
418 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 2, FEBRUARY 2004

ForWaRD: Fourier-Wavelet Regularized
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Abstract—We propose an efficient, hybrid Fourier-wavelet reg-
ularized deconvolution (ForWaRD) algorithm that performs noise
regularization via scalar shrinkage in both the Fourier and wavelet
domains. The Fourier shrinkage exploits the Fourier transform’s
economical representation of the colored noise inherent in de-
convolution, whereas the wavelet shrinkage exploits the wavelet
domain’s economical representation of piecewise smooth signals
and images. We derive the optimal balance between the amount of
Fourier and wavelet regularization by optimizing an approximate
mean-squared error (MSE) metric and find that signals with
more economical wavelet representations require less Fourier
shrinkage. ForWaRD is applicable to all ill-conditioned deconvolu-
tion problems, unlike the purely wavelet-based wavelet-vaguelette
deconvolution (WVD); moreover, its estimate features minimal
ringing, unlike the purely Fourier-based Wiener deconvolution.
Even in problems for which the WVD was designed, we prove
that ForWaRD’s MSE decays with the optimal WVD rate as the
number of samples increases. Further, we demonstrate that over
a wide range of practical sample-lengths, ForWaRD improves on
WVD’s performance.

Index Terms—Deblurring, deconvolution, restoration, wavelet-
vaguelette, wavelets.

I. INTRODUCTION

DECONVOLUTION is a recurring theme in a wide variety
of signal and image processing problems. For example,

practical satellite images are often blurred due to limitations
such as aperture effects of the camera, camera motion, or atmo-
spheric turbulence [1]. Deconvolution becomes necessary when
we wish a crisp deblurred image for viewing or further pro-
cessing.

A. Problem Statement

In this paper, we treat the classical discrete-time deconvolu-
tion problem. The problem setup and solutions are described in
one dimension (1-D), but everything extends directly to higher

Manuscript received October 21, 2002; revised March 27, 2003. This work
was supported by the National Science Foundation under Grant CCR-99-73188,
the Air Force Office of Scientific Research under Grant F49620-01-1-0378,
the Office of Naval Research under Grant N00014-02-1-0353, the Defense
Advanced Research Projects Agency under Grant F30602-00-2-0557, and
the Texas Instruments Leadership Universities Program. The associate editor
coordinating the review of this paper and approving it for publication was Dr.
Chong-Yung Chi.

R. Neelamani was with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005-1892 USA. He is now with the
Upstream Research Company, ExxonMobil, Houston, TX 77252 USA.

The authors are with the Department of Electrical and Computer Engineering,
Rice University,Houston, TX 77005-1892 USA (e-mail: choi@ece.rice.edu;
richb@ece.rice.edu).

Digital Object Identifier 10.1109/TSP.2003.821103

Fig. 1. Convolution model setup. The observation y consists of the desired
signal x first degraded by the linear time-invariant (LTI) convolution systemH
and then corrupted by zero-mean additive white Gaussian noise (AWGN)  .

dimensions as well. The observed samples consist of un-
known desired signal samples first degraded by circular
convolution (denoted by ) with a known impulse response

from a linear time-invariant (LTI) system and then cor-
rupted by zero-mean additive white Gaussian noise (AWGN)

with variance (see Fig. 1)

(1)

Given and , we seek to estimate .
A naive deconvolution estimate is obtained using the oper-

ator inverse as1

(2)

Unfortunately, the variance of the colored noise in
is large when is ill conditioned. In such a case, the mean-
squared error (MSE) between and is large, making an un-
satisfactory deconvolution estimate.

In general, deconvolution algorithms can be interpreted as es-
timating from the noisy signal in (2). In this paper, we focus
on simple and fast estimation based on scalar shrinkage of indi-
vidual components in a suitable transform domain. Such a focus
is not restrictive because transform-domain scalar shrinkage lies
at the core of many traditional [3], [4] and modern [2], [5] de-
convolution approaches.

B. Transform-Domain Shrinkage

Given an orthonormal basis for , the naive esti-
mate from (2) can be expressed as

(3)

1For noninvertible H, we replace H by its pseudo-inverse and x by its
orthogonal projection onto the range ofH in (2) [2]. The estimate x in (2) con-
tinues to retain all of the information that y contains about x.
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(a) (b)

Fig. 2. Economy of Fourier versus wavelet representations. (a) Energies in decibels (dB) of the Fourier and wavelet components of the noiseH  colored by
the pseudo-inverse of a 2-D 9� 9 box-car smoothing operator. The components are sorted in descending order of energy from left to right. The colored noise
energy is concentrated in fewer Fourier components than wavelet components. (b) Energies of the Fourier and wavelet components of the Cameraman image x.
The signal energy is concentrated in fewer wavelet components than Fourier components.

An improved estimate can be obtained by simply shrinking
the th component in (3) with a scalar , [6]:

(4)

(5)

The denotes the retained part of
the signal that the shrinkage preserves from (2), whereas

denotes the leaked part
of the colored noise that the shrinkage fails to at-
tenuate. Clearly, we should set if the variance

of the th colored noise component
is small relative to the energy of the corresponding
signal component and set otherwise. The shrinkage by

can also be interpreted as a form of regularization for the
deconvolution inverse problem [4].

The tradeoff associated with the choice of is easily under-
stood: If , then most of the th colored noise component
leaks into with the corresponding signal component; the re-
sult is a distortion-free but noisy estimate. In contrast, if ,
then most of the th signal component is lost with the corre-
sponding colored noise component; the result is a noise-free but
distorted estimate. Since the variance of the leaked noise
in (5) and the energy of the lost signal comprise the MSE
of the shrunk estimate , judicious choices of the ’s help
lower the estimate’s MSE.

However, an important fact is that for a given transform do-
main, even with the best possible ’s, the estimate ’s MSE
is lower bounded by [5], [7], [8]

(6)

From (6), has small MSE only when most of the signal en-
ergy ( ) and colored noise energy ( ) is
captured by just a few transform-domain coefficients—we term
such a representation economical—and when the energy-cap-
turing coefficients for the signal and noise are different. Oth-

erwise, the is either excessively noisy due to leaked noise
components or distorted due to lost signal components.

Traditionally, the Fourier domain (with sinusoidal ’s) is
used to estimate from . For example, the LTI Wiener decon-
volution filter corresponds to (4) with each determined by
the th component’s signal-to-noise ratio [3], [4]. The strength
of the Fourier basis is that it most economically represents the
colored noise [see Fig. 2(a) and Section III-B for details].
However, the weakness of the Fourier domain is that it does not
economically represent signals with singularities such as im-
ages with edges [see Fig. 2(b)]. Consequently, as dictated by the
MSE bound in (6), any estimate obtained via Fourier shrinkage
is unsatisfactory with a large MSE; the estimate is either noisy
or distorted for signals with singularities [see Fig. 4(c), for
example].

