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Forward-Inverse 2D Hardware Implementation of

Approximate Transform Core for the VVC Standard
Ahmed Kammoun, Wassim Hamidouche, Pierrick Philippe, Olivier Déforges, Fatma Belghith, Nouri Masmoudi,

and Jean-François Nezan,

Abstract—The future video coding standard named Versatile
Video Coding (VVC) is expected by the end of 2020. VVC will
enable better coding efficiency than the current High Efficiency
Video Coding (HEVC) standard. This coding gain is brought by
several coding tools. The Multiple Transform Selection (MTS)
is one of the key coding tools that have been introduced in
VVC. The MTS concept relies on three transform types including
Discrete Cosine Transform (DCT)-II, Discrete Sine Transform
(DST)-VII and DCT-VIII. Unlike the DCT-II that has fast
computing algorithms, the DST-VII and DCT-VIII rely on more
complex matrix multiplication.

In this paper an approximation approach is proposed to reduce
the computational cost of the DST-VII and DCT-VIII. The
approximation consists in applying adjustment stages, based on
sparse block-band matrices, to a variant of DCT-II family mainly
DCT-II and its inverse. Genetic algorithm is used to derive the
optimal coefficients of the adjustment matrices. Moreover, an
efficient hardware implementation of the forward and inverse
approximate transform module is proposed. The architecture
design includes a pipelined and reconfigurable forward-inverse
DCT-II core transform as it is the main core for DST-VII and
DCT-VIII computations. The proposed 32-point 1D architecture
including low cost adjustment stages allows the processing of
a video in 2K and 4K resolutions at 1095 and 273 frames per
second, respectively. A unified 2D implementation of forward-
inverse DCT-II, approximate DST-VII and DCT-VIII is also
presented. The synthesis results show that the design is able to
sustain a video in 2K and 4K resolutions at 386 and 96 frames
per second, respectively, while using only 12% of Alms, 22% of
registers and 30% of DSP blocks of the Arria10 SoC platform.

Index Terms—Versatile Video Coding, Hardware implementa-
tion, Approximation, DCT-II, Adjustment stages, FPGA.

I. INTRODUCTION

The increasing demand on video contents coupled with

the emerging video formats including 4K, 8K resolutions,

High Frame Rate (HFR), High Dynamic Range (HDR) and

omnidirectional videos considerably contribute to increase the

traffic over Internet. Recent study conducted by Cisco in [1]
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François Nezan are with INSA Rennes, Institute of Electronic and
Telecommunication of Rennes (IETR), CNRS - UMR 6164, VAADER
team, 20 Avenue des Buttes de Coesmes, 35708 Rennes, France
(E-mails: {Ahmed.Kammoun@insa-rennes.fr, Wassim.Hamidouche@insa-
rennes.fr, Olivier.Deforges@insa-rennes.fr and Jean-Francois.Nezan@insa-
rennes.fr)

Pierrick Philippe is with b<>com, 1219 Avenue des Champs Blancs, 35510
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Fig. 1. Illustration of the first four basis functions of DCT-II, DCT-VIII and
DST-VII

has predicted that video traffic will increase from 61% of the

global IP traffic in 2016 to 82% in 2021. This brings new chal-

lenges to video compression community to further enhance

the coding efficiency of the High Efficiency Video Coding

(HEVC) video coding standard. The Joint Video Experts Team

(JVET), established by Motion Picture Experts Group (MPEG)

and Video Coding Experts Group (VCEG) [2], has been

developing the next generation video coding standard called

Versatile Video Coding (VVC). VVC standard, expected by

the end of 2020, introduces several new coding tools enabling

up to ∼ 30% [3] of coding gain beyond HEVC [4]. However,

this coding gain comes at the expense of additional coding

and decoding complexities estimated in Random Access (RA)

configuration to 800% and 170% [5], respectively. These

complexities increase to 2170% and 179% in All Intra (AI)

coding configuration [5]. Multiple Transform Selection (MTS)

is one of the new concepts introduced in VVC [6]. The earlier

version of the MTS, integrated in the Joint Exploration Model

(JEM), consists of five transform kernels including DCT types

II, V and VIII, and DST types VII and I [7]. In VVC, the

MTS relies only on three trigonometric transforms including

DCT-II and VIII, and DST-VII. These latter leverage the most

of coding gain achieved in the JEM by the five transform

types [8]. The basis functions of DCT-II C2, DST-VII S7

and DCT-VIII C8 are computed by Equations (1), (2) and

(3), respectively [9], while their first four basis functions
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(i = 1, 2, 3, 4) are drown in Fig. 1.

C2 i,j = γi

√

2

N
cos

(

π(i− 1)(2j − 1)

2N

)

, (1)

with γi =

{√

1
2 i = 1,

1 i ∈ {2, . . . , N}.
.

S7 i,j =

√

4

2N + 1
sin

(

π(2i− 1)j

2N + 1

)

. (2)

C8 i,j =

√

4

2N + 1
cos

(

π(2i− 1)(2j − 1)

2(2N + 1)

)

, (3)

with (i, j) ∈ {1, 2, . . . , N}2 and N is the transform size.

Besides the usual DCT-II used in video coding standards,

VVC encoder selects combinations of DCT-VIII and DST-

VII, for the horizontal and vertical transforms, to optimize the

Rate Distortion (RD) cost J , a trade-off between distortion D
and rate R [10]

J = D + λR. (4)

While the DCT-II has been well studied and optimized with

fast implementations [11]–[13], the DST-VII/DCT-VIII do not

have efficient fast implementation algorithms [14], [15], and

rely on classical matrix multiplications. In this paper we focus

on approximating the DST-VII based on the inverse DCT-II

and an adjustment band matrix A as initially proposed in [16]

Ŝ7 = Γ · CT
2 · Λ ·A, (5)

where Ŝ7 is the approximation of S7, Γ ·CT
2 ·Λ is equivalent

to the DST-III transform S3, Λ and Γ matrices are computed

by Equations (6) and (7), respectively.

Λi,j =

{

1, if j = N + 1− i,
0, otherwise.

(6)

Γi,j =

{

(−1)i−1, if j = i,
0, otherwise.

(7)

The DCT-VIII C8 can be derived from DST-VII, due to their

duality property, without additional complexity involving only

permutation Λ and sign change Γ matrices

C8 = Γ · S7 · Λ. (8)

This paper tackles the problem of hardware implementation

of the three transform types used in VVC on the target Arria

10 Field-Programmable Gate Array (FPGA) platform. The

approximation of DST-VII through adjustment band matrix A
and inverse DCT-II is first modelled as a constrained integer

optimisation problem. The genetic algorithm is then used to

solve the problem and compute the adjustment matrices for

large transform sizes N ∈ {16, 32}. We propose an efficient

unified and pipelined hardware architecture for both forward

and inverse DCT-II. This latter is used to approximate forward

and inverse DST-VII and DCT-VIII along with additional

adjustment stage at low computational complexity and logic

resource allocation. This architecture supports a reconfigurable

2D implementation of approximate DST-VII and DCT-VIII

design that can be integrated in both hardware VVC encoder

and decoder. In terms of coding efficiency, the approximate

DST-VII and DCT-VIII preserve the coding gain brought by

the MTS. On the other hand, the proposed unified hardware

architecture enables reaching a high frame rate while using a

moderate hardware and logic resource of the Arria10 FPGA

device. It enables processing a video in HD and 4K resolutions

at 386 and 96 frames per second (fps), respectively.

