cross sections. 

Our results suggest, but do not conclusively prove, the existence of an extra 

real constant in the high energy behavior of fl(v) beyond what the energy de- 

18 
pendence of the imaginary part and Regge theory would predict. This extra 

real constant is consistent in sign and magnitude with the value of the Thomson 

limit, fl(0) = -o/MN. 

There are a number of experiments which could help settle the question 

of whether the extra real constant, C, is present. Obviously more accurate 

total photoabsorption cross sections even at the energies already measured will 

help.‘ More important are systematic counter or bubble chamber measurements 

in the energy range from v = 1.0 to 3.0 GeV. These are needed first of all to 

make sure that the cross sections in the upper resonance region, which come at 

present only from the electron scattering extrapolation, are not systematically 

high or low. Secondly, suchmeasurements will show whether above v = 1.68 GeV 

(where we have joined on our high energy fits) the total cross section has any 

small 1’ bumps 11 left in it and more generally how well our smooth fit to the high 

energy data fits the total cross sections just above the resonance region. Some 

total cross section measurements of high accuracy at the other end of the energy I , 

spectrum, namely very high energies (say, v = 30 to 150 GeV at Serpukhov or 

Weston) would be very useful in tying down the other end of our high energy fits. 



-26- 

Between these two additional sets of measurements we think one can settle the 

question of whether C # 0 and whether it has the value of the Thomson limit to 

within 50% of that limit. 

Of course, all this could be best settled by a good direct measure- 

ment of Refl(w). This would also test the validity of the forward dispersion 

relation, which we have been assuming in our discussion of the magnitude of C. 

At v = 5 GeV, for example, the presence of C = f,(O) makes a 20% difference 

in the value of Re f,(v). Unfortunately, it does not appear that we wfll soon have 

such a measurement. Recall that (do/dt)t=o E I f,(v) I 2 +’ I f2 (v) I 2 for Compton 

scattering. Thus the forthcoming measurements of (dc/dt)t-o will give us 

I Refl(v) I 2 + I f2(*) I 2, since we know Imfl(v) from the total cross section 

measurements. Since we find I Refl/Imfl I 5 0.3 for v > 5 GeV, I Refi(v) I 2 

contributes less than 10% of (do/dt)t=O for v > 5 GeV. This is of the same order 

as the error in I Imfl(v) I 2 due to the errors in the total cross section mea- 

surements, so the measurement of (do/dt)t,O at high energy will only yield a 

very rough upper bound 23 on I Re f,(v) I. At the present time it is probably more 

relevant to assume the forward dispersion relations are true and then to derive 

information from (da/dt)t=O .about I f2 (v) I 2 at high energy, since experimentally 

we know essentially nothing at present about the high energy behavior of f2(v). 24 

This leaves us with trying to measure Refl(v) at low energies where 

it is large compared to hnfl(v). Because of background from roe 2y it is ex- 

tremely difficult to measure (da/dt)t=O for Compton scattering at low energies. 

Our best hope of testing the dispersion relation is then the possibility of mea- 

suring Re fl(v) by interference of the amplitude for electron-positron production 

by Compton scattering with the Bethe-Heitler amplitude5, and then extrapolating 
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to zero invariant mass electron-positron pairs. Exactly how difficult this 

will prove to be experimentally remains to be seen. 

A side result of our calculation is that the ratio of real to imaginary 

parts of the forward Compton amplitude is much the same as that for most 

strong interaction forward amplitudes 
25 

. III particular, if we omit the contri- 

bution of the possible extra real constant, then the ratio of real to imaginary 

parts is less than 20% above v w 5 GeV, much as in pion-nucleon scattering 

(even keeping the real constant, the ratio is less than 30%). If we assume the 

validity of the vector dominance model, then the forward amplitude for 

Y +P - p + p should have a similar ratio of real to imaginary parts. The re- 

26 
cently suggested ratio of - 0.45 at 6 GeV is then much too large compared to 

our calculation or to other strong interaction processes. 