Recently, the wavelet domain (with shifts and dilates of a
mother wavelet function as ’s) has been exploited to estimate

from , for example, Donoho’s wavelet-vaguelette deconvo-
lution (WVD) [5]. The strength of the wavelet domain is that it
economically represents classes of signals containing singular-
ities that satisfy a wide variety of local smoothness constraints,
including piecewise smoothness and Besov space smoothness
[see Fig. 2(b) and Section V-B for details]. However, the weak-
ness of the wavelet domain is that it typically does not econom-
ically represent the colored noise [see Fig. 2(a)]. Con-
sequently, as dictated by the MSE bound (6), any estimate ob-
tained via wavelet shrinkage is unsatisfactory with a large MSE;
the estimate is either noisy or distorted for many types of .

Unfortunately, no single transform domain can economically
represent both the noise colored by a general and sig-
nals from a general smoothness class [5]. Hence, deconvolution
techniques employing shrinkage in a single transform domain
cannot yield adequate estimates in many deconvolution prob-
lems of interest.

C. Fourier-Wavelet Regularized Deconvolution (ForWaRD)

In this paper, we propose a deconvolution scheme that re-
lies on tandem scalar processing in both the Fourier domain,
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Fig. 3. Fourier-wavelet regularized deconvolution ( ForWaRD ). ForWaRD employs a small amount of Fourier shrinkage (most � � 1) to partially attenuate
the noise amplified during operator inversion. Subsequent wavelet shrinkage (determined by � ) effectively attenuates the residual noise.

which economically represents the colored noise , and
the wavelet domain, which economically represents signals
from a wide variety of smoothness classes. Our hybrid Fourier-
Wavelet Regularized Deconvolution ( ForWaRD ) technique es-
timates from by first employing a small amount of scalar
Fourier shrinkage and then attenuating the leaked noise with
scalar wavelet shrinkage (see Fig. 3) [9], [10].

Here is how it works: During operator inversion, some Fourier
coefficients of the noise are significantly amplified; just a
small amount of Fourier shrinkage (most ) is sufficient
to attenuate these amplified Fourier noise coefficients with min-
imal loss of signal components. The leaked noise that
Fourier shrinkage fails to attenuate [see (5)] has significantly
reduced energy in all wavelet coefficients, but the signal part

that Fourier shrinkage retains continues to be economically
represented in the wavelet domain. Hence, subsequent wavelet
shrinkage effectively extracts the retained signal from the
leaked noise and provides a robust estimate.

For an idealized ForWaRD system, we will derive the optimal
balance between the amount of Fourier shrinkage and wavelet
shrinkage by optimizing over an approximate MSE metric. We
will find that signals with more economical wavelet representa-
tions require less Fourier shrinkage.

Fig. 4 illustrates the superior overall visual quality and lower
MSE of the ForWaRD estimate as compared with the LTI
Wiener filter estimate [3], [4] for the 2-D box-car blur operator,
which models rectangular scanning aperture effects [1], with
impulse response for and
0 otherwise (see Section VIII for details). For this operator,
the WVD approach returns an esentially zero estimate; scalar
wavelet shrinkage cannot salvage the signal components since
nearly all wavelet coefficients are corrupted with high-variance
noise.

Indeed, even in problems for which the WVD was designed,
we will prove that the ForWaRD MSE also decays with the same
optimal WVD rate as the number of samples increases. Further,
for such problems, we will experimentally demonstrate For-
WaRD ’s superior MSE performance compared with the WVD
over a wide range of practical sample sizes [see Fig. 6(a)].

D. Related Work

Kalifa and Mallat have proposed a mirror-wavelet basis ap-
proach that is similar to the WVD but employs scalar shrinkage
in a mirror-wavelet domain adapted to the colored noise
instead of shrinkage in the conventional wavelet domain [2]. Al-
though the adapted basis improves on the WVD performance
in some “hyperbolic” deconvolution problems, similarly to the
WVD, it provides inadequate estimates for arbitrary convolu-
tion operators. For example, for the ubiquitous box-car blur ,
again, most signal components are lost during scalar shrinkage
due to high-variance noise. Fig. 7(b) illustrates that ForWaRD

is competitive with the mirror-wavelet approach, even for a hy-
perbolic deconvolution problem.

Similar to ForWaRD, Nowak and Thul [11] have first em-
ployed an under-regularized system inverse and subsequently
used wavelet-domain signal estimation. However, they do not
address the issue of optimal regularization or asymptotic per-
formance.

Banham and Katsaggelos have applied a multiscale Kalman
filter to the deconvolution problem [12]. Their approach em-
ploys an under-regularized, constrained-least-squares prefilter
to reduce the support of the state vectors in the wavelet do-
main, thereby improving computational efficiency. The amount
of regularization chosen for each wavelet scale is the lower
bound that allows for reliable edge classification. While similar
in spirit to the multiscale Kalman filter approach, ForWaRD em-
ploys simple Wiener or Tikhonov regularization in the Fourier
domain to optimize the MSE performance. In addition, For-
WaRD employs simple scalar shrinkage on the wavelet coeffi-
cients in contrast to more complicated prediction on edge and
nonedge quad-trees [12]. Consequently, as discussed in Sec-
tion VI-D, ForWaRD demonstrates excellent MSE performance
as the number of samples tends to infinity and is, in fact, asymp-
totically optimal in certain cases. Further, as demonstrated in
Section VIII, ForWaRD yields better estimates than the multi-
scale Kalman filter approach.

There exists a vast literature on iterative deconvolution
techniques; see [4], [13]–[15], and the references therein. In
this paper, we focus exclusively on noniterative techniques for
the sake of implementation speed and simplicity. Nevertheless,
many iterative techniques could exploit the ForWaRD estimate
as a seed to initialize their iterations; for example, see [16].

E. Paper Organization

We begin by providing a more precise definition of the con-
volution setup (1) in Section II. We then discuss techniques that
employ scalar Fourier shrinkage in Section III. After briefly re-
viewing wavelet theory in Section IV, we introduce the WVD
technique in Section V. We present the hybrid ForWaRD scheme
in Section VI and discuss its practical implementation in Sec-
tion VII. Illustrative examples lie in Section VIII. We conclude
and sketch future directions in Section IX. A short WVD review
in Appendix A and technical proofs in Appendices B–D com-
plete the paper.

II. SAMPLING AND DECONVOLUTION

Most real-life deconvolution problems originate in contin-
uous time and are then sampled. In this section, we sketch the
relationship between such a sampled continuous-time setup and
the setup with discrete-time circular convolution considered in
this paper [see (1)].



NEELAMANI et al.: ForWaRD: FOURIER-WAVELET REGULARIZED DECONVOLUTION FOR ILL-CONDITIONED SYSTEMS 421

(a) (b)

(c) (d)

Fig. 4. (a) Desired Cameraman image x (256� 256 samples). (b) Observed image y: x smoothed by a two–dimensional (2-D) 9� 9 box-car blur plus white
Gaussian noise with variance such that the BSNR = 40 dB. (c) LTI Wiener filter estimate (SNR= 20.8 dB, ISNR = 5.6 dB). (d) ForWaRD estimate (SNR = 22.5
dB, ISNR =7.3 dB). See Section VIII for further details.