The rest of this paper is organized as follows. Section II

presents the state-of-the-art of hardware implementations of

DCT-II and MTS. The approximation of DST-VII, expressed

as a constrained integer optimization problem, is described

in Section III. Section IV presents the proposed hardware

implementation of the 2D approximate transform design. The

experimental and synthesis results of 1D and 2D implemen-

tations are presented and discussed in Section V. Finally,

Section VI concludes the paper.

II. RELATED WORKS

A. Multiple Transform Selection in VVC

The concept of separable transforms competition has been

widely investigated for HEVC [17], [18] which considers only

DCT-II along with DST-VII for Intra luma blocks of size

4×4 [19], and then integrated in the JEM software [10]. This

latter enables five trigonometrical transform types including

DCT-II, V and VIII, and DST-I and VII. This concept enables

a significant increase in coding efficiency estimated around 3%
of bitrate reduction [10]. However, this coding gain comes

at the expense of both memory increase, used to store the

coefficients of those transforms, and complexity overhead

required to test the transform candidates at the encoder side.

To cope with the complexity increase, subsets of transform

candidates are defined offline, which are tested depending on

the prediction configurations such as the Intra prediction mode

and the block size.

The MTS concept in VVC defines only three transform

types including DCT-II, VIII and DST-VII. As illustrated in

Fig. 2, the MTS concept selects, for Luma blocks of size lower

than 64, the set of transforms that minimizes the rate distortion

cost among five transform sets and the skip configuration.

However, only DCT-II is considered for chroma components

M < 64 & 

N< 64
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Fig. 2. The concept of 2D separable transforms selection in VVC. X is the
input block of residuals, Y is the output transformed block and MTS flag is
the index of the selected set of transforms

and Luma blocks of size higher than 32. The MTS solution
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brings a significant coding gain of respectively 2% and 0.9%
in AI and RA coding configurations [20] compared to single

DCT-II transform.

B. Hardware Acceleration of Transforms

1) Hardware Implementation of DCT-II: Several DCT-II

hardware implementations have been proposed in the liter-

ature, as it is the common transform used in video coding

standards: Advanced Video Coding (AVC) and HEVC. Shen

et al. [21] presented a unified Very Large Scale Integration

(VLSI) architecture for 4, 8, 16, and 32 point Inverse Integer

Core Transforms (IICT). Regular multipliers and hardware

sharing (recursion) are applied to the 16- and 32-point IICTs.

To reduce the required hardware resources, the intermediate

1D results are transposed using the Static Random Access

Memory (SRAM) module. Work in [22] also leveraged the

SRAMs for the 1D transpose process in their proposed 2D

pipelined and unified DCT/IDCT/Hadamard architecture with

reduced logic resource. Meher et al. [19] presented an efficient

and reusable architectures for DCT-II implementation sup-

porting different sizes using constant matrix multiplications.

This architecture can be pruned to reduce the implementa-

tion complexity of both folded and full-parallel 2D DCT-II

implementations with only a marginal effect on the coding

performance (from 0.8% to 1% Bjøntegaard Delta Rate (BD-

BR) loss in coding efficiency when both DCT-II and inverse

DCT-II are pruned). Chen et al. [23] proposed a 2D hardware

implementation of the HEVC DCT transform. The presented

reconfigurable architecture supports all block sizes from 4×4
to 32×32. To reduce the logic utilization, this implementation

benefits from several hardware resources, such as Digital Sig-

nal Processing (DSP) blocks, multipliers and memory blocks.

The proposed architecture has been synthesized for various

FPGA platforms showing that the design sustains 4Kp30 video

encoding with reduced hardware cost. Ahmed et al. [24]

proposed a dynamic N-point DCT-II hardware implementation

for HEVC inverse transform of sizes 4×4, 8×8, 16×16 and

32×32. The hardware architecture is partially folded in order

to save the area and improve the speed up of the design. This

architecture reaches an operating frequency of 150 MHz which

enables supporting real time processing of 1080p30 video.

2) Hardware Implementation of MTS: Recently, several

works [25]–[29] have investigated the hardware implementa-

tion of the initial version of MTS including the five transform

types. Mert et al. [25] proposed a 2D implementation including

all transform types for 4×4 and 8×8 sizes using adders and

shifts instead of multiplications. Although this work presented

a 2D hardware implementation of all transform types, it only

supports 4×4 and 8×8 block sizes, while the transform of

larger block sizes (16×16 and 32×32) are more complex and

would require more hardware resources. In [26], Garrido et

al. proposed a pipelined 1D hardware implementation for all

block sizes from 4×4 to 32×32. However, this solution only

considers 1D design, while the transform process consists

in 2D operations which could normally be more complex.

Moreover, this design does not consider asymmetric block size

combinations. This work has been then extended in [27] to

support 2D design using Dual port RAMs for the transpose

memory. They proposed to pipeline the 2D process placing two

separate 1D processors in parallel for horizontal and vertical

transforms. In [28], Kammoun et al. presented a multiplierless

implementation of the MTS 4-point transform module. This

has been extended to 2D hardware implementation of all block

sizes (including rectangular ones), with using the Intellectual

Property (IP) Cores multipliers [30] to leverage the DSPs

blocks of the Arria 10 platform [29]. This solution supports

all transform types and enables a 2D transform process with

efficient pipeline architecture. However, it requires high logic

utilization compared to solutions proposed in [25], [26].

3) Approximations of Transform module: Several contribu-

tions have been proposed by the JVET to overcome the com-

plexity/resource allocations issues of the MTS [16], [31]–[33].

These solutions have proposed to reduce the computational

complexity in number of multiplications per pixel required to

process the DST-VII and DCT-VIII. In fact, approximation

of transform module is not new in the literature, and was

widely investigated for DCT-II [34]–[41]. Jridi et al [34]

presented a generalized approximation algorithm for the 8-

point DCT-II. This solution relies on factorizing the DCT

matrix into even-odd decomposition and then replacing the odd

part with the even one to further reduce the operation count.