So, although the prospects still do not look very good for an early 

experimental test of the forward dispersion relations, we have seen a number 

of interesting consequences of our study of forward Compton scattering. In 

particular, we hope that we have provided sufficient encouragement to experi- 

mentalists to make further measurements of the total photoabsorption cross 

sections, to measure the magnitude of (da/dt)t=o for Compton scattering, and 

to try to measure Refl(v) by interference of the Bethe-Heitler amplitude with 

the Compton amplitude for pair production. 
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TABLE I 

Calculated values of Re fI(v) for forward photon-proton scattering. 

The input values of (TV = ~ e Imfi(v) (from the smooth fit at low energy which 

joins on to the fit (A & B) to all the high energy data) as well as the resulting 

values of RefI(Y) - RefI(0) and RefI(“) are listed in steps of 0.015 GeV in W 

up to W = 2.01 GeV, and then in steps of 1.0 GeV in v up to or = 20 GeV. 

*,(‘) It-n flW Re fI(v)-Re fI(0) Re fltv) 

W &b-G&) W-@V W--v) 

.945 

.960 

.975 

.990 
1.005 
1.020 
1.035 
1.050 
1.065 
1.080 
1.095 
1.110 
1.125 
1.140 
1.155 
1.170 
1.185 
1.2 00 
1.2 15 
1.230 
1.245 
1.260 
1.275 
1.290 

0.005 0 0.0 
0.020 0 0.0 
0.036 0 0.0 
0.051 0 0.0 
0.067 0 0.0 
0.083 0 0.0 
0.100 0 0.0 
0.116 0 0.0 
0.133 0 0.0 
0.150 0 0.0 
0.168 75 1.0 
0.185 114 1.7 
0.203 145 2.3 
0.22 1 182 3.2 
0.240 233 4.4 
0.258 307 6.3 
0.277 404 8.9 
0.296 499 11.8 
0.3 15 546 13.7 
0.335 522 13.9 
0.354 449 12.7 
0.374 366 10.9 
0.395 292 9.2 
0.415 235 7.8 

-I- 0.0018 
0.030 
0.094 
0.20 
0.35 
0.55 
0.82 
1.2 
1.7 
2.7 
3.7 
4.0 
4.5 
5.3 
6.2 
7.0 
7.1 

25:: 
- 1.3 
-4.1 
- 5.4 
- 5.7 
- 5.2 

- 3.0 
- 3.0 
- 2.9 
- 2.8 
- 2.7 
- 2.5 
- 2.2 
- 1.8 
- 1.3 
- 0.3 
+ 0.7 
+ 1.0 
+ 1.5 
+ 2.3 
+’ 3.2 
+ 4.0 
+ 4.1 
+ 2.6 
- 0.6 
- 4.3 
- 7.1 
- 8.4 
- 8.7 
- 8.2 
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a,(v) B-n f,(v) Refi(v)-Refi(0) Re flW 

t/W &b--V Gub-@V) tj.tb-GeV) 