Consider the following sampled continuous-time deconvo-
lution setup: An unknown finite-energy desired signal is
blurred by linear convolution (denoted by ) with the known fi-
nite-energy impulse response of an LTI system and then
corrupted by an additive Gaussian process to form the ob-
servation . For finite-support and

, the finite-support can be obtained using circular
convolution with a sufficiently large period. For infinite-support

and , the approximation of using circular
convolution can be made arbitrarily precise by increasing the
period. Hence, we assume that the observation over a nor-
malized unit interval can be obtained using circular convolu-
tion with a unit period, that is, with

. Deconvolution aims to estimate from the sam-
ples of the continuous-time observation . For example,

can be obtained by averaging over uniformly spaced
intervals of length

(7)

Other sampling kernels can also be used in (7);2 see [17] and
[18] for excellent tutorials on sampling. Such a setup encapsu-
lates many real-life deconvolution problems [1].

The observation samples from (7) can be closely ap-
proximated by the observation from setup (1) [1]; that is

(8)

if the continuous-time variables , , and com-
prising are judiciously related to the discrete variables

2For example, impulse sampling samples at uniformly spaced time instants
t = n=N to yield z(n) = (t ).
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, , and comprising . We choose to define
. The so defined can be

assumed to be AWGN samples with nonzero variance ;
the large bandwidths of noise processes such as thermal
noise justify the whiteness assumption [1]. Let and

denote signals obtained by first making and
periodic and then bandlimiting the resulting signals’ Fourier
series to the frequency Hz (for antialiasing). We define

and define as uniformly
spaced (over ) impulse samples of .
With these definitions, we can easily show that the error

.
For all finite-energy and , both
and decay to zero with increasing
because they represent the norm of the aliasing components of

and , respectively. Consequently, soon
becomes negligible with respect to the noise variance and
can be ignored. Hence, solutions to estimate from the

in (1)—the focus of this paper—can be directly applied
to estimate from . For a wide range of Besov space
signals, the estimate of can then be interpolated with
minimal error to yield a continuous-time estimate of , as
sought in (7) [19], and [20].3

In Sections V and VI, we will analyze the MSE decay rate
(in terms of ) of the WVD and ForWaRD solutions to the
setup (1) as the number of samples . At each , we
assume that the corresponding and in (1) originate
from an underlying continuous-time and , as defined
above. Further, we assume that the corrupting in (1) are
AWGN samples with variance that is invariant with .

III. FOURIER-BASED REGULARIZED DECONVOLUTION (FORD)

A. Framework

The Fourier domain is the traditional choice for deconvolu-
tion [4] because convolution simplifies to scalar Fourier opera-
tions. That is, (1) can be rewritten as

(9)

where , , , and are the respective length- discrete
Fourier transforms (DFTs) of , , , and , and ,

(assuming is even) are the nor-
malized DFT frequencies. Rewriting the pseudo-inversion op-
eration [see (2)] in the Fourier domain

if
otherwise

(10)

where is the DFT of , clearly demonstrates that noise com-
ponents where are particularly amplified during
operator inversion.

3The Besov space range is dictated by the smoothness of the sampling kernel.
Let x(t) 2 Besov space B (see Section IV-B for the notation). Then, if the
sampling kernel of (7) is employed, then the interpolation error is negligible
with respect to the estimation error for the range s > 1=p � 1=2; the range
decreases to s > 1=p if impulse sampling is employed [19], [20].

Deconvolution via Fourier shrinkage, which we call Fourier-
based Regularized Deconvolution (FoRD), attenuates the am-
plified noise in with shrinkage

(11)

The , commonly referred to as regularization terms
[4], [21], control the amount of shrinkage. The DFT components
of the FoRD estimate are given by

(12)

The and comprising denote the respective
DFTs of the retained signal and leaked noise
components that comprise the FoRD estimate [see (5)].
Typically, the operator inversion in (10) and shrinkage in (12)
are performed simultaneously to avoid numerical instabilities.

Different FoRD techniques, such as LTI Wiener deconvolu-
tion [3], [4] and Tikhonov-regularized deconvolution [21], differ
in their choice of shrinkage in (12). LTI Wiener deconvolu-
tion sets

(13)

with regularization parameter to shrink more (that is,
) at frequencies where the signal power is small

[3], [4]. Tikhonov-regularized deconvolution, which is similar
to LTI Wiener deconvolution assuming a flat signal spectrum

, sets

(14)

with [21]. Later, in Section VI, we will put both of these
shrinkage techniques to good use.

B. Strengths of FoRD

The Fourier domain provides the most economical represen-
tation of the colored noise in (2) because the Fourier
transform acts as the Karhunen-Loeve transform [22] and
decorrelates the noise . Consequently, among all linear
transformations, the Fourier transform captures the maximum
colored noise energy using a fixed number of coefficients
[23]. This economical noise representation enhances FoRD
performance because the total FoRD MSE is lower bounded by

[5].4 The best
possible FoRD MSE

is achieved using the LTI Wiener deconvolution shrinkage of
(13) in (12) [7]. When the signal in (2) also enjoys an econom-

4The factor N arises because jX(f )j = N jx(k)j for any signal
x.
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ical Fourier-domain representation (that is, when is “smooth”
and thus has rapidly decaying Fourier coefficients [7]), FoRD
can provide excellent deconvolution estimates. For example,
FoRD provides optimal estimates for signals in -Sobolev
smoothness spaces [5].

C. Limitations of FoRD

Unfortunately, the Fourier domain does not provide econom-
ical representations for signals with singularities, such as im-
ages with edges, because the energy of the singularities spreads
over many Fourier coefficients. Consequently, even with the
best scalar Fourier shrinkage, the FoRD MSE is unsatisfactory,
as dictated by the lower bound in (6). The estimation error be-
comes apparent in the form of distortions such as ringing around
edge singularities [see Fig. 4(c)].

IV. BACKGROUND ON WAVELETS

In contrast to Fourier representations, wavelets provide eco-
nomical representations for a diverse class of signals including
signals with singularities such as images [7], [24].

A. Wavelet Transform

The discrete wavelet transform (DWT) represents a 1-D con-
tinuous-time signal , in terms of shifted versions
of a lowpass scaling function and shifted and dilated versions
of a prototype band-pass wavelet function [7]. For special
choices of and , the functions
and with form an or-
thonormal basis. The parameter corresponds to the scale of
the analysis, whereas the parameter corresponds to the loca-
tion. A finite-resolution approximation to is given by

with the scaling coefficients and wavelet co-
efficients . The parameter controls the res-
olution of the wavelet reconstruction of . In fact, the
norm as .

For a discrete-time signal with samples, the wavelet co-
efficients can be efficiently computed in operations using
a filterbank consisting of lowpass filters, highpass filters, up-
samplers, and decimators [7]. For periodic signals, which are
natural when analyzing circular convolution, filterbanks imple-
menting circular convolution are employed. Multidimensional
DWTs are computed by wavelet-transforming alternately along
each dimension [7], [19].

