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1 Introduction

How does aggregate demand respond to forward guidance, that is, to news about future monetary policy?

How does aggregate supply respond to news about future productivity? How do asset prices respond to

news about future earnings?

Standard practice in macroeconomics and finance is to address such questions by assuming rational

expectations along with common knowledge of the relevant news and of the structure of the economy. This

imposes that the agents have a perfect and common understanding of the effects of the news on current and

future economic outcomes. For instance, in the context of forward guidance, it is standard to assume not

only that everybody is aware of and attentive to the policy announcement, but also that nobody doubts the

awareness, the attentiveness, and the responsiveness of other agents. As a result, the agents have no doubts

about how inflation and income—the product of the behavior of others—will adjust.

In this paper, we accommodate such doubts by removing common knowledge of the relevant news

and introducing higher-order uncertainty, that is, by allowing the agents to be uncertain about the beliefs

and the responses of others. This friction can be the by-product of either dispersed private information, as

in Lucas (1972) and Morris and Shin (2002), or rational inattention and costly contemplation, as in Sims

(2003) and Tirole (2015). It can thus be interpreted interchangeably as a form of coordination failure that

is consistent with equilibrium uniqueness, and as a form of bounded rationality that is consistent with the

rational-expectations equilibrium concept.

Our contribution is to show that this friction attenuates general-equilibrium effects, such as those asso-

ciated with the Keynesian multiplier and the inflation-spending feedback in the New Keynesian model, and

causes the economy to respond to news about the future as if the agents were myopic. These insights shed

new light on topical policy questions such as the power of forward guidance and the optimal timing of fiscal

stimuli. More generally, they highlight the fragility of predictions that rest on long series of forward-looking,

general-equilibrium feedback loops.

The New Keynesian Model without Common Knowledge. In Sections 3 and 4, we revisit the New Key-

nesian model, relax its common-knowledge assumptions, and show how its building blocks, the modern

versions of the IS and Philips curves, can be embedded into a class of games that we call dynamic beauty

contests. This serves three goals. First, it clarifies the three general-equilibrium (GE) mechanisms that oper-

ate within the New Keynesian model: the spending-income multiplier running within the demand block, the

strategic complementarity in price-setting running within the supply block, and the inflation-spending feed-

back running across the two blocks. Second, it unearths the role of higher-order beliefs that lie underneath

these mechanisms. Third, it motivates the more abstract analysis of Section 5.

GE Attenuation and the Horizon Effect in Dynamic Beauty Contests. Section 5 studies a class of games

in which optimal decisions today depend positively on expectations of the future decisions of others. It nests

the building blocks of the New Keynesian model, but is not limited to them.1

1Note the crucial difference from the static beauty contests studied in Morris and Shin (2002), Woodford (2003a), Angeletos
and Pavan (2007), and Bergemann and Morris (2013): in these works, behavior is not forward-looking.
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Within this framework, we ask the following question: How does the aggregate outcome today (at t = 0)

respond to the news about the fundamental in a future date (at t = T ≥ 1)? In our leading application

(forward guidance), this question refers to the response of aggregate spending and employment to the news

about the policy rate T periods later.

Clearly, the answer to this question depends on how precise and credible the news is, because these

factors control how much the forecasts of the policy instrument, or other fundamentals, vary in the first

place. But this is not what we are after in this paper. Instead, we study the response of the aggregate

outcome relative to that of the aforementioned forecasts.

Denote this relative response by ϕT . Next, let ϕ∗
T be the value that obtains in the frictionless, common-

knowledge benchmark. This can be decomposed into two components:

ϕ∗
T = ϕPE

T + ϕGE
T ,

where ϕPE
T captures the direct or partial-equilibrium (PE) effect, namely the response of the typical agent

holding constant the response of others, and ϕGE
T captures the additional, general-equilibrium (GE) effect.2

Under quite general assumptions on the information structure, we establish the following three properties

about the value of ϕT that obtains away from the common-knowledge benchmark.

1. The lack of common knowledge dulls the GE effect. As a result, ϕT is bounded between ϕPE
T and ϕ∗

T ,

and is closer to ϕPE
T when there is more higher-order uncertainty. We refer to this property as “GE

attenuation.”

2. This attenuation is stronger the longer the horizon of the news or, equivalently, the longer the series of

forward-looking, general-equilibrium feedback loops. As a result, the ratio ϕT /ϕ
∗
T decreases with T.

We refer to this property as the “horizon effect.”

3. Under a mild condition, the attenuation grows without bound, and ϕT becomes vanishingly small

relative to ϕ∗
T , as T → ∞. This is our “limit result.”

Let us explain the reasoning behind these findings. To begin with, note that the GE effect is driven by beliefs

of the future behavior of others. In equilibrium, these beliefs can be expressed as functions of the hierarchy

of beliefs of the future fundamental (e.g., the future policy rate). Understanding the GE effect is therefore

akin to understanding the hierarchy of beliefs.

In the common-knowledge benchmark, the role of higher-order beliefs is concealed due to the property

that higher-order beliefs co-move perfectly with first-order beliefs. But this property is degenerate: away

from that benchmark, higher-order beliefs tend to move less than lower-order beliefs, because they are

more anchored to the common prior. By the same token, the expectations of future endogenous outcomes

adjust relatively little to the news and the GE effect is attenuated. This proves our first result.
2In our framework, the two components have the same sign, meaning that the GE effect reinforces the PE effect. Furthermore,

PET can decrease with T , because of the discounting embedded in individual preferences. Yet, GET can increase with T, and
may even explode as T → ∞, because of powerful general-equilibrium feedback loops.
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Our second result, the horizon effect, follows from the combination of the aforementioned anchoring of

higher-order beliefs with a property that is embedded in the class of forward-looking games studied in this

paper. In this class, longer horizons raise the relative importance of higher-order beliefs in equilibrium out-

comes, thus also reinforcing the attenuation effect. This is because longer horizons involve more iterations

of the forward-looking, Euler-like equations of the model, which in turn map to beliefs of higher order. In a

nutshell, iterating on dynamic GE feedback loops is akin to ascending the hierarchy of beliefs.

Finally, our limit result follows from combining the above insight with the fact that infinite-order beliefs

are pegged at the common prior and are therefore unresponsive to the news, even if the level of inatten-

tiveness, or the idiosyncratic noise in the observation and interpretation of the news, is arbitrarily small.

This result can be seen as a sharp illustration of the horizon effect. But it also contains the following les-

son: predictions that hinge on long series of GE feedback loops are particularly fragile to relaxations of the

complete-information, rational-expectations benchmark.3

We complement these results with another, which recasts the informational friction as a form of myopia:

accommodating higher-order uncertainty is akin to having the representative agent discount the future more

heavily at the aggregate level than what is rational at the individual level. Furthermore, the as-if discounting

is larger the stronger the underlying GE effect.4

Policy Lessons. Suppose that the economy is in a liquidity trap and the zero lower bound (ZLB) on the

nominal interest rate binds between today, t = 0, and some future date, t = T − 1 for some known T ≥ 2.

Because of this constraint, the monetary authority is unable to stimulate the economy by reducing its current

policy rate. It can nevertheless try to achieve the same goal by committing to low rates at t = T (or later).

The baseline New Keynesian model predicts that the effectiveness of this kind of forward guidance increases

with T and explodes as T → ∞. What is more, the effect is quantitatively huge even for modest T .

These predictions constitute the so-called forward guidance puzzle (Del Negro, Giannoni and Patterson,

2015; McKay, Nakamura and Steinsson, 2016b). They are at odds not only with the available evidence

(Campbell et al., 2012), but also with the logic that news regarding the distant future should be heavily

discounted. This logic is based on PE reasoning. The puzzling predictions are driven by GE effects.

As noted earlier, there are three GE mechanisms at work: the modern version of the Keynesian mul-

tiplier, which runs inside the demand block; the dynamic strategic complementarity in the price-setting

decisions of the firms, which runs inside the supply block; and the inflation-spending feedback, which runs

across the two blocks. There mechanisms act as multipliers of the PE effects of monetary policy. Removing

common knowledge arrests these multipliers, thus also bringing the predictions of the model closer to the

aforementioned PE logic.

To illustrate, suppose that each agent worries that any other agent is unaware of, or inattentive to, the

policy news with a 25 percent probability. Under a textbook parameterization (Galí, 2008), this kind of

3In the New Keynesian model, examples of such predictions include not only those regarding the power of forward guidance,
but also those regarding the indeterminacy of interest-rate pegs and the so-called neo-Fisherian effects.

4Apart from offering a sharp representation of how the absence of common knowledge modifies the forward-looking behavior
of the economy, this result also rationalizes the kind of myopia assumed in Gabaix (2016).

3



doubt reduces the power of forward guidance by about 90 percent at the 5-year horizon. Importantly, this

attenuation is relative to the movements in expectations of interest rates. Our theory therefore helps explain

why forward guidance may have a modest effect on expectations of inflation and income, and on actual

activity, relative to its effect on the yield curve.

Turning to fiscal policy, the standard New Keynesianmodel predicts that, in the presence of a binding ZLB

constraint, a fiscal stimulus of a given size is more effective when it is back-loaded, i.e. when it is announced

now but implemented later on. This prediction hinges on the same GE feedback loops as those that govern

the power of forward guidance. A variant of the aforementioned results therefore offers a rationale for the

front-loading of fiscal stimuli: such front-loading improves coordination in the sense of reducing the bite of

higher-order uncertainty.

Remark. Our work invites the analyst to study the role of higher-order beliefs. It does not, however,

require that the agents themselves engage in higher-order reasoning. Instead, as in any rational-expectations

context, it suffices that their expectations of the relevant economic outcomes, such as inflation and income,

are consistent with actual behavior. From this perspective, our analysis is a revision of the predictions that

the analyst can make, once she liberates the rational-expectations hypothesis from the auxiliary assumption

that the agents face no doubts about the information, or the attentiveness, of others.

Layout. Section 2 discusses the related literature. Section 3 introduces our version of the New Keynesian

model. Section 4 nests the demand and supply blocks of that model within the class of dynamic beauty

contests that we consider. Section 5, which is self-contained, studies this class of games and develops the

key theoretical results. Sections 6 and 7 work out the implications for, respectively, monetary and fiscal

policy. Section 8 concludes the main text. The Appendix contains the proofs and additional results.

2 Related Literature

On the theoretical side, our paper builds heavily on themacroeconomic literature on incomplete information

and beauty contests.5 Some of this literature, including Morris and Shin (2002) and Woodford (2003a),

focuses on static beauty contests, namely settings in which the agents only have to forecast the concurrent

actions of others. By contrast, Allen, Morris and Shin (2006), Bacchetta and vanWincoop (2006), Morris and

Shin (2006), and Nimark (2008, 2017) study dynamic beauty contests, namely settings in which the agents

must forecast the future actions of others. Our paper shares with the latter set of works the emphasis on

forward-looking expectations. But whereas these works focus on the effects of learning, our paper focuses

on the horizon of the events that the agents have to forecast.

On the applied side, our paper adds to the recent literature on the forward-guidance puzzle. Del Negro,

Giannoni and Patterson (2015) and McKay, Nakamura and Steinsson (2016b) seek to resolve the puzzle

by introducing short horizons and liquidity constraints, and Andrade et al. (2015) do so by letting forward

guidance confound good news about the future policy instrument with bad news about other fundamen-

5See Angeletos and Lian (2016c) for a survey.
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tals. We make an orthogonal point: we show how higher-order uncertainty anchors income and inflation

expectations, thus attenuating the GE effects of forward guidance.

Related forms of GE attenuation can be found in Farhi andWerning (2017) and Gabaix (2016). Farhi and

Werning (2017) obtain such attenuation by replacing Rational Expectations Equilibrium (REE) with Level-

k Thinking, an approach that follows the lead of Garcıa-Schmidt and Woodford (2015). Gabaix (2016)

achieves the same goal by assuming that beliefs are biased in the direction of underestimating the persistence

of the underlying shocks and of their effects on the economy. We refer the interested reader to Angeletos

and Lian (2016a) for a detailed exposition of how these approaches connect to and differ from ours.6

Closely related is the earlier work of Wiederholt (2015). That paper notes that higher-order uncertainty

can dull the inflation-spending feedback of the New Keynesian model, thus also reducing the power of

forward guidance. However, that paper does not consider how higher-order uncertainty can attenuate the

GE effects that run inside each block of the model. Most importantly, it does not consider how the impact

of higher-order uncertainty on equilibrium outcomes and the resulting weakening of forward guidance vary

with the horizon of the events that the agents need to forecast, which is the core contribution of our paper.

Finally, Chung, Herbst and Kiley (2015) and Kiley (2016) argue that some of the paradoxical predictions

of the New Keynesian model are resolved once the nominal rigidity is attributed to sticky information as in

Mankiw and Reis (2002). But this is largely because these works abstract entirely from the price stickiness

seen at the micro data and from the forward-looking aspect in the firms’ price-setting decisions. These works

also rule out information frictions among the consumers. They therefore do not share our insights regarding

the anchoring of forward-looking expectations and the attenuation of the associated GE effects.

3 Framework

In this section, we introduce the framework used for the applied purposes of the paper. This is the same as

the textbook New Keynesian model (Woodford, 2003b; Galí, 2008), except that we allow the agents to face

uncertainty about the information, the beliefs, and the behavior of others.

Consumers. There is a measure-one continuum of ex-ante identical consumers in the economy, indexed

by i ∈ Ic = [0, 1]. Preferences are given by

Ui,0 =
+∞∑
t=0

βtU(ci,t, ni,t), (1)

where ci,t and ni,t denote the consumer’s consumption and labor supply at period t, β ∈ (0, 1) is the discount

6Let us briefly note the key differences. Because our approach is compatible with the REE concept, it bypasses a challenge
faced by the aforementioned works, namely what the agents do when they experience again and again a reality that is inconsistent
with their beliefs. Our approach is also easier to reconcile with the evidence in Coibion and Gorodnichenko (2012, 2015) and
Vellekoop and Wiederholt (2017), which indicate that the dynamics of expectations, as measured in surveys, is broadly consistent
with models that maintain the REE concept but allow for informational frictions and slow learning. Finally, while the form of GE
attenuation captured by our approach is robust to settings in which GE effects offset PE effects (think of settings featuring strategic
substitutability), this is not the case for Level-k Thinking.
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factor, and U is the per-period utility function. The latter is specified as

U(c, n) = 1
1−1/σ c

1−1/σ − 1
1+ϵn

1+ϵ,

where σ > 0 is the elasticity of intertemporal substitution and ϵ > 0 is the inverse of the Frisch elasticity.

The budget constraint in period t is given, in real terms, by the following:

ci,t + si,t =
Rt−1

πt
si,t−1 + wi,tni,t + ei,t, (2)

where si,t is the consumer’s saving in period t, Rt−1 is the nominal gross interest rate between t − 1 and

t, πt ≡ pt/pt−1 is the gross inflation rate, pt is the aggregate price level at t, and wi,t and ei,t are the

real wage and the real dividend received by the consumer. The wage and the dividend are allowed to be

consumer-specific for reasons that will be explained shortly. We finally denote aggregate consumption by

ct =
∫
Ic ci,tdi, aggregate labor supply by nt =

∫
Ic ni,tdi, and so on.

Firms. There is a measure-one continuum of ex-ante identical firms, indexed by j ∈ If = (1, 2]. Each

of these firms is a monopolist that produces a differentiated intermediate-good variety. The output of firm j

is denoted by yjt , its nominal price is denoted by pjt , and its real profit is denoted by ejt . The technology is

assumed to be linear in labor and productivity is fixed to one, so that

yjt = ljt , (3)

where ljt is the labor input. These intermediate goods are used by a competitive sector as inputs in the

production of the final good. The technology is CES with elasticity ς > 1. Aggregate output is thus given by

yt =

(∫
If

(
yjt

) ς−1
ς

dj

) ς
ς−1

, (4)

The corresponding price index—that is, the nominal price level—is denoted by pt.

Sticky Prices. Nominal rigidity takes the familiar, Calvo-like, form: in each period, a randomly selected

fraction θ ∈ (0, 1] of the firms must keep prices unchanged, while the rest can reset them.

Monetary Policy. For the time being, we do not need to specify how monetary policy is conducted. To

fix ideas, however, it is useful to think of a situation where the agents know what the policy will be in the

short run (say, because the ZLB is binding) but face uncertainty about the policy in the more distant future.

In this context, the question of interest is how outcomes today vary with the expectations of the future policy.

Rational Expectations and Common Knowledge. Throughout, we impose Rational Expectations Equi-

librium (REE). We nevertheless depart from standard practice by removing common knowledge of the state

of Nature, accommodating higher-order uncertainty, and preventing the agents from reaching a consensus

on the future path of the economy.7

7By definition, the state of Nature contains the entire profile of the information sets in the population. Furthermore, in any given
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In abstract games, such as those studied in Morris and Shin (2002, 2003) or in Section 5 of our paper,

lack of common knowledge can be directly imposed by endowing each agent with exogenous private infor-

mation (or different Harsanyi types). In macro and finance applications, however, there is the complication

that market signals, such as prices, aggregate information. To preserve the absence of common knowl-

edge, we either have to make sure there is “noise” in the available market signals (Grossman and Stiglitz,

1980), or assume that the observation of all the relevant variables, including the available market signals, is

contaminated by idiosyncratic noise due to rational inattention (Sims, 2003).

We follow the first approach in our New Keynesian application in order to make clear that our policy

lessons are robust to allowing each consumer to observe her own income, each firm to observe her own

demand and supply conditions, and everybody to have common knowledge of the current monetary policy

and the current price level. We nevertheless like the second approach, too, because it bypasses the need for

the auxiliary shocks described below and because it allows the re-interpretation of the assumed friction as

“costly contemplation” (Tirole, 2015). Section 5 therefore allows for a flexible interpretation of the friction

under consideration and Appendix B sketches in more detail how our insights can be recast under the lenses

of rational inattention.

The Auxiliary Shocks. Take any period t and let wt, et, and µt denote, respectively, the average real

wage, the average firm profit, and the average markup in the economy. The real wage and the dividend

received by consumer i at t are given by, respectively, wi,t = wtξi,t and ei,t = etζi,t, where ξi,t and ζi,t are

i.i.d. across i and t, independent of one another, and independent of any other random variable in the

economy. On the other hand, the real wage paid by firm j is wj
t = wtu

j
t , and the markup charged by it is

µj
t = µtν

j
t , where ujt and νjt are i.i.d. across both j and t, independent of one another, and independent of

any other random variable in the economy. One can interpret ujt and νjt as idiosyncratic shocks to a firm’s

marginal cost and her optimal markup, and ξi,t and ζi,t as idiosyncratic shocks to a consumer’s labor and

financial income.8 Finally, the aggregate markup shock, µt, is also i.i.d. over time and independent of any

other variable.

As anticipated, the sole modeling role of all these shocks is to “noise up” the information that each

agent can extract from the available market signals. We can thus accommodate the desired friction while

allowing, in every t, each consumer i to have private knowledge of (wi,t, ei,t), each monopolist j to have

private knowledge of (wj
t , µ

j
t ), and everybody to have common knowledge of the current interest rate, Rt,

of the current prices, (pjt )j∈[0,1], and therefore also of the price level.

equilibrium, information sets pin down beliefs of all the endogenous outcomes. It follows that the state of Nature can encode
arbitrary news about the future, and that the agents can lack a common belief about the future outcomes only if they lack common
knowledge of the state of Nature.

8Although we treat these shocks as exogenous, it is not hard to fill in the missing micro-foundations. For instance, firm-specific
markup shocks can bemicro-founded by allowing for good-specific shocks to the elasticity of the demand faced by eachmonopolist.
Similarly, consumer- and firm-specific wage shocks can be justified by introducing idiosyncratic taste and productivity shocks,
letting labor markets be segmented, and allocating the agents in such a way that there is market-specific random variation in the
equilibrium wage, translating to idiosyncratic variation in the wage received by a consumer or the wage paid by a firm.

7



4 The New Keynesian Model as a Pair of Beauty Contests

In this section, we develop our beauty-contest representation of the New Keynesian model. Apart from

motivating the class of games studied in Section 5, this representation reveals how the GE effects of that

model are related to higher-order beliefs.

To keep the analysis tractable, we work with the log-linearization of the model around a steady state in

which inflation is zero and the nominal interest rate equals the natural rate (i.e. βR = 1). With abuse of

notation, we henceforth reinterpret all the variables as the log-deviations from their steady-state counterparts

and concentrate on the joint determination of πt and ct (or, equivalently, of πt and yt).

Proposition 1 (Beauty Contests) In any equilibrium, and regardless of the level of higher-order uncertainty,

the following properties are true. First, aggregate spending satisfies

ct = −σ

{
+∞∑
k=1

βk−1Ēc
t [rt+k]

}
+ 1−β

β

{
+∞∑
k=1

βkĒc
t [ct+k]

}
, (5)

where Ēc
t [·] denotes the average expectation of the consumers and rt ≡ Rt−1 − πt denotes the real interest

rate between t− 1 and t. Second, inflation satisfies

πt = κ

{
mct +

+∞∑
k=1

(βθ)k Ēf
t [mct+k]

}
+ 1−θ

θ

{
+∞∑
k=1

(βθ)k Ēf
t [πt+k]

}
+ κ µt, (6)

where Ēf
t [·] denotes the average expectation of the firms, mct denotes the real marginal cost in period t,

and κ ≡ (1− θ) (1− βθ) /θ. Finally, mct = (ϵ+ 1/σ)yt and yt = ct.

Condition (5) is a GE variant of the textbook version of the Permanent Income Hypothesis. It follows

from log-linearizing the individual consumption functions, aggregating them, and using market clearing in

the product, labor, and debt markets. It gives aggregate consumption in any given period as an increasing

function of the consumers’ expectations of future aggregate income, which in equilibrium coincides with

aggregate consumption, and as a decreasing function of their expectations of future real interest rates. Con-

dition (6), on the other hand, follows from the optimal price-resetting behavior of the firms. It gives the

rate of inflation as a function of the current real marginal cost and of the firms’ expectations of the future

marginal costs and the future inflation.

In the rest of this section, we first show that conditions (5) and (6) reduce to, respectively, the representa-

tive consumer’s Euler condition and the New Keynesian Philips Curve (NKPC) once higher-order uncertainty

is assumed away. This clarifies the sense in which our result “opens up” these familiar equations away from

the common-knowledge benchmark. We then expand on the three GE mechanisms that are embedded in

the model and on their relation to higher-order beliefs.
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Relation to the Euler Condition and the NKPC. To begin with, rearrange condition (5) as follows:

ct = −σĒc
t [rt+1] + (1− β)Ēc

t [ct+1]+ (7)

β

{
−σ

+∞∑
k=1

βk−1Ēc
t [rt+1+k] +

1−β
β

+∞∑
k=1

βkĒc
t [ct+1+k]

}
.

Next, compute ct+1 by applying condition (5) in period t+ 1, and take the period-t average expectation of

it:

Ēc
t [ct+1] = −σ

+∞∑
k=1

βk−1Ēc
t

[
Ēc

t+1[rt+1+k]
]
+ 1−β

β

+∞∑
k=1

βkĒc
t

[
Ēc

t+1[ct+1+k]
]
. (8)

Clearly, the term inside the big brackets in condition (7) is the same as the one in the right-hand side of

condition (8), except for the difference in the expectation operators. Can we use this observation to recover

the Euler equation of a representative consumer?