The approximate 8-point DCT architecture is used to generate

a reconfigurable implementation of larger block sizes based on

the same principle. However, the rough approximation of the

8-point core and using it for larger sizes introduce more than

5% coding loss in terms of rate distortion performance (BD-

BR). Renda et al [35] proposed to approximate the 8-point

DCT-II transform by an exact low-complexity factorization

of the 8-point DCT-II [42] to be used as core module in

the generalized algorithm proposed in [34]. The 8×8 ma-

trix multiplication is reduced to only 5 multiplications and

29 additions. The 8-point scheme is then used to generate

larger transform sizes of 16 and 32. This enables a better

coding performance compared to the work in [34], but it

still achieves a poor rate distortion performance with an

average of 4% bitrate loss. Work in [36] proposed a three

processing levels to approximate the DCT-II transform. This

approach consists in replacing all multiplication operations

with shifts and additions, high frequency coefficient filtering

and then using inexact additions to compute the DCT-II

transform. Work in [37] proposed a DCT-II approximation

based on Walsh Hadamard transform (WHT) followed by

Givens rotations. Considering a statistical analysis, four DCT-

II approximations modes are derived skipping some rotations

to reduce its computational complexity at the expanse of

bitrate loss up to 7.3%, 5.1% and 9.6% for AI, RA and LD

configurations, respectively. Implementation results under 90

nm ASIC enabled high frame rate 8K video processing up

to 64 fps. Sun et al. [38] proposed an approximate DCT-II

design which lies in a combination of truncation schemes of

Least Significant Bit (LSB) and Most Significant Bit (MSB).

Moreover, quantization results are used to determine the all

zero coefficient columns so as their processing is skipped to

further reduce the operational count. Hardware implementation
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TABLE I
COMPUTATIONAL COMPLEXITY OF DCT-II IMPLEMENTATIONS

Transforms
4-point 8-point 16-point 32-point

+ × >> + × >> + × >> + × >>

DCT-II butterfly [19], [21], [23] 8 4 – 28 20 – 100 84 – 372 340 –

DCT-II [24] 17 0 5 74 0 39 232 0 132 548 0 249

DCT-II [25] 88 0 80 784 0 608 – – – – – –

Approximate DCT-II [39] – – – 26 20 – 78 64 – 202 152 –

Approximate DCT-II [40], [41] 8 0 2 24 0 6 64 0 12 160 0 24

Forward multiplication 12 16 – 56 64 – 240 256 – 992 1024 –

results of the approximate DCT-II design show a significant

power and area cost reduction with negligible bitrate losses of

0.27%, 0.05% and 0.21% for AI, RA and LD configurations,

respectively. Chen et al. [39] presented an approximate DCT-II

solution supporting block of sizes from 8 to 64. This solution

relies on a factorizable structure for both even and approximate

odd parts to further reduce its implementation complexity

while preserving similar rate distortion performance compared

to the original solution. Jridi et al. [40] proposed an approxi-

mation method of the HEVC-DCT-II that leverages the even-

odd butterfly architecture. The matrix coefficients of the even

part are replaced by two coefficient values requiring only

shift operations to perform the multiplication. The second

step of the approximation replaces odd part by the even

one in order to reduce the computational complexity of the

design, especially benefiting from the recursion property. As

a result, all multiplications are removed and larger block sizes

implementations are optimized. Work in [41] proposed to

approximate the HEVC DCT-II transform design by using a

similar approach than the one developed in [40], while the

difference lay in odd part coefficients, which are approximated

according to their distance with respect to the extremum two

values (max and min) of the original transform.

These approximation methods of DCT-II certainly decrease

the computational complexity at the expense of some coding

loss in terms of image quality (Peak Signal to Noise Ra-

tio (PSNR)) and BD-BR performance. However, unlike the

HEVC, MTS involves three transform types. Therefore, in

the proposed solution, the DCT-II is not approximated and

used instead as the main core to approximate the DST-VII

and DCT-VIII. Otherwise, the coding loss would no longer be

neglected to preserve the MTS coding gain estimated between

1 to 2% in VVC. The computational complexity, in terms of

number of multiplications, additions and shifts of the different

DCT-II implementations are summarized in TABLE I for

different block sizes N ∈ {4, 8, 16, 32}.

III. APPROXIMATION METHOD OF THE MTS

TRANSFORMS

A. Problem Formulation

In order to reduce the computational complexity and the

resource allocation of the transform block, the approximation

approach originally proposed in [16] presents an efficient al-

ternative that approximates several DCT/DST types. It consists

in applying adjustment stages of low complexity to DCT-

II family transforms. The relations between these DCT-II

variants transform matrices are expressed as follow

C3 = CT
2 , S2 = Λ · C2 · Γ, S3 = Γ · CT

2 · Λ, (9)

where Λ and Γ are defined in Equations (6) and (7) with

N ∈ {4, 8, 16, 32}.

In fact, Λ and Γ matrices can be interpreted by vector reflection

and sign changes, respectively, which are computationally

trivial. Using the transforms of Equation (9), different types of

DCTs and DSTs can be approximated by applying adjustment

stages (pre-processing and post-processing) to the DCT-II

family transforms.

In this paper, we focus on the approximation of the DST-

VII based on the inverse DCT-II and then DCT-VIII can

be derived from the approximate DST-VII Ŝ7 as expressed

in Equation (8). TABLE II gives the DCT-II family used to

approximate forward and inverse DST-VII and DCT-VIII.

TABLE II
DCT-II VARIANTS USED TO APPROXIMATE DST-VII AND DCT-VIII

Transform type DCT-II DST-VII DCT-VIII

Forward DCT-II DST-III DCT-III

Inverse DCT-III DST-II DCT-II

B. Approximation through Adjustment Stage

The proposed DST-VII approximation (Ŝ7) enables reduc-

tion of the DST-VII computational complexity since it only

involves the DCT-II transform and a multiplication by a band

matrix A. Therefore, the complexity of this approximation is

equal to the complexity of the DCT-II plus the complexity

related to the multiplication by the band matrix A which

depends on the maximum number of non-zero coefficients by

row θ. The complexity of the multiplication by the matrix A
in terms of numbers of multiplications and additions are given

by θ N and (θ − 1)N , respectively.

The error between the DST-VII S7 and its approximation Ŝ7

is expressed by a weighted least-squares error

E(A) =
N
∑

i=1

ωi

N
∑

j=1

(

S7 i,j − Ŝ7 i,j

)2

, (10)

where ωi, i ∈ {1, . . . , N} is a weight vector of size N which

might account for the relative importance of the frequency

components. When the ωi is constant equal to 1, the error

function corresponds to the squared Frobenius norm.
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Orthogonality has to be taken in consideration for the

adjustment matrix A. This property is required since it enables

the use of transpose matrix instead of its inverse to recover

the original signal without introducing losses at compression

stage. The orthogonality of the adjustment matrix A can be

expressed by Equation (11)

O(A) = ||A ·AT − I||2F , (11)

where I is the identity matrix and || · ||F stands for the

Frobenius norm. The objective function of this constrained op-

timization problem is expressed with a Lagrangian multiplier

λ as follows

min
A

E + λO(A). (12)

Equation (12) aims to minimize the trade-off between error

E(A) and orthogonality O(A) of the approximate transform

Ŝ7. The trade-off between approximation and orthogonality

can be tuned by the Lagrangian parameter λ. The second

constraint on the adjustment stage is to be sparse block-

band matrix, which is easy to compute with small number

of taps. The optimal solution of the optimization problem of

Equation (12) consists in the A⋆ matrix that leads to the the

original DST-VII S7 expressed as follows

A⋆ = Λ · C2 · Γ · S7, (13)

with E(A⋆) and ||A⋆ ·A⋆ T −I||22 terms are both equal to zero.