Purely for notational convenience, we henceforth discuss pro-
cessing of only the wavelet coefficients. However, all steps are
replicated on the scaling coefficients as well.

B. Economy of Wavelet Representations

Wavelets provide economical representations for signals in
smoothness spaces such as Besov spaces [8]. Roughly speaking,
a Besov space contains functions with “ derivatives in

” with measuring finer smoothness distinctions [24]. Besov
spaces with different , , and characterize many classes of

signals in addition to -Sobolev space signals; for example,
in 1-D, contains piece-wise polynomial signals [7], [25].
Further, unlike -Sobolev spaces, Besov spaces also contain
images with edges [24]. The wavelet coefficients computed
from samples (refer Section II) of a continuous-time 1-D signal

, , satisfy (for all )

(15)
assuming sufficiently smooth wavelet basis functions [5], [19],
[20].5 The condition for higher dimensional Besov space signals
is a straightforward extension of (15) [5], [19]. From (15), we
can infer that the wavelet coefficients of Besov space signals
decay exponentially fast with increasing scale .

C. Wavelet Shrinkage-Based Signal Estimation

The wavelet transform’s economical signal representation
facilitates an effective solution to the problem of estimating the
signal from AWGN-corrupted observations [19], [20],
[26], [27]

(16)

Such a setup is similar to estimating from (2) but with an iden-
tity operator . Simple shrinkage in the wavelet domain with
scalars can provide excellent estimates of . This shrinkage
is illustrated by (4) with wavelet basis functions as the ’s and
with identity .

Oracle thresholding shrinks with

if
if

(17)

where is the noise variance at wavelet scale . Oracle thresh-
olding provides excellent estimation results [27] but is imprac-
tical because it assumes knowledge of the wavelet coefficients

of the desired . Hard thresholding, which closely ap-
proaches oracle thresholding’s performance and is also practical
[20], employs

if
if

(18)

where , and is a scale-dependent threshold
factor (see [7, p. 442] for choices of ). When the underlying
continuous-time with and

, both oracle and hard thresholding (with judiciously
chosen [26]) provide estimates whose MSE-per-sample de-
cays at least as fast as with increasing number of
samples [19], [20]. Further, no estimator can achieve
a better error decay rate for every . If the threshold
factor is chosen to be scale-independent, then the MSE decay
rate is decelerated by an additional factor.

In practice, the Wavelet-domain Wiener Filter (WWF)
improves on the MSE performance of hard thresholding by

5The traditional Besov space characterizing equation in [5], [19], [20]
assumes L -normalized wavelet coefficients w , that is, jw j =
kx(t)k . Because the w used in (15) are computed using signal samples
x(n) that satisfy jw j = jx(n)j � Nkx(t)k , a normalization
factor of

p
N appears.
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employing Wiener estimation on each wavelet coefficient [28].
WWF chooses

(19)

However, like in oracle thresholding, the coefficients re-
quired to construct the are unknown. Hence, a “pilot” esti-
mate of the unknown signal is first computed using hard thresh-
olding (with, say, for 256 256 images). Then, using

constructed with the pilot estimate’s wavelet coefficients
in (19), WWF shrinkage is performed. Sufficiently different
wavelet basis functions must be used in the two steps [28].

V. WAVELET-VAGUELETTE DECONVOLUTION (WVD)

A. Framework

The wavelet-vaguelette decomposition algorithm leverages
wavelets’ economical signal representation to solve some spe-
cial linear inverse problems [5]. With a slight abuse of nomen-
clature, we will refer to the wavelet-vaguelette decomposition
algorithm applied to deconvolution as wavelet-vaguelette de-
convolution (WVD).

In contrast to FoRD, the WVD algorithm conceptually ex-
tracts the signal from in (2) with scalar wavelet shrinkage

such as hard thresholding [5], [27] to yield an estimate .
For the reader’s convenience, we provide a simple review of the
WVD algorithm in Appendix A.

B. Strengths of WVD

The wavelet domain provides economical representations for
a wide variety of signals in (2). In fact, among all orthogonal
transforms, the wavelet transform can capture the maximum
(within a constant factor) signal energy using any fixed number
of coefficients for the worst-case Besov space signal [8]. This
economical signal representation enhances WVD’s perfor-
mance because the total WVD MSE can be bounded within
a constant factor of , where is the
wavelet-domain colored noise variance. When the colored
noise in (2) also enjoys an economical wavelet-domain
representation, the WVD can provide excellent deconvolution
estimates. For example, consider a “scale-invariant” operator
with frequency response . Such
an yields colored noise that is nearly diagonalized
by the wavelet transform [2], [5] and is hence economically
represented in the wavelet domain [5]. For such operators, the
per-sample MSE of the WVD estimate decays rapidly with
increasing number of samples as [2], [5], [29]

(20)

where is a constant. Further, no estimator can achieve
better error decay rates for every .

C. Limitations of WVD

Unfortunately, the WVD is designed to deconvolve only the
very limited class of scale-invariant operators [5]. For other ,
the colored noise in (2) is not economically represented
in the wavelet domain. For example, with the uniform box-car
blur , the components of the colored noise corrupting
most wavelet coefficients have extremely high variance due to
zeros in . Consequently, even with the best scalar wavelet
shrinkage, the WVD MSE is unsatisfactory, as dictated by the
lower bound in (6). Indeed, wavelet shrinkage will set most
of the signal wavelet coefficients to zero when estimating
from in (2) and yield an unsatisfactory, essentially zero
estimate.

VI. FOURIER-WAVELET REGULARIZED

DECONVOLUTION (FORWARD)

The hybrid ForWaRD algorithm estimates from in (2)
by employing scalar shrinkage both in the Fourier domain to
exploit its economical colored noise representation and in the
wavelet domain to exploit its economical signal representation.
The hybrid approach is motivated by our realization that
shrinkage in a single transform domain cannot yield good
estimates in many deconvolution problems. This is because
no single transform domain can economically represent both
the colored noise with arbitrary and signals with
arbitrary smoothness [5]. By adopting a hybrid approach, For-
WaRD overcomes this limitation and provides robust solutions
to a wide class of deconvolution problems.

A. ForWaRD Algorithm

The ForWaRD algorithm consists of the following steps (see
Fig. 3).
1a) Operator inversion

Obtain and by computing the DFTs of and . Then,
invert to obtain as in (10).
1b) Fourier shrinkage

Shrink with scalars [using (13) or (14)] to obtain ,
as in (12). Compute the inverse DFT of to obtain .
2) Wavelet shrinkage

Compute the DWT of the still noisy to obtain .
Shrink with [using (18) or (19)] to obtain

. Compute the inverse DWT with the to obtain
the ForWaRD estimate .

For numerical robustness, the operator inversion in Step 1a
and Fourier shrinkage in Step 1b are performed simultaneously.