In the common-knowledge benchmark, the answer is yes. Because, in any period, all agents are assumed

to share the same information and the same belief, we have Ēc
t [·] = Et[·], where Et[·] denotes the rational

expectation conditional on the common information set, i.e. the information of the representative agent.

Using this fact and applying the Law of Iterated Expectations for the representative agent, we infer that, for

every k ≥ 1,

Ēc
t

[
Ēc

t+1 [rt+1+k]
]
= Et [Et+1 [rt+1+k]] = Et [rt+1+k] = Ēc

t [rt+1+k] ,

and similarly Ēc
t

[
Ēc

t+1 [ct+1+k]
]
= Ēc

t [ct+1+k]. That is, second-order beliefs coincide with first-order beliefs.

It follows that Ēc
t [ct+1] coincides with the term inside the brackets in condition (7). Therefore, this condition

reduces to the familiar, representative-agent Euler condition:

ct = −σ Et[rt+1] + Et[ct+1]. (9)

A similar argument establishes that, in the common-knowledge benchmark, condition (6) reduces to

πt = κmct + β Et [πt+1] + κ µt, (10)

which is the familiar NKPC.9

Away from the common-knowledge benchmark, the above argument breaks because the Law of Iterated

Expectations no longer holds for the average beliefs. In particular, as it will become clear in the next section,

the second-order beliefs of either the exogenous fundamentals or the endogenous outcomes do not coincide

with the corresponding first-order beliefs. In the present context, this means that

Ēc
t

[
Ēc

t+1[rt+1+k]
]
̸= Ēc

t [rt+1+k] and Ēc
t

[
Ēc

t+1[ct+1+k]
]
̸= Ēc

t [ct+1+k] .

9Using the facts thatmct = (ϵ+1/σ)yt and ct = yt, the NKPC can be restated as πt = κyt+βEt[πt+1]+ut,where κ ≡ (ϵ+1/σ)κ
is the slope of the NKPC with respect to output and ut ≡ κµt is the so-called cost-push shock.
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It follows that the term in the bracket in condition (7) does not coincide with Ēc
t [ct+1] and therefore

condition (5) does not reduce to the familiar Euler condition. The same logic explains why condition (6)

cannot be reduced to the familiar NKPC.

To recap, the key lesson so far is that the familiar representation of the New Keynesian model hinges

on the assumption that the agents share the same beliefs, not only about the exogenous impulses, such as

news about current or future monetary policy, but also about the future path of aggregate spending and

inflation. When this assumption is imposed, one can understand the equilibrium of the economy as the

solution to a single-agent decision problem: think of a fictitious agent, who controls the vector (ct, πt) and

whose optimal behavior is described by the dynamic system (9)-(10). When, instead, this assumption is

relaxed, the equilibrium of the economy is better understood as the solution to a complex, multi-layer game

among a large number of differentially informed players.10

The Economy as a Pair of Dynamic Beauty Contests. Consider first the behavior of the consumers and,

momentarily, treat the process for the real interest rate as exogenous. Condition (5) then defines a game in

which the players are the consumers, the actions are the consumers’ spending levels at different periods, and

the payoff-relevant fundamental is the path of real interest rates. This game is a dynamic beauty contest in

the sense that each consumer has an incentive to spend more now when she expects the other consumers to

spend more in the future. This is because higher aggregate consumption translates to higher income, which

in turn justifies more consumption today. Condition (5) therefore isolates the GE mechanism that runs inside

the demand block of the model that is known as the Keynesian multiplier.

Consider next the behavior of the firms and, momentarily, treat the process ofmct as exogenous. Condi-

tion (6) then defines a beauty-contest game in which the players are the firms, the actions are the prices, and

the relevant fundamental is the average real marginal cost. A dynamic strategic complementary is present in

this game because the optimal reset price of a firm depends on her expectation of the future path of the nom-

inal price level, which in turn depends on the decisions of other firms. Condition (6) therefore encapsulates

the GE mechanism that runs inside the supply block.

Finally, consider the interaction of the demand and the supply blocks, that is, the interaction of conditions

(5) and (6). This interaction can be understood as a meta-game between the consumers and the firms. This

meta-game features dynamic strategic complementarity in the following sense: the consumers find it optimal

to spendmore nowwhen they expect the firms to raise their prices in the future, because high inflationmeans

low real returns to saving; and, symmetrically, the firms find it optimal to raise their prices now when they

expect the consumers to spend more in the future, because high aggregate output means high marginal

costs. This GE mechanism is known as the inflation-spending feedback.

PE vs GE. Let us momentarily treat the process for the real rate as exogenous and concentrate on the
consumption beauty contest defined by condition (5).

Next, fix a t ≥ 0 and a k ≥ 2, and ask the following question: how does ct varies with the period-t

beliefs of rt+k, holding constant the beliefs of rt+k′ for all k′ ̸= k? This formalizes the question of how much

10These points explain the sense in which higher-order uncertainty can be interpreted as frictional coordination.
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aggregate spending moves in response to news about future real rates.

From condition (5), we readily see that, if we also hold constant Ēt[ct+k′ ] for all k′ ≥ 1, a one-unit

reduction in Ēt[rt+k] raises ct by βk−1σ. This can be interpreted as a PE effect because it measures the

response of the typical consumer to the interest rate faced by himself, holding constant his beliefs about

the future behavior of all other consumers, thus also holding constant his expectations of future income.11

By the same token, the GE effect is tied to how much the typical consumer expects the other consumers to

adjust their spending in the future.

FromGE to Higher-Order Beliefs. Understanding the adjustment in the expectations of aggregate spend-

ing and the associated GE effect is formally equivalent to understanding the hierarchy of beliefs.

For instance, consider Ēc
t [ct+1], the average expectation of the next-period aggregate spending. From

condition (5), ct+1 can be expressed as a function of the period-(t + 1) first-order beliefs of the future real

rates and the future aggregate spending. It follows that Ēc
t [ct+1] is a function of the period-t second-order

beliefs of the future rates and the future aggregate spending, a fact already shown in condition (8). Using

the same logic again and again, we can express the second-order beliefs of future spending—the last term

in condition (8)—as functions of third- and higher-order beliefs of the future real rates. We conclude that

understanding how the rational expectations of future aggregate spending and income adjust to news about

future real rates is formally the same as understanding how the first- and higher-order beliefs of the future

rates adjust to the news.

A similar point applies if we focus on the beauty contest defined by condition (6), or if we consider the

meta-game between the demand and the supply blocks of the economy: understanding the GE adjustment

to any news is equivalent to understanding the associated movement in the relevant higher-order beliefs.

This explains where we are heading next: by recasting the GE effects of news about the future in terms

of higher-order beliefs, we explain why these effects lose steam once one departs from the familiar but

unrealistic common-knowledge benchmark.

5 Dynamic Beauty Contests

This section contains the broader theoretical contribution of our paper. In this section, we side-step the

micro-foundations and establish our main insights within a more abstract class of dynamic beauty contests.

This class nests not only the two blocks of the New Keynesian model, but also other applications, such

as incomplete-information asset-pricing models in the tradition of Singleton (1987). Moreover, we remain

agnostic about the origins of higher-order uncertainty. This helps clarify that our lessons do not hinge on

whether such uncertainty is the product of dispersed private information or of cognitive constraints along

11Strictly speaking, this is the PE effect plus the “within-period” GE effect, namely, the feedback effect between aggregate spending
and the contemporaneous level of income. In the version of the model we have considered, this within-period GE effect is not
attenuated because each consumer knows perfectly her current income and each firm knows perfectly her current marginal cost.
Had we relaxed these assumptions, we could have attenuated this effect as well. In any event, this effect is of little interest since it
vanishes as the length of the time interval shrinks to zero, which justifies the interpretation of βT−1σ as the PE effect.
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the line of Sims (2003) and Tirole (2015).12

5.1 Set up

Time is discrete, indexed by t ∈ {0, 1, ...}, and there is a continuum of players, indexed by i ∈ [0, 1]. In each

period t, each agent i chooses an action ai,t ∈ R. We denote the corresponding average action by at and

let Θt ∈ R denote an exogenous fundamental that becomes commonly known in period t.

We specify the best response of player i in period t as follows:

ai,t = Θt + γEi,t [ai,t+1] + αEi,t [at+1] , (11)

where α, γ > 0 are fixed parameters. Note that a player’s optimal action in any given period depends on her

expectation of both her own and the aggregate action in the next period. The former effect is parameterized

by γ, the latter by α.

By iterating condition (11) forward, aggregating across i, and letting Ēt [·] denote the average expectation
in period t, we reach the following representation of the beauty contest under consideration:

at = Θt + γ

{
+∞∑
k=1

γk−1Ēt [Θt+k]

}
+ α

{
+∞∑
k=1

γk−1Ēt [at+k]

}
∀t ≥ 0. (12)

This is the key equation we work with in this section. It relates the aggregate outcome in any given period

to the concurrent fundamental, the average forecasts of the future fundamentals, and the average forecasts

of the future aggregate outcomes. The first two terms capture the direct or PE effect of the current and future

fundamentals; the GE effect is captured by the last term, which regards the actions of others. Under this

interpretation, α parameterizes the importance of the GE effect.

When all agents share the same information, so that Ēt[·] = Et[·] is the rational expectation of a repre-

sentative agent, we can use the Law of Iterated Expectations to restate condition (12) as follows:

at = Θt + δEt[at+1] ∀t ≥ 0, (13)

where δ ≡ γ + α. The above can be thought of as an aggregate-level Euler condition and δ as the effective

discount factor that governs how much current outcomes depend on expectations of future outcomes. This

dependence reflects the combination of PE and GE effects, as indicated by the fact that δ is given by the sum

of γ and α. Yet, by looking at equation (13) alone, it is impossible to tell these effects apart. This explains

why it is important to “open up” this equation to (12), just as we did with the representative agent’s Euler

condition and the NKPC in the previous section: the distinction between PE and GE effects becomes crucial

12By sidestepping the micro-foundations, we not only speak to a larger class of environments, but also abstract from the kind of
auxiliary shocks that were necessary before in order to limit the endogenous aggregation of information through markets. This rules
out the possibility that agents confuse one kind of fundamental for another (say, the news about future monetary policy with news
about the idiosyncratic components of wage and markups), isolates the role of higher-order uncertainty about the fundamental of
interest, and clarifies why our contribution is orthogonal to that of Lucas (1972). It also rules out the amplification mechanism
studied in Chahrour and Gaballo (2017), which rests on such confusion.
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once the common-knowledge assumption is dropped.

Interpretation. Condition (12) directly nests the supply block of our New Keynesian model: just interpret

Θt as the real marginal cost scaled by κ, interpret at as inflation, and set γ = βθ and α = β(1−θ). Similarly,

to nest the demand block, interpret Θt as the real interest rate scaled by −σ, interpret at as the aggregate

level of spending, and set γ = β and α = 1 − β.13 Moving to a different application, consider the class

of incomplete-information asset-pricing models studied in Singleton (1987), Allen, Morris and Shin (2006),

Bacchetta and vanWincoop (2006), and Nimark (2017). These models feature a single asset (“stock market”)

and overlapping generations of differentially informed traders. The equilibrium asset price is shown to satisfy

the following condition:

pt = dt − st + βĒt[pt+1],

where pt, dt, and st denote the period-t price, dividend, and supply, respectively, and Ēt [·] is the average
expectation of the period-t traders. The above can be nested in condition (12) by letting Θt = dt − st,

at = pt, α = β and γ = 0.14 This indicates, not only the broader applicability of the insights we develop in

the rest of this section, but also that the aggregate outcome at can be a market-clearing price in a Walrasian

setting rather than the average action of a set of players.

The Question of Interest. How does aggregate spending respond to news about future real interest rates?

How does inflation respond to news about future real marginal costs? How do asset prices respond to news

about future dividends? In the rest of this section, we seek to answer this kind of questions without taking

a specific stand on how precise or credible the available news is, or how exactly it has to be modeled. We

achieve this by focusing on how the aggregate outcome covaries with the concurrent forecasts of future

fundamentals, and by abstracting from the exact source and magnitude of the variation in these forecasts.

More specifically, we fix an arbitrary T ≥ 2 and isolate the role of news about the period-T fundamental,

ΘT , by shutting down the uncertainty about the fundamentals in any other period. Without any loss, we

then let Θt = 0 for all t ̸= T and treat ΘT as the only random fundamental.15 We also anchor the beliefs of

the aggregate outcome “at infinity” by imposing that limk→∞ γkEi,t [at+k] = 0 with probability one. This is

akin to ruling out infinite-horizon bubbles and can be justified either by letting the game end at any finite

period T ′ > T, or by imposing that γ < 1 and that at is bounded. We finally state the question of interest as

13A minor qualification is needed here. In our version of the New Keynesian model, the consumers do not know the real
interest rate between today and tomorrow because they have to forecast tomorrow’s inflation. It follows that we cannot simply let
Θt = −σrt+1. That said, we can nest the demand block in condition (12) as it is if we assume that prices are completely rigid
(θ = 1), fix inflation at zero, and let Θt = −σRt. For the more general case in which inflation is variable, we can either modify the
model so that rt+1 is observed, or nest the existing version of the demand block in the variant of (12) that replaces Θt with Ēt [Θt] .
The results developed in the sequel are robust to such modifications.

14The restriction γ = 0 means that the aggregate outcome today depends only on the average expectation of the aggregate
outcome tomorrow, as opposed to the entire path of the aggregate outcome in the future. Relative to the more general case we
study here, this restriction decreases dramatically the dimensionality of the higher-order beliefs that the aforementioned works had
to deal with. The most essential difference, however, between these works and ours is that they focus on the effects of learning
whereas we focus on the effects of different horizons.

15Setting Θt = 0 for all t ̸= T is equivalent to isolating the variation in hierarchy of beliefs about the period-T fundamental
that is orthogonal to variations in belief hierarchy about the fundamentals in other periods. Our result can thus be read as an
“orthogonalization” of the effects of different horizons. Without any loss, we also normalize the unconditional mean of ΘT to be
zero.
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follows: how does a0, the current outcome, covary with Ē0[ΘT ], the current average forecast of the future

fundamental?

5.2 Complete vs. Incomplete Information

In what follows, we study how the answer to the aforementioned question varies as we move from the

frictionless benchmark typically studied in applied work to the more realistic scenario in which the agents

are uncertain about one another’s beliefs and actions. To fix language, and to rule out trivial cases in which

the informational friction relates only to variables that are immaterial for our purposes, we introduce the

following definitions.

Definition 1 We say that information is complete, or that the agents have common knowledge of the avail-

able news, if Ei,t [ΘT ] = Ej,t [ΘT ] with probability one for all (i, j, t) such that i ̸= j and t ≤ T − 1. (And

when the converse is true, we say that information is incomplete.)

Definition 2 We say that the agents are able to reach a consensus about the future trajectory of the economy

if Ei,t [aτ ] = Ej,t [aτ ] with probability one for all (i, j, t, τ) such that i ̸= j and t < τ ≤ T .

Note that the first notion regards the beliefs the agents hold about the exogenous fundamental, whereas

the second notion regards the beliefs the agents form about the endogenous outcomes. While conceptually

distinct, the two notions are tied together under the rational-expectations hypothesis.

Proposition 2 Along any rational-expectations equilibrium, lack of consensus about the future outcomes is

possible only when information is incomplete.

This clarifies the modeling role, and our preferred interpretation, of the introduced friction. What is at

stake here is not howmuch the agents know about the fundamentals, but rather the ability to coordinate their

beliefs and their responses to the exogenous impulses (the news). Accordingly, the comparisons we develop

in the sequel between complete- and incomplete-information economies hold true even if the agents in the

incomplete-information economy are better informed than their counterparts in the complete-information

economy, in the sense of facing less first-order uncertainty about ΘT .
16

The Frictionless Benchmark. As a reference point for our subsequent analysis, we first answer the ques-

tion of interest in the absence of higher-order uncertainty, that is, under complete information.

Lemma 1 Suppose that information is complete. For all states of Nature,

a0 = ϕ∗
T · E0[ΘT ], (14)

16In line with this point, the obtained lessons are also robust to replacing Θt in condition (11) with θi,t = Θt + vi,t, where vi,t is
i.i.d. across agents, and letting each agent i know at t = 0 the entire path of θi,t; that is, we could have eliminated the uncertainty
the typical agent faces about the fundamentals that matter for her own decisions (e.g., the uncertainty a consumer faces about her
own interest rates), and yet preserve her uncertainty about the beliefs and the decisions of others (e.g., the consumer’s uncertainty
about aggregate spending and inflation).
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where ϕ∗
T = δT ≡ (γ + α)T .

The scalar ϕ∗
T measures how much the aggregate outcome covaries with the average forecast of the

fundamental T periods later. This scalar is easily computed by iterating on condition (13), which is the

aggregate-level Euler condition of the complete-information economy. Indeed, since Θt = 0 for all t ̸= T,

we have aT = ΘT and at = ϕ∗
T−tEt[ΘT ] for every t ≤ T−1,where {ϕ∗

T−t}
T−1
t=0 solves the following recursion:

ϕ∗
T−t = δϕ∗

T−t−1 ∀t ≤ T − 1, (15)

with terminal condition ϕ∗
0 = 1. It follows that ϕ∗

T = δT , where, recall, δ ≡ γ + α and where γ and α

parameterize, respectively, PE and GE effects.

The exact interpretation of ϕ∗
T and its magnitude depend, of course, on the application under consid-

eration. Consider, for example, the demand block of the New Keynesian model, in isolation of the supply

block. In this context, ϕ∗
T measures the response of aggregate spending in period 0 to the concurrent expec-

tation of the real interest rate in period T , holding constant the expectations of the real interest rate in all

other periods. In the textbook version of the New Keynesian model, this object is the same regardless of T.17

In the variant studied by McKay, Nakamura and Steinsson (2016a), on the other hand, the corresponding

object is decaying with T, due to liquidity constraints.

What is of interest to us, however, is not how ϕ∗
T varies as we move from one complete-information

application to another, but rather how it compares to its incomplete-information counterpart. We address

this question in the rest of the section. But lets us first note three facts about ϕ∗
T . First, ϕ∗

T is invariant to

the precision of the representative agent’s information that is available at t = 0. Second, ϕ∗
T is the same

regardless of whether the representative agent expects to receive additional information between t = 0 and

t = T or not. Finally, the decomposition between PE and GE effects is irrelevant; all that matters is the

combined effect, herein parameterized by δ ≡ γ + α.

The Frictional Case. We henceforth focus on the scenario in which the agents face higher-order uncer-

tainty and are therefore unable to reach a perfect consensus about the response of the economy to any given

news about ΘT . This raises the delicate question of whether and how the level of higher-order uncertainty

evolves over time. For the time being, we bypass this complication by making the following simplifying

assumption.

Assumption 1 There is no learning between t = 0 and t = T, at which pointΘT becomes commonly known.

As noted a moment ago, learning is inconsequential in the complete-information benchmark. This is

no more true when information is incomplete, for reasons discussed later. Nevertheless, Assumption 1 is a

useful starting point for three reasons. First, it affords an otherwise general specification of the information

structure and yields the sharpest version of our results. Second, it separates our results from prior works that

study the implications of learning. Third, it can be relaxed without compromising our main lessons.
17This is readily seen by iterating the Euler condition of the representative consumer. It also follows from our earlier observation

that the demand block is nested with γ = β and α = 1− β, which means that δ = 1 and hence that ϕ∗
T does not vary with T.
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Let us fill in the remaining details. Notwithstanding Assumption 1, we accommodate an otherwise arbi-

trary information structure. We first let a random variable s encapsulate the realization of the fundamental

ΘT along with any other aggregate shock that influences the information and the beliefs of the agents; we

refer to s as the underlying state of Nature. We next represent the information of agent i by a random vari-

able ωi, which is itself correlated with s. Along with the fact that there is no learning, this means that, for all

t ≤ T − 1, Ei,t[·] = Ei,0[·] = E[·|ωi], where E[·|ωi] is the rational expectation conditional on ωi. We refer to

s as the aggregate state of Nature and to ωi as the signal of agent i. Conditional on s, this signal is an i.i.d.

draw from a fixed distribution, whose p.d.f. is given by ϕ(ω|s). This signal therefore encodes the information

that agent i has, not only about the fundamental ΘT , but also about the entire state of Nature and thereby

about the beliefs of other agents. In short, ωi is the Harsanyi type of agent i, that is, an object that governs the

agent’s expectations of all the endogenous outcomes along any given equilibrium. We finally assume that

a law of large number applies in the sense that ϕ(ω|s) is also the cross-sectional distribution of the signals

in the population when the aggregate state is s.

Because the state s can be an arbitrary random variable, the specification we have introduced above

allows for rich first- and higher-order uncertainty and nests a variety of examples that can be found in

the literature. For instance, we may let the aggregate state be s = (ΘT , u), where ΘT ∼ N(0, σ2
θ) and

u ∼ N(0, σ2
u) are independent of one another, and specify the signal as ωi = (z, xi), where z = ΘT + u,

xi = ΘT + vi, and vi ∼ N(0, σ2
v) is independent of s and i.i.d. across i. This case nests the information

structure assumed in Morris and Shin (2002): each agent receives two signals about ΘT , a private one

given by xi, and a public one given by z. Alternatively, we may modify the aforementioned case by letting

ωi = (zi, xi), with xi as before and zi = z + ηi, ηi ∼ N(0, σ2
η). In this case, there is a public signal z, whose

observation is, however, contaminated by idiosyncratic noise, perhaps due to rational inattention a la Sims

(2003). As yet another example, we could let the aggregate state be s = (ΘT , σ), where ΘT ∼ N(0, σ2
θ) and

σ ∼ U [σ, σ̄], and specify the signal as ωi = (xi, σi),where xi = ΘT +vi, vi ∼ N(0, σ2
i ), σi ∼ U [σ−∆, σ+∆],

and ∆, σ, σ̄ being known scalars such that 0 < ∆ < σ < σ̄. In this case, some agents are better informed

than others, and each agent is uncertain about how informed or uninformed the other agents are.

By adopting this level of generality, we seek, not only to clarify the robustness of our insights, but also

to bypass the need for taking a specific stand on what the available signals are and how the higher-order

uncertainty is generated. This also explains why most of our results in this section are formulated in terms of

how outcomes depend on the belief hierarchy, as opposed to how they depend on a specific set of signals.

A concrete example, however, will also be considered.

5.3 Attenuation and the Horizon Effect

An instrumental step towards addressing the question of interest is to understand the role of higher-order

beliefs. Since Θt is fixed at zero for all t ̸= T and ΘT becomes commonly known at t = T, we have at = 0
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for all t ≥ T + 1, aT = ΘT , and, for all t ≤ T − 1,

at = γT−tĒt [ΘT ] + α
T−t∑
k=1

γk−1Ēt [at+k] . (16)

By Assumption 1 (no learning), Ēt [·] = Ē0 [·] for all t ≤ T − 1. Using this fact, and iterating the above

condition backwards, we reach the following lemma, which represents the period-0 outcome as a linear

function of the concurrent average first- and higher-order expectations of ΘT .

Lemma 2 For every (α, γ, T ), there exist positive scalars {χh,T }Th=1 such that, regardless of the information

structure,

a0 =

T∑
h=1

{
χh,T · Ēh

0 [ΘT ]
}
, (17)

where Ēh
0 [·] is defined recursively by Ē1

0 [·] = Ē0 [·] and Ēh
0 [·] = Ē0[Ē

h−1
0 [·]] for every h ≥ 2.

The weights χh,T can be constructed recursively, as functions of α, γ, h, and T alone; see Appendix A

for details. Here, we focus on the interpretation and the implications of Lemma 2.