We applied Equation (13) to compute A⋆ matrix for N = 8
with values multiplied by 2β (with β the bit-depth set to 7
bits) and rounded to the nearest integer Ã8,8

Ã⋆
8,8 =

























127 11 −6 4 −2 2 −1 0
−10 125 20 −10 6 −4 2 −1
6 −16 122 30 −13 7 −4 1
−4 10 −22 118 39 −15 7 −2
4 −8 14 −27 114 47 −15 4
−3 7 −11 18 −32 110 53 −10
3 −6 10 −15 23 −38 109 47
−2 4 −7 10 −15 22 −39 118

























.

However, the A∗ solution is not appropriate as it does not

provide integer values, as required for video coding applica-

tions, and does not reveal a sparse property, leading to fewer

arithmetic operations. Ã⋆
8,8 has its most significant absolute

values around the diagonal and lower absolute values are

located at lower-left and upper-right parts of the matrix. This

property of the adjustment matrix A is stronger for adjustment

matrices of higher sizes N ∈ {16, 32}.

In this paper, adjustment band matrix that minimizes the

trade-off between error and orthogonality is sought with the

constraint of A to include few integer values different from

zero. This discrete constrained optimization problem is ex-

pressed as follows

minimize
A

E(A) + λO(A),

subject to Ai,j = 0, ∀ j > i+ ⌊θ/2⌋,
Ai,j = 0, ∀ j ≤ i− ⌈θ/2⌉,
i, j ∈ {1, . . . , N}2,
Ai,j ∈ Z ∩ [−2β + 1, 2β ],

λ ∈ R
+.

(14)

It has been shown in [43] that the DST-VII is optimal in terms

of energy packing for image intra-predicted residuals. Indeed,

those residuals have an auto-correlation matrix which is tri-

diagonal matrix Rx of size N×N expressed by Equation (15).

Rx i,i = b, Rx i,i+1 = c, Rx j−1,j = a, Rx N,N = b− α,
(15)

with (a, b, c, α) = (−1, 2,−1, 1) and 1 ≤ i < N , 1 < j ≤
N The eigen-vectors of the matrix Rx are the basis of the

DST-VII transform [9]. Therefore, for the approximation of

the DST-VII, we propose to weight the relative importance

of the approximation basis with the eigen-values of the of

the auto-correlation matrix Rx. This gives more importance

to the lower frequency range where an important part of the

signal energy stands. According to [44] the eigen-values are

computed as follows

ωi = b+ 2
√
a c cos

(

2 i π

2N + 1

)

, i = 1, . . . , N. (16)

C. Genetic Search Algorithm

To provide an approximation of the DST-VII, the ad-

justment matrix, which consists of a selected number θ of

integer values around the diagonal, need to be determined

for a desired level of orthogonality O(A) expressed in Equa-

tion (12). To solve this problem in the integer domain, con-

tinuous optimization methods such as gradient descent are

not appropriate. Also, an exhaustive search would result in

evaluating
(

2β+1 + 1
)θ N

combinations (β is the bit-depth

set to 7 bits). Techniques such Integer Programming [45]

can provide helpful techniques in that context. However, in

this study, a genetic algorithm approach was preferred as it

provided satisfactory results and appeared to converge well.

Genetic algorithms, are easily re-configurable to address

various scenarios such that the adjustment matrix with differ-

ent number of coefficients per row. Indeed, this optimization

algorithm solves Equation (12) with θ N parameters with the

same strategy. Basically, it consists in changing individual

elements of the adjustment matrix in the mutation process.

Although convergence is not guaranteed with the Genetic

Algorithm approach, it appears in practice that it converges

in a consistent fashion with different initialization points.

The principle of the genetic search is the following:

• From a set of Np selected adjustment matrices, called

parents, Nc children are created by individual changes in

the close-to-diagonal values. One among the children’s

values, randomly selected, is changed by the addition

of +/-1 while ensuring that the value remain in the

adjustment matrix bit-depth range.

• The resulting Np Nc adjustment candidate matrices are

evaluated with Equation (12), this can be done in parallel,

e.g. using OpenMP programming interface [46].

• From the candidate matrices, Np − 1 are randomly re-

tained, and the best performing matrix that minimizes the

trade-off between error and orthogonality is kept. From

these Np matrices the three steps are re-iterated until

convergence of the algorithm.
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As the A matrices have coefficients around the diagonal,

the number of parameters depends on the the matrix size and

the number of coefficients per row θ. It is in the range of

θ N , each coefficient is to be expressed on β bits to allow

implementation on fixed-point devices. The convergence is

measured in terms of stabilization of the algorithm, when

there is no further reduction of the optimized metric after

many iterations. The λ value is modified in order to provide

different solutions in the approximation / orthogonality space.

It is essential in video coding to provide transforms with a

reconstruction level, sufficiently low, to avoid the introduction

of distortion in the transform process. Subsequently, λ needs

to be chosen in a way that the orthogonality measure O(A)
is in the range of −60 dB, the same orthogonality level than

the discrete DCT-II used in VVC.

For this work, coefficients of 5 tap sparse block-band adjust-

ment matrices θ = 5 are used with an additional constraint of

symmetry across the diagonal between non-zero coefficients

Aj,i = −Ai,j , ∀ j = i+ 1, i ∈ {1, 2, . . . , N − 1},
Aj,i = Ai,j , ∀ j = i+ 2, i ∈ {1, 2, . . . , N − 2}. (17)

The value θ = 5 is selected since it achieves a good trade-off

between complexity and approximation of the original DST-

VII transform. The symmetric property reduces the memory

storage of the adjustment matrix, and enables a faster conver-

gence of the Genetic algorithm.

64 62 60 58
O (dB)

33.5

33.0

32.5

32.0

31.5

31.0

30.5

E 
(d

B)

 = 4
 = 5 + Symmetry
 = 5
 = 6

Fig. 3. Performance of approximate DST-VII transform N = 32.

Figure 3 illustrates the error and orthogonality performance

of the proposed solution for different θ values. The config-

uration highlighted in black, enabling the desired level of

orthogonality around −60 dB and symmetry of coefficients

with θ = 5, is selected for hardware implementation and its

coding performance is assessed under the VVC Test Model

(VTM) 3.0 software.