B. How ForWaRD Works

During operator inversion in Step 1a of the ForWaRD algo-
rithm, some Fourier noise components are significantly ampli-
fied [see (10)]. In Step 1b, ForWaRD employs a small amount of
Fourier shrinkage (most ; only when

) by choosing a small value for the regularization that
determines the in (11). Sections VI-C and VII-B contain de-
tails on the choice of . This minimal shrinkage is sufficient
to significantly attenuate the amplified noise components with
a minimal loss of signal components. Consequently, after the
Fourier shrinkage step [see (12)], the leaked noise in



NEELAMANI et al.: ForWaRD: FOURIER-WAVELET REGULARIZED DECONVOLUTION FOR ILL-CONDITIONED SYSTEMS 425

the has substantially reduced variances in all wavelet
coefficients. The variance at wavelet scale is given by

(21)

where is the DFT of . The retained signal part in
continues to be represented economically in the wavelet

domain because lies in the same Besov space as the de-
sired signal (see Appendix C-A for the justification). There-
fore, the subsequent wavelet shrinkage in Step 2 effectively esti-
mates the retained signal from the low-variance leaked noise

. Thus, ForWaRD’s hybrid approach yields robust solu-
tions to a wide variety of deconvolution problems (for example,
see Fig. 4).

C. Balancing Fourier and Wavelet Shrinkage in ForWaRD

We now study the balance between the amount of Fourier
shrinkage and wavelet shrinkage employed in the hybrid
ForWaRD system to ensure low-MSE estimates. We consider
an idealized ForWaRD system that performs Wiener-like
Fourier shrinkage with -parametrized as in (13)—denoted
by henceforth—and wavelet shrinkage with ideal oracle
thresholding , as in (17). The amounts of Fourier shrinkage
and wavelet shrinkage are both automatically determined by
simply choosing ; the also determines the wavelet shrinkage

[see (17)] since it dictates the leaked noise variances
[see (21)].

The choice of controls an interesting tradeoff. On one
hand, small values of (so that most ) are desirable
to ensure that few signal components are lost during Fourier
shrinkage, that is, to ensure that

(22)

is minimized. On the other hand, however, larger values of
result in smaller wavelet-domain noise variances and
thereby facilitate better estimation of the retained signal com-
ponents via subsequent wavelet shrinkage. Ideally, we
would like to set such that the MSE of the final ForWaRD es-
timate is minimized.

An analytical expression for the optimal Fourier shrinkage
determined by a single is, unfortunately, intractable. There-
fore, in this section, instead of minimizing the overall MSE via
a single , we will consider a more general ForWaRD system
that employs a different Fourier shrinkage parameter when
computing the scale- wavelet coefficients in the ForWaRD es-
timate. We desire to simultaneously set all the ’s so that the
overall MSE is minimized. Assuming an orthogonal DWT, the
overall MSE is simply the sum of the MSE’s at each wavelet
scale. Thus, we can optimally set the at each scale indepen-
dently of the other scales by minimizing the error in ForWaRD’s

scale- wavelet coefficients. We then say that the amount of
Fourier shrinkage and wavelet shrinkage is balanced.

1) Cost Function: To determine the that balances the
amount of Fourier and wavelet shrinkage at scale in ForWaRD,
we use a cost function MSE that closely approximates the
actual scale- MSE contribution MSE

MSE

MSE (23)

where is the number of wavelet coefficients at scale .
The first term accounts for the signal components at scale

that are lost during Fourier shrinkage. The second term
approximates the actual wavelet oracle thresholding error

[27]. (See also [10]
for additional insights on the approximations.) We denote the
MSE -minimizing regularization parameter by and the
corresponding Fourier shrinkage by . As we will soon
see from the experimental results in Section VI-C4, also
nearly minimizes the actual error MSE , thereby balancing
the amount of Fourier and wavelet shrinkage.

2) Optimal Fourier Shrinkage: We state the following re-
sult about the optimal that balances the amount of Fourier
shrinkage and wavelet shrinkage at scale (see Appendix B for
the proof).

Proposition 1: In a ForWaRD system employing
Wiener-like Fourier shrinkage as in (13) and or-
acle wavelet shrinkage as in (17), the optimal scale-
regularization parameter satisfies

(24)

Here, denotes the number of wavelet
coefficients at scale that are larger in magnitude than
the noise standard deviation . In words, (24) says
that the approximate error in the scale- wavelet coefficients
is minimized when the regularization parameter determining
the Fourier shrinkage equals the proportion of the desired
signal wavelet coefficients with magnitudes larger than the
corrupting noise standard deviation. Since the noise standard
deviation is primarily determined by the Fourier structure of
the convolution operator, we can infer that the balance between
Fourier and wavelet shrinkage is simultaneously determined by
the Fourier structure of the operator and the wavelet structure
of the desired signal.

Proposition 1 quantifies the intuition that signals with more
economical wavelet representations should require less Fourier
shrinkage. To better understand Proposition 1, see Fig. 5, which
displays the Blocks and the TwoChirps test signals and their
wavelet coefficient time-scale plots. The Blocks signal has an
economical wavelet-domain representation; therefore, only a
small number of wavelet coefficient magnitudes would exceed a
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(a) (b)

Fig. 5. Effect of economical wavelet-domain signal representation on optimal Fourier shrinkage in ForWaRD. (a) Blocks test signal (top) wavelet coefficient
time-scale plot (middle) is illustrated with a darker shade indicating a larger magnitude for the coefficient w corresponding to the wavelet basis function at
scale j and localized at time 2 `. The wavelet coefficient magnitudes at the scale j , marked by a solid horizontal line in the middle plot, are illustrated in the
bottom plot. Since the number of coefficients exceeding a typical noise standard deviation � , marked by a solid horizontal line in the bottom plot, is small for
the economically represented Blocks signal, the � would be � 0. (b) In contrast, the TwoChirps test signal (top) has an uneconomical wavelet representation.
Hence, the optimal amount of Fourier shrinkage will be large, with � � 1.

typical noise standard deviation at scale . For Blocks, (24)
would advocate a small , and thus, most
[see (13)]; hence, most Fourier components would be retained
during Fourier shrinkage. However, a substantial amount of
noise would also leak through the Fourier shrinkage. Therefore,
many , and only the few dominant wavelet compo-
nents would be retained during subsequent wavelet shrinkage.
On the other hand, for a signal with an uneconomical wavelet
representation like TwoChirps, (24) would advocate a large

, and thus, most and most .
To summarize, (24) would recommend less Fourier and
more wavelet shrinkage for signals with economical wavelet
representations and vice versa for signals with uneconomical
wavelet representations. Thus, (24) balances the amount of
Fourier shrinkage and wavelet shrinkage in ForWaRD based on
the economy of the desired signal wavelet representation with
respect to the corrupting noise variance.

We clarify that while Proposition 1 provides valuable intu-
ition, it cannot be employed in a practical ForWaRD system be-
cause (24) requires knowledge of the desired signal’s wavelet
coefficient magnitudes.