Applied to the demand block of the New Keynesian model, this lemma means that today’s aggregate

spending is determined by the hierarchy of beliefs about future real interest rates. Applied to the supply

block, it means that today’s inflation is determined by the hierarchy of beliefs about future real marginal

costs. In both the textbook version of the New Keynesian model and in the richer DSGE versions used

for quantitative policy evaluation, this kind of higher-order beliefs is “swept under the carpet” because the

complete-information assumption lets higher-order beliefs collapse to first-order beliefs.

To see this point in the abstract context under consideration, note that when higher-order beliefs coincide

with first-order beliefs, condition (17) reduces to a0 =
(∑T

h=1 χh,T

)
· Ē0 [ΘT ] . Along with Lemma 1, this

also means that the complete-information outcome satisfies the following restriction:

ϕ∗
T =

T∑
h=1

χh,T . (18)

By the same token, the weights {χh,T } do not matter per se: all that matters for equilibrium behavior is their

sum, ϕ∗
T .

When, instead, information is incomplete, higher-order beliefs no longer coincide with first-order beliefs.

To understand how a0 covaries with Ē0 [ΘT ] , we must therefore understand two things: first, how higher-

order beliefs covary with first-order beliefs; and second, how the beliefs of different order load into a0, that

is, what the structure of the weights {χh,T } is. We complete these tasks in the sequel—but first we state the

ultimate lesson.

Theorem 1 Suppose that information is incomplete. There exists a positive scalar ϕT , which depends on

both T and the information structure, such that the following properties hold:
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(i) For all states of Nature,

a0 = ϕT · Ē0[ΘT ] + ϵ, (19)

where ϵ is either identically zero or is random but orthogonal to Ē0[ΘT ].

(ii) The ratio ϕT /ϕ
∗
T is strictly less than 1.

(iii) The ratio ϕT /ϕ
∗
T is strictly decreasing in T.

Part (i) identifies ϕT as the incomplete-information counterpart of ϕ∗
T . Part (ii) establishes that the absence

of common knowledge reduces the extent to which the aggregate outcome covaries with the average forecast

of the fundamental, regardless of how precise the latter is. We refer to this finding as the “attenuation effect.”

Part (iii) establishes that this kind of attenuation increases with T : the longer the horizon, the larger the

reduction in the responsiveness of the aggregate outcome to the forecasts of the fundamental relative to the

frictionless benchmark. We refer to this finding as the “horizon effect.”

Let us now sketch the proof of the result. Part (i) is trivial: it follows directly from projecting a0 on Ē0[ΘT ]

and letting ϕT be the coefficient of this projection and ϵ the residual. The latter captures any variation in

higher-order beliefs that is orthogonal to the variation in first-order beliefs, such as the kind of “sentiment

shocks” studied in Angeletos and La’O (2013).

To prove parts (ii) and (iii), note first that Lemma 2 implies that the following condition holds regardless

of the information structure:

ϕT =

T∑
h=1

χh,Tβh, (20)

where {χh,T } are the same scalars as those appearing in Lemma 2 and

βh ≡
Cov

(
Ēh

0 [ΘT ], Ē
1
0 [ΘT ]

)
V ar

(
Ē1

0 [ΘT ]
) (21)

is the coefficient of the projection of Ēh
0 [ΘT ] on Ē1

0 [ΘT ] , for any h ≥ 1. When information is complete,

Ēh
0 [ΘT ] coincides with Ē1

0 [ΘT ] for all h and all realizations of uncertainty, which in turn means that βh is

identically 1 for all h. Away from this fragile benchmark, the following is true:

Proposition 3 With incomplete information, βh is bounded in (0, 1) for all h ≥ 2 and is strictly decreasing

in h.18

In words, higher-order beliefs co-move less with first-order beliefs than lower-order beliefs. This result is

easy to establish for the specific information structure studied in Morris and Shin (2002), but requires more

work for the more general structure allowed here. It has a similar flavor as the result found in Samet (1998),

which essentially states that higher-order beliefs are anchored to the common prior, but is distinct from it,

because Samet’s result regards only the asymptotic properties of higher-order beliefs as h → ∞ and contains

18Obviously, for h = 1, we have β1 = 1.
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no information on whether the comovement between first- and h-order forecasts varies monotonically with

h.

Let us now go back to the proof of parts (ii) and (iii) of Theorem 1. Part (ii) now follows directly from the

fact that βh ∈ (0, 1), along with conditions (18) and (20). In a nutshell, ϕT is less than ϕ∗
T simply because

higher-order beliefs move less than one-to-one with first-order beliefs when, and only when, information is

incomplete. Importantly, this is true regardless of how much the first-order beliefs themselves co-move with

the fundamental. The following is therefore also true, underscoring once again that the introduced friction

has to do only with the accommodation of higher-order uncertainty and frictional coordination, not with

the first-order uncertainty about ΘT .

Corollary 1 Fix (α, γ, T ). An incomplete-information economy features a lower response to expectations of

future fundamentals (i.e., a lower ϕT ) than a complete-information economy, even if the agents have more

precise information about ΘT in the former than in the latter.

What remains to prove is part (iii), namely, the property that ϕT decreases with T relative to ϕ∗
T . This

follows from combining our result that the comovement between first- and higher-order beliefs decreases

with the belief order h (Proposition 3), with another result, which we establish next and which sheds light

on how the horizon T affects the relative importance of higher-order beliefs in the period-0 outcome.

Theorem 2 Fix (α, γ). For any (h, T ) such that 1 ≤ h ≤ T, let sh,T be the total weight on beliefs of order up

to, and including, h; that is, sh,T ≡
∑h

r=1 χr,T , where the χs are the same coefficients as those appearing in

condition (17). The ratio sh,T /sT,T , which measures the relative contribution of the first h orders of beliefs

to the aggregate outcome, strictly decreases with the horizon T and converges to 0 as T → ∞.

This result is crucial (which is why it qualifies, at least in our eyes, to be called a “theorem”). Longer

horizons increase the number of loops from future aggregate actions to current actions. But when one

increases the number of loops, one is effectively walking down the hierarchy of beliefs: forecasting outcomes

further and further into the future maps to forecasting the forecasts of others at higher and higher orders.

This in turn explains why longer horizons increase the relative importance of higher-order beliefs. Part (iii) of

Theorem 1 then follows from combining this finding with the fact that high-order beliefs themselves covary

less with first-order beliefs than do lower-order beliefs.

To sum up: the attenuation effect (ϕT /ϕ
∗
T < 1) follows merely from the fact that incomplete information

dampens the comovement of higher-order beliefs with first-order beliefs (βh < 1 for all h). The horizon

effect (ϕT /ϕ
∗
T decreases with T ), on the other hand, follows from the fact that this dampening increases

with the order of belief (βh decreases with h), together with the fact that longer horizons raise the relative

importance of higher-order beliefs (Theorem 2).
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5.4 The Limit as T → ∞.

We complement the preceding results by establishing that, as long as higher-order beliefs are sufficiently an-

chored in the sense made precise below, ϕT becomes vanishingly small relative to its complete-information

counterpart as the horizon gets larger and larger.

Proposition 4 (Limit) If limh→∞ V ar
(
Ēh[ΘT ]

)
= 0, then

lim
T→∞

ϕT

ϕ∗
T

= 0.

To understand this result, note first that, by Theorem 1, the ratio ϕT /ϕ
∗
T is strictly decreasing in T and

bounded in (0, 1). It follows that this ratio necessarily converges to a constant φ ∈ [0, 1) as T → ∞. In

Appendix A, we show that φ = limh→∞ βh, where βh is defined as before. This fact is, essentially, a

corollary of Theorem 2: in the limit as T → ∞, only the infinite-order beliefs matter. Establishing that ϕT /ϕ
∗
T

converges to zero as T → ∞ is therefore equivalent to establishing that βh converges to zero as h → ∞. A

sufficient (in fact, also a necessary) condition for this to be the case is that limh→∞ V ar
(
Ēh[ΘT ]

)
= 0.

This condition need not hold for every information structure, but can be said to be generic in the following

sense. Take, as a reference point, the familiar case in which ΘT is Normal and each agent observes a noisy

private signal and a noisy public signal, as in Morris and Shin (2002). In this case, limh→∞ βh is strictly

positive and is pinned down by the precision of the public signal. But now let us perturb this economy

by allowing each agent’s observation of the public signal to be contaminated by an idiosyncratic noise,

perhaps due to rational inattention or some other cognitive limitation. Then, limh→∞ βh is necessarily 0,

even if the aforementioned noise is arbitrarily small.19 In short, it takes a tiny perturbation to break the

common-knowledge nature of a public signal and to guarantee the limit result in Proposition 4 holds.

As noted in the Introduction, this result illustrates how predictions that depend on long series of forward-

looking, general-equilibrium, feedback loops can be particularly fragile to relaxations of common knowl-

edge. It also builds a bridge between our results and the uniqueness result in global games (Morris and

Shin, 1998, 2003): the common thread is the disproportionate effect of the (very) high orders of belief and

the resulting discontinuity in small perturbations of common knowledge. Finally, it is worth noting that the

result holds true even if ϕ∗
T itself explodes to infinity as T → ∞. This case is relevant in the context of

forward guidance, which we study in Section 6.

5.5 The Friction as Extra Discounting at the Aggregate level

The preceding analysis established our main results under a general specification of the information struc-

ture. We now use a tractable example to recast the friction under consideration as a certain form of myopia.

19This case is formalized by letting agent i observe zi = z + ηi, where z = ΘT + u is the underlying public signal and ηi is the
contaminating idiosyncratic noise. Our statement is that limh→∞ βh = 0 as long as V ar(ηi) is not exactly zero.
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This sheds further light on how the absence of common knowledge interacts with the underlying GE mech-

anisms and how it modifies forward-looking behavior at the aggregate level.

For this example, we let ΘT = z + η, where z ∼ N(0, σ2
z) and η ∼ N(0, σ2

η) are independent of one

another. We interpret z as the component of ΘT that is realized at t = 0 and η as a residual that is realized

at t = T. Finally, we let the signal of agent i received at t = 0 be ωi = z + vi, where vi ∼ N(0, σ2
v) is i.i.d

across i and orthogonal to both z and η.We can then think of z as news about ΘT and vi as an idiosyncratic

noise in the observation, or interpretation, of this news by agent i.20

Regardless of its interpretation, the key property of this example is that it imposes an exponential structure

in the belief hierarchy. By this we mean that, for every h ≥ 2,

Ēh
0 [ΘT ] = λĒh−1

0 [ΘT ],

where λ ≡ σ−2
v /

(
σ−2
v + σ−2

z

)
∈ (0, 1). This scalar therefore controls the speed with which the comovement

between first and h-order beliefs decay with h. A lower λ captures a lower degree of common knowledge;

the frictionless, complete-information benchmark is nested in the limit as λ → 1.

The following result can then be shown.

Proposition 5 (Discounting) The elasticity ϕT in the incomplete-information economy described above is

the same as the elasticity ϕ∗
T in a representative-agent economy in which, for all t ≤ T−2, the Euler condition

(13) holds with δ ≡ γ + α replaced by δ′ ≡ γ + αλ.

This result illustrates that, under appropriate conditions, the object of interest can be calculated with the

same ease as in the complete-information benchmark: all one has to do is to hold the PE effect constant and

to discount the GE effect by the factor λ ∈ (0, 1). It also offers a sharp formalization of the idea that removing

common knowledge causes the economy to act as if the representative agent is myopic and discounts the

future more heavily than in the frictionless benchmark (the effective δ is reduced). The extent of this kind of

myopia is inversely related to λ, the degree of common knowledge.

The logic behind this result is simple. In the example we consider, all the average higher-order forecasts

are linear transformations of the average first-order forecast. This guarantees that, for all t ∈ {1, ..., T − 1},
the aggregate outcome can be expressed as a multiple of the average first-order forecast: at = ϕT−tĒ0[ΘT ],

for some known scalar ϕT−t. It follows that Ēt−1[at] = ϕT−tĒ
2
0 [ΘT ]. And since Ē2

0 [ΘT ] = λĒ0[ΘT ], we con-

clude that Ēt−1[at] = λat. It is therefore as if the average agent systematically underestimates the variation

in the future aggregate outcome, which in turn explains the result in Proposition 5. Clearly, the exact result

relies on the particular information structure assumed above. The logic, however, applies more generally.

As already mentioned, the key feature of the example we consider is that λ controls the speed with which

βh decays with h. The kind of myopia, or discounting, reported above is merely a manifestation of the more

general property that βh decays with h. Theorem 1 and Proposition 5 are therefore mirror images of each

20The interpretation of this noise as the product of rational inattention is discussed at Appendix B. For another complementary
interpretation, see the discussion of Assumption 3 in Section 6.
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other: saying that there is more attenuation at longer horizons is the same as saying that the agents are,

effectively, myopic.

Finally, note that, for any λ < 1, the gap between δ and δ′ increases with α, which proves the following.

Corollary 2 The documented GE attenuation and the associated as-if discounting are larger, the stronger

the underlying GE effect.

This result offers a sharp illustration of how the friction accommodated in this paper interacts with GE

mechanisms. It also suggests that the applied lessons delivered in Sections 6 and 7 are likely to be reinforced

if one extends the analysis to more realistic versions of the New Keynesian model that strengthen the relevant

GE mechanisms by introducing short horizons, borrowing constraints and hand-to-mouth consumers.21

5.6 Allowing for Learning

We now return to the role played by Assumption 1. Relaxing this assumption does not appear to invalidate

the insights we have developed, but complicates the analysis and precludes us from establishing Theorem

1 for arbitrary information structures. This is due to the increased complexity of the kind of higher-order

beliefs that emerge once information is changing between 0 and T .

To appreciate what we mean by this, note that the absence of Assumption 1 guarantees that the following

properties hold for any h ∈ {2, ..., T} and any {t2, t3, ...th} such that 0 < t2 < ... < th < T :

Ē0[Ēt2 [· · · [Ēth [ΘT ] · · · ]] = Ēh
0 [·].

That is, Assumption 1 helps collapse the “cross-period” higher-order beliefs to the “within-period” higher-

order beliefs. This is the key step for obtaining the convenient representation of a0 in Lemma 2 and, thereby,

for applying Proposition 3. Without Assumption 1, we must instead express a0 as a function of all the

aforementioned kind of “cross-period” higher-order beliefs, which greatly complicates the analysis. Note,

in particular, that there are T − 1 types of second-order beliefs (namely, Ē0

[
Ēt [·]

]
for all t such that 1 ≤ t ≤

T −1), plus (T −1)×(T −2)/2 types of third-order beliefs, plus (T −1)×(T −2)×(T − 3) /6 types of fourth-

order beliefs, and so on. What is more, the correlation structure between first- and higher-order beliefs is

more intricate, reflecting the anticipation of learning. Intuitively, the first-order belief Ē0 [Θ10] can be less

correlated with the second-order belief Ē0

[
Ē1 [Θ10]

]
than with the third-order belief Ē0

[
Ē8

[
Ē9[Θ10]

]]
if

there is little or no learning between periods 0 and 1 but a lot of learning between periods 1 and 8. While

this possibility does not invalidate our lessons,22 it precludes us from extending Theorem 1 to arbitrary forms

of learning.

21Recall that the demand block of the New Keynesian model is nested with γ = β and α = 1 − β. The results of Galí, López-
Salido and Vallés (2007), Del Negro, Giannoni and Patterson (2015), Werning (2015), Kaplan, Moll and Violante (2016) and McKay,
Nakamura and Steinsson (2016b,a) indicate that the aforementioned frictions map to a lower γ (weaker PE effect) but also a higher
α (stronger GE effect). Corollary 2 then implies that these frictions are likely to reinforce our attenuation and horizon effects.

22This possibility is indeed allowed in the cases studied in Appendix B, where the theorem continues to apply.
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It is possible, however, to overcome this caveat for two leading forms of learning studied in the literature.

In the one, we let the agents become gradually aware of ΘT , as in Mankiw and Reis (2002) and Wiederholt

(2015). In the other, we allow the agents to receive a new private signal about ΘT in each period prior to

T , as in Woodford (2003a), Nimark (2008), and Mackowiak and Wiederholt (2009). In these two cases, we

can not only recover Theorem 1, but also obtain a variant of Proposition 5. See Appendix B for details.

Also note that Theorem 2, which establishes that longer horizons raise the relative importance of higher-

order beliefs, follows directly from the best-response structure and is therefore independent of the informa-

tion structure. This is suggestive of why our horizon effect may extend beyond the aforementioned cases. In

line with this idea, we are able to show that the result of Proposition 4, namely the property that ϕT becomes

vanishingly small relative to ϕ∗
T as T → ∞, extends to arbitrary forms of learning as long as the higher-order

uncertainty remains bounded way from zero, in a sense made precise in Appendix B.

On the basis of these findings, we conclude that our lessons regarding the interaction of horizons and

lack of common knowledge are robust to the introduction of learning. Two additional lessons, however,

emerge once we take into account learning.

The first is that, holding the period-0 information constant, ϕT is closer to ϕ∗
T in the scenario in which

subsequent learning is allowed relative to the scenario in which such learning is ruled out. Intuitively, the

anticipation of more (less) information in the future eases (exacerbates) the friction in the present. Note that

this effect hinges on the agents being forward-looking and is therefore absent in static beauty contests, such

as those studied in Morris and Shin (2002), Woodford (2003a), and Angeletos and La’O (2010).

The second lesson is that, as time passes and agents accumulate more information, higher-order beliefs

converge to first-order beliefs, causing the anchoring of the expectations and the attenuation of GE effects

to decay with the lag of time since the news has arrived.23 Although this prediction is not a core theme

of our paper, it is worth noting that it is consistent with the available evidence on the impulse responses

of expectations to identified shocks (Coibion and Gorodnichenko, 2012; Vellekoop and Wiederholt, 2017).

By contrast, this evidence seems incompatible with the theories developed in Gabaix (2016) and Farhi and

Werning (2017): by design, these theories attenuate the response of expectations to shocks but do not allow

this attenuation to decay with the lag since the shock has hit the economy.

6 Revisiting Forward Guidance

In this section, we return to the New Keynesian model and study the implications of our insights for the

effectiveness of forward guidance.24

23Formally, consider the setting with learning studied in Appendix B, pick any τ ∈ {1, ..., T −2}, and look at the response of at at
t = τ rather than at t = 0. It is easy to check that this response increases with the precision of the information that arrives between
t = 0 and t = τ. A variant of this property is at the core of Woodford (2003a), Bacchetta and van Wincoop (2006), Nimark (2008,
2017), and Angeletos and La’O (2010): these papers show how, following persistent shocks to the underlying fundamentals, there
is initially a large “wedge” between first- and higher-order beliefs, but this wedge decays as time passes and learning occurs.

24Campbell et al. (2012) distinguish two types of forward guidance, “Delphic” and “Odyssean,” depending on whether the central
bank communication is interpreted partly as a signal of the underlying state of the economy or exclusively as a commitment about
future policy. Throughout our analysis, we are concerned with the second kind of forward guidance.
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To begin with, suppose either that the monetary authority commits on implementing a specific path

for the real interest rate, or that prices are infinitely rigid (θ = 1) so that inflation is identically zero and

the real interest rate coincides with the nominal one. In either case, we can characterize the response of

the economy to news about future rates by studying the demand block alone. The results of the previous

section then directly imply that the absence of common knowledge reduces this response, and the more so

the further into the future the change in the real rate is. In this sense, the effectiveness of forward guidance

is reduced.

The obvious caveat is that this argument treats the path of the real interest rate as the exogenous impulse

or, equivalently, that it shuts down inflation. While this is useful for understanding how monetary policy

controls aggregate demand holding constant inflation expectations, it is inappropriate for understanding

how forward guidance matters during a liquidity trap. In that context, it is essential to treat the real interest

rate as endogenous and to capture the feedback loop between aggregate spending and inflation.25

As noted before, this feedback loop is a GE mechanism that runs between the two blocks of the model.

This means that the analysis of Section 5, which effectively dealt with each block in isolation, is not directly

applicable. To address this complication, let us assumemomentarily that information is complete among the

firms, even though it is incomplete among the consumers. In this special case, the standard NKPC remains

valid, implying that inflation can be expressed as the present value of the future real marginal costs and,

thereby, of future aggregate spending. Using this fact to substitute away inflation from condition (5), and

letting yt = ct, we arrive at the following representation of the equilibrium.

Lemma 3 Suppose the firms have complete information. The equilibrium level of aggregate output (also,

spending) satisfies the following condition at every t:

yt = −σRt − σ

∞∑
k=1

βkĒc
t [Rt+k] +

∞∑
k=1

(1− β + kσκ)βk−1Ēc
t [yt+k], (22)

where κ ≡ (ϵ+ 1/σ)κ = (ϵ+ 1/σ) (1− θ) (1− βθ) /θ.

This can, once again, be understood as a beauty contest among the consumers. But unlike the one seen

earlier in condition (5), the one obtained here subsumes the feedback loop between inflation and spending.

This in turn explains why the expectations of income show up with different weights from those in condition

(5), as well as why these weights depend on κ, which is the slope of the NKPC with respect to aggregate

output.

Although the beauty contest obtained in Lemma 3 is not directly nested in the framework of Section 5,

all the lessons continue to hold. Proposition 3, which regards the belief hierarchy, remains intact, while

Lemma 2 and Theorem 2, which hinge on the dynamic structure, are extended in Appendix C. It follows

that Theorem 1 and all the other results of Section 5 can be directly applied to the present context.

25Accordingly, for the rest of the analysis, we let θ < 1 (equivalently, κ > 0).
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A Concrete Example. To make things more concrete, and to accommodate the possibility that the firms,

too, have incomplete information, we henceforth impose the following assumptions.

Assumption 2 (Monetary Policy) There exists a known T ≥ 2 such that:

(i) At any t < T, the nominal interest rate is pegged at zero.26

(ii) At any t > T, monetary policy replicates flexible-price outcomes.

(iii) The period-T nominal rate is such that

RT = z + η, (23)

where z and η are random variables, independent of one another and of any other shock in the economy,

with z ∼ N(0, σ2
z) and η ∼ N(0, σ2

η). The former is realized at t = 0; the latter is realized at t = T and is

unpredictable prior to that point.

Assumption 3 (Information) (i) At t = 0, each agent i, be it a consumer or a firm, observes a private signal

of z, given by

ωi = z + vi,

where vi is an idiosyncratic noise, Normally distributed, with mean zero and variance σ2
c ≥ 0 or σ2

f ≥ 0,

depending on whether the agent is, respectively, a consumer or a firm.

(ii) No other exogenous information arrives till t = T, at which point RT becomes common knowledge.

(iii) The volatilities of the markup and idiosyncratic shocks are arbitrarily large relative to that of z.

Assumption 2 specifies the monetary policy and identifies T as the horizon of forward guidance. Part (i)

is motivated by the idea that the ZLB constraint is binding during a liquidity trap. Part (ii), on the other hand,

permits us to concentrate on expectations of RT , the nominal interest rate that the monetary authority will

implement in the first period after the ZLB has ceased to bind.27 Finally, part (iii) splits the randomness ofRT

into two orthogonal components, along the lines of the example considered in the end of the last section.

The first component, z, can be interpreted as the anticipated component of RT , or as the news about future

monetary policy; such news could be the product of a policy announcement. The second component, η,

captures the residual uncertainty, or the unanticipated component, which is revealed at t = T.