IV. 2D HARDWARE IMPLEMENTATION OF TRANSFORM

MODULE

As expressed in Equation (9) giving the relations between

DCT-II types, the approximations of forward and inverse DST-

VII are performed by applying adjustment stages to inverse

DCT-II CT
2 and the forward DCT-II C2, respectively. In the

following we detail the implementation of the main DCT-

II forward and inverse transforms, which are then used to

approximate 2D forward and inverse DST-VII and DCT-VIII

transforms.

A. Unified Forward and Inverse DCT-II Core Transform

In this section the CN
2 corresponds to the N-point DCT-

II matrix with N ∈ {4, 8, 16, 32}. The DCT-II and IDCT-

II N-point kernels are computed by Equations (18) and (19),

respectively

CN
2 = PN ·

(

C
N/2
2 0
0 ON/2

)

·
(

IN/2 JN/2

−JN/2 IN/2

)

, (18)

[CN
2 ]T =

(

IN/2 −JN/2

JN/2 IN/2

)

·
(

[C
N/2
2 ]T 0
0 O′N/2

)

· PN , (19)

where PN is a permutation matrix to reorder the output data

in appropriate form, C
N/2
2 is the DCT-2 of size N/2, ON/2

is a matrix of size N/2×N/2 consisting of odd rows of the

first N/2 columns of the CN
2 matrix. IN/2 and JN/2 are,

respectively, the identity and the cross-identity (reflection)

matrices of size N/2×N/2. Finally, O′N/2 is a matrix of size

N/2×N/2 consisting of odd rows of the first N/2 columns

of the [CN
2 ]T matrix.

Comparing ON/2 and O′N/2, we notice that for i from 1 to

N/2, ON/2 ith column has the same coefficients than the N/2-

ith column of O′N/2 but in inverse order. Subsequently, O′N/2

can be implemented using the same architecture than ON/2.

This can be achieved with computationally trivial steps, by

inverting the inputs and outputs orders. As a result, a unified

architecture design is proposed to embed forward and inverse

DCT-II sharing the same N×N odd part of the CN
2 matrix,

which is the most complex part.
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0

1
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1

0

1

0

1

0

1
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. .
 . 

. .
 . 

. .
 . 

. .
 . 

 

. .
 . 

. 
. .

 . 
. 
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Y(N/2)

Y(N/2-1)

Y(0)
Y(1)

Y(N-2). .
 . 

. .
 .

C2N/2

ON/2

Fig. 4. Proposed architecture of recursive CN

2
implementation with N=8, 16

and 32.

Therefore, benefiting from recursion property as presented

in Fig. 4, the same principle is applied for lower block sizes

to deepen the hardware sharing in the unified circuit.In terms

of required number of operations, the state of the art 32-point

butterfly forward and inverse DCT-II implementation requires

680 multiplication operations according to TABLE I for both

DCT-II and Inverse DCT-II. The proposed architecture of the

unified DCT-II and IDCT-II requires only 344 multiplication
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TABLE III
COMPUTATIONAL COMPLEXITY OF THE PROPOSED FORWARD AND INVERSE DCT-II AND APPROXIMATE DCT-VIII AND DST-VII IMPLEMENTATIONS

Transforms
4-point 8-point 16-point 32-point

+ × >> + × >> + × >> + × >>

DCT-II butterfly [19], [21], [23] 16 8 – 56 40 −− 200 168 −− 744 680 −−

Forward matrix multiplication 24 32 −− 112 128 −− 480 512 −− 1984 2048 −−

Proposed DCT-II 16 8 −− 36 24 −− 92 88 −− 332 344 −−

Proposed Approx DST-VII 24 32 −− 112 128 −− 51 58 9 112 114 30

operations: 256 (odd part) plus 88 (even part) multiplication

operations of C16
2 /[C16

2 ]T ).

Recursion property and reusing the same architecture of dif-

ferent odd-part matrices in a unified DCT-II/IDCT-II scheme

enable considerable reduction in logic resource and allow

preserving 256, 64 and 16 multiplication operations respec-

tively for 32, 16 and 8-point designs. TABLE III details the

computational complexity of the proposed architecture design

for different block sizes from 4 to 32 considering forward

and inverse processes. Moreover, multiplication operations are

performed using the Library of Parametrized Modules (LPM)

IP Cores multipliers offered by DSP blocks of the Arria 10

FPGA device. Fig. 6 illustrates the proposed architecture of

the unified DCT-II/IDCT-II core transform.

From equations (18) and (19), and benefiting from butterfly

decomposition architecture, the difference between DCT-II

and IDCT-II is the hierarchical application of the associate but-

terfly block; as a first or last stage for forward and inverse pro-

cesses, respectively, depending on Forward-Inverse selection

signal. For the IDCT [C32
2 ]T computation, the 32-odd part is

computed as O′16. Trivial pre-processing and post-processing

steps on its associated inputs and outputs are applied with no

additional computing complexity. The obtained results of the

[C16
2 ]T implementation (16-point IDCT-II) outputs go through

IDCT-II butterfly stage in order to provide the final IDCT-II

32-point outputs.

O′16 implementation requires 16 clock cycles where all mul-

tiplications are performed at one clock cycle using LPM

multipliers, then adder trees (with two addition operations)

are placed sequentially to generate the output. The pipeline

installed consists in introducing assignment stages. They are

based on registers and have basically two roles: storing the

current results and transferring the appropriate data and in-

termediate signals to the next stage. These components are

responsible for the pipeline operation avoiding data conflicts

or loss which may occur in the next clock cycles as inputs are

refreshing [29].

Fig. 5 presents a timing diagram of 1D IDCT-II computation

of 32×32 input block. It details the different steps and latency

required to generate 1D output results. In the case forward

DCT-II (Forward-Inverse is equal to 0), the 32-point odd part

is computed as O16. Then the obtained results together with

the C16
2 multiplication (16-point DCT-II) ones form the final

outputs of 32-point DCT-II. The design is not only unified for

forward and inverse DCT, but also for all block sizes from 4

to 32 through a size dependent selection process.
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Fig. 5. Timing diagram of 1D IDCT-II 32×32 block computation

B. Hardware Architecture of Adjustment Stages

As explained in Section III-A, the approximation method is

based on DCT-II architecture and diagonal-sparse orthogonal

adjustment matrices with low computational complexity. These

latter are generated using the genetic algorithm detailed in

Section III-C.

In this work we consider 16 and 32 approximation orders as

they are the most complex cases. 16 and 32-point adjustment

matrices of DST-VII are 5 tap sparse block-band matrices.

As illustrated in Fig. 7, the adjustment matrices are placed

and used as a pre-processing stage in the forward transform

process, and a post-processing stage in the inverse one.

With a maximum of 5 coefficients per row, it would require

80 and 160 multiplications for 16 and 32-point orders, re-

spectively. However, it is worth noting that not all adjustment

matrix rows include five coefficients, and coefficients with

power-of-two values are implemented using shift operations,

which would further reduce the number of required multipliers.