3) Experimental Verification: We now experimentally
verify that the optimal ’s predicted by Proposition 1 balance
the amount of Fourier and wavelet shrinkage in ForWaRD and
lead to low overall MSE. The experimental setup consists of
the desired image, blurring function, and noise level described
in Section VIII. We assume complete knowledge of the desired
image’s wavelet coefficient magnitudes to perform oracle
thresholding and to compute the optimal ’s by (24). The
first column in Table I specifies the 2-D wavelet subbands
at each scale —highpass vertically and horizontally (HH),
highpass vertically and lowpass horizontally (HL), and lowpass
vertically and highpass horizontally (LH). The second column
lists the optimal MSE -minimizing computed using
(24) for each scale and subband. The third column lists the

TABLE I
EXPERIMENTAL VERIFICATION THAT (24) BALANCES FOURIER AND WAVELET

SHRINKAGE IN FORWARD

’s that minimize the actual MSE in each subband at scale .
The fourth column lists the percentage increase in the actual
MSE due to using the ’s instead of the ’s that minimize
the actual MSE. Even for the worst case (first row), the MSE
performance with the differs from the best possible MSE
performance by less than 7%. Thus, the experiment verifies that
the from (24) nearly minimize the actual MSE in ForWaRD.

D. Asymptotic ForWaRD Performance and Optimality

We now analyze the asymptotic ForWaRD MSE perfor-
mance (as the number of signal samples ) and prove
its optimality in recovering Besov space signals. Considering
asymptotic performance is natural because with technological
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advances, the resolution of signals and images is continually in-
creasing. We will perform our analysis using a number of steps.
We assume a ForWaRD system that employs Fourier–Tikhonov
shrinkage, as in (14), and employs wavelet hard thresholding, as
in (18). For such a system, assuming that the Fourier–Tikhonov
shrinkage remains unchanged with and assuming mild con-
ditions on , we first establish in Proposition 2 the behavior
of the distortion due to Fourier shrinkage and the error due
to wavelet shrinkage as . Then, in Proposition 3,
by allowing the Fourier–Tikhonov shrinkage to decay with

, we prove that for scale-invariant deconvolution problems,
ForWaRD also enjoys the same optimal rate of MSE decay as
the WVD.

Proposition 2: For a ForWaRD system with
Fourier–Tikhonov shrinkage , as in (14), with fixed
and wavelet hard thresholding , as in (18), the per-sample
distortion due to loss of signal components during Fourier
shrinkage

(25)

as , where is a constant. Further, if the under-
lying continuous-time , ,

, and is a convolution operator whose squared-magnitude
frequency response is of bounded variation over dyadic fre-
quency intervals, then the per-sample wavelet shrinkage error in
estimating the signal part retained during Fourier shrinkage
with decays with as

(26)

where is a constant, and is the ForWaRD estimate.
Refer to Appendix C for the proof of (26); the proof of (25) is

immediate. The bounded variation assumption is a mild smooth-
ness requirement that is satisfied by a wide variety of . The
bound (26) in Proposition 2 asserts that ForWaRD’s wavelet
shrinkage step is extremely effective, but it comes at the cost
of a constant per-sample distortion (assuming is kept constant
with ).

Consider an example using with frequency response
, , for which the WVD is optimal.

The per-sample ForWaRD MSE (assuming constant with
) decays with a rapid rate of but converges to a

nonzero constant. In contrast, the per-sample WVD MSE de-
cays to zero but with a slower rate of [see (20)]
[5]. Thus, the drawback of the asymptotic bias is offset by the
much improved ForWaRD MSE performance at small sample
lengths. To experimentally verify ForWaRD’s asymptotic
performance and compare it with WVD, we blurred the 1-D,
zero-mean Blocks test signal [see the top part of Fig. 5(a)] using

with a DFT response and added
noise with variance for ranging from to . To
obtain the ForWaRD estimate, we employ Fourier–Tikhonov
shrinkage using (14) with . For both the
ForWaRD and WVD estimate, we employ wavelet shrinkage
using (18) with [7], [27]. Fig. 6(a) verifies
that ForWaRD’s Fourier distortion error stays unchanged with

Fig. 6. MSE performance of ForWaRD compared with the WVD [5] for
different N . The MSE incurred by ForWaRD’s wavelet shrinkage step decays
much faster than the WVD’s MSE with increasing N , whereas the Fourier
distortion error saturates to a constant.

; the smaller the Fourier shrinkage (smaller ), the smaller
the distortion. However, ForWaRD’s wavelet shrinkage error
decays significantly faster with increasing than the overall
WVD error. Consequently, the overall ForWaRD MSE remains
below the WVD MSE over a wide range of sample lengths
that are of practical interest.

If is kept fixed with increasing , then the WVD MSE
will eventually catch up and improve on the ForWaRD MSE.
We now show that if the controlling the Fourier shrinkage
in ForWaRD is tuned appropriately at each , then as stated
in Proposition 3, ForWaRD will also enjoy an asymptotically
optimal MSE decay rate like the WVD.

Proposition 3: Let ,
, , , and let be an operator with

frequency response , . Consider
a ForWaRD system with Fourier–Tikhonov shrinkage , as
in (14), and wavelet hard thresholding , as in (18). If the
parameterizing is tuned such that

(27)

with

(28)

for some constant , then the per-sample ForWaRD MSE
decays as

(29)

as with a constant. Further, no estimator
can achieve a faster error decay rate than ForWaRD for every

.
The basic idea behind the proof is to show that both the

wavelet shrinkage error (26) and the Fourier distortion error
(25) decay as (see Appendix D for details). It
is easy to infer that the wavelet shrinkage error decays as fast
as the WVD error due to the relatively lower noise levels after
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Fourier shrinkage. The Fourier distortion error monotonically
increases with . We prove that a that decays as drives
the Fourier distortion error to also decay as . For
example, Proposition 3 guarantees that if , ,
and at each with , then the per-sample
ForWaRD MSE will decay at the optimal rate of as

.
Further, tuning to precisely minimize the ForWaRD MSE

at each would ensure that the ForWaRD MSE curve remains
below (or at least matches) the WVD’s MSE curve at all sample
lengths for scale-invariant . This follows from the fact that for

, ForWaRD is trivially equivalent to the WVD.
ForWaRD can also match or improve upon the performance

of adapted mirror-wavelet deconvolution [2]. To experi-
mentally compare the MSE performance of ForWaRD with
mirror-wavelets, we blurred the 1-D, zero-mean Blocks test
signal [see the top of Fig. 5(a)] using with a DFT response

. The mirror-wavelet approach is
designed to optimally tackle such a hyperbolic deconvolution
problem [2]. We fixed the number of samples at
and varied the amount of additive noise so that the blurred
signal-to-noise ratios (BSNRs) ranged from 10 to 35 dB. The
BSNR is defined as ,
where denotes the mean of the blurred image
samples. To obtain the ForWaRD estimate at each BSNR, we
employed Fourier–Tikhonov shrinkage using . In the
wavelet and mirror-wavelet domain, we employed shrinkage
using (18) with to obtain the ForWaRD and
mirror-wavelet estimate, respectively. In Fig. 7(b), the MSE
incurred by ForWaRD’s wavelet shrinkage step decays much
faster than the mirror-wavelet’s MSE with increasing BSNR
(that is, with reducing noise), whereas the Fourier distortion
error stays constant. The overall ForWaRD MSE stays below
the mirror-wavelet MSE over the entire BSNR range. The For-
WaRD performance demonstrated in Fig. 7(b) gives us reason
to conjecture that ForWaRD with appropriately chosen Fourier
shrinkage should match mirror-wavelet’s optimal asymptotic
performance in hyperbolic deconvolution problems.