Assumption 3 turns to the information structure. Part (i) lets each agent’s observation of z be contaminated

by an idiosyncratic noise, thereby introducing higher-order uncertainty. Part (ii) shuts down any exogenous

learning. Finally, part (iii) shuts down the endogenous learning that obtains through the observation of the

realized market outcomes (wages, prices, etc) in every period.

Part (i) of Assumption 3 may appear to be at odds with the fact that central bank communications enjoy

ample coverage in the financial press; one may instead be tempted to treat forward guidance as a public
26Since Rt is the log-deviation from steady state gross nominal rate, this means Rt = −ρ, where ρ is the discount rate defined

by β = e−ρ.
27Needless to say, we let the central bank keep the interest rate low for just one period after the ZLB has ceased to bind, as

opposed to many periods, only to simplify the exposition.
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signal. But it is one thing to say that something is “public news” in the real world and it is a different thing to

assume that something is a “public signal” in the theory. Doing the latter requires, not only that every agent

herself is aware of and attentive to the news, but also that she is fully confident that every other agent is

also aware of and attentive to the news, and so on. Clearly, that kind of common knowledge does not have

an obvious counterpart in the real world. What is more, even if one insists on modeling the central bank

communications as a perfectly public signal, we can recast the required idiosyncratic noise as idiosyncratic

variation in the interpretation of such communications.28

To sum up, part (i) of Assumption 3 captures the friction we are interested in. Parts (ii) and (iii), on the

other hand, are mostly for convenience: they facilitate a sharp characterization of the belief hierarchy.29

In particular, similarly to the example studied in Section 5, the higher-order beliefs of, respectively, the

consumers and the firms satisfy, for all h ≥ 2,

Ēc,h
0 [RT ] = λh−1

c · Ēc
0[RT ] and Ēf,h

0 [RT ] = λh−1
f · Ēf

0 [RT ],

where

λc ≡
σ−2
c

σ−2
c + σ−2

z
∈ (0, 1] and λf ≡

σ−2
f

σ−2
f + σ−2

z
∈ (0, 1].

Note that λc and λf control how much higher-order beliefs co-move with first-order beliefs; they therefore

parameterize the friction of interest. The frictionless, complete-information benchmark is nested with λc =

λf = 1, and a larger friction corresponds to lower values for the λ’s.

We are now ready to study how variation in expectations of RT (triggered by variation in z) translates

into variation in equilibrium output. We start with the common-knowledge benchmark.

Proposition 6 (Forward Guidance with CK) Suppose λc = λf = 1, which means that z is common knowl-

edge. There exists a scalar ϕ∗
T > σ such that, for all realizations of uncertainty,

y0 = ytrap0 − ϕ∗
T · E0[RT ], (24)

where ytrap0 is the liquidity-trap level of output (i.e., the one obtained when the period-T nominal interest

rate is fixed at the steady-state value). Furthermore, ϕ∗
T is strictly increasing in T and ϕ∗

T → ∞ as T → ∞.

This result contains the predictions of the textbook New Keynesian model regarding the power of forward

guidance during a liquidity trap: this power, as measured by ϕ∗
T , is predicted to increase without bound as

the time of action is pushed further and further into the future. It is this prediction, along with its quantitative

evaluation, that constitutes the forward-guidance puzzle.30

28Formally, this can be done by modeling the central bank communication itself as a public signal and by letting each agent have
private information about the noise in that signal.

29Learning can be accommodated along the lines of Appendix B and was indeed allowed in the first NBER version of our paper,
Angeletos and Lian (2016b).

30It is worth noting that the scalar ϕ∗
T is invariant to the ratio σz/ση, which parameterizes the precision of the available news:
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Contrast this prediction with the PE effect of future interest rates: as evident in condition (5), the PE

effect is decreasing in T, simply because of the discounting embedded in intertemporal preferences. The

reason that ϕ∗
T exhibits the opposite pattern is because of the GE effects that run within and between the

two blocks of the model. In particular, the feedback loop between aggregate spending and income implies

that ϕ∗
T would stay constant with T even if we were to shut down the inflation response. The feedback loop

between aggregate spending and inflation then explains why ϕ∗
T actually increases with T.

Let us elaborate. Reducing the interest rate at t = T increases spending and causes inflation at t = T.

Because the nominal interest rate is pegged prior to T, this translates to a low real interest rate between T −1

and T. This stimulates demand at T − 1, contributing to even higher inflation at T − 1, which feeds to even

higher demand at T − 2, and so on. A longer horizon therefore maps to a larger number of iterations in this

feedback loop and, thereby, to a stronger cumulative effect at t = 0. Finally, as T → ∞, this feedback loop

explodes, which explains why ϕ∗
T increases without bound.

The fact that the forward-guidance puzzle is driven by GE effects is already recognized in the literature;

see, for example, the discussions in Del Negro, Giannoni and Patterson (2015) and McKay, Nakamura and

Steinsson (2016b). Our contribution is to explain how these GE effects depend on higher-order beliefs, which

in turn explains why these effects are not as potent once one moves away from the common-knowledge

benchmark.

Proposition 7 (Forward Guidance without CK) Suppose that λc < 1 and/or λf < 1, which means that at

least one group of agents lacks common knowledge of the news. There exists a scalar ϕT such that, for all

realizations of uncertainty,

y0 = ytrap0 − ϕT · Ēc
0[RT ]. (25)

Furthermore, the following properties hold:

(i) ϕT is bounded between the PE effect and the complete-information counterpart: σβT < ϕT < ϕ∗
T .

(ii) ϕT is strictly increasing in both λc and λf ; the ratio ϕT /ϕ
∗
T is strictly decreasing in T and converges

to 0 as T → ∞; finally, when λc is sufficiently low, ϕT also converges to 0 as T → ∞.

Part (i) formalizes the sense in which the standard model “maximizes” the power of forward guidance:

ϕ∗
T is an upper bound to the prediction that the analyst can make if she maintains the rational-expectations

hypothesis but is agnostic about the degree of common knowledge in the economy. By varying the degree of

common knowledge, we effectively span the range between this upper bound and the underlying PE effect.

Part (ii) is a version of our earlier horizon effect: by attenuating the feedback loop between inflation and

spending, as well as the GE effects that run within each block of the model, lack of common knowledge

reduces the power of forward guidance by a factor that increases with T . This attenuation increases without

bound in the sense that ϕT becomes vanishingly small relative to ϕ∗
T as T → ∞, even if the friction is small

varying the ratio σz/ση affects how much E0[RT ] varies with RT , but does not affect how much either y0 or π0 vary with E0[RT ].
This property extends to the incomplete-information scenario studied next and explains the sense in which both the puzzle and the
resolution we offer are orthogonal to the question of how accurate or credible the news about the future interest rates might be.
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Figure 1: Attenuation effect at different horizons.

(i.e., if λc and λf are arbitrarily close to 1). Finally, if the friction is large enough, the documented effect can

be strong enough that ϕT is decreasing in T , not only relative to ϕ∗
T , but also in absolute value.

A Numerical Illustration. We now use a numerical example to illustrate our findings. We interpret the

period length as a quarter and adopt the calibration of the textbook New Keynesian model found in Galí

(2008). That is, we set the discount factor to 0.99, the Frisch elasticity to 1, the elasticity of intertemporal

substitution to 1, and the price revision rate to 1/3.

What remains is to pick the values of λc and λf , that is, the departure from common knowledge. The

existing literature offers little guidance on how to make this choice. In want of a better alternative, we let

λc = λf = 0.75 and interpret this as a situation in which every agent who has heard the policy announcement

believes that any other agent has failed to hear, or “trust,” the announcement with a probability equal to 25

percent. This is arguably a modest “grain of doubt” in the minds of people about their ability to coordinate

the adjustment in their beliefs and their behavior.31,32

The solid line in Figure 1 plots the resulting attenuation effect, as measured by the ratio ϕT /ϕ
∗
T , against

the horizon length, T. By setting λc = λf , this line assumes that the consumers and the firms are subject

to the same informational friction. The dashed line isolates the friction in the consumer side (λc = .75) by

shutting it down in the firm side (λf = 1). The dotted line does the converse.

The attenuation is strongest when the friction is present in both sides. Furthermore, the effect is quanti-

31The proposed re-interpretation of the informational friction is exact: if we let the signal of an agent be binary, revealing the true
z with probability λ, we obtain exactly the same characterization for ϕT as the one under the signal structure assumed above.

32Although Coibion and Gorodnichenko (2012) provide evidence in support of the kind of informational friction we have accom-
modated here, that evidence does not directly relate to forward guidance. Yet, taking that evidence at face value could justify an
even larger departure from common knowledge: whenever a shock hits the economy, the average forecast error in the expectations
of inflation appears to be half as large as the actual response in inflation, which translates to a value for λ close to 0.5.
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tatively significant. For example, at a horizon of 5 years (T = 20), the power of forward guidance is only

one tenth of its common-knowledge counterpart. This is on top of any mechanical effect that the noise may

have on the size of the shift of the expectations of future interest rates: by construction, the documented

attenuation effect is normalized by the size of the variation in the first-order beliefs of RT .
33

This illustrates the following broader point: by anchoring the movements in the expectations of economic

outcomes relative to the movements in the expectations of the policy instrument, our paper helps opera-

tionalize the idea that policy makers may have a harder time managing the former kind of expectations than

the latter. This may help explain, for example, why forward guidance may trigger a large movement in the

term structure without a commensurate movement in expectations of inflation and income.

Appendix C elaborates on themechanics behind Figure 1. We first show how the documented effects can

be understood through the lenses of a discounted Euler condition and a discounted NKPC, along the lines

of our earlier, more abstract, result in Proposition 5. This representation helps connect our paper to McKay,

Nakamura and Steinsson (2016b,a) and Gabaix (2016). It also helps explain why almost all of the effect seen

in Figure 1 comes from the attenuation of two GE mechanisms: the price-setting complementarity inside the

supply block; and the inflation-spending feedback between the two blocks. By contrast, the attenuation of

the Keynesian multiplier that runs inside the demand block plays a small role.

Let us explain the last point. In the textbook version of the New Keynesian model, consumers have

infinite horizons and their spending depends on aggregate spending only through the present value of per-

manent income. What is more, the discount rate is close to zero. This means that varying the expectations

of income in the next, say, 5 years has a small effect on current spending. It follows that the attenuation

of this particular GE mechanism cannot possibly be quantitatively significant in the textbook version of the

model. But now note that the Keynesian multiplier can be reinforced by short horizons, hand-to-mouth con-

sumers, counter-cyclical precautionary motives, and feedback effects between housing prices and consumer

spending. By Corollary 2, we expect this to reinforce also the associated attenuation effect.34

The following clarification is also worth making. In our analysis, we have abstracted incomplete markets

in the sense of borrowing constraints, but have allowed incomplete markets in the sense of ruling out risk

sharing. Had we allowed the consumers to pool their resources at the end of the liquidity trap and to enjoy

the same level of consumption thereafter, we would have effectively eliminated the coordination friction

among them, thus also abstracting from the attenuation of the GE effect that runs inside the demand block

of the model. This is the scenario considered in Wiederholt (2015).
33Estimated DSGE models typically assume a higher degree of price stickiness than the one assumed here. This tends to reduce

the attenuation effect. For instance, raising the value of θ from 2/3, the value in Galí (2008), to 0.85, the value in Christiano,
Eichenbaum and Rebelo (2011), implies that the ratio ϕT /ϕ

∗
T increases from about 0.1 to about 0.3 at T = 20. That said, note that

menu-cost models calibrated to micro data indicate that the “right” value for θ is probably even smaller than 2/3. In any event, our
goal here is only to illustrate; a more comprehensive quantitative evaluation is left for future work.

34Farhi and Werning (2017) make a similar point with regard to the interaction of borrowing constraints with Level-k Thinking.
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7 Revisiting Fiscal Multipliers

We now introduce government spending in the model and study how aggregate income responds to news

about government spending in the future. As usual, we treat the level of government spending as exogenous

and assume that it is financed with lump-sum taxation. But unlike the standard practice, we remove common

knowledge of the future level of government spending and of its macroeconomic effects.

The equilibrium characterization given in Proposition 1 still holds, except that the real marginal cost

is now given by mct = Ωcct + (1− Ωc) gt, where gt is the level of government spending and Ωc ∈ (0, 1)

is a constant that increases with the steady-state fraction of GDP absorbed by private consumption. Note

then that gt enters the joint dynamics of ct and πt only through the aforementioned formula for mct. An

exogenous shock to government spending is therefore akin to an exogenous shock in real marginal costs.

Pick now any pair (T, T ′) such that 2 ≤ T ≤ T ′. We want T ′ to capture the length of the liquidity trap

and T the period during which a fiscal stimulus is going to be enacted.35 Accordingly, we let monetary

policy satisfy Assumption 2, with T replaced by T ′. We also fix RT ′ = 0, so as to focus on fiscal policy.

Finally, we assume that gt = 0 for all t ̸= T so as to focus on beliefs about gT , and specify the information

structure in the same way as in Assumption 3. We can then show the following.

Proposition 8 Propositions 6 and 7 hold true with ϕ∗
T and ϕT reinterpreted as, respectively, the complete-

and the incomplete-information slope of y0 with respect to Ē0[gT ].

The part of this result that regards ϕ∗
T is the fiscal analogue of the forward-guidance puzzle: in the

common-knowledge benchmark, the current impact of a fiscal stimulus of a given size increases as the

stimulus is pushed further into the future. The underlying logic is essentially the same as before: the PE

effect of a fiscal stimulus, which is its direct effect on the concurrent real marginal costs, decays with the

horizon T , but the GE effects that run within and between the two blocks of the model overturn this property.

The other part of the result, which regards ϕT , contains the policy lesson of this section: once we relax the

assumption that there is common knowledge of the size and the consequences of the fiscal stimulus, the

fiscal multiplier is reduced at every T , and the more so the larger T is.

In short, while the standard model predicts that fiscal stimuli must be back-loaded in order to pile up

the feedback effects between aggregate spending and inflation, our approach offers a rationale for front-

loading them. Such front-loading eases the coordination friction in the economy: the sooner the fiscal

stimulus is enacted, the less concerned the agents would be about the beliefs and the responses of others

at long horizons, and, thereby, the easier it is to coordinate on a large response today.36 An interesting

35Similarly to Christiano, Eichenbaum and Rebelo (2011), Woodford (2011), and Werning (2012), the fiscal multipliers we are
concerned with are those that obtain when the ZLB constraint binds. The investigation of how our insights extend, when the
economy is away from this constraint and monetary policy follows a Taylor rule, is the subject of ongoing work.

36Of course, whether the provided rationale for front-loading is sufficiently strong to offset the standard back-loading property
depends on the severity of the informational friction and all the parameters that govern the magnitude of the GE feedback loops,
such as κ, the slope of the NKPC. Letting λ or κ be small enough guarantees that the fiscal multiplier decreases with T, not only
relative to its common-knowledge counterpart, but also in absolute value.
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question, which we leave open for future research, is how this insight interacts with borrowing constraints

and hand-to-mouth consumers, which is the more standard rationale for the front-loading of fiscal stimuli.

8 Conclusion

Modern macroeconomics assigns a crucial role to forward-looking expectations, such as consumer expec-

tations of future income and future real interest rates or firm expectations of future inflation and future real

marginal costs. This property seems desirable and realistic. However, by assuming common knowledge

along with rational expectations, the dominant modeling practice hardwires a certain kind of perfection

in the ability of economic agents to understand what happens around them, to align their forward-looking

beliefs, and to coordinate their responses to any exogenous impulse. In so doing, it also maximizes the

general-equilibrium multipliers on fiscal and monetary policies.

Conversely, allowing for higher-order uncertainty helps accommodate a realistic friction in the ability

of economic agents to forecast, or comprehend, the macroeconomic effects of policy news. This in turn

arrests the underlying general-equilibrium feedback loops and reduces the ability of policy makers to steer

the economy, especially when the policy news regards longer horizons.

We first formalized these ideas within an abstract framework, which was flexible enough to nest the

demand and the supply block of the New Keynesian model along with other applications. We next showed

how these ideas lessen the forward-guidance puzzle and offer a rationale for the front-loading of fiscal

stimuli. As shown in Appendix C, the same logic also helps moderate the paradox of flexibility, namely the

prediction that, under certain conditions, a higher degree of price flexibility can amplify demand shocks

and raise the effectiveness of monetary policy.

By anchoring the movements in the expectations of economic outcomes relative to the movements in

the expectations of the policy instrument, our paper helps operationalize the idea that policy makers may

have a harder time managing the former kind of expectations than the latter. But it also hints to the following

possibility: especially when it comes to longer horizons, it may be more important for the policy maker to

communicate her intended path for the economy (e.g., for output and inflation) than her intended path for

the policy instrument. What is more, these communications must be loud and clear, not only in the ears

of Wall Street (financial markets), but also in the ears of Main Street (firms and consumers). We leave the

exploration of these ideas open for future research.

Another interesting research question, which we are pursuing in ongoing work, is the investigation of

the implications of our insights for equilibrium selection and for the “neo-Fisherian” effects discussed in,

inter alia, Garcıa-Schmidt and Woodford (2015) and Cochrane (2016, 2017). As already noted, these issues

hinge on the same kind of higher-order beliefs as the ones we have unearthed in this paper.

Finally, it is worth clarifying the following point. In the present paper, we focused on environments in

which GE effects reinforce PE effects. In this case, GE attenuation translates to under-reaction. In other con-

texts, GE effects mitigate PE effects. For example, this is the case when agents compete for limited resources
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and their actions are strategic substitutes. In this case, our insights remain valid, but their empirical implica-

tion is reversed: GE attenuation now translates to over-reaction. In a companion paper (Angeletos and Lian,

2016a) we discuss how this observation offers a unified explanation to seemingly disparate phenomena.
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Appendix A: Proofs

In this Appendix, we prove the results stated in the main text. For all the proofs that regard the New-

Keynesian model (as opposed to the abstract analysis in Section 5), we use a tilde over a variable to denote

the log-deviation of this variable from its steady-state counterpart, and reserve the non-tilde notation for the

original variables. The only exception to this rule is that we let ãi,t ≡ ai,t
c∗ , where ai,t is consumer i’s initial

asset position at period-t and c∗ is steady-state spending. This takes care of the issue that the log-deviation of

the asset position is not well defined because the steady-state value is a∗ = 0 and is standard in the literature

(e.g., Woodford, 2011).

Proof of Proposition 1. Weproceed in four steps, starting with the behavior of the consumers, proceeding

with the behavior of the firms, and concluding with market clearing and with the derivation of the two beauty

contests shown in the main text.

Step 1: Consumers. Consider an arbitrary consumer i ∈ Ic. Let ai,t = Rt−1si,t−1/πt denote consumer

i’s initial asset position at period-t. By condition (2), the following intertemporal budget constraint holds in

all periods and all states of Nature:37

+∞∑
k=0


 k∏
j=1

(
Rt+j−1

πt+j

)−1

 ci,t+k

 = ai,t +

+∞∑
k=0


 k∏
j=1

(
Rt+j−1

πt+j

)−1

 (wi,t+kni,t+k + ei,t+k)

 . (26)

Taking the log-linear approximation of the above around the steady state, we get the following:

+∞∑
k=0

βk c̃i,t+k = ãi,t +
+∞∑
k=0

βk {Ω(w̃i,t+k + ñi,t+k) + (1− Ω) ẽi,t+k} , (27)

where Ω is the ratio of labor income to total income in steady state. The consumer’s optimality conditions,

on the other hand, can be expressed as follows:

ñi,t =
1

ϵ

(
w̃i,t −

1

σ
c̃i,t

)
, (28)

c̃i,t = Ei,t

[
c̃i,t+1 − σ

(
R̃t − π̃t+1

)]
= Ei,t [c̃i,t+1 − σr̃t+1] , (29)

where Ei,t [·] is the expectation of consumer i in period t. The first condition describes optimal labor supply;

the second is the individual-level Euler condition, which describes optimal consumption and saving.

At this point, it is worth emphasizing that our analysis preserves the standard Euler condition at the

individual level. This contrasts with McKay, Nakamura and Steinsson (2016b,a) and Werning (2015), where

liquidity constraints cause this condition to be violated for some agents, as well as with Gabaix (2016), where

a cognitive friction causes this condition to be violated for every agent. We revisit this point in Appendix C,

37One should think of the state of Nature as a realization of the exogenous payoff relevant shocks along with the cross-sectional
distribution of the exogenous signals (information) received by the agents.
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when we show that our analysis rationalizes a discounted Euler condition at the aggregate level, in spite of

the preservation of the standard condition at the individual level.

Combining conditions (27), (28) and (29), we obtain the optimal expenditure of consumer i in period t

as a function of the current and the expected future values of wages, dividends, and real interest rates:

c̃i,t =
(1−β)ϵσ
ϵσ+Ω ãi,t − σ

+∞∑
k=1

βkEi,t [r̃t+k] (30)

+ (1− β)
[
(ϵ+1)σΩ
ϵσ+Ω w̃i,t +

ϵσ(1−Ω)
ϵσ+Ω ẽi,t

]
+ (1− β)

+∞∑
k=1

βkEi,t

[
(ϵ+1)σΩ
ϵσ+Ω w̃i,t+k +

ϵσ(1−Ω)
ϵσ+Ω ẽi,t+k

]
.

This condition, which is a variant of the consumption function seen in textbook treatments of the Permanent

Income Hypothesis,38 contains two elementary insights. First, all future variables—wages, dividends, and

real interest rates—are discounted. Second, the current spending of a consumer depends on the present

value of her income, which in turn depends, in equilibrium, on the future spending of other consumers.

The first property guarantees that the decision-theoretic, or partial-equilibrium, effect of forward guid-

ance diminishes with the horizon at which interest rates are changed; the second represents a dynamic

strategic complementarity, which is the modern reincarnation what was known as the “income multiplier”

in the IS-LM framework. We elaborate on these two points more in the main text. For the time being, we

aggregate condition (30), and use the facts that assets average to zero and that future idiosyncratic shocks

are unpredictable, to obtain the following condition for aggregate spending:

c̃t = −σ

+∞∑
k=1

βkĒc
t [r̃t+k] + (1− β)

[
(ϵ+1)σΩ
ϵσ+Ω w̃t +

ϵσ(1−Ω)
ϵσ+Ω ẽt

]
(31)

+ (1− β)
+∞∑
k=1

βkĒc
t

[
(ϵ+1)σΩ
ϵσ+Ω w̃t+k +

ϵσ(1−Ω)
ϵσ+Ω ẽt+k

]
,

where Ēc
t [·] henceforth denotes the average expectation of the consumers in period t.