The symmetry property of the adjustment matrix A ex-

pressed by Equation (17) enables using the same coefficients

to perform the multiplication by its inverse AT in the post

processing stage of the inverse DST-VII. Therefore, we can

use the same implementation of the adjustment matrices

in both forward and inverse transform processes and half

of associated computational complexity is preserved. Then,

as the approximation approach consists in using the DCT-

II architecture, DST-VII implementation requires only the

number of operations included by the adjustment matrices

implementation over the DCT-II ones. The approximate DCT-

VIII Ĉ8 is obtained easily using approximate DST-VII Ŝ7

architecture with only some changes in input and output

order and signs as expressed in Equation (8). Therefore, the
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Fig. 7. 1 D approximate DST-VII transform scheme using the pre/post
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approximate DCT-VIII transform requires almost no hardware

resource (except one multiplexer) and does not introduce

additional computational complexity. TABLE III shows the

computational complexity required for the proposed DCT-II,

and approximate DCT-VIII and DST-VII implementations for

both forward and inverse operations. Approximation through

adjustment stages is used for 16 and 32-point orders because

they are the most complex cases. For 4 and 8-point DST-VII,

straightforward matrix multiplication is used as presented in

TABLE III.

C. Proposed 2D Implementation of VVC Transform Approxi-

mation

Using property of separable transforms, the 2D process

could be computed by the row-column decomposition tech-

nique in two distinct stages. First, a 1-dimensional unit is

performed for each column of the input matrix to generate the

intermediate output. This unified circuit enables the computa-

tion of DCT-II, approximate DCT-VIII or DST-VII depending

on the selected transform type as illustrated in Fig. 9. Once the

first N intermediate 1D outputs are available, they are scaled

and stored in N Dual-Port RAM (16×512 i.e 16×32×16) at

a column order (IntermOu 0 0 .. IntermOu 0 31). Fig. 8

shows the structure of the transposition memory.

0

addw[8..0] COL0 COL1 COL30 COL31

wr_ena ROW0

ROW1

ROW30

ROW 31

...

...

...

...

15 16 31 511
Interm 
Ou_0_0

Interm 
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Interm 
Ou_0_30

Interm 
Ou_0_31

... ... ... ...

Interm 
Ou_1_0
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Ou_1_1

Interm 
Ou_1_30

Interm 
Ou_1_31

Interm 
Ou_30_0
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Ou_30_1

Interm 
Ou_30_30

Interm 
Ou_30_31

Interm 
Ou_31_0

Interm 
Ou_31_1
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Ou_31_30
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Ou_31_31

RAM0

RAM1

RAM30

RAM31

...

r_ena0

r_ena1

r_ena30

r_ena31

...

Fig. 8. Architecture of the transposition memory with 32 Dual-Port RAMs.
Data can be written at a column basis and read at a row basis

After storing the outputs of the N columns, the first block

memory (RAM0) will contain the first results computed from

each column. For N = 32, data of RAM0 output port buffer

will be the concatenation of all first output values from every

processed column (32 values of 16 bits each: IntermOu 0 0
.. IntermOu 31 0). The advantage of using dual port RAMs

enables reading the 32 values with a single reading signal. The

same principle is used to secure the storage process in RAM1
to RAM31. As a result, considering 32×32 1D intermediate

output matrix, assigning consecutive r ena signals for the 32
RAMs sequentially, leads to automatically transpose the results

and fed them as inputs to the same 1D architecture in order to

generate the desired 2D output. The proposed 2D circuit is able

to efficiently compute approximate DST-VII and DCT-VIII

transforms using a unified 1D forward-inverse DCT-II core

transform and adjustment stages circuit. Moreover, it is unified

for both 16 and 32 block sizes and reconfigurable to perform

either forward or inverse transform processes. Input and output
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Fig. 9. Proposed unified architecture of approximate forward-inverse transform design

First In First Out (FIFO) memory blocks are added in both

ends of the design, each of size 16 Kbits (16×32×16), to store

and display input and output vectors. Moreover, a control unit

according to a state machine is defined. It enables assigning

the appropriate signals and blocks, and control reconfiguration

aspects. In addition, it manages the different steps of 2D

pipeline process.

V. EXPERIMENTAL AND SYNTHESIS RESULTS

A. Experimental setup

The coding and complexity performance of the proposed

approximate solution are investigated in this section under

the VVC Common Test Condition (CTC). Those experiments

are tested among mandatory video classes, where each class

corresponds to a specific resolution (up to 4K video) and

video content characteristic (with computer generated and

visio-conference materials). The proposed approximate DST-

VII and DCT-VIII have been integrated in the VTM draft

3.0 reference software [47]. The BD-BR metric is used to

assess the coding performance over four bitrates between two

coding configurations giving the bitrate gain/loss (−/+) in

percentage for similar PSNR quality. The encoder and decoder

run times are also drown to assess the complexity of the

proposed approximations.

On the other hand, for this work, hardware implementation of

the transforms is also done using the Verilog HDL description

language. The architectures of 1D and 2D processes of differ-

ent orders have been tested with state of the art simulation and

synthesis software tools [48], [49] under Arria 10 Systems on

Chips (SoC) FPGA device [50]. Test bench files were used to

validate the output results.

B. Rate Distortion Coding Performance

TABLE IV gives the coding and complexity performance is

terms of both BD-BR and run time of the proposed solution.

The encoding (EncT ) and decoding (DecT ) run times are also

compared in percentage to the anchor VTM3.0 [51]. This latter

uses the HEVC DCT-II up to size 64 together with DST-VII

and DCT-VIII core transforms for MTS, up to size 32, imple-

mented as matrix multiplications. From TABLE IV, it is shown

that the proposed approximations of the DST-VII and DCT-

VIII introduce slight coding loss of 0.15% in average for the

luminance component (Y), and 0.09% for the two chrominance

components (U and V) in AI coding configuration. Overall,

we can conclude that the coding performance remains similar

to the anchor for RA and Low Delay B (LDB) Inter coding

configurations.

The encoding and decoding run times slightly decrease with

the approximate DST-VII and DCT-VIII in AI configuration,

while they remain constant in RA and LDB configurations.

These results can only support the effectiveness of the pro-

posed VVC transform approximation method. In fact, the gain

in number of multiplications and additions enabled by the

approximate transforms through adjustment matrices is low

in the context of the VTM software, which includes other

time consuming operations. However, this gain in number of

operations as well as in memory usage has a significant impact

in the context of hardware implementation on FPGA platforms

with limited logic and memory resources.