VII. FORWARD IMPLEMENTATION

To ensure good results with ForWaRD, the noise variance ,
the Fourier shrinkage, and the wavelet shrinkage need to be set
appropriately.

A. Estimation of

The variance of the additive noise in (1) is typically
unknown in practice and must be estimated from the observation

. The noise variance can be reliably estimated using a median
estimator on the finest scale wavelet coefficients of [19].

B. Choice of Fourier Shrinkage

In practice, we employ Fourier–Tikhonov shrinkage [see
(14)] with the parameter set judiciously. We desire to
choose the that minimizes the ForWaRD MSE . How-
ever, since is unknown, we set such that the ForWaRD esti-

Fig. 7. MSE performance of ForWaRD compared to the mirror-wavelet basis
approach [2] at different BSNRs.

mate agrees well with the observation . That is, we choose the
that minimizes the observation-based cost

(30)
where , and
is the mean value of . The term

[see (12)] simply weighs the error
between the blurred estimate and the observation at the dif-
ferent frequencies to appropriately counter-balance the effect
of . The that minimizes the cost (30) provides
near-optimal MSE results for a wide variety of signals and
convolution operators. For example, for the problem setup
described in Section VIII with 40 and 30 dB BSNRs, Fig. 8(a)
and (b) illustrate that the ’s minimizing (30) yield estimates
whose MSEs are within 0.1 dB of the minimum possible
MSEs. Since the MSE performance of ForWaRD is insensitive
to small changes around the MSE-optimal , a logarith-
mically spaced sampling of the typically observed -range

is sufficient to efficiently
estimate the best and determine the Fourier shrinkage .

C. Choice of Wavelet Basis and Shrinkage

Estimates obtained by shrinking DWT coefficients are not
shift-invariant, that is, translations of will result in different
ForWaRD estimates. We exploit the redundant, shift-invariant
DWT to obtain improved shift-invariant estimates [7] by av-
eraging over all possible shifts at computational
cost for -sample signals. (Complex wavelets can also be em-
ployed to obtain near shift-invariant estimates at reduced com-
putational cost [30], [31].) We shrink the redundant DWT coef-
ficients using the WWF [see (19)] rather than hard thresholding
due to its superior performance.

VIII. RESULTS

We illustrate the performance of ForWaRD (implemented as
described in Section VII) using a 2-D deconvolution problem
described by Banham et al. [12]. A self-contained Matlab im-
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(a) (b)

Fig. 8. Choice of Fourier–Tikhonov regularization parameter � . In each plot, the solid line denotes the observation-based cost (30) and the dashed lines denotes
the actual MSE; the respective minima are marked by “�” and “�.” The plots illustrate that the cost (30)-minimizing � ’s at 40 and 30 dB BSNRs yield estimates
whose MSEs are within 0.1 dB of the minimum possible MSE.

plementation of ForWaRD is available at www.dsp.rice.edu/soft-
ware to facilitate easy reproduction of the results. We choose the
256 256 Cameraman image as the and the 2-D 9 9-point
box-car blur with discrete-time system response

for and 0 otherwise. We set the additive
noise variance such that the BSNR is 40 dB.

Fig. 4 illustrates the desired , the observed , the LTI
Wiener filter estimate, and the ForWaRD estimate. The regu-
larization determining the Fourier–Tikhonov
shrinkage is computed as described in Section VII-B. The

required by the LTI Wiener filter is estimated using
the iterative technique of [3]. As we see in Fig. 4, the ForWaRD
estimate, with signal-to-noise ratio SNR 22.5 dB, clearly
improves on the LTI Wiener filter estimate, with SNR
20.8 dB; the smooth regions and most edges are well-pre-
served in the ForWaRD estimate. In contrast, the LTI Wiener
filter estimate displays visually annoying ripples because
the underlying Fourier basis elements have support over the
entire spatial domain. The ForWaRD estimate also improves
on the multiscale Kalman estimate proposed by Banham
et al. [12] in terms of improvement in signal-to-noise-ratio
ISNR . (During ISNR

calculations, the is aligned with the estimate by undoing the
shift caused by the convolution operator. For the 9 9 box-car
operator, is cyclically shifted by coordinates (4,4) toward the
top-left corner to the minimize the ISNR [16].) Banham et al.
report an ISNR of 6.7 dB; ForWaRD provides an ISNR of 7.3
dB . For the same experimental setup but with a substantially
higher noise level of BSNR 30 dB, ForWaRD provides an
estimate with SNR 20.3 dB and ISNR 5.1 dB compared
with the LTI Wiener filter estimate’s SNR 19 dB and ISNR
3.8 dB. Both the WVD and mirror-wavelet basis approaches
[2] are not applicable in these cases since the box-car blur used
in the example has multiple frequency-domain zeros.

IX. CONCLUSIONS

In this paper, we have proposed an efficient, hybrid
Fourier-Wavelet Regularized Deconvolution (ForWaRD) al-

gorithm that effectively combines and balances scalar Fourier
shrinkage and wavelet shrinkage. The motivation for the
hybrid approach stems from the realization that deconvolution
techniques relying on scalar shrinkage in a single transform
domain—for example, the LTI Wiener deconvolution filter
or the WVD—are inadequate to handle the wide variety of
practically encountered deconvolution problems. ForWaRD
can be potentially employed in a wide variety of applications,
including satellite imaging, seismic deconvolution, and channel
equalization.

Theoretical analysis of an idealized ForWaRD algorithm
reveals that the balance between the amount of Fourier and
wavelet shrinkage is simultaneously determined by the Fourier
structure of the convolution operator and the wavelet structure
of the desired signal. By analyzing the ForWaRD’s MSE decay
rate as the number of samples increases, we have proven that
ForWaRD is also asymptotically optimal like the WVD for
certain deconvolution problems.

In 2-D simulations, ForWaRD outperforms the LTI Wiener
filter in terms of both visual quality and MSE performance. Fur-
ther, even for problems suited to the WVD, ForWaRD demon-
strates improved performances over a wide range of practical
sample-lengths.

There are several avenues for future ForWaRD-related
research. An interesting twist to ForWaRD would be to
first exploit the wavelet domain to estimate from the
noisy observation and then invert the convolution oper-
ator. This technique, which is called the vaguelette-wavelet
decomposition (VWD), has been studied by Silverman and
Abramovich [32]. The salient point of such a technique is that
the wavelet-domain estimation now deals with white noise in-
stead of colored noise. However, like the WVD, this technique
is also not adequate for all types of (for example, a box-car
blur). Construction of a universally applicable deconvolution
scheme lying between WVD and VWD appears promising but
challenging.