Step 2: Firms. Consider a firm j ∈ If that gets the chance to reset its price during period t. The optimal

reset price, denoted by pj∗t , is given by the following:

p̃j∗t = (1− βθ)

{
(m̃cjt + p̃t) +

+∞∑
k=1

(βθ)k Ej,t

[
m̃cjt+k + p̃t+k

]}
+ (1− βθ) µ̃j

t , (32)

where Ef
j,t [·] denotes the firm’s expectations in period t, m̃cjt = w̃j

t is its real marginal cost in period t, and

µ̃j
t is the corresponding markup shock. The interpretation of this condition is familiar: the optimal “reset”

38To see this more clearly, suppose that initial assets are zero, that the real interest rate is expected to equal the discount rate
at all periods, and that labor supply is fixed (ϵ → ∞). Condition (30) then reduces to c̃i,t = (1− β) [Ωw̃i,t + (1− Ω) ẽi,t] +
(1− β)

∑+∞
k=1 β

kEi,t [Ωw̃i,t+k + (1− Ω) ẽi,t+k] , which means that optimal consumption equals “permanent income” (the annuity
value of current and future income). Relative to this benchmark, condition (30) adjusts for three factors: for the endogeneity of labor
supply, which explains the different weights on wages and dividends; for initial assets, which explains the first term in condition
(30); and for the potential gap between the real interest rate and the subjective discount rate, which explains the second term.
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price is given by the expected nominal marginal cost over the expected lifespan of the new price, plus

the markup.39 Aggregating the above condition, using the fact that the past price level is known and that

inflation is given by π̃t = (1− θ) (p̃∗t − p̃t−1), where p̃∗t ≡
∫
If p̃

j∗
t dj, we obtain the following condition for

the level of inflation in period t:

π̃t = κm̃ct + κ
+∞∑
k=1

(βθ)k Ēf
t [m̃ct+k] +

1−θ
θ

+∞∑
k=1

(βθ)k Ēf
t [π̃t+k] + κµ̃t, (33)

where κ ≡ (1−θ)(1−βθ)
θ and Ēf

t [·] henceforth denotes the average expectation of the firms. The latter may or

may not be the same as the average expectation of the consumers.

Step 3: Market Clearing, Wages, and Profits. Because the final-good sector is competitive and observes

all the relevant prices,40 and because the technology satisfies (3) and (4), we have that p̃t =
∫
If p̃

j
tdj and ỹt =∫

If ỹ
j
tdj =

∫
If l̃

j
tdj. The latter, together with market clearing in the labor market, gives ỹt = ñt ≡

∫
Ic ñi,tdi.

Market clearing in the market for the final good, on the other hand, gives

ỹt = c̃t ≡
∫
Ic
c̃i,tdi.

Finally, note that the real profit of monopolist j at period t is given by ejt =
(
pjt
pt

− wj
t

)
yjt . Log-linearizing

and aggregating it gives ẽt = − Ω
1−Ω w̃t + ỹt. Combining all these facts with (28), the optimality condition for

labor supply, we arrive at the following characterization of the aggregate wages and the profits:

w̃t = m̃ct =

(
ϵ+

1

σ

)
ỹt, ẽt =

[
1− Ω(ϵ+ 1

σ )
1−Ω

]
ỹt, and (ϵ+1)σΩ

ϵσ+Ω w̃t +
ϵσ(1−Ω)
ϵσ+Ω ẽt = ỹt. (34)

Step 4: Beauty Contests. Condition (31), which follows merely from consumer optimality, pins down

aggregate spending as a function of the average beliefs of wages, profits, interest rates, and inflation. As we

impose REE, a consumer can infer that (34) holds, aggregate spending can then be expressed as a function of

the consumers’ average beliefs of interest rates, of inflation, and of aggregate spending itself. This is condition

(5), the consumption beauty contest. Similarly, combining (33) and (34), we can express aggregate inflation

as a function of the firms’ average beliefs of aggregate spending and of inflation itself. This is condition (6),

the inflation beauty contest.

Proof of Proposition 2. Because Θt is zero for all t > T, at is also zero for all t > T.41 Using this fact

along with the fact that Θt is zero also for t < T, and iterating on condition (12), we can obtain at for all

t < T as a linear function of the average first- and higher-order beliefs about ΘT ; see, e.g., Lemma 2 below

for an explicit characterization in the case without learning. When information is complete, all agents share

the same first-order beliefs about ΘT with probability one, and this fact is itself common knowledge. It

39Note that future markups are unpredictable.
40Recall that the we have allowed the entire price vector, (pjt)j∈[0,1], to be common knowledge at period t.
41As mentioned in main text, we assume limk→∞ γkEi,t [at+k] = 0 and rule out “extrinsic bubbles.”
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follows that higher-order beliefs collapse to first-order beliefs and, therefore, at becomes a linear function

of Et[ΘT ], the commonly shared expectation of ΘT . Now take any t < τ ≤ T and any pair of agents i, j.

Complete information guarantees that Ei,t[Eτ [ΘT ]] = Et[ΘT ] = Ej,t[Eτ [ΘT ]] with probability one. And

since we already argued that, in equilibrium, aτ is a known linear function of Eτ [ΘT ], it is also the case

Ei,t[aτ ] = Ej,t[aτ ]. That is, complete information (in the sense of Definition 1) rules out imperfect consensus

(in the sense of Definition 2).

Proof of Lemma 1. Lemma 1 directly follows from the argument in main text.

Proof of Lemma 2. We prove the following stronger result: there exists positively-valued coefficients

{χh,k}k≥1,1≤h≤k, such that, for any t ≤ T − 1,

at =
T−t∑
h=1

{
χh,T−tĒ

h
t [ΘT ]

}
, (35)

where each χh,k is a function of (α, γ, h, k) and Ēh
t [·] is defined recursively by Ē1

t [·] = Ēt [·] and Ēh
t [·] =

Ēt

[
Ēh−1

t [·]
]
for every h ≥ 2. We now prove this claim by induction. First, consider t = T − 1. From

aT = ΘT
42 and condition (16), we have aT−1 = (γ + α) ĒT−1 [ΘT ]. It follows that condition (35) holds for

χ1,1 = γ + α.

Now, pick an arbitrary t ≤ T − 2, assume that condition (35) holds for all τ ∈ {t+ 1, ..., T − 1}, and let

us prove that it also holds for t. From condition (16), we have

at = γT−t−1 (γ + α) Ēt [ΘT ] + α
T−t−1∑
k=1

γk−1Ēt

[
T−t−k∑
h=1

{
χh,T−t−kĒ

h
t+k [ΘT ]

}]
(36)

= γT−t−1 (γ + α) Ēt [ΘT ] +
T−t−1∑
h=1

T−t−h∑
k=1

(
αγk−1χh,T−t−k

)
Ēh+1

t [ΘT ] ,

where the second line uses Assumption 1 (no learning). As a result, condition (35) holds for

χ1,T−t = γT−t−1 (γ + α) and χh+1,T−t =

T−t−h∑
k=1

αγk−1χh,T−t−k h ∈ {1, · · ·T − t− 1} . (37)

This finishes the proof.

Proof of Theorem 1. This theorem builds on Proposition 3 and Theorem 2, which are proved in the

sequel. We invite the reader to read first the proofs of these two results. Here, we prove Theorem 1 taking

for granted these results.

Part (i) follows directly from projecting a0 on Ē0[ΘT ] and letting ϕT be the coefficient of this projection

and ϵ the residual.
42As mentioned in main text, we assumelimk→∞ γkEi,t [at+k] = 0 and rule out “extrinsic bubbles.” Together with the fact Θt is

zero for all t > T, at is also zero for all t > T. As a result, aT = ΘT from condition (12).
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To prove part (ii), note that from Lemma 2, we have ϕT =
∑T

h=1 χh,Tβh, which is condition (20) in the

main text. Together with the expression of ϕ∗
T , condition (18), and the fact that βh < 1 for all h ≥ 2 (from

Proposition 3), we have ϕT /ϕ
∗
T < 1 for all T ≥ 2.

To prove part (iii), from condition (20), we have ϕT /ϕ
∗
T =

[∑T−1
h=1 sh,T (βh − βh+1) + sT,TβT

]
/sT,T and

ϕT+1/ϕ
∗
T+1 =

[∑T−1
h=1 sh,T+1 (βh − βh+1) + sT,T+1 (βT − βT+1) + sT+1,T+1βT+1

]
/sT+1,T+1. From Proposi-

tion 3 we know βh > βh+1 for all h. Together with Theorem 2, we have, for all T ≥ 1,

ϕT+1/ϕ
∗
T+1 <

[
T−1∑
h=1

sh,T+1 (βh − βh+1) + sT+1,T+1 (βT − βT+1) + sT+1,T+1βT+1

]
/sT+1,T+1

=

[
T−1∑
h=1

sh,T+1 (βh − βh+1) + sT+1,T+1βT

]
/sT+1,T+1

≤

[
T−1∑
h=1

sh,T (βh − βh+1) + sT,TβT

]
/sT,T = ϕT /ϕ

∗
T .

Proof of Proposition 3. Note that every agent i’s information set at period 0 is drawn i.i.d. from the

aggregate state of the Nature (for simplicity, we call this property “symmetry” in the rest of this proof), we

have, for all h ≥ 2,

Cov
(
Ēh

0 [ΘT ], Ē
1
0 [ΘT ]

)
= Cov

(
Ei,0

[
Ēh−1

0 [ΘT ]
]
, Ē1

0 [ΘT ]
)
= Cov

(
Ei,0

[
Ēh−1

0 [ΘT ]
]
, Ei,0

[
Ē1

0 [ΘT ]
])

,

= Cov
(
Ēh−1

0 [ΘT ], Ei,0

[
Ē1

0 [ΘT ]
])

= Cov
(
Ēh−1

0 [ΘT ], Ē
2
0 [ΘT ]

)
,

where the second and the third equality come from the law of iterated expectations. By the same argument,

we have, for all h ≥ 2 and j ∈ {1, 2, · · ·h− 1} ,

Cov
(
Ēh

0 [ΘT ], Ē
1
0 [ΘT ]

)
= Cov

(
Ēh−j

0 [ΘT ], Ē
1+j
0 [ΘT ]

)
. (38)

From the previous condition, for k ≥ 1, we have43

β2k =
Cov

(
Ēk

0 [ΘT ], Ē
k+1
0 [ΘT ]

)
V ar

(
Ē1

0 [ΘT ]
) =

Cov
(
Ēk

0 [ΘT ], Ei,0

[
Ēk

0 [ΘT ]
])

V ar
(
Ē1

0 [ΘT ]
) =

V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])

V ar
(
Ē1

0 [ΘT ]
) ≥ 0 ∀i, (39)

where the second equation follows from symmetry and the last equation follows from the law of iterated

expectations. Similarly, for k ≥ 1, we have

β2k−1 =
Cov

(
Ēk

0 [ΘT ], Ē
k
0 [ΘT ]

)
V ar

(
Ē1

0 [ΘT ]
) =

V ar
(
Ēk

0 [ΘT ]
)

V ar
(
Ē1

0 [ΘT ]
) ≥ 0. (40)

43Note that under incomplete information, we have V ar
(
Ē1

0 [ΘT ]
)
> 0, so all βk is well defined. To prove it, note that if

V ar
(
Ē1

0 [ΘT ]
)
= 0, together with the fact that the mean of ΘT is zero, we have Ē1

0 [ΘT ] = 0 almost surely. As a result, we have
V ar (Ei,0 [ΘT ]) = Cov (ΘT , Ei,0 [ΘT ]) = Cov

(
ΘT , Ē0 [ΘT ]

)
= 0, and Ei,0 [ΘT ] = 0 = Ej,0 [ΘT ] almost surely for all i, j. This is

inconsistent with the definition about incomplete information in Definition 1.
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Now, note that for any random variable X, and any information set I, according to the law of total

variance, we have:

V ar (E[X|I]) ≤ V ar (X) .

As a result, V ar
(
Ēk+1

0 [ΘT ]
)
= V ar

(
E
[
Ei,0

[
Ēk

0 [ΘT ]
]
|s
])

≤ V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])
and V ar

(
Ei,0

[
Ēk

0 [ΘT ]
])

=

V ar
(
E
[
Ēk

0 [ΘT ]|ωi

])
≤ V ar

(
Ēk

0 [ΘT ]
)
, where, as a reminder, s is the aggregate state of the Nature and ωi

is the information set of agent i. Together with conditions (39) and (40), we know that, for all k ≥ 1,

β2k+1 ≤ β2k ≤ β2k−1. This proves that, for all h ≥ 2, βh ∈ [0, 1] and is weakly decreasing in h.

Nowwe try to prove βh is strictly decreasing in h. Note that from condition (39), β2 =
V ar(Ei,0[Ē0[ΘT ]])

V ar(Ē1
0 [ΘT ])

≤
β1 = 1. If β2 = β1 = 1, we have V ar

(
Ei,0

[
Ē0[ΘT ]

])
= V ar

(
Ē0[ΘT ]

)
for all i. This means that

V ar
(
Ei,0

[
Ē0[ΘT ]

]
− Ē0[ΘT ]

)
= V ar

(
Ei,0

[
Ē0[ΘT ]

])
+ V ar

(
Ē0[ΘT ]

)
− 2Cov

(
Ei,0

[
Ē0[ΘT ]

]
, Ē0[ΘT ]

)
= V ar

(
Ē0[ΘT ]

)
− V ar

(
Ei,0

[
Ē0[ΘT ]

])
= 0, (41)

where the second equality follows from the law of iterated expectations. As a result, for all i, Ei,0

[
Ē0[ΘT ]

]
=

Ē0[ΘT ] almost surely. We henceforth have that

V ar
(
Ē0 [ΘT ]

)
= Cov

(
ΘT , Ē

2
0 [ΘT ]

)
= Cov

(
ΘT , Ei,0

[
Ē0 [ΘT ]

])
= Cov

(
ΘT , Ē0 [ΘT ]

)
= Cov (ΘT , Ei,0 [ΘT ]) = V ar (Ei,0 [ΘT ]) ,

where the first equality follows a similar argument as condition (38), the second and fourth equalities follow

from symmetry, the third equality follows from Ei,0

[
Ē0[ΘT ]

]
= Ē0[ΘT ] almost surely, and the last equality

follows from the law of iterated expectations. This means that

V ar
(
Ei,0 [ΘT ]− Ē0 [ΘT ]

)
= V ar (Ei,0 [ΘT ]) + V ar

(
Ē0 [ΘT ]

)
− Cov

(
Ei,0 [ΘT ] , Ē0 [ΘT ]

)
= V ar (Ei,0 [ΘT ])− V ar

(
Ē0 [ΘT ]

)
= 0, (42)

where the second equality follows from symmetry. As a result, Ei,0 [ΘT ] = Ē0 [ΘT ] almost surely for all

i, and Ei,0 [ΘT ] = Ej,0 [ΘT ] almost surely for all i, j. This is contradictory to the definition of incomplete

information. As a result, β2 < β1 = 1.

Now, suppose it is not the case that βh is strictly decreasing in h. Then there exists a smallest h∗ > 1

such that βh∗+1 = βh∗ .

If h∗ = 2k for some k ≥ 1. From conditions (39) and (40), we have V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])

= V ar
(
Ēk+1

0 [ΘT ]
)
.

Following a similar argument as condition (42), we have Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk+1

0 [ΘT ] almost surely. We

henceforth have

Cov
(
Ēk

0 [ΘT ], Ē
k+1
0 [ΘT ]

)
= Cov

(
Ei,0

[
Ēk−1

0 [ΘT ]
]
, Ēk+1

0 [ΘT ]
)
= Cov

(
Ei,0

[
Ēk−1

0 [ΘT ]
]
, Ei,0

[
Ēk

0 [ΘT ]
])

= Cov
(
Ei,0

[
Ēk−1

0 [ΘT ]
]
, Ēk

0 [ΘT ]
)
= Cov

(
Ēk

0 [ΘT ], Ē
k
0 [ΘT ]

)
,
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where the first and the last equalities follow from symmetry, the second equality follows from the fact that

Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk+1

0 [ΘT ] almost surely, and the third equality follows from the law of iterated expectations.

This expression means βh∗−1 = β2k−1 = β2k = βh∗ , which contradicts the fact that h∗ is the smallest h such

that βh∗+1 = βh∗ .

If h∗ = 2k − 1 for some k ≥ 2, from conditions (39) and (40), we have V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])

=

V ar
(
Ēk

0 [ΘT ]
)
. Following a similar argument as condition (41) for all i, Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk

0 [ΘT ] almost

surely. We henceforth have

V ar
(
Ēk

0 [ΘT ]
)
= Cov

(
Ēk−1

0 [ΘT ] , Ē
k+1
0 [ΘT ]

)
= Cov

(
Ēk−1

0 [ΘT ] , Ei,0

[
Ēk

0 [ΘT ]
])

= Cov
(
Ēk−1

0 [ΘT ] , Ē
k
0 [ΘT ]

)
= Cov

(
Ēk−1

0 [ΘT ] , Ei,0

[
Ēk−1

0 [ΘT ]
])

= V ar
(
Ei,0

[
Ēk−1

0 [ΘT ]
])

,

where the first equality follows a similar argument as condition (38), the second and forth equalities follow

from symmetry, the third equality follows from Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk

0 [ΘT ] almost surely, and the last equality

follows from the law of iterated expectations. This expression means that βh∗−1 = β2k−2 = β2k−1 = βh∗ ,

which contradicts the fact that h∗ is the smallest h such that βh∗+1 = βh∗ .

As a result, βh is strictly decreasing in h. This implies that βh < β1 = 1, ∀h ≥ 2. It also means that βh >

0 ∀h. If not, there exists a h∗ such that βh∗ = 0. From strict monotonicity, we then have βh∗+1 < βh∗ = 0,

which contradicts βh∗+1 ≥ 0. This finishes the proof of Proposition 3.

Proof of Corollary 1. Corollary 1 follows directly from part (ii) of Theorem 1.

Proof of Theorem 2. To simplify notation, we extend the definition of sh,τ =
∑h

r=1 χr,τ for all h > τ . In

the case that h > τ , from Lemma 2, we have χh,τ = 0. As a result, sh,τ = sτ,τ for all h > τ . We also define

s0,τ = 0 for all τ ≥ 1.

From condition (16), we have

sh,τ = γτ−1 (γ + α) +
τ−1∑
l=1

αγl−1sh−1,τ−l ∀h ≥ 1 and τ ≥ 1. (43)

Now, for all τ ≥ 1, as χh,τ = 0 for h > τ , we can use dτ = sτ,τ denote the combined effect of beliefs of

all different orders. From condition (43), we have

dτ = γτ−1 (γ + α) +

τ−1∑
l=1

αγl−1dτ−l ∀τ ≥ 1, (44)

where we use the fact that sh,τ = sτ,τ for all h > τ . From condition (44), we can easily verify, by induction,

that

dτ = (γ + α)τ ∀τ ≥ 1. (45)

For any h ≥ 1, we now prove that sh,τ/sτ,τ = sh,τ/dτ , strictly decreases with τ ≥ h. Notice that from
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condition (43), we have, for all τ ≥ h ≥ 1,

sh,τ+1 = γτ (γ + α) + αsh−1,τ +
τ−1∑
l=1

αγlsh−1,τ−l

= γsh,τ + αsh−1,τ < (γ + α) sh,τ . (46)

Also note that from condition (45), we have sτ+1,τ+1 = dτ+1 = (γ + α) dτ = (γ + α) sτ,τ . Together, we

have sh,τ+1/sτ+1,τ+1 < sh,τ/sτ,τ for all τ ≥ h ≥ 1.

Finally, we prove that, for any h ≥ 1, sh,τ/sτ,τ → 0 as τ → +∞. Because s1,τ = γτ−1 (γ + α) and sτ,τ =

(γ + α)τ , limτ→∞ sh,τ/sτ,τ → 0 holds for h = 1. Suppose there is some h such that limτ→∞ sh,τ/sτ,τ → 0

does not hold, let h∗ > 1 be the smallest of such h. As sh∗,τ/sτ,τ is strictly decreasing in τ , there exists Γ > 0

such that limτ→∞ sh∗,τ/sτ,τ → Γ. From conditions (45) and (46), we have sh∗,τ+1

sτ+1,τ+1
= γ

γ+α

sh∗,τ
sτ,τ

+ α
γ+α

sh∗−1,τ

sτ,τ
.

Let τ → +∞, we have Γ = γ
γ+αΓ. This cannot be true as α, γ > 0. As a result, limτ→∞ sh,τ/sτ,τ → 0 for all

h ≥ 1.

Proof of Proposition 4. By Theorem 1, the ratio ϕT
ϕ∗
T
is strictly decreasing in T and bounded in (0, 1). It

follows that ϕT
ϕ∗
T
necessarily converges to some φ ∈ [0, 1) as T → ∞. Similarly, by Proposition 3, βh is strictly

decreasing in T and bounded in (0, 1). It follows that βh necessarily converges to some β ∈ [0, 1) as T → ∞.

We first prove φ = β ≡ limh→∞ βh.We note that for, any ϑ > 0, there exists a h∗, such that
∣∣βh − β

∣∣ < ϑ
2

for all h ≥ h∗. From Theorem 2, we can then find T ∗ ∈ N+ such that, for all T ≥ T ∗, sh∗−1,T

sT,T
≤ ϑ

2 . Together

with conditions (18) and (20), we have, for all T ≥ max {h∗, T ∗},

∣∣∣∣ϕT

ϕ∗
T

− β

∣∣∣∣ =
∣∣∣∣∣
∑T

h=1 χh,T

(
βh − β

)
sT,T

∣∣∣∣∣ =
∣∣∣∣∣
∑h∗−1

h=1 χh,T

(
βh − β

)
+
∑T

h=h∗ χh,T

(
βh − β

)
sT,T

∣∣∣∣∣
≤
∑h∗−1

h=1 χh,T

sT,T
+

∑T
h=h∗ χh,T

ϑ
2

sT,T

≤ ϑ

2
+

ϑ

2
= ϑ,

where the first inequality we use the fact that
∣∣βh − β

∣∣ ≤ 1 and the second inequality uses the fact that∑T
h=h∗ χh,T

sT,T
≤ sT,T

sT,T
= 1. As a result, φ ≡ limT→∞

ϕT
ϕ∗
T
= β.

Finally, from condition (40), we know β2h−1 =
V ar(Ēh

0 [ΘT ])
V ar(Ē1

0 [ΘT ])
. If limh→∞ V ar

(
Ēh[ΘT ]

)
= 0, we have

limh→∞ β2h−1 = 0. As βh is decreasing in h, we also have

β = lim
h→∞

βh = 0. (47)

As a result, limT→∞
ϕT
ϕ∗
T
= 0.

Proof of Proposition 5. Under the assumed information structure, we have for any h ∈ {1, ..., T} and

0 ≤ t1 < t2 < · · · < th < T ,

Ēt1 [Ēt2 [...[Ēth [ΘT ]...]] = λhz. (48)
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Now we prove by induction that, for all t ≤ T − 1,

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λα) Ēt[ΘT ]
}
. (49)

SinceΘt = 0 for all t ̸= T, together with condition (16), we have aT = ΘT and aT−1 = (γ + α) ĒT−1[ΘT ].

As a result, condition (49) holds for t = T − 1. Now, pick a t ≤ T − 2, assume that the claim holds for all

τ ∈ {t+ 1, ..., T − 1}, and let us prove that it also holds for t. Using the claim for all τ ∈ {t+ 1, ..., T − 1},
condition (16), and condition (48), we have, for t ≤ T − 2,

at = γT−tĒt [ΘT ] + αĒt [at+1] + α
T−t∑
k=2

γk−1Ēt [at+k] ,

γĒt [at+1] = λγT−tĒt [ΘT ] + λα

T−t∑
k=2

γk−1Ēt [at+k] .

As a result, we have at =
(γ
λ + α

)
Ēt [at+1] . Together with condition (49) for t+ 1, we have

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λα) Ēt[ΘT ]
}
.

This proves condition (49) for all t ≤ T−1. As a result, ϕT = (γ + α)ΠT−1
t=1 (γ + λα) . This proves Proposition

5.

Proof of Corollary 2. Note that δ − δ′ = α (1− λ) increases with α for any given λ < 1.

Proof of Lemma 3. As firms have complete information, the canonical NKPC in condition (10) holds.