1.305 0.436 196 6.8 
1.320 0.457 172 6.3 
1.335 0.478 162 6.2 
1.350 0.499 164 6.5 
1.365 0.521 175 7.2 
1.380 0.543 190 8.2 
1.395 0.565 207 9.3 
1.410 0.587 220 10.3 
1.425 0.610 228 11.1 
1.440 0.633 234 11.8 
1.455 0.656 241 12.6 
1.470 0.679 253 13.7 
1.485 0.703 271 15.2 
1.500 0.727 288 16.6 
1.515 0.751 290 17.3 
1.530 0.775 275 17.0 
1.545 0.800 255 16.2 
1.560 0.824 239 15.6 
1.575 0.849 228 15.4 
1.590 0.875 222 15.4 
1.605 0.900 219 15.7 
1.620 0.926 218 16.1 
1.635 0.952 219 16.6 
1.650 0.978 221 17.2 
1.665 1.005 225 18.0 
1.680 1.031 232 19.1 
1.695 1.058 239 20.2 
1.710 1.085 236 20.3 
1.725 1.11 219 19.4 
1.740 1.14 201 18.3 
1.755 1.17 187 17.4 
1.770 l-20 176 16.8 
1.785 1.22 168 16.4 
1.800 1.25 163 16.2 
1.815 1.28 159 16.2 
1.830 1.31 158 16.5 
1.845 1.34 158 16.9 
1.860 1.37 161 17.5 
1.875 1.40 164 18.3 
1.890 1.43 167 19.0 
1.905 1.46 170 19.7 
1.920 1.49 170 20.2 
1.935 1.52 168 2044 
1.950 1.55 165 20.3 
1.965 1.58 160 20.2 
1.980 1.62 156 20.1 
1.995 1.65 153 20.0 
2.010 1.68 151 2 0.2 

- 4.3 
- 3.1 
- 1.9 
- 0.7 
+ 0.3 
+ 0.9 
+ 1.2 
+ 1.1 
+ 0.9 
+ 0.8 
+ 1.0 
+ 1.1 
+ 0.8 
- 0.5 
- 2.5 
- 4.3 
- 5.1 
- 5.2 
- 4.9 
- 4.7 
- 4.5 
- 4.3 
- 4.3 
- 4.2 
- 4.3 
- 4.7 
- 6.1 
- 8.2 
- 9.8 
- 10.3 
- 10.1 
- 9.8 
- 9.3 
- 8.8 
- 8.2 
- 7.6 
- 7.0 
- 6.6 
- 6.5 
- 6.6 
- 7.0 
- 7.6 
- 8.2 
- 8.7 
- 9.0 
- 8.9 
- 8.8 
- 8.5 

- 7.3 
- 6.1 
- 4.9 
- 3.7 
- 2.7 
- 2.1 
- 1.8 
- 1.9 
- 2.1 
- 2.2 
- 2.0 
- 1.9 
- 2.2 
- 3.5 
- 5.5 
- 7.3 
- 8.1 
- 8.2 
- 7.9 
- 7.7 
- 7.5 
- 7.3 
- 7.3 
- 7.2 
- 7.3 
- 7.7 
- 9.1 
- 11.2 
- 12.8 
- 13.3 
- 13.1 
- 12.8 
- 12.3 
- 11.8 
- 11.2 
- 10.6 
- 10.0 
- 9.6 
- 9.5 
- 9.6 
- 10.0 
- 10.6 
- 11.2 
- 11.7 
- 12.0 
- 11.9 
- 11.8 
- 12.5 
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2.16 2.0 146 
2.55 3.0 137 
2.90 4.0 132 
3.21 5.0 128 
3.49 6.0 3.25 
3.75 7.0 I.23 
3.99. 8.0 121 
4.22 9.0 120 
4.44 10.0 119 
4.64 11.0 118 
4.84 12.0 117 
5.03 13.0 116 
5.22 14.0 115 
5.39 15.0 115 
5.56 16.0 114 
5.73 17.0 114 
5.89 18.0 113 
6.05 19.0 113 
6.20 20.0 112 

23,4 
32.6 
41.9 
51.0 
60.0 
68.7 
77.3 
86.0 
.94.6 

103 
112 
120 
129 
137 
145 
154 
162 
170 
179 

- 8.3 
- 9.6 
- 11.0 
- 12.3 
- 13.4 
- 14.5 
- 15.5 
- 16.5 
- 17.4 
- 18.3 
- 19.1 
- 19.9 
- 20.7 
- 21.5 
- 22.2 
- 22.8 
- 23.5 
- 24.1 
- 24.8 

- 11.2 
- 12.5 
- 13.9 
- 15.2 
- 16.3 
- 17.3 
- 18.3 
- 19.3 
- 20.2 
- 21.1 
- 21.9 
- 22.7 
- 23.5 
- 24.3 
- 25.0 
- 25.6 
- 26.2 
- 26.8 
- 27.5 
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TABLE II 

I : I 
,. 