C. Synthesis Results and Discussion

Since MTS approximation is based on DCT-II architecture,

TABLE V presents the area consumption of some related

works for 1D 32-point forward DCT-II implementation on

different platforms. In this paper a unified forward and inverse

DCT-II design is proposed. Thus, regarding information given

in TABLE V it would consider twice the required hardware

cost. In addition, for further fair evaluation, we will focus

more on [29] work which provided both DCT-II and DST-VII

implementations without approximation on the same FPGA

A
cc

ep
te

d 
M

an
us

cr
ip
t



IEEE 2019 10

TABLE IV
PERFORMANCE (%) IN TERMS OF BD-BR AND RUN TIME COMPLEXITY OF APPROXIMATE DST-VII AND DCT-VIII

Classes All Intra Main 10 Random Access Main 10 Low Delay B Main 10

Y U V EncT DecT Y U V EncT DecT Y U V EncT DecT

A1 0.15 0.11 0.14 93 80 0.12 0.31 0.27 99 97 − − − − −
A2 0.22 0.12 0.08 95 84 0.09 0.21 0.23 99 98 − − − − −
B 0.14 0.14 0.20 94 84 0.10 0.31 0.17 99 98 0.07 -0.22 0.11 100 101
C 0.06 0.00 -0.05 95 89 0.07 -0.06 0.35 99 100 0.06 0.15 0.35 100 100
E 0.18 0.10 0.06 94 86 − − − − − 0.06 0.81 -0.11 100 97

Average 0.15 0.09 0.09 94 85 0.09 0.19 0.25 99 98 0.06 0.16 0.14 100 100

TABLE V
AREA CONSUMPTION OF SOME 1D 32-POINT BUTTERFLY DCT-II

IMPLEMENTATIONS ON DIFFERENT PLATFORMS

Transform Dimention Technology Area consumption

DCT-II [40] 1D forward Xilinx Sparta 18772 (LUT)

DCT-II [19] 1D forward TSMC 90nm 253 (Kgate)

DCT-II [29] 1D forward Arria 10 Soc 11231 (Alm)

target device with similar pipelining approach as used in the

proposed work.

TABLE VI provides more detailed hardware synthesis results

of 16 and 32-point DCT-II and DST-VII implementations

proposed in [29]. Results presented in TABLE VI show that

the proposed design provides good performance in terms of

processed frames per second up to 135 and 361 of 4K videos

for 16 and 32-point modules, respectively. It can also be

noticed that 32-point module implementation requires about

3 to 5x hardware resources than 16-point one.

TABLE VI
SYNTHESIS RESULTS OF THE 1D 16 AND 32-POINT DCT-II AND

DST-VII [29]

16-point 32-point

DCT-II DST-VII DCT-II DST-VII

Alms 2428(1%) 5981(2.5%) 11231(4.5%) 22794(9%)

Reg. 14041(4%) 50135(15%) 76711(22.5%) 186418(55%)

DSPs 84(5%) 186(11%) 276(16%) 681(40%)

Freq. 401 MHz 268 MHz

Cycles 61 61
2K 541 fps 1440 fps

4K 135 fps 361 fps

Otherwise, logic resource would be 6x or more and then

exceed the target device range. This technique is used in

the proposed work without affecting the computational design

performance. Furthermore, information given in TABLE VI

refers only to requirements for forward transform configu-

ration. This is only to have an idea on the complexity and

required resources of hardware implementation of the MTS.

On the other hand, the implementation of the approximation

method, aims to maintain the desirable high performance while

keeping minimal logic utilization. TABLE VII presents the

synthesis results of the proposed unified forward/inverse DCT-

II core transform. This latter, configured to operate as Forward

or Inverse DCT-II, will be used in DST-VII and inverse DST-

VII implementations using adjustment stages.

The second part (right) of TABLE VII gives the synthesis

results of the 1D DST-VII approximation implementation. It

TABLE VII
SYNTHESIS RESULTS OF THE UNIFIED 1D 32-POINT DCT CORE

TRANSFORM AND THE PROPOSED ARCHITECTURE OF APPROXIMATE

FORWARD-INVERSE DST-VII AND DCT-VIII

DCT-II / IDCT-II Approximation design

16-point 32-point 16-point 32-point

Alms 16505 (7%) 23199 (9%)
Registers 51862 (15%) 69226 (20%)
DSPs 328 (20%) 500 (30%)
Frequency 308 MHz 316 MHz

Cycles 46 85 55 95
Frame rate (2K) 551 fps 1205 fps 472 fps 1095 fps

Frame rate (4K) 137 fps 300 fps 118 fps 273 fps

embeds the DCT-II core transform and then the additional

complexity introduced by adjustment stages can be interpreted

or deducted as the difference between DCT-II transform core

and DST-VII approximation results. Finally, the synthesis

results of the unified 2D approximation circuit are summarized

in TABLE VIII. The low computational complexity introduced

by adjustment stages will have a high impact on the design

performance. We can notice that the larger block size is, the

TABLE VIII
SYNTHESIS RESULTS OF THE UNIFIED 2D IMPLEMENTATION DESIGN OF

32-POINT FORWARD-INVERSE DCT-II AND APPROXIMATE DST-VII AND

DCT-VIII

DCT-II / IDCT-II App. DST-VII / DCT-VIII

16-point 32-point 16-point 32-point

Alms 26130 (10%) 31421 (12%)

Registers 62109 (18%) 75553 (22.5%)

DSPs 328 (20%) 500 (30%)

Memory 64 Kbits (<1%) 64 Kbits (<1%)

Frequency 225 MHz 228 MHz

Cycles 95 175 115 196

Frame rate (2K) 194 423 163 386

Frame rate (4K) 49 fps 105 fps 41 fps 96 fps

higher frame rate performance is as long as the pipeline is

going deeper with more rows to compute. Thus, the proposal

is able to sustain 2K and 4K video processing at 386 and

96 frames per second, respectively. Moreover, it requires only

12% of Alms, 22% of registers and 30% of DSP blocks offered

by the target device.

It should be noted that the proposed design is configured to

compute one transform type at a time in both sides (encoder

and decoder). At the encoder, pixels are processed many times

through the rate distortion optimization process which would

affect the measured throughput in fps. On the other hand,
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TABLE IX
COMPARISON OF DIFFERENT 2D HARDWARE TRANSFORM DESIGNS

Solutions [23] [25] [27] [29] Proposed

Technology 28 nm FPGA 40 nm FPGA ME 20 nm FPGA ME 20 nm FPGA ME 20 nm FPGA

Area cons. (Alms) −− 5292 3654 133017 36766
DSPs 128 −− 32 1561 738
Frequency (Mhz) 222 167 458 147 228
Throughput (fps) 3840×2160p30 3840×2160p30 3840×2160p18 1920×1080p50 3840×2160p96

Transform unit

4×4, 8×8,
16×16, 32×32

4×4, 8×8 4×4,8×8,
16×16,32×32

4×4,8×4,16×4,32×4,
4×8,8×8,16×8,32×8,

4×16,8×16,16×16,32×16,
4×32,8×32,16×32, 32×32

4×4, 8×8, 16×16,
32×32

Transform type DCT-II

DCT-II, DST-I,
DST-VII,

DCT-VIII, DCT-V

DCT-II, DST-VII,
DCT-VIII

DCT-II, DST-I,
DST-VII,

DCT-VIII, DCT-V

DCT-II, DST-VII,
DCT-VIII

Dimension 2D 2D 2D 2D 2D

Process Forward Forward Forward Forward Forward + Inverse

computing two different transform types in parallel would be

an alternative way of further optimization, especially that the

presented solution is a low hardware area consuming. Then,

the actual throughput in the encoder could be increased.