Substituting it into the consumption beauty contest, condition (5), and using the fact that future markup

shocks are unpredictable, we have

ỹt = −σR̃t − σ

∞∑
k=1

βkĒc
t [R̃t+k] +

∞∑
k=1

(1− β + kσκ)βk−1Ēc
t [ỹt+k].

Proof of Proposition 6. Let
{
ỹtrapt , π̃trap

t

}T

t=0
denote the liquidity-trap level of output and inflation (i.e.,

the one obtained when the period-T nominal interest rate is fixed at the steady-state value, R̃T = 0). From

conditions (9) and (10), we have, for all t ≤ T − 1,

ỹt − ỹtrapt = σEt[π̃t+1 − π̃trap
t+1 ] + Et[ỹt+1 − ỹtrapt+1 ], (50)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
+ βEt[π̃t+1 − π̃trap

t+1 ]. (51)

Now we will prove the following stronger result, which nests the representation in condition (24): there

exists positive scalars {ϕ∗
τ , ϖ

∗
τ}τ≥0 such that, whenever Assumptions 2 hold and z is commonly known, the
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equilibrium spending and inflation at any t ≤ T are given by

ỹt − ỹtrapt = −ϕ∗
T−t · Et[R̃T ], (52)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
−ϖ∗

T−t · Et[R̃T ]. (53)

We prove this result by induction, starting with t = T and proceeding backwards. When t = T , under

Assumption 2, we have ỹT − ỹtrapT = −σR̃T and π̃T − π̃trap
T = κ

(
ỹT − ỹtrapT

)
. This verifies (52) and (53) for

t = T , with

ϕ∗
0 = σ and ϖ∗

0 = 0. (54)

Now suppose that the result holds for arbitrary t ∈ {1, ..., T} and let’s prove that it also holds for t − 1.

By the assumption that (52) and (53) hold at t along with the Law of Iterated Expectations, we have

Et−1[ỹt − ỹtrapt ] = −ϕ∗
T−t · Et−1[R̃T ],

Et−1[π̃t − π̃trap
t ] = −

(
κϕ∗

T−t +ϖ∗
T−t

)
· Et−1[R̃T ].

Using the above together with conditions (50) and (51) verifies that (52) and (53) hold also for t−1, with

ϕ∗
T−t+1 = (1 + σκ)ϕ∗

T−t + σϖ∗
T−t, (55)

ϖ∗
T−t+1 = βκϕ∗

T−t + βϖ∗
T−t. (56)

This completes the proof of conditions (50) and (51), and gives a recursive formula that can be used to

compute ϕ∗
T .

Now we prove the Proposition. From conditions (55) and (56), we have that, for all τ ≥ 0,

ϕ∗
τ+1 = (1 + σκ)ϕ∗

τ + σϖ∗
τ , (57)

ϖ∗
τ+1 = βκϕ∗

τ + βϖ∗
τ . (58)

Together with condition (54), we know, as κ > 0, ϖ∗
τ > 0, ∀τ ≥ 1. Then, from condition (57), we have

ϕ∗
τ > σ, ∀τ ≥ 1, and ϕ∗

τ is strictly increasing in τ.Moreover, as 1+σκ > 1, we know ϕ∗
τ explodes to infinity

as τ → ∞ from condition (57).

Finally, we prove a fewmore results useful for the rest of the paper. First, we prove a recursive relationship

about {ϕ∗
τ}τ≥0.

ϕ∗
τ+1

ϕ∗
τ

+ β
ϕ∗
τ−1

ϕ∗
τ

= 1 + β + σκ ∀τ ≥ 1. (59)

From condition (57), we have, for all τ ≥ 1,

βϕ∗
τ = β (1 + σκ)ϕ∗

τ−1 + σβϖ∗
τ−1.
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Together with conditions (57) and (58), we arrive at condition (59).

Second, we prove that, when κ > 0,

ϕ∗
τ

ϕ∗
τ−1

is strictly increasing in τ ≥ 1. (60)

From conditions (57) and (58), we have ϕ∗
1 = σ (1 + σκ) and ϕ∗

2 = σ
(
(1 + σκ)2 + σκβ

)
. As a result, when

κ > 0,
ϕ∗
2

ϕ∗
1

= 1 + σκ+
σκβ

1 + σκ
>

ϕ∗
1

ϕ∗
0

.

Now we proceed by induction. Suppose that, for τ ≥ 1, we have
ϕ∗
τ+1

ϕ∗
τ

> ϕ∗
τ

ϕ∗
τ−1

. Using condition (59) for τ

and τ + 1, we have
ϕ∗
τ+2

ϕ∗
τ+1

>
ϕ∗
τ+1

ϕ∗
τ
. This proves (60).

Finally, from condition (59), we know ϕ∗
τ

ϕ∗
τ−1

is bounded above. Together with (60), ϕ∗
τ

ϕ∗
τ−1

must converge

to Γ∗ > 0, as τ → ∞. From condition (59) again, we know Γ∗ satisfy

Γ∗ + β
1

Γ∗ = 1 + β + σκ. (61)

Proof of Proposition 7. With
{
ỹtrapt , π̃trap

t

}T

t=0
defined as in the proof of Proposition 6, along with the

fact that it is common knowledge monetary policy replicates flexible-price allocations from T + 1 and on,

we can rewrite the two beauty contests as follows:

ỹt − ỹtrapt = −σβT−tĒc
t [R̃T ] +

T−t∑
k=1

σβk−1Ēc
t

[
π̃t+k − π̃trap

t+k

]
+ (1− β)

T−t∑
k=1

βk−1Ēc
t

[
ỹt+k − ỹtrapt+k

]
, (62)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
+ κ

T−t∑
k=1

(βθ)k Ēf
t

[
ỹt+k − ỹtrapt+k

]
+ 1−θ

θ

T−t∑
k=1

(βθ)k Ēf
t

[
π̃t+k − π̃trap

t+k

]
. (63)

Consider the following claim, which nests the representation in condition (25): under Assumption 3, there

exists functions ϕ,ϖ : (0, 1]× (0, 1]× N → R+ such that, for any t ≤ T − 1,

ỹt − ỹtrapt = −ϕ (λc, λf , T − t) Ēc
t [R̃T ], (64)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
−ϖ (λc, λf , T − t) Ēf

t [R̃T ]. (65)

We now establish this claim by induction.

First, consider t = T , as R̃T becomes common known at period T , , we have

ỹT − ỹtrapT = −σR̃T and π̃T − π̃trap
T = κ

(
ỹT − ỹtrapT

)
.
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Then, consider t = T − 1. From conditions (62) and (63), we have

ỹT−1 − ỹtrapT−1 = −σ(1 + σκ)Ēc
T−1[R̃T ],

π̃T−1 − π̃trap
T−1 = κ

(
ỹT−1 − ỹtrapT−1

)
− σκβĒf

T−1[R̃T ].

It follows that the claim holds for t = T − 1 with

ϕ(λc, λf , 1) = σ (1 + σκ) and ϖ(λc, λf , 1) = σκβ. (66)

Now, pick an arbitrary t ≤ T−2, assume that conditions (64) and (65) hold for all τ ∈ {t+1, ..., T−1}, and
let us prove that it also holds for t. Since the claim holds for τ ∈ {t+1, ...T−1}, and since ỹT−ỹtrapT = −σR̃T

and π̃T − π̃trap
T = −κσR̃T , from condition (62), we have

ỹt − ỹtrapt = −σβT−t−1 (1 + σκ) Ēc
t [R̃T ]− (1− β + σκ)

T−t−1∑
k=1

βk−1ϕ (λc, λf , T − t− k) Ēc
t [Ē

c
t+k[R̃T ]]

− σ
T−t−1∑
k=1

βk−1ϖ (λc, λf , T − t− k) Ēc
t

[
Ēf

t+k[R̃T ]
]
.

As a result, we have

ỹt − ỹtrapt = −σβT−t−1 (1 + σκ) Ēc
t [R̃T ]

−
T−t−1∑
k=1

βk−1 [(1− β + σκ)λcϕ (λc, λf , T − t− k) + σλfϖ (λc, λf , T − t− k)] Ēc
t [R̃T ],

where we have used the fact that, under Assumption 3, for 1 ≤ k ≤ T − t− 1,

Ēc
t [Ē

c
t+k[R̃T ]] = λcĒ

c
t [R̃T ] and Ēc

t [Ē
f
t+k[R̃T ]] = λf Ē

c
t [R̃T ]. (67)

This proves the part of the claim that regards output, condition (64), with

ϕ (λc, λf , T − t) = βT−t−1
(
σ + σ2κ

)
+

T−t−1∑
k=1

βk−1 [(1− β + σκ)λcϕ (λc, λf , T − t− k) + σλfϖ (λc, λf , T − t− k)] .

(68)
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Similarly, the inflation beauty contest in condition (63) gives

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
− σ κ

θ (βθ)
T−t Ēf

t [R̃T ]− κ
θ

T−t−1∑
k=1

(βθ)k ϕ (λc, λf , T − t− k) Ēf
t [Ē

c
t+k[R̃T ]]

− 1−θ
θ

T−t−1∑
k=1

(βθ)k ϖ (λc, λf , T − t− k) Ēf
t [Ē

f
t+k[R̃T ]].

As a result, we have

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
−

{
σ κ

θ (βθ)
T−t +

T−t−1∑
k=1

(βθ)k
[
κλc
θ ϕ (λc, λf , T − t− k) +

(1−θ)λf

θ ϖ (λc, λf , T − t− k)
]}

Ēf
t [R̃T ],

where we have used the fact that, similarly to the consumers’ case, for 1 ≤ k ≤ T − t− 1,

Ēf
t [Ē

c
t+k[R̃T ]] = λcĒ

f
t [R̃T ] and Ēf

t [Ē
f
t+k[R̃T ]] = λf Ē

f
t [R̃T ]. (69)

This proves the part of the claim that regards inflation, condition (65) with

ϖ (λc, λf , T − t) = σ
κ

θ
(βθ)T−t +

T−t−1∑
k=1

(βθ)k
(
κλc
θ ϕ (λc, λf , T − t− k) +

(1−θ)λf

θ ϖ (λc, λf , T − t− k)
)
.

(70)

We finally provide a recursive formula for computing ϕ(λc, λf , T − t) and ϖ (λc, λf , T − t), which will

be useful later. From condition (68), we have, for t ≤ T − 2,

ϕ (λc, λf , T − t) = βϕ (λc, λf , T − t− 1) + (1− β + σκ)λcϕ (λc, λf , T − t− 1) + σλfϖ (λc, λf , T − t− 1)

= (β + (1− β + σκ)λc)ϕ (λc, λf , T − t− 1) + σλfϖ (λc, λf , T − t− 1) . (71)

Similarly, from condition (70), we have, for t ≤ T − 2,

ϖ (λc, λf , T − t) = βθϖ (λc, λf , T − t− 1) + βθ
(
κλc
θ ϕ (λc, λf , T − t− 1) +

(1−θ)λf

θ ϖ (λc, λf , T − t− 1)
)

= κβλcϕ (λc, λf , T − t− 1) + β [θ + (1− θ)λf ]ϖ (λc, λf , T − t− 1) . (72)

From now on, to simplify notation, we use ϕτ and ϖτ as shortcuts for, respectively, ϕ (λc, λf , τ) and

ϖ (λc, λf , τ).

We first prove part (i) of Proposition 7. From condition (68), we know ϕτ > σβτ . The fact that ϕτ < ϕ∗
τ

is a direct corollary from the monotonicity of ϕτ with respect to λc and λf , which will be proved shorty.

We then prove part (ii) of Proposition 7. As κ > 0, from conditions (66), (71) and (72), we know that
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ϕτ , ϖτ > 0 for all τ ≥ 1.

We will first prove, for τ ≥ 2, ϕτ = ϕ (λc, λf , τ) is strictly increasing in both λc and λf . We will proceed

by induction on τ. For τ = 2, from (66), (71) and (72), we have ϕ2 and ϖ2 is strictly increasing in both λc

and λf . Suppose for τ ≥ 2, ϕτ , ϖτ is strictly increasing in both λc and λf . From conditions (71) and (72),

we know ϕτ+1 and ϖτ+1 are strictly increasing in both λc and λf , where we use the fact that ϕτ , ϖτ > 0.

This proves that, for τ ≥ 2, ϕτ = ϕ (λc, λf , τ) is strictly increasing in both λc and λf . Because of the strict

monotonicity, we have, for τ ≥ 2, whenever λc < 1 and/or λf < 1, ϕτ

ϕ∗
τ
=

ϕ(λc,λf ,τ)
ϕ(1,1,τ) < 1.

We now prove that, whenever λc < 1 and/or λf < 1, the ratio ϕτ

ϕ∗
τ
=

ϕ(λc,λf ,τ)
ϕ∗
τ

is strictly decreasing in

τ ≥ 1. We start by noticing, from the proof of Proposition 6, we have, for τ ≥ 3,

ϕ∗
τ

ϕ∗
τ−1

+ β
ϕ∗
τ−2

ϕ∗
τ−1

=1 + β + σκ . (73)

Now we prove that ϕτ satisfies an inequality with a similar form as (73):

ϕτ

ϕτ−1
+ β

ϕτ−2

ϕτ−1
≤1 + β + σκλc ≤ 1 + β + σκ ∀τ ≥ 3. (74)

From condition (71), we have, for τ ≥ 3,

ϕτ = (β + (1− β)λc)ϕτ−1 + σκλcϕτ−1 + σλfϖτ−1,

β
β+(1−β)λc

ϕτ−1 = βϕτ−2 +
σβκλc

β+(1−β)λc
ϕτ−2 +

σβλf

β+(1−β)λc
ϖτ−2.

From the previous two conditions, we have, for τ ≥ 3,

ϕτ + βϕτ−2 = (β + (1− β)λc)ϕτ−1 + σκλcϕτ−1 + σλfϖτ−1 (75)

+ β
β+(1−β)λc

ϕτ−1 − σβκλc

β+(1−β)λc
ϕτ−2 −

σβλf

β+(1−β)λc
ϖτ−2.

Note that, for τ ≥ 3 and λc, λf ∈ (0, 1], we have

[
(β + (1− β)λc) + σκλc +

β
β+(1−β)λc

]
ϕτ−1 ≤ (1 + β + σκλc)ϕτ−1,

and, from condition (72),

σλfϖτ−1 − σβκλc

β+(1−β)λc
ϕτ−2 −

σβλf

β+(1−β)λc
ϖτ−2

=σλf (κβλcϕτ−2 + β [θ + (1− θ)λf ]ϖτ−2)− σβκλc

β+(1−β)λc
ϕτ−2 −

σβλf

β+(1−β)λc
ϖτ−2

=σκβλc

(
λf − 1

β+(1−β)λc

)
ϕτ−2 + σβλf

[
θ + (1− θ)λf − 1

β+(1−β)λc

]
ϖτ−2

≤0.

Together with condition (75), we arrive at condition (74).
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Now we can prove that, whenever λc < 1 and/or λf < 1, ϕτ

ϕ∗
τ
is strictly decreasing in τ . We already

prove ϕ2

ϕ∗
2
< 1 = ϕ1

ϕ∗
1
. We proceed by induction on τ . If ϕτ

ϕ∗
τ
< ϕτ−1

ϕ∗
τ−1

for τ ≥ 2, we have ϕτ−1

ϕτ
>

ϕ∗
τ−1

ϕ∗
τ
. From

(73) and (74), we have ϕτ+1

ϕτ
<

ϕ∗
τ+1

ϕ∗
τ

and thus ϕτ+1

ϕ∗
τ+1

< ϕτ

ϕ∗
τ
. This finishes the proof that ϕτ

ϕ∗
τ
is strictly decreasing

in τ ≥ 1, whenever λc < 1 and/or λf < 1.

Now we prove that, whenever λc < 1 and/or λf < 1, ϕτ

ϕ∗
τ
converges to 0 as τ → ∞. Because ϕτ

ϕ∗
τ
> 0

is strictly decreasing in τ ≥ 1, there exists Γ ∈ [0, 1) such that ϕτ

ϕ∗
τ

→ Γ as τ → ∞. We next prove by

contradiction that Γ = 0.

Suppose first that λc < 1. If Γ > 0, we have ϕτ

ϕ∗
τ

ϕ∗
τ−1

ϕτ−1
→ 1 as τ → ∞. Because ϕ∗

τ
ϕ∗
τ−1

→ Γ∗, we have
ϕτ

ϕτ−1
→ Γ∗ and ϕτ−2

ϕτ−1
→ 1

Γ∗ as τ → ∞. From condition (61), we have ϕτ

ϕτ−1
+β ϕτ−2

ϕτ−1
→ 1+β+σκ as τ → ∞.

However, this is inconsistent with (74) when λc < 1. As a result, Γ = 0.

Suppose next that λc = 1 but λf < 1. We prove a stronger version of (74):

ϕτ

ϕτ−1
+ (1 + σκ (1− λf ))β

ϕτ−2

ϕτ−1
≤ 1 + β + σκ ∀τ ≥ 3. (76)

From conditions (71) and (72), we have, for τ ≥ 3,

ϕτ = (1 + σκ)ϕτ−1 + σλfϖτ−1,

βϕτ−1 = βϕτ−2 + βσκϕτ−2 + βσλfϖτ−2,

ϖτ−1 = κβϕτ−2 + β [θ + (1− θ)λf ]ϖτ−2.

As a result, for τ ≥ 3,

ϕτ + βϕτ−2 = (1 + σκ+ β)ϕτ−1 + σλfϖτ−1 − βσκϕτ−2 − βσλfϖτ−2

≤ (1 + σκ+ β)ϕτ−1 + σ (λf − 1)κβϕτ−2.

This proves (76).

Now, if Γ > 0, similarly, we have ϕτ

ϕ∗
τ

ϕ∗
τ−1

ϕτ−1
→ 1 as τ → ∞. Because ϕ∗

τ
ϕ∗
τ−1

→ Γ∗, we have ϕτ

ϕτ−1
→ Γ∗

and ϕτ−2

ϕτ−1
→ 1

Γ∗ as τ → ∞. From condition (61), we have ϕτ

ϕτ−1
+ (1 + σκ (1− λf ))β

ϕτ−2

ϕτ−1
→ 1 + β + σκ +

σκ (1− λf )β
1
Γ∗ as τ → ∞. However, this is inconsistent with equation (76) when λf < 1. As a result, Γ = 0

when λc = 1, but λf < 1.

Finally, we prove that, when λc is sufficiently low, ϕ(λc, λf , τ) converges to zero as τ → ∞. The eigen-

values of the dynamic system (ϕτ , ϖτ ) based on conditions (71) and (72) are

m1 =
β + (1− β + σκ)λc + β [(1− θ)λf + θ]−

√
(β + (1− β + σκ)λc − β [(1− θ)λf + θ])2 + 4σβλfλcκ

2
> 0;

m2 =
β + (1− β + σκ)λc + β [(1− θ)λf + θ] +

√
(β + (1− β + σκ)λc − β [(1− θ)λf + θ])2 + 4σβλfλcκ

2
> m1.
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Note that limλc→0m2 = β < 1. As a result, when λc is sufficiently low, both eigenvalues are below 1,

which means that ϕ(λc, λf , τ) converges to zero as τ → ∞.

Proof of Proposition 8. We use g̃t to denote the amount of government spending at period t. As men-

tioned in main text, the government spending g̃t is financed by lump sum tax at period t, t̃t = g̃t. Similar

to the analysis for monetary policy, we assume g̃t becomes commonly known at period t and only allow

higher-order uncertainty about future g̃.

Similar to the main text, now we start to work with log-linearized representation. Because the introduc-

tion of lump-sum tax, the individual budget constraint becomes

+∞∑
k=0

βk c̃i,t+k = ãi,t +
+∞∑
k=0

βk
{
Ω1 (w̃i,t+k + ñi,t+k) + Ω2ẽi,t+k − (Ω1 +Ω2 − 1)t̃t

}
,

where Ω1 is the ratio of labor income to total income (net of tax) in steady state, Ω2 is the ratio of dividend

income to total income (net of tax) in steady state, and Ω1+Ω2−1 is the ratio of lump sum tax to total income

(net of tax) in steady state. On the other hand, the individual optimal labor supply and Euler equation,

conditions (28) and (29), still hold here. Together, this gives rise to the optimal expenditure of consumer

i ∈ Ic in period t,

c̃i,t =
(1−β)ϵσ
ϵσ+Ω1

ãi,t − σ

+∞∑
k=1

βkEi,t [r̃t+k] + (1− β)
[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃i,t +

ϵσΩ2
ϵσ+Ω1

ẽi,t − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t

]
(77)

+ (1− β)
+∞∑
k=1

βkEi,t

[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃i,t+k +

ϵσΩ2
ϵσ+Ω1

ẽi,t+k − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t+k

]
.

Using the fact that assets average to zero and that future idiosyncratic shocks are unpredictable, we obtain

the following condition for aggregate spending:

c̃t = −σ

+∞∑
k=1

βkĒc
t [r̃t+k] + (1− β)

[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃t +

ϵσΩ2
ϵσ+Ω1

ẽt − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t

]
(78)

+ (1− β)

+∞∑
k=1

βkĒc
t

[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃t+k +

ϵσΩ2
ϵσ+Ω1

ẽt+k − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t+k

]
.

The firm side, on the other hand, is essentially same as the case without government spending, as a result,

condition (6) still holds, but the formula for marginal cost are different. In particular, from the production

function (3) and the optimal labor supply condition (28), we have

m̃ct = w̃t = ϵ

∫
Ic
ñi,tdi+

1

σ
c̃t = ϵỹt +

1

σ
c̃t =

(
ϵΩ3 +

1

σ

)
c̃t + ϵ (1− Ω3) g̃t, (79)

where ỹt = Ω3c̃t + (1− Ω3) g̃t, Ω3 = 1
Ω1+Ω2

is the steady state consumption to output ratio, and 1 − Ω3 =
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Ω1+Ω2−1
Ω1+Ω2

is the steady state government spending to output ratio.44 As a result, the inflation beauty contest

in condition (6) can be written as

π̃t = κ (Ωcc̃t + (1− Ωc) g̃t) + κ

+∞∑
k=1

(βθ)k Ēf
t [Ωcc̃t+k + (1− Ωc) g̃t+k] +

1−θ
θ

+∞∑
k=1

(βθ)k Ēf
t [π̃t+k] + κµ̃t, (80)

where Ωc =
ϵΩ3+

1
σ

ϵ+ 1
σ

.

Finally, note that the real profit of monopolist j at period t is given by ejt =
(
pjt
pt

− wj
t

)
yjt . After log-

linearization, we have ẽt = −
Ω1

Ω1+Ω2

1− Ω1
Ω1+Ω2

w̃t + ỹt = −Ω1
Ω2

w̃t + ỹt.
45 Together with condition (79), we have, for

all t,

(ϵ+1)σΩ1

ϵσ+Ω1
w̃t +

ϵσΩ2
ϵσ+Ω1

ẽt − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t =
σΩ1

ϵσ+Ω1
w̃t +

ϵσΩ2
ϵσ+Ω1

ỹt − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

g̃t

= ϵσ(Ω1+Ω2)
ϵσ+Ω1

ỹt +
Ω1

ϵσ+Ω1
c̃t − ϵσ(Ω1+Ω2−1)

ϵσ+Ω1
g̃t

= ϵσ(Ω1+Ω2)
ϵσ+Ω1

[
1

Ω1+Ω2
c̃t +

Ω1+Ω2−1
Ω1+Ω2

g̃t

]
+ Ω1

ϵσ+Ω1
c̃t − ϵσ(Ω1+Ω2−1)

ϵσ+Ω1
g̃t = c̃t.