Parameters fey flits tq the high ,eneTgy total cross section meg- 

surements of the form O,(V) = cl +’ c2 (v/GeV) 
o!(O)-1 ,, corresponding values of 

and r&xtlting values of C taking 

Imfl(v’) = 19.9 pb-GeVa ,, 

2 
(l.68Gev)dv, i 

f ;o 

--pf~+vI) 

Experimental 4 c2 -, 

Data Subset om (Clb) (clb) &b-G&V) @b-&W) 

AlO 

Bll,12 ,13,14 

A&B 

AlO 

Bll,l2,13,14 

A&B 

AlO 

Bll,l2,.13,14 

A&B 

0.6 100.5 

0,6 93.5 

0.6 89.9 

0.5 107.5 

0.5 99.2 

0.5 96.5 

0.4 112.2 

0.4 102.9 

0.4 101.2 

68.1 16.4 

61.7 15.1 

72.9 16.1 

64.0 17.5 

59.6 16.2 

70.2 17.4 

62.5 19.2 

59.9 18.1 

70.1 19.5 

- 3.5 

-4.8 ' 

- 3.8 

- 2..4 

- 3.7 

- 2.5 

- 0.7 

- 1.8 

- 0.4 
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FIGURE CAPTIONS 

Figure l- 

Figure 2 - 

Figure3- 

Figure 4 - 

Figure 5 - 

The total photoabsorption cross section, gT(v), for y + p - hadrons 

measured in recent experiments. 
10,11,12,13,14 

High energy total photoabsorption cross sections!‘from the extrapolation 

of inelastic ep scattering to q2= 0 plotted versus l/v*. The solid line 

is a best fit to these data of the form gT(v) = cl + c,/v* , with cl = 

107.5 lb, c2 = 64.0 I.cb, and v measured in GeV. The dashed line is a 

similar fit to all the high energy data with cl = 96.6 pb and c2 = 70.2 pb. 

High energy total photoabsorption cross sections llJ2 913 $14 from 

counter and bubble chamber measurements plotted versus l/v 4 . The 

‘1 
solid line is a best fit to these data of the form u 

T 
= cl + c2/v2 with 

cl = 99.2 pb, c2 = 59.6 pb and v measured in GeV. The dashed line is 

a similar fit to all the high energy data with cl = 96.6 pb and c2 = 70.2 pb. 

Smooth fit (solid line) to the low energy total photoabsorption cross 

sections from extrapolation of inelastic ep 
10 

scattering to q2 = 0 (data 

points shown in the figure) and from integrating single pion photo- 

production differential cross sections up to W = 1.32 GeV. Above W = 

2.01 GeV the fit joins smoothly on to aT(v) = 96.6 + 70.2/v*, the best 

fit to all the high energy data. 

Argand diagram of fl(W) for forward photon-proton scattering where 

Refl(W) was computed using the dispersion relation, Eq. (14). The 

input total cross sections are shown at low energy by the solid line in 

Figure 4 and at high energy by the dashed line in Figures 2 and 3. 
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Figure 6 - Values of Refl(v) at high energy calculated using the dispersion 

,relation, EQ. (14), are indicated by the solid lines for the three dif- 

ferent fits (A, B, and A ,&B) to the high energy total cross sections 

(see text). The real parts ,expected from Regge theory and the 

observed behavior of the imaginary part of the amplitude are indi- 

cated by the dashed lines for each of the three high energy fits. 

Figure 7 - Ratio of real to imaginary part of fl(v) at high energies calculated 

using the dispersion relation, a. (14), for each of the fits to the 

high energy total cross sections. 
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