A fair comparison with other works in literature is quite

difficult. Most of works are focusing on the 2D-HEVC DCT-

II. There are only few works related to MTS hardware im-

plementation. TABLE IX summarizes the key parameters to

compare the proposed unified design performance with state

of the art works. Work in [25] involves 5 transform types but

is restricted to only 4×4 and 8×8 block sizes reaching 30 fps

for 4K video coding. Work in [27] presents also an interesting

2D implementation of MTS module regarding hardware cost.

It is unified for all block sizes from 4×4 to 32×32 but is

not able to support real time coding for 4K videos. Work

in [29] is considered as the first 2D MTS implementation

supporting 5 transform types and all block sizes (including

rectangular ones) from 4 to 32. However, it is drawback is the

high usage of logic resource. Finally, all these works consider

only forward transform process.

On the other hand, it is worth noting that the proposed

design enables both forward and inverse transform processes.

In fact, associated with the DCT/ IDCT-core transform, the

unified circuit is able to compute 2D forward and inverse

implementation for DCT-II, approximate DST-VII and DCT-

VIII transform types supporting all sizes from 4×4 to 32×32
unlike the other works presented in TABLE IX. As a result,

considering this fact would require twice their results. More-

over, as it is mentioned above, the low additional hardware

requirements of forward and inverse DST-VII architectures

(for 4×4 and 8×8 sizes through matrix multiplication) can

be noticed in area consumption and DSP blocks used for the

proposed work (TABLE VIII and TABLE IX). Furthermore,

the proposed solution is able to sustain 4K video processing at

96 frames per second requiring only moderate hardware cost

of the target device.

VI. CONCLUSION

In this paper we have proposed the approximation method

adopted for hardware implementation of forward and inverse

MTS concept of VVC standard. It consists in applying low cost

adjustment stages to a DCT-II variant in order to approximate

DST-VII and DCT-VIII transform types. An efficient hardware

implementation of approximate VVC transform process is also

proposed. The 32-point 1D architecture allows the processing

of 4K videos at 273 frames per seconds. It embeds a re-

configurable and pipelined DCT-II core transform to compute

forward and inverse DCT-II sharing the most logic consuming

part. The proposed unified 2D implementation design can

compute forward and inverse DCT-II, DST-VII and DCT-VIII

approximation while using only moderate hardware resource

of the target device. The unified circuit is able to sustain 2K

and 4K video processing at 386 and 96 frames per second,

respectively.

Future works will aim to include 64 transform order for

DCT-II. Moreover, rectangular block sizes would be consid-

ered with hopefully similar performance results.
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APPENDIX A

16-POINT ADJUSTMENT MATRIX WITH θ = 5





































































































128 4 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

−4 128 8 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −8 127 10 −1 0 0 0 0 0 0 0 0 0 0 0

0 1 −10 127 14 0 0 0 0 0 0 0 0 0 0 0

0 0 2 −14 126 16 1 0 0 0 0 0 0 0 0 0

0 0 0 2 −16 126 16 1 0 0 0 0 0 0 0 0

0 0 0 0 1 −16 125 24 −1 0 0 0 0 0 0 0

0 0 0 0 0 2 −23 123 26 1 0 0 0 0 0 0

0 0 0 0 0 0 6 −25 124 19 2 0 0 0 0 0

0 0 0 0 0 0 0 3 −19 125 21 2 0 0 0 0

0 0 0 0 0 0 0 0 1 −21 124 24 3 0 0 0

0 0 0 0 0 0 0 0 0 2 −24 123 27 3 0 0

0 0 0 0 0 0 0 0 0 0 2 −27 121 31 5 0

0 0 0 0 0 0 0 0 0 0 0 4 −31 119 35 2

0 0 0 0 0 0 0 0 0 0 0 0 4 −34 117 39

0 0 0 0 0 0 0 0 0 0 0 0 0 9 −38 122

APPENDIX B

32-POINT ADJUSTMENT MATRIX WITH θ = 5, COLUMNS FROM 1 TO 16





































































































































































































































128 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 128 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −3 128 4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −4 128 5 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −5 128 7 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −7 128 8 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −8 127 9 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −9 127 11 1 0 0 0 0 0 0

0 0 0 0 0 0 0 −11 127 12 1 0 0 0 0 0

0 0 0 0 0 0 0 1 −12 127 14 1 0 0 0 0

0 0 0 0 0 0 0 0 1 −14 126 15 1 0 0 0

0 0 0 0 0 0 0 0 0 1 −15 126 16 1 0 0

0 0 0 0 0 0 0 0 0 0 1 −16 126 16 1 0

0 0 0 0 0 0 0 0 0 0 0 1 −16 126 18 1

0 0 0 0 0 0 0 0 0 0 0 0 1 −18 125 20

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −20 125

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

APPENDIX C

32-POINT ADJUSTMENT MATRIX WITH θ = 5, COLUMNS FROM 17 TO 32





































































































































































































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

124 22 2 0 0 0 0 0 0 0 0 0 0 0 0 0

−22 124 23 2 0 0 0 0 0 0 0 0 0 0 0 0

2 −23 123 25 3 0 0 0 0 0 0 0 0 0 0 0

0 2 −25 123 26 3 0 0 0 0 0 0 0 0 0 0

0 0 3 −26 122 27 3 0 0 0 0 0 0 0 0 0

0 0 0 3 −27 122 28 3 0 0 0 0 0 0 0 0

0 0 0 0 3 −28 121 29 4 0 0 0 0 0 0 0

0 0 0 0 0 3 −29 121 30 4 0 0 0 0 0 0

0 0 0 0 0 0 4 −30 120 32 5 0 0 0 0 0

0 0 0 0 0 0 0 4 −32 119 34 5 0 0 0 0

0 0 0 0 0 0 0 0 5 −34 118 34 5 0 0 0

0 0 0 0 0 0 0 0 0 5 −34 118 36 6 0 0

0 0 0 0 0 0 0 0 0 0 5 −36 117 37 6 0

0 0 0 0 0 0 0 0 0 0 0 6 −37 117 36 6

0 0 0 0 0 0 0 0 0 0 0 0 6 −36 116 41

0 0 0 0 0 0 0 0 0 0 0 0 0 6 −41 121
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