Substitute it into condition (78), we have

c̃t = −σ

+∞∑
k=1

βk−1Ēc
t [r̃t+k] +

1−β
β

{
+∞∑
k=1

βkĒc
t [c̃t+k]

}
. (81)

This is exactly the same form of the consumption beauty contest, as condition (5).

Now let us state Proposition 8 formally here. Similar to Assumption 2, we assume g̃T = z + η, where

z and η are random variables, independent of one another and of any other shock in the economy, with

z ∼ N(0, σ2
z) and η ∼ N(0, σ2

η). The former is realized at t = 0, and could be interpreted as news about

government spending; the latter is realized at t = T and is unpredictable prior to that point.

First consider the complete information outcome. Suppose z is commonly known starting at t = 0, we

can find a scalar ϕ∗
g,T such that c̃0 − c̃trap0 = ϕ∗

g,TE0[g̃T ], where c̃trap0 denotes the “liquidity trap” level of

consumption (i.e., the one obtained when it is common knowledge that g̃T = 0.) We have, when κ > 0,

ϕ∗
g,T > 0, is strictly increasing in T, and diverges to infinity as T → ∞. (82)

Now consider the case in which z is not common knowledge. Similar to Section 6, we consider the

information structure specified in Assumption 3, in which let each agent receives a private signal about z at

period 0. We can then find a scalar ϕg,T such that c̃0 − c̃trap0 = ϕg,T Ē
c
0[g̃T ]. We have, as long as κ > 0 and

44In steady state, the ratio of government spending to consumption will be equal to ratio of lump sum tax to total income (net of
tax), Ω1 +Ω2 − 1. This explains the formula for Ω3.

45This expression is equivalent to Ω2
Ω1+Ω2

ẽt +
Ω1

Ω1+Ω2
(w̃t + ỹt) =

Ω2
Ω1+Ω2

ẽt +
Ω1

Ω1+Ω2

(
w̃t +

∫
If

l̃jtdj
)
= ỹt. The last equation is

true because Ω1
Ω1+Ω2

is steady state labor income to total income ratio (before deducting tax) and Ω2
Ω1+Ω2

is steady state dividend
income to total income ratio (before deducting tax).
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information is incomplete, that is λc < 1,46

ϕg,T ∈
(
0, ϕ∗

g,T

)
, is strictly increasing in λc and λf ;

the ratio ϕg,T /ϕ
∗
g,T is strictly decreasing in T and converges to 0 as T → ∞;

finally, when λc is sufficiently low, ϕg,T also converges to 0 as T → ∞. (83)

We start from the proof of condition (82). Similar to the proof Proposition 6, we can establish that there

exists non-negative scalars
{
ϕ∗
g,τ , ϖ

∗
g,τ

}
τ≥0

such that, when z is commonly known, the equilibrium spending

and inflation at any t ≤ T are given by

c̃t − c̃trapt = ϕ∗
g,T−t · Et[g̃T ], (84)

π̃t − π̃trap
t = κ

(
Ωc

(
c̃t − c̃trapt

)
+ (1− Ωc) g̃t

)
+ϖ∗

g,T−t · Et[g̃T ], (85)

where c̃trapt and π̃trap
t denotes the “liquidity trap” level of consumption and inflation (i.e., the one obtained

when it is common knowledge that g̃T = 0.) Note that the Euler condition and NKPC with government

spending under complete information can be written as:

c̃t = −σ
{
R̃t − Et [π̃t+1]

}
+ Et [c̃t+1] , (86)

π̃t = κ (Ωcc̃t + (1− Ωc) g̃t) + βEt [π̃t+1] + κµ̃t. (87)

Using the above expressions, similar to the proof of Proposition 6, we can establish that ϕ∗
g,0 = 0, ϖ∗

g,0 = 0,

ϕ∗
g,1 = σκ (1− Ωc), ϖ∗

g,1 = βκ (1− Ωc), and for all τ ≥ 1,

ϕ∗
g,τ+1 = (1 + σκΩc)ϕ

∗
g,τ + σϖ∗

g,τ , (88)

ϖ∗
g,τ+1 = βκΩcϕ

∗
g,τ + βϖ∗

g,τ . (89)

From condition (88), we can see when κ > 0, ϕ∗
g,τ is positive, strictly increasing in τ and diverges to infinity.

This proves condition (82). Similar to condition (59, one can also prove the following recursive relationship

about ϕ∗
g:

ϕ∗
g,τ+1

ϕ∗
g,τ

+ β
ϕ∗
g,τ−1

ϕ∗
g,τ

= 1 + β + σκΩc ∀τ ≥ 1. (90)

Moreover, as condition (61), we know
ϕ∗
g,τ

ϕ∗
g,τ−1

must converge to Γ∗
g > 0, as τ → ∞:

Γ∗
g + β

1

Γ∗
g

= 1 + β + σκΩc. (91)

We now turn to the case of incomplete information and establish the proof of condition (83). Similar to

46For simplicity here, we always remove common knowledge about z among consumer here. We allow λf ∈ (0, 1]. In other
words, we nest the case in which firms have perfect knowledge about z.
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the proof of Proposition 7, we can find ϕg, ϖg : (0, 1]× (0, 1]× N → R≥0 such that, for any t ≤ T − 1,

c̃t − c̃trapt = ϕg (λc, λf , T − t) Ēc
t [g̃T ], (92)

π̃t − π̃trap
t = κ

(
Ωc

(
c̃t − c̃trapt

)
+ (1− Ωc) g̃t

)
+ϖg (λc, λf , T − t) Ēf

t [g̃T ]. (93)

Using conditions (80) and (81), we have ϕg (λc, λf , 1) = σκ (1− Ωc), ϖg (λc, λf , 1) = βκ (1− Ωc) and, for

all τ ≥ 2,

ϕg (λc, λf , τ) = σβτ−1 (1− Ωc)κ+

τ−1∑
k=1

βk−1 [(1− β + σκΩc)λcϕg (λc, λf , τ − k) + σλfϖg (λc, λf , τ − k)] ;

(94)

ϖg (λc, λf , τ) = (1− Ωc)
κ

θ
(βθ)T−t +

τ−1∑
k=1

(βθ)k
(
κλcΩc

θ ϕg (λc, λf , τ − k) +
(1−θ)λf

θ ϖg (λc, λf , τ − k)
)
.

(95)

Together, we can establish, for all τ ≥ 2,

ϕg (λc, λf , τ) = (β + (1− β + σκΩc)λc)ϕg (λc, λf , τ − 1) + σλfϖg (λc, λf , τ − 1) ; (96)

ϖg (λc, λf , τ) = κβλcΩcϕg (λc, λf , τ − 1) + β [θ + (1− θ)λf ]ϖg (λc, λf , τ − 1) . (97)

From the above conditions, we can see that for for all τ ≥ 2, ϕg,τ = ϕg (λc, λf , τ) is strictly increasing in λc and λf .

As ϕ∗
g,τ = ϕg (1, 1, T ), we also have ϕg,τ ∈

(
0, ϕ∗

g,τ

)
.

Now, we now prove that, whenever λc < 1, the ratio ϕg,τ

ϕ∗
g,τ

=
ϕg(λc,λf ,τ)

ϕ∗
g,τ

is strictly decreasing in τ ≥ 1 and

converges to 0 as τ → ∞. To this goal, similar to condition (74), we try to establish that

ϕg,τ

ϕg,τ−1
+ β

ϕg,τ−2

ϕg,τ−1
≤ 1 + β + σκΩcλc < 1 + β + σκΩc ∀τ ≥ 3. (98)

From condition (96), we have, for τ ≥ 3,

ϕg,τ = (β + (1− β)λc)ϕg,τ−1 + σκΩcλcϕg,τ−1 + σλfϖg,τ−1,

β
β+(1−β)λc

ϕg,τ−1 = βϕg,τ−2 +
σβκΩcλc

β+(1−β)λc
ϕg,τ−2 +

σβλf

β+(1−β)λc
ϖg,τ−2.

From the previous two conditions, we have, for τ ≥ 3,

ϕg,τ + βϕg,τ−2 = (β + (1− β)λc)ϕg,τ−1 + σκΩcλcϕg,τ−1 + σλfϖg,τ−1 (99)

+ β
β+(1−β)λc

ϕg,τ−1 − σβκΩcλc

β+(1−β)λc
ϕg,τ−2 −

σβλf

β+(1−β)λc
ϖg,τ−2.
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Note that, for τ ≥ 3 and λc, λf ∈ (0, 1], we have

[
(β + (1− β)λc) + σκΩcλc +

β
β+(1−β)λc

]
ϕg,τ−1 ≤ (1 + β + σκΩcλc)ϕg,τ−1,

and from condition (97), we have

σλfϖg,τ−1 − σβκΩcλc

β+(1−β)λc
ϕg,τ−2 −

σβλf

β+(1−β)λc
ϖg,τ−2

=σλf (κβλcΩcϕg,τ−2 + β [θ + (1− θ)λf ]ϖg,τ−2)− σβκΩcλc

β+(1−β)λc
ϕg,τ−2 −

σβλf

β+(1−β)λc
ϖg,τ−2

=σκβΩcλc

(
λf − 1

β+(1−β)λc

)
ϕg,τ−2 + σβλf

[
θ + (1− θ)λf − 1

β+(1−β)λc

]
ϖg,τ−2

≤0.

Together with condition (99), we reach at condition (98). To prove ϕg,τ

ϕ∗
g,τ

is strictly decreasing in τ , note that

we already prove that ϕg,2

ϕ∗
g,2

< 1 =
ϕg,1

ϕ∗
g,1
. We proceed by induction on τ . If ϕg,τ

ϕ∗
g,τ

<
ϕg,τ−1

ϕ∗
g,τ−1

for τ ≥ 2, we have
ϕg,τ−1

ϕg,τ
>

ϕ∗
g,τ−1

ϕ∗
g,τ

. From (90) and (98), we have ϕg,τ+1

ϕg,τ
<

ϕ∗
g,τ+1

ϕ∗
g,τ

and thus ϕg,τ+1

ϕ∗
g,τ+1

<
ϕg,τ

ϕ∗
g,τ
. This finishes the proof

that ϕg,τ

ϕ∗
g,τ

is strictly decreasing in τ ≥ 1.

To prove that ϕg,τ

ϕ∗
g,τ

converges to 0 as τ → ∞. Because ϕg,τ

ϕ∗
g,τ

> 0 is strictly decreasing in τ ≥ 1, there

exists Γg ∈ [0, 1) such that ϕg,τ

ϕ∗
g,τ

→ Γg as τ → ∞. If Γg > 0, we have ϕg,τ

ϕ∗
g,τ

ϕ∗
g,τ−1

ϕg,τ−1
→ 1 as τ → ∞. Because

ϕ∗
g,τ

ϕ∗
g,τ−1

→ Γ∗
g, we have ϕg,τ

ϕg,τ−1
→ Γ∗

g and ϕg,τ−2

ϕg,τ−1
→ 1

Γ∗
g
as τ → ∞. From condition (91), we have ϕg,τ

ϕg,τ−1
+

β
ϕg,τ−2

ϕg,τ−1
→ 1+ β+σκΩc as τ → ∞. However, this is inconsistent with (98) as λc < 1 and κ > 0. As a result,

Γg = 0.

Finally, we prove that, when λc is sufficiently low, ϕg(λc, λf , τ) converges to zero as τ → ∞. The

eigenvalues of the dynamic system (ϕg,τ , ϖg,τ ) based on conditions (96) and (97) are

m1 =
β + (1− β + σκΩc)λc + β [(1− θ)λf + θ]

2

−

√
(β + (1− β + σκΩc)λc − β [(1− θ)λf + θ])2 + 4σβλfλcΩcκ

2
> 0,

m2 =
β + (1− β + σκΩc)λc + β [(1− θ)λf + θ]

2

+

√
(β + (1− β + σκΩc)λc − β [(1− θ)λf + θ])2 + 4σβλfλcΩcκ

2
> m1.

Note that limλc→0m2 = β < 1. As a result, when λc is sufficiently low, both eigenvalues are below 1, which

means that ϕg(λc, λf , τ) converges to zero as τ → ∞.
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Appendix B. Rational Inattention and Learning

In this appendix, we first sketch how the friction we consider can be recast as the product of rational inat-

tention. We next extend Theorem 1 to two leading forms of learning studied in the literature. We finally

prove an asymptotic version of our horizon effect for arbitrary forms of learning.

The Friction as the Product of Rational Inattention. We now briefly sketch how the friction we consider

can be recast as the product of rational inattention and, in this sense, a form of bounded rationality.47

We let ΘT be Normally distributed and, to sharpen the exposition, we assume that ΘT is realized at

t = 0 (think of ΘT as being itself the news). The typical agent is nevertheless unable to observe ΘT perfectly.

Instead, for every t, the action ai,t must be measurable in ωt
i ≡ {ωi,τ}τ≤t,where ωi,τ is a noisy signal obtained

in period τ. The noise is assumed to be independent across the agent.48 This guarantees that all aggregate

outcomes are functions of ΘT and, therefore, we can reduce the rational-inattention problem faced by each

agent to the choice of a sequence of signals about ΘT .We finally let these signals be chosen optimally, that

is, so as to maximize the agent’s ex ante payoff, subject to the following constraint:

I
(
ωi,t,ΘT | ωt−1

i

)
≤ κRI , (100)

where I
(
ωi,t,ΘT |ωt−1

i

)
is the (entropy-based) information flow between the period-t signal and ΘT , condi-

tional on the agent’s past information, and κRI > 0 is an exogenous scalar.

The usual interpretation of constraint (100) is that it captures the agent’s limited cognitive capacity in

trackingΘT . But since beliefs aboutΘT map, in equilibrium, to beliefs of future outcomes, one can also think

of (100) as a constraint on the agent’s ability to figure out the likely effects of the underlying variation in ΘT .

This echoes Tirole (2015), who interprets rational inattention in games as a form of “costly contemplation.”

As long as the prior about ΘT is Gaussian and the objective function is quadratic, which is the case

here by assumption, the optimal signal is also Gaussian. Furthermore, the noise in the signal has to be

independent across periods, or else the agent could economize on cognitive costs, that is, relax the constraint

in (100). These arguments are standard; see, e.g., Mackowiak, Matejka and Wiederholt (2017). The case

studied here is actually far simpler than the one studied in the literature, because the relevant fundamental

(ΘT ) does not vary as time passes. We infer that the optimal signal at every t ≤ T − 1 is given by ωi,t =

ΘT + vi,t, where the noise vi,t is orthogonal to both ΘT and {vi,τ}τ<t. Letting τt denotes the precision (i.e.,

the reciprocal of the variance) of this noise, we have that the period-t information flow is given by

I
(
ωi,t,ΘT | ωt−1

i

)
= 1

2 log2

(
1 +

τt
ςt

)
,

47For the rational inattention problem to be well-defined, we need to specify a payoff structure behind condition (11). For
example, we can think player i’s payoff is Ui =

∑
t β

tU(ai,t, ai,t+1; Θt, at), where U is a reverse-engineered quadratic utility
function so that the player’s best-response condition is given by (11).

48Although this assumption is separate the information-flow constraint (100), it is standard in the literature (e.g., Woodford, 2003a,
Mackowiak and Wiederholt, 2009, Luo et al., 2017) and seems appealing if one interprets the noise as the product of cognitive
limitations. It is also broadly consistent with experimental evidence (e.g., Khaw, Stevens and Woodford, 2016).
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where ςt denotes the precision of the agent’s prior in the beginning of period t; the latter is defined recursively

by ς0 = σ−2
θ and ςt+1 = ςt+τt for t ∈ {0, ..., T −1}. It follows that the information constraint (100) pins down

the sequence {τt}T−1
t=0 as a function of κRI and σ2

θ alone. All in all, the setting we have considered here is

therefore nested in the cases with learning studied in the next part of this appendix, for which Theorem 1

applies. This completes the rational-inattention interpretation of our results.49

The Horizon Effect with Sticky Information or Noisy Private Learning. We now extend Theorem 1 to

two leading forms of learning studied in the literature. Let ΘT ∼ N
(
0, σ2

θ

)
and consider the following two

cases of learning.

Case 1. Agents become gradually aware of ΘT , as in Mankiw and Reis (2002) and Wiederholt (2015).

In particular, at each t ∈ {0, ..., T − 1}, a fraction λsticky of agents who have not become aware about ΘT

become aware about ΘT . ΘT becomes commonly known at period T.

Case 2. Agents receive a new private signal each period, as in Woodford (2003a), Nimark (2008), and

Mackowiak and Wiederholt (2009). In particular, at at each t ∈ {0, ..., T − 1}, agent i’s new information

about ΘT is summarized in the private signal si,t = ΘT + vi,t, where vi,t ∼ N
(
0, σ2

v,t

)
is i.i.d across i and t,

and independent of ΘT . ΘT becomes commonly known at period T.

In both cases, there exists {λt}T−1
t=0 such that, for all t, λt ∈ (0, 1) and, for any h ∈ {1, ..., T} and

0 ≤ t1 < t2 < · · · < th < T ,

Ēt1 [Ēt2 [...[Ēth [ΘT ]...]] = λt1 · · ·λthΘT , (101)

In case 1, λt = 1− (1− λsticky)
t+1. In case 2, λt =

∑t
τ=0 σ

−2
v,τ∑t

τ=0 σ
−2
v,τ+σ−2

θ

.

Now we prove by induction that, for all t ≤ T − 1,

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λτα) Ēt[ΘT ]
}
. (102)

Since Θt = 0 for all t ̸= T, together with condition (16), we have aT = ΘT and aT−1 = (γ + α) ĒT−1[ΘT ].

As a result, condition (102) holds for t = T − 1. Now, pick a t ≤ T − 2, assume that the claim holds for all

τ ∈ {t+ 1, ..., T − 1}, and let us prove that it also holds for t. Using the claim for all τ ∈ {t+ 1, ..., T − 1},
condition (16), and condition (101), we have, for t ≤ T − 2,

at = γT−tĒt [ΘT ] + αĒt [at+1] + α

T−t∑
k=2

γk−1Ēt [at+k] ;

γĒt [at+1] = λt+1γ
T−tĒt [ΘT ] + αλt+1

T−t∑
k=2

γk−1Ēt [at+k] .

49Two remarks are worth making. First, suppose that the agents have a limited cognitive capacity to allocate, not per period, but
across the entire horizon. In this case, the series of per-period constraints seen in condition (100) are replaced by a single constraint
over the entire horizon, namely I

(
{ωi,t}T−1

t=0 ,ΘT

)
≤ κRI . It then becomes optimal to allocate all capacity to the period-0 signal,

which means that this case can justify to our baseline analysis, which assumes away learning. Second, suppose that the news
about the fundamental of interest (say, monetary policy) come at the same time with news about another fundamental (say, TFP)
and that the agents can economize on cognitive effort by obtaining a joint signal of all the news. In this case, rational inattention
can contribute to confounding of one kind of news with another, a scenario not considered here.

54



As a result, we have at =
(

γ
λt+1

+ α
)
Ēt [at+1] . Together with condition (102) for t+ 1, we have

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λτα) Ēt[ΘT ]
}
.

This proves condition (102) for all t ≤ T − 1. As a result, ϕT = (γ + α)ΠT−1
t=1 (γ + λtα) . Together with the

fact that λt ∈ (0, 1) and ϕ∗
T = (γ + α)T , we prove Theorem 1 for the case with learning.

The Limit Property with Arbitrary Learning. As noted in the main text, it is possible to prove, under quite

general conditions, an asymptotic version of our horizon effect: as long as the higher-order uncertainty is

bounded away from zero (in a sense we make precise now), the scalar ϕT becomes vanishingly small relative

to ϕ∗
T as T → ∞.

For any t ≤ T −1 and any k ∈ {1, ..., T − t}, we henceforth let Bk
t collect all the relevant k-order beliefs,

as of period t :

Bk
t ≡

{
x : ∃(t1, t2, · · · , tk), with t = t1 < t2 < · · · < tk ≤ T − 1, such that x = Ēt1 [Ēt2 [· · · Ētk [ΘT ] · · · ]]

}
.

We next introduce the following assumption.

Assumption 4 (Non-Vanishing Higher-Order Uncertainty) There exists an ϵ > 0 such that:

(i) For all t ∈ {0, ...., T − 1}, there exists at least a mass ϵ of agents such that

V ar
(
Et[x]|ωt

i

)
≥ ϵV ar (Et [x]) ,

for all x ∈ Bk
τ ∪ {ΘT }, τ ∈ {t + 1, ..., T − 1}, and k ∈ {1, ..., T − τ}, where ωt

i is agent i
′s information set

at period t and Et [x] denotes the rational expectation of variable x conditional on the union of information

sets of all agents in the economy available at period t.

(ii) V ar
(
Ē0[ΘT ]

)
≥ ϵ.

To interpret this assumption, note that complete information imposes that Et [x] is known to every

agent, and therefore that V ar
(
Et [x]]|ωt

i

)
= 0, regardless of how volatile Et [x] itself is. By contrast, let-

ting V ar
(
Et [x] |ωt

i

)
> 0 whenever V ar (Et [x]) > 0 is essentially tautological to assuming that agents have

incomplete information or, equivalently, that they face higher-order uncertainty. Relative to this tautology,

part (i) introduces an arbitrarily small bound on the level of higher-order uncertainty. This bound guarantees

that the higher-order uncertainty does not vanish as we let T go to infinity. Part (ii), on the other hand, means

simply that there is non-trivial variation in first-order beliefs in the first place. The next result then formalizes

our point that our horizon effect, at least in its limit form, holds for arbitrary forms of learning.

Proposition 9 (Limit) Under Assumption 4, the ratio ϕT
ϕ∗
T
converges to zero as T → ∞.

Proof of Proposition 9. We first prove that, under Assumption (4),

V ar (y) ≤
(
1− ϵ2

)k
V ar (ΘT ) . (103)
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for any t ≤ T − 1 and y = ĒtĒt2 ...Ētk [ΘT ] ∈ Bk
t .

To simplify notation, let x = Ēt2 ...Ētk [ΘT ] for k ≥ 2, and x = ΘT for k = 1. From Assumption 4, we

have, there is at least a mass ϵ of agents such that

V ar
(
Et [x] |ωt

i

)
≥ ϵV ar (Et [x]) .

As a result,

E
[
V ar

(
Et [x] |ωt

i

)
|Ωt

]
≥ ϵ2V ar (Et [x]) ,

where Ωt is the cross-sectional distribution of agent’s information set ωt
i at period t. Using the law of total

variance, we have

V ar (Et [x]) = E
[
V ar

(
Et [x] |ωt

i

)
|Ωt

]
+ V ar

(
E
[
Et [x] |ωt

i

])
= E

[
V ar

(
Et [x] |ωt

i

)
|Ωt

]
+ V ar

(
E
[
x|ωt

i

])
.

As a result, we have50

V ar (y) = V ar
(
ĒtĒt2 ...Ētk [ΘT ]

)
= V ar

(
Ēt [x]

)
≤ V ar

(
E
[
x|ωt

i

])
≤
(
1− ϵ2

)
V ar (Et [x])

≤
(
1− ϵ2

)
V ar (x) =

(
1− ϵ2

)
V ar

(
Ēt2 ...Ētk [ΘT ]

)
.

Iterating the previous condition proves (103).