In ForWaRD, we have assumed knowledge of the convolu-
tion operator. However, in many cases, the convolution operator



430 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 2, FEBRUARY 2004

is unknown. In such “blind” deconvolution problems, the con-
volution system must be estimated from the observations. An
interesting open problem is to adapt the ForWaRD framework
to perform the operator estimation and deconvolution interde-
pendently.

APPENDIX A
FORMAL WVD ALGORITHM

We briefly review the WVD algorithm as applied to decon-
volve discrete-time circular convolution operators [5]. WVD
relies on functionals called vaguelettes to simultaneously
invert and compute the wavelet transform. The act on
the noiseless data to yield the wavelet coefficients of
the signal [5]

(31)

Here, is a scale-dependent parameter that normalizes
the vaguelette norm . For example, , when

[5]. Since inner products are preserved
under orthogonal transformations, (31) can be rewritten using
the Karhunen–Loeve transform for discrete-time circular
convolution (the DFT) as

(32)

with and denoting the respective DFT repre-
sentations of and . Since (32) holds for any , we can
infer that each DFT component of can be expressed as

(33)

where is the complex conjugate of .
The WVD employs the vaguelettes to perform deconvo-

lution as follows.
1) Project the observation onto the vaguelettes to compute the
noisy wavelet coefficients.

Compute the wavelet coefficients of the noisy in (2) as
[see (31)]

(34)

2) Shrink the noisy wavelet coefficients.
Compute using shrinkage . For ex-

ample, employ hard thresholding (18) [5], [27] with the com-
puted as in (21) but with all .
3) Invert the wavelet transform to compute the WVD estimate.

Reconstruct the WVD estimate as .
Thus, the WVD algorithm performs deconvolution by first

inverting the convolution operator and then employing scalar
shrinkage in the wavelet domain.

APPENDIX B
DERIVATION OF OPTIMAL REGULARIZATION PARAMETERS

Our goal is to prove Proposition 1. We will find the optimal
regularization parameter by differentiating MSE from
(23) with respect to and setting the derivative equal to zero.

The MSE in (23) can be rewritten as

MSE

(35)

Differentiating the first term in (35) with respect to , we have

(36)

Differentiating the second term in (35) with respect to , we
have for almost every (in the measure-theoretic sense)

(37)

Using (21) with , we have

(38)

Hence, from (37) and (38), for almost every , we have

(39)

The terms obtained by differentiating MSE from (35)
with respect to are given by (36) and (39). Setting the deriva-
tive of MSE to zero and denoting the satisfying solution
by , we have

(40)

which yields the expression (24) for the optimal regularization
parameter.

APPENDIX C
DECAY RATE OF WAVELET SHRINKAGE ERROR IN FORWARD

Here we will bound the asymptotic error (26) in estimating
the signal part retained during Fourier shrinkage via wavelet
scalar shrinkage. The estimation problem solved by the wavelet
shrinkage step in ForWaRD (see Step 2 in Section VI-A) is the
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following: Estimate the retained signal from the noisy
observation [see also (12)]

(41)

To deduce (26), we first justify in Appendix C-A that the contin-
uous-time retained signal when the desired signal

. Then, in Appendix C-B, we prove (26) by invoking
established bounds on the MSE performance of wavelet-domain
scalar estimation of signals observed in white Gaussian
noise [19], [20].

A. Besov Smoothness of Distorted Signal

We will show that if , then for a wide variety
of , including those with a smooth frequency response,

. The is obtained by the action on
of a circular convolution operator with frequency response

. Consider the variation
of over dyadic frequency intervals, which are defined
as . When the variation of

over each dyadic interval is bounded,
then lies in the set of operators that map an signal to
another signal according to the Marcinkeiwicz’s Multiplier
Theorem [33, p. 148]. From [34, p. 131–132, Thms. 3 and 4],
the set , , with denoting the set
of operators that map any signal into another signal.
Hence, we can infer that if ’s frequency response has bounded
variation over dyadic intervals, then . Further, it is
easy to show that if the squared-magnitude frequency response

enjoys bounded variation over dyadic intervals,
then so does ’s frequency response. The bounded variation
condition is simply a smoothness constraint. Hence, we can
infer from the previous argument that if the frequency response
of is smooth and if , then . For
many other as well, . The rich set of
can be precisely characterized by the necessary and sufficient
condition in [34, pg. 132, Th. 4]. Hence, the retained signal

when .

B. Wavelet-Domain Estimation Error: ForWaRD versus Signal
in White Noise

The estimation problem (41) is similar to the well-studied
setup (16) of signal estimation in white noise but with colored
corrupting noise . The variance of is bounded
at all wavelet scales because we can easily infer from (21) that
for Fourier–Tikhonov shrinkage

(42)

Because the estimation error due to wavelet thresholding is
monotone with respect to the noise variance [5], the error in
estimating from (41) using wavelet-domain scalar thresh-
olding is less than the error in estimating when observed
in white noise of variance . Further, ,

, , from Appendix C-A. Hence, the
per-sample MSE in estimating from (41) can be bounded
with the decay rate established for the white
noise setup (see Section IV-C). This yields (26) with constant

.

APPENDIX D
DECAY RATE OF TOTAL FORWARD MSE

Our proof of Proposition 3 proceeds by individually bounding
the wavelet shrinkage error and the Fourier distortion error. The

with different ’s denote constants in the proof.

A. Bounding the Wavelet Shrinkage Error

It is straightforward to infer that the per-sample wavelet
shrinkage error in ForWaRD decays at least as fast as the WVD
error, that is

(43)

This follows because first, for any , the noise variance en-
countered by wavelet shrinkage in ForWaRD at all scales is less
than or equal to that encountered in WVD for the same setup.
Second, for reasons similar to those outlined in Appendix C-A,

.

B. Bounding Fourier Distortion Error

The per-sample Fourier distortion error, which we will now
bound, can be expressed as

(44)

Since this error increases monotonically with , we merely
need to show that for , the error decays like

. Setting and
in (44), we have

(45)

The second summation in (45) captures the total energy of
the high-frequency components of convolved with the
sampling kernel. For any signal, the total energy of the high-fre-
quency components can be bounded using the energy of the
signal’s fine-scale Shannon or Meyer wavelet coefficients [7].
The energy of any signal’s fine-scale wavelet coefficients
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can in turn be bounded using [20, Lemma 2.2]. The
convolved with typical sampling kernels (for the same
reasons outlined in Appendix C-A). Hence, we can bound the
second summation in (45) using [20, Lemma 2.2] and then
using (28) as

(46)

The zero-frequency term of the first summation in (45) can also
be easily bounded using (28) as

(47)
The nonzero frequency terms of the first summation in (45) can
be written as

if

otherwise

using (28) (48)

Using (44)–(48), we can thus infer that the Fourier shrinkage
term also decays as with increasing . Since
the total ForWaRD MSE can be bounded using twice the sum
of the wavelet shrinkage error and the Fourier distortion, we can
infer (29). Further, since the ForWaRD MSE decay rate matches
the WVD MSE decay rate [see (20)], which is optimal for this
setup (see Section V-B), we can also infer that no estimator
can achieve a faster MSE decay rate than ForWaRD for every

.
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