Condition (103) provides an upper bound for the variance of all k-th order belief. Together with the fact

that ϕ∗
T = sT,T and, for any random variables X,Y and scalars a, b ≥ 0,

V ar(aX + bY ) = a2V ar(X) + 2abCov (X,Y ) + b2V ar (Y )

≤ a2V ar(X) + 2ab
√
V ar (X)V ar (Y ) + b2V ar (Y )

=
(
a
√

V ar (X) + b
√
V ar (Y )

)2
, (104)

we have

(
ϕT

ϕ∗
T

)2

=

(
Cov

(
a0, Ē0 [ΘT ]

)
ϕ∗
TV ar

(
Ē0 [ΘT ]

) )2

≤ V ar (a0)[
ϕ∗
T

]
2V ar

(
Ē0[ΘT ]

)
≤ 1

V ar
(
Ē0[ΘT ]

) [ T∑
k=1

(
χk,T

sT,T

(
1− ϵ2

) k
2
√
V ar (ΘT )

)]2

=

[
T∑

k=1

(
χk,T

sT,T

(
1− ϵ2

) k
2

)]2
V ar (ΘT )

V ar
(
Ē0[ΘT ]

) . (105)

Further note that, for any ϑ > 0, there exists h ∈ N+ such that (1−ϵ2)
h
2

1−(1−ϵ2)
1
2
≤ ϑ

2 . From Theorem 2, there

50We use the fact that for any random variable X, and any information set I, V ar (E [X|I]) ≤ V ar (X) . We also use the fact
that Ēt [·] = E

[
E
[
·
∣∣ωt

i

∣∣] |Ωt

]
, where Ωt is the cross sectional distribution of ωt

i at time t,
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exists T ∗ ∈ N+ such that, for all T ≥ T ∗,
∑h−1

k=1
χk,T

sT,T
≤ ϑ

2 . As a result, for all T ≥ max {T ∗, h} ,

T∑
k=1

χk,T

sT,T

(
1− ϵ2

) k
2 ≤

h−1∑
k=1

χk,T

sT,T
+

T∑
k=h

(
1− ϵ2

) k
2 ≤ ϑ

2
+

(
1− ϵ2

)h
2

1− (1− ϵ2)
1
2

≤ ϑ.

This proves
T∑

k=1

(
χk,T

sT,T

(
1− ϵ2

) k
2

)
→ 0 as T → +∞.

Together with (105) and the fact that V ar
(
Ē0[ΘT ]

)
≥ ϵ, the proof of Proposition 9 is completed.
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Appendix C. Additional Results for the New Keynesian Model

In this Appendix, we provide a few additional results regarding the application of our insights in the context

of a liquidity trap. We first explain how our results regarding the forward-guidance puzzle can be understood

under the lenses of a discounted Euler condition and a discounted NKPC, and draw certain connections to

the literature. We next show how our insights help lessen the paradox of flexibility. We finally show that all

the results of Section 5 extend to the new type of beauty contest seen in condition (22).

Discounted Euler Condition and Discounted NKPC. Proposition 5 has already indicated how the lack

of common knowledge is akin to introducing additional discounting in the forward-looking equations of a

macroeconomic model. We now illustrate how this helps recast our results regarding forward guidance and

fiscal multipliers under the lenses of a discounted Euler condition and a discounted NKPC.

For the present purposes, we make a minor modification to the setting used in Section 6: for t ≤ T , we

let the firms lack knowledge of the concurrent level of marginal cost. For simplicity, we also let the firms

and the consumers face the same level of friction, that is, we set λc = λf = λ. These modifications are not

strictly needed but sharpen the representation offered below.51

Proposition 10 The power of forward guidance in the absence of common knowledge, ϕT , is the same as

that in a representative-agent variant in which the Euler condition and the NKPC are modified as follows, for

all t ≤ T − 1:

ỹt = −σ
{
R̃t − λEt [π̃t+1]

}
+McEt [ỹt+1] (106)

π̃t = κ′ỹt + βMfEt [π̃t+1] + κµ̃t, (107)

where Mc ≡ β + (1− β)λ ∈ (β, 1], Mf ≡ θ + (1− θ)λ ∈ (θ, 1], and κ′ ≡ κλ.52

This result, which is analogous to Proposition 5 in our abstract setting, maps the incomplete-information

ϕT of the economy under consideration to the complete-information ϕ∗
T of a variant economy, in which the

Euler condition and the NKPC have been “discounted” in the manner described above. When we remove

common knowledge, it is as if the representative consumer discounts her expectations of next period’s

aggregate income and inflation by a factor equal to, respectively, Mc and λ; and it is as if the representative

firm discounts the future inflation by a factor equal to Mf .
53

Consider first the Euler condition. When β is close to 1, the discount on future consumption, Mc, is

close to 1, even if λ is close to zero. This underscores that the multiplier inside the demand block—which

gets attenuated by the absence of common knowledge—is weak in the textbook version of the New Key-

nesian model. As mentioned in the main text, short horizons, counter-cyclical precautionary savings, and

51Without these modifications, the obtained representation is a bit less elegant, but the essence remains the same; see Proposition
10 in the first NBER version of our paper, Angeletos and Lian (2016b).

52To be precise, condition (106) holds with Mc = 1 for t = T − 1.
53The change in the slope of the NKPC, from κ to κ′, is of relative little interest to us, because the effect of the informational

friction through this slope cannot be identified separately from that of a higher Frisch elasticity or less steep marginal costs.
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feedback effects between housing prices and consumer spending tend to reinforce this multiplier, thereby

also increasing the discounting caused by the absence of common knowledge. Also note that, while future

consumption is discounted by Mc, future inflation is discounted by λ. Clearly, this can have a significant

effect on the joint dynamics of spending and inflation even when Mc is close to 1.

Consider next the NKPC. For the textbook parameterization of the degree of price stickiness (meaning a

price revision rate, 1− θ, equal to 1/3), the effective discount factor, Mf , falls from 1 to .9 as we move from

common knowledge (λ = 1) to the level of imperfection assumed in our numerical example (λ = .75). The

magnitude of this discount helps explain the sizable effects seen in Figure 1. Under the parameterization

we consider, the actual response of inflation to news about future demand is greatly reduced relative the

common-knowledge benchmark. The fact that the average consumer underestimates the inflation response,

as well as the spending of other consumers, reinforces this effect and helps further attenuate the feedback

loop between inflation and spending.

Relation to Gabaix (2016) and McKay, Nakamura and Steinsson (2016a). Related forms of discounting

appear in McKay, Nakamura and Steinsson (2016a), for the Euler condition, and in Gabaix (2016), for both

the Euler condition and the NKPC. In this regards, these papers and ours are complementary to one another.

However, the underlying theory and its empirical manifestations are different.

McKay, Nakamura and Steinsson (2016a) obtain a discounted Euler condition at the aggregate level by

introducing a specific combination of heterogeneity and market incompleteness that forces some agents to

hit their borrowing constraints and breaks the individual-level Euler condition. This theory therefore ties the

resolution of forward guidance to microeconomic evidence about the response of individual consumption

to idiosyncratic shocks. By contrast, our theory ties the resolution of forward guidance to survey evidence

about the response of average forecast errors to the underlying policy news. The two theories can therefore

be quantified independently from one another—and it’s an open question which is one is more relevant in

the context of forward guidance.

Gabaix (2016) on the other hand, assumes two kinds of friction. The first is that agents are less responsive

to any variation in interest rates and incomes due to “sparsity” (a form of adjustment cost). The second is

that agents underestimate the response of future aggregate outcomes to exogenous shocks. The first is of

purely decision-theoretic nature and, as the one in McKay, Nakamura and Steinsson (2016a), amounts to

a distortion of the individual-level Euler condition. The second is more closely related to the one we have

obtained here: by anchoring expectations of aggregate outcomes, it gives rise to discounting only at the

aggregate level. In this regard, Gabaix’s theory and ours have a similar empirical implication: they both

let the average forecast of future inflation and income respond less than the complete-information, rational-

expectations, benchmark. Yet, our theory makes the following distinct prediction, which is consistent with

the evidence in Coibion and Gorodnichenko (2012): the forecast errors, and the associated discounting,

ought to decrease as time passes, agents accumulate more information, and higher-order beliefs converge

to first-order beliefs.

Proof of Proposition 10. Let us first focus on the incomplete-information ϕT . When firms lack common
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knowledge of the concurrent level of marginal cost, condition (62) continues to hold but condition (63)

becomes, for any t ≤ T ,

π̃t − π̃trap
t = κ

T−t∑
k=0

(βθ)k Ēf
t

[
ỹt+k − ỹtrapt+k

]
+ 1−θ

θ

T−t∑
k=1

(βθ)k Ēf
t

[
π̃t+k − π̃trap

t+k

]
.

Slightly different from conditions (64) and (65),54 we can find functions ϕ, ω : (0, 1] × N → R≥0 such that,

for any t ≤ T − 1,

ỹt − ỹtrapt = −ϕ (λ, T − t) Ēc
t [R̃T ], (108)

π̃t − π̃trap
t = −ω (λ, T − t) Ēf

t [R̃T ], (109)

where ϕ (λ, 1) = σ (1 + σλκ), ω (λ, 1) = κλσ (1 + σλκ) + κβ (θ + (1− θ)λ)σ, and for t ≤ T − 2,

ϕ (λ, T − t) = (β + (1− β)λ)ϕ (λ, T − t− 1) + σλω (λ, T − t− 1) , (110)

ω (λ, T − t) = β (θ + (1− θ)λ)ω (λ, T − t− 1) + κλϕ (λ, T − t) . (111)

We now derive the complete-information ϕ∗
T and ω∗

T of a variant economy, where they denote how the

output and inflation at t = 0 responds to shocks to the representative agent’s belief about R̃T at t = 0. From

conditions (106), (107) and footnote 52 in the appendix, we have ϕ∗
1 = σ (1 + σλκ), ω∗

1 = κλσ (1 + σλκ) +

κβ (θ + (1− θ)λ)σ, and, for t ≤ T − 2,

ϕ∗
T−t = (β + (1− β)λ)ϕ∗

T−t−1 + σλω∗
T−t−1, (112)

ω∗
T−t = β (θ + (1− θ)λ)ω∗

T−t−1 + κλϕ∗
T−t. (113)

The previous conditions coincide with conditions (110) and (111), and prove Proposition 10.

On the Paradox of Flexibility. We now consider the implications of our insights for the paradox of

flexibility. In the standard model, the power of forward guidance and the fiscal multiplier vis-a-vis future

government spending increase with the degree of price flexibility: ϕ∗
T increases with κ.55 This property is

directly related to the “paradox of flexibility” (Eggertsson and Krugman, 2012). The next result proves, in

effect, that the mechanism identified in our paper helps diminish this paradox as well.

Proposition 11 (Price Flexibility) Let ϕ∗
T be the scalar characterized in either Proposition 7 or Proposition 8

and set λf = 1. We have ∂ϕ∗
T

∂κ > 0 and ∂
∂λc

(
∂ϕ∗

T
∂κ

)
> 0. That is, the power of forward guidance and the fiscal

multiplier vis-a-vis future government spending increase with the degree of price flexibility, but at a rate that

54There are two differences compared to conditions (64) and (65). First, as we impose λc = λf = λ here, ϕ and ω are functions
of λ, the common parameter characterizing the degree of information friction. Second, as firms lack common knowledge of the
concurrent level of marginal cost, it is easier to let ω measure how inflation as a whole responds to the average firm’s belief about
R̃T .

55Whenever we vary κ, we vary θ while keeping the Frisch elasticity constant, which means that variation in κ maps one-to-one
to variation in the degree of price flexibility.
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Figure 2: Varying the degree of price flexibility.

is slower the greater the departure from common knowledge.

This finding is an example of how lack of common knowledge reduces the paradox of flexibility more

generally. In the standard model, a higher degree of price flexibility raises the GE effects of all kinds

of demand shocks—whether these come in the form of forward guidance, discount rates, or borrowing

constraints—because it intensifies the feedback loop between aggregate spending and inflation. By intensi-

fying this kind of macroeconomic complementarity, however, a higher degree of price flexibility also raises

the relative importance of higher-order beliefs, which in turn contributes to stronger attenuation effects of

the type we have documented in this paper. In a nutshell, the very same mechanism that creates the para-

dox of flexibility within the New Keynesian framework also helps contain that paradox once we relax the

common-knowledge assumption of that framework.

Note that we have proved the above result only under the restriction λf = 1, which means that only the

consumers lack common knowledge. Whenever λf < 1, there is a conflicting effect, which is that higher

price flexibility reduces the strategic complementarity that operates within the supply block, thereby also

reducing the role of λf itself. For the numerical example considered earlier, however, the overall effect of

higher price flexibility is qualitatively the same whether λf = 1 or λf = λc.

We illustrate this in Figure 2. We let λf = λc = 0.75, use the same parameter values as those used in

Figure 1, and plot the relation between the ratio ϕT /ϕ
∗
T and the horizon T under two values for θ. The solid

red line corresponds to a higher value for θ, while the dashed blue line corresponds to a lower value for θ,

that is, to more price flexibility. As evident in the figure, more price flexibility maps, not only to a lower

ratio ϕT /ϕ
∗
T (i.e., stronger attenuation) for any given T, but also to a more rapid decay in that ratio as we

raise T.
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Proof of Proposition 11. Consider first the environment studied in Section 6 and let us study the cross-

partial derivative of the power of forward guidance with respect to κ and λc. To simplify notation, we use ϕτ

andϖτ as shortcuts for, respectively, ϕ (λc, λf , τ) andϖ (λc, λf , τ), where the functions ϕ andϖ are defined

as in the proof of Proposition 7. From conditions (66), we have

∂ϕ1

∂κ
=

∂ϕ(λc, 1, 1)

∂κ
= σ2 > 0 and

∂ϖ1

∂κ
=

∂ϖ(λc, 1, 1)

∂κ
= σβ > 0. (114)

For any τ ≥ 2, when λf = 1, conditions (71) and (72) become

ϕτ = (β + (1− β + σκ)λc)ϕτ−1 + σϖτ−1 and ϖτ = κβλcϕτ−1 + βϖτ−1.

As a result, for all τ ≥ 2, we have

∂ϕτ

∂κ
= (β + (1− β + σκ)λc)

∂ϕτ−1

∂κ
+ σλcϕτ−1 + σ

∂ϖτ−1

∂κ
, (115)

∂ϖτ

∂κ
= κβλc

∂ϕτ−1

∂κ
+ βλcϕτ−1 + β

∂ϖτ−1

∂κ
. (116)

From conditions (114), (115) and (116), ∂ϕτ

∂κ and ∂ϖτ
∂κ are strictly positive for any τ ≥ 1 by induction.

Moreover, from conditions (66), (114), (115) and (116), we have that ∂ϕ2

∂κ and ∂ϖ2
∂κ are strictly increasing in

λc. Then, from conditions (115), (116) and the fact that ϕτ itself is strictly increasing in λc for all τ ≥ 2, we

have ∂ϕτ

∂κ and ∂ϖτ
∂κ are strictly increasing in λc for all τ ≥ 2 by induction.

Consider now the environment studied in Section 7 and let us study the cross-partial derivative of the

relevant fiscal multiplier with respect to κ and λc when λf = 1. From the proof of Proposition 8, similarly

to conditions (114), (115) and (116), we have

∂ϕg,1

∂κ
= σ (1− Ωc) > 0 and

∂ϖg,1

∂κ
= β (1− Ωc) > 0,

∂ϕg,τ

∂κ
= (β + (1− β + σκΩc)λc)

∂ϕg,τ−1

∂κ
+ σΩcλcϕg,τ−1 + σ

∂ϖg,τ−1

∂κ
,

∂ϖg,τ

∂κ
= κβλcΩc

∂ϕg,τ−1

∂κ
+ βλcΩcϕg,τ−1 + β

∂ϖg,τ−1

∂κ
.

The result then follows from the same argument as before.

Extension of Lemma 2 and Theorems 1 and 2. Here we show that Lemma 2, Theorem 2 and, by impli-

cation, Theorem 1 extend to the kind of multi-layer beauty contest seen in condition (22) of Lemma 3.

Similar to Section 5, we impose Assumption 1. Similar to the proof of Lemma 2, we can find positively-

valued coefficients {χh,τ}τ≥1,1≤h≤τ , such that, for any t ≤ T − 1,

ỹt − ỹtrapt =

T−t∑
h=1

{
χh,T−tĒ

h
t

[
R̃T

]}
, (117)
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with ỹtrapt defined as in the proof of Proposition 6 and

χ1,τ = σ (1 + τσκ)βτ−1 ∀τ ≥ 1, (118)

χk,τ =

τ−k+1∑
l=1

(1− β + lσκ)βl−1xk−1,τ−l ∀k ≥ 2 and τ ≥ k. (119)

We can then characterize the combined effect of beliefs of order up to k on spending, sk,τ , as56

sk,τ = σ (1 + τσκ)βτ−1 +

τ−1∑
l=1

(1− β + lσκ)βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 1. (120)

Let dτ = sτ,τ denote the combined effect of beliefs of all different orders on spending. Similar to condi-

tion (18), dτ = ϕ∗
τ . Following the proof of Proposition 6, we have

d0 = σ and d1 = σ (1 + σκ) ,

dτ
dτ−1

+ β
dτ−2

dτ−1
= 1 + β + σκ ∀τ ≥ 2. (121)

Now we prove sk,τ satisfies an inequality with a similar form as condition (121):

sk,τ
sk,τ−1

+ β
sk,τ−2

sk,τ−1
≤ 1 + β + σκ ∀τ ≥ 3 and k ≥ 1. (122)

From condition (120), we have

βsk,τ−1 = σ (1 + (τ − 1)σκ)βτ−1 +
τ−1∑
l=2

(1− β + (l − 1)σκ)βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 2.

As a result, we have

sk,τ = βsk,τ−1 + (1− β) sk−1,τ−1 + σ2κβτ−1 + σκ
τ−1∑
l=1

βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 2,

βsk,τ−1 = β2sk,τ−2 + β (1− β) sk−1,τ−2 + σ2κβτ−1 + σκ

τ−1∑
l=2

βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 3.

Using the previous two conditions, we have, for all k ≥ 1 and τ ≥ 3,

sk,τ + β2sk,τ−2 + β (1− β) sk−1,τ−2 = 2βsk,τ−1 + (1− β + σκ) sk−1,τ−1,

sk,τ + βsk,τ−2 = (1 + β + σκ) sk,τ−1 + β (1− β)χk,τ−2 − (1− β + σκ)χk,τ−1. (123)

56Similar to the proof of Theorem 2, for notation simplicity, we extend the definition of sh,τ =
∑h

r=1 χr,τ for all h > τ . As for
h > τ , χh,τ = 0, we have sh,τ = sτ,τ for all h > τ . We also define s0,τ = 0 for all τ ≥ 1.
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To prove (122), we only need to prove:

β (1− β)χk,τ−2 ≤ (1− β + σκ)xk,τ−1 ∀k ≥ 1 and τ ≥ 3. (124)

In fact, we prove the following stronger result:

βχk,τ−2 ≤ xk,τ−1 ∀k ≥ 1 and τ ≥ 3. (125)

From condition (118), we know that (125) is true for k = 1 and τ ≥ 3. From condition (119), we know that

χk,τ−1 =
τ−k∑
l=1

(1− β + σlκ)βl−1xk−1,τ−1−l ∀k ≥ 2 and τ ≥ k + 1, (126)

βχk,τ−2 =

τ−k∑
l=2

(1− β + σ (l − 1)κ)βl−1xk−1,τ−1−l ∀k ≥ 2 and τ ≥ k + 2.

This proves βχk,τ−2 ≤ xk,τ−1 for k ≥ 2 and τ ≥ k + 2. Together with the fact that, χk,τ−2 = 0 ∀k ≥ τ − 1,

we prove (125) and thus (124). This finishes the proof of (122).

Based on (121) and (122), we can then establish a result akin to Theorem 2. That is, for any given k ≥ 1

and τ ≥ k, the relative contribution of the first k orders, sk,τ
sτ,τ

=
sk,τ
dτ

, strictly decreases with τ .

First, note that, for any given k ≥ 1,1 =
sk,k
dk

>
sk,k+1

dk+1
, because xk+1,k+1 > 0. Then, we can proceed by

induction on τ ≥ k, for any fixed k ≥ 1. If we have sk,τ
dτ

>
sk,τ+1

dτ+1
for some τ ≥ k, we have sk,τ

sk,τ+1
> dτ

dτ+1
.

Using (121) and (122), we have sk,τ+2

sk,τ+1
< dτ+2

dτ+1
, and thus sk,τ+1

dτ+1
>

sk,τ+2

dτ+2
. This completes the proof that, for

any k ≥ 1 and any τ ≥ k, the ratio sk,τ
sτ,τ

, strictly decreases with the horizon τ .

Finally, we prove that, for any k ≥ 1,

sk,τ
sτ,τ

→ 0, as τ → ∞. (127)

In other words, we want to prove the relative contribution of the first k orders of beliefs to aggregate spending

converges to zero when the horizon τ goes to infinity.

First note that, from condition (120), we have s1,τ = σ (1 + στκ)βτ−1 → 0, as τ → +∞. From the proof

of Proposition 6, we know sτ,τ = dτ = ϕ∗
τ ≥ σ. As a result, (127) is true for k = 1.

If there exists k ≥ 2 such that (127) does not hold, we let k∗ ≥ 2 denote the smallest of such k. Then,

(127) holds for 1 ≤ k ≤ k∗ − 1. Because we already prove that sk∗,τ
sτ,τ

≥ 0 is decreasing with the horizon

τ , there exists 0 < Γ < 1 such that sk∗,τ
sτ,τ

=
sk∗,τ
ϕ∗
τ

→ Γ as τ → ∞. As a result, sk∗,τ
ϕ∗
τ

ϕ∗
τ−1

sk∗,τ−1
→ 1 as τ → ∞.

Because we already prove that, in the proof of Proposition 6, ϕ∗
τ

ϕ∗
τ−1

→ Γ∗, we have

sk∗,τ
sk∗,τ−1

→ Γ∗ and
sk∗,τ−2

sk∗,τ−1
→ 1

Γ∗ as τ → ∞. (128)

Note that since sk∗,τ = sk∗−1,τ+χk∗,τ and
sk∗−1,τ

sτ,τ
→ 0 as τ → ∞, we have χk∗,τ

sτ,τ
=

χk∗,τ
ϕ∗
τ

→ Γ as τ → ∞.
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As a result,
χk∗,τ

sk∗,τ
=

χk∗,τ

ϕ∗
τ

ϕ∗
τ

sk∗,τ
→ 1 as τ → ∞. (129)

Now we prove a stronger version of (122)

sk,τ
sk,τ−1

+ β
sk,τ−2

sk,τ−1
+ σκ

χk,τ−1

sk,τ−1
≤ 1 + β + σκ ∀τ ≥ 3 and k ≥ 1. (130)

This comes from the fact that (125) can be written as

β (1− β)χk,τ−2 + σκχk,τ−1 ≤ (1− β + σκ)xk,τ−1 ∀τ ≥ 3 and k ≥ 1. (131)

Using (61), (128) and (129), we have

sk∗,τ
sk∗,τ−1

+ β
sk∗,τ−2

sk∗,τ−1
+ σκ

χk∗,τ−1

sk∗,τ−1
→ Γ∗ + β

1

Γ∗ + σκ = 1 + β + 2σκ as τ → ∞.

This contradicts (130) when κ > 0 and proves (127). This finishes the proof of the result akin to Theorem 2.

Together with Proposition 3, we then establish the “horizon effect” akin to Theorem 1. Similarly, Proposition

4 also holds here.
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