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Abstract

We handle a special type of motion blur considering that

cameras move primarily forward or backward. Solving this

type of blur is of unique practical importance since nearly

all car, traffic and bike-mounted cameras follow out-of-

plane translational motion. We start with the study of geo-

metric models and analyze the difficulty of existing methods

to deal with them. We also propose a solution accounting

for depth variation. Homographies associated with differ-

ent 3D planes are considered and solved for in an optimiza-

tion framework. Our method is verified on several natural

image examples that cannot be satisfyingly dealt with by

previous methods.

1. Introduction

Motion blur is one ubiquitous problem in photo taking.

Previous deblurring approaches model the degradation in

different ways. For example, it is common to assume uni-

form blur with only in-plane translation or take into account

camera rotation. While prior models are effective on images

produced under their respectively defined conditions, there

are still a bunch of blurred images that find no solution in

restoration using existing techniques. Motion blur caused

by out-of-plane translation falls into this set.

There are millions of, or even more, images that can be

found easily on internet degenerated by forward or back-

ward motion during image capture. It is because out-of-

plane translation represents one dominating type of camera

motion in many commonly seen scenarios. For instance,

car-mounted cameras, which are getting very popular in

recent years, produce a load of images and videos. Most

surveillance cameras placed on highway record moving ve-

hicles, which could also produce this type of motion blur. In

addition, out-of-plane translational motion is common from

wearable sport cameras and other smart devices, such as

Google glasses. A few examples are shown in Fig. 1.

Obviously, if these images can be deblurred correctly,

not only image visual quality is much improved, but also

many practical applications can be immediately benefit-

Figure 1. Out-of-plane translational motion blur examples.

ted, which include fast-moving car license recognition and

face/object detection in egocentric vision. We present the

fact that all existing methods, unfortunately, cannot solve

this problem in their respective models. Our study also

shows out-of-plane is not a simple extension of prior mod-

els, but instead a new one with unique physical properties.

In this paper, we focus on dealing with images blurred

mainly by vehicle movement or alike, which makes it pos-

sible to safely ignore severe camera rotation for algorith-

mic tractability. Our objective is further narrowed down to

deblurring 3D-planes with the understanding of general ge-

ometric models in image formation and its present limita-

tion. The reason to only consider 3D-planes is twofold. On

the one hand, the majority of useful information alongside

highway, such as characters and illustrations, is generally

shown on planer boards. Human face and car license can

also be regarded as planar regions from afar. On the other

hand, 3D planes introduce notable computation flexibility.

Note our 3D-plane configuration has counted in depth

variation. Each plane is modeled by its normal, which is ini-

tialized and automatically updates in the proposed method.

We further explore parametric blur solution space and there-

fore handle photos taken from rapidly moving vehicles.
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2. Related Work

Image deblurring finds many previous methods. State-

of-the-arts are roughly categorized to spatially-invariant and

spatially-variant configurations, based on different assump-

tions of the underlying blur model.

2.1. Uniform Blind Deconvolution

In uniform deblurring, Fergus et al. [2] proposed a blind

deconvolution scheme applicable to natural images. It em-

ploys a variational Bayesian approach to estimate the blur

kernel through marginal probability maximization. Effi-

cient marginalization was later introduced in [15]. Another

line of work is by extending the MAP framework to esti-

mate latent images and blur kernels iteratively. Shan et al.

[18] used adaptive regularization weights to avoid trivial so-

lutions. Cho and Lee [1] predicted edges to guide kernel

optimization, which shortens running time in kernel esti-

mation. Levin et al. [14] analyzed the MAP framework

with regard to its limitation and extensibility. Xu and Jia

[24] found small structures in images could be detrimental

to kernel estimation and proposed a method to remedy this

problem. Krishnan et al. [13] used normalized sparsity in

their MAP framework to estimate kernels. Xu et al. [26]

sought an unnatural representation for blur kernel estima-

tion and proposed a fast solver for restoration.

2.2. Non-Uniform Blind Deblurring

The fact that blur caused by camera shake in images are

usually non-uniform motivates a series of work with method

generalization to model spatially variant blur. Shan et al.

[19] first addressed blur caused by in-plane rotation. Tai et

al. [21] used a projective model to handle spatially vari-

ant blur. Whyte et al. [23, 22] used 3D rotation to model

camera shake. In [4], the motion density function was in-

troduced. In-plane translation and orthogonal rotation are

used to model camera shake in another way. Hirsch et al.

[6] assumed that blur is locally invariant and proposed a

fast non-uniform framework based on efficient filter flow

[7]. Joshi et al. [8] developed a hardware solution to record

camera shake and restore blurred images. Xu and Jia [25]

used stereo images and incorporated depth into the deblur-

ring framework. In addition, they proposed a hierarchical

framework for non-uniform deblurring.

2.3. Other Work

Optical aberration can be regarded as a special case of

non-uniform blur caused by imperfection of lens. Joshi et

al. [9] estimated PSFs with calibration sheets and recovered

sharp images. In [10, 16], optical blur was estimated for the

lens. Schuler et al. [17] designed a set of bases to describe

optical blur and proposed a blind deconvolution method to

address optical aberration.

3. Background

Image capture is the process that each element with co-

ordinate x in the camera sensor receives light from the

scene X. Under homogeneous coordinates, x is denoted

as (x, y, 1)T and X = (x, y, z, 1)T , where T is the trans-

pose operator. Image blur typically stems from two sources

during exposure, i.e., camera shake and object motion. Both

types make the sensor element x receive light from a series

of scene points during exposure.

In modeling the geometric formation process of camera-

caused motion blur, nearly all prior methods assume con-

stant scene depth z under the condition that the scene is dis-

tant or front-parallel. Xu and Jia [25] took depth into con-

sideration; but they need stereo images to tackle the depth

problem, which may not be applicable to single image de-

blurring. Under the constant z assumption, blur image cap-

ture can be regarded as a sharp image l, which is formed in

a very short time interval, moves in a longer duration. The

output image is the weighted sum of all these transformed

sharp images expressed as [23]

b =
∑

i

wiPil + ε, (1)

where b denotes the blurred image and i indexes the trans-

formed sharp image. All images are in the vector form in

this paper. Pi is a N ×N coefficient matrix that transforms

the latent sharp image l to li in status i, – that is, Pil = li.

ε is additive noise. wi is a weight corresponding to the du-

ration that the latent image stays in status i.
Actually, li and l, which are images captured with two

different poses, are related by a projection matrix according

to two-view geometry [5]. Then any pixel x in l relates to

the corresponding x
′ in another view as

x
′ = KRK

−1
x + Kt/z = Hx, (2)

where R and t denote the pose of camera with a total of

six degrees of freedom. R represents rotation around the

x, y, and z axes with angles θx, θy , and θz respectively; t

is translation in three directions. K is the camera intrinsic

matrix, which has focal length f measured in pixels and

image center (cx, cy) as parameters. During one shot, K is

fixed due to generally constant focal length.

Eq. (2) indicates that a view can be modeled as a ho-

mography warping of the latent sharp image l. By assum-

ing small rotation angles as that in [23], the transformation

matrix H is written as

H = K

⎛

⎝

1 −θz θy + tx/z
θz 1 −θx + ty/z
−θy θx 1 + tz/z

⎞

⎠K
−1. (3)

The problem of deblurring is actually to compute weight wi

for each pose Hi, physically corresponding to duration of



each pose. There is a mapping between homography Hi

and warping matrix Pi, where Pi is the N × N matrix and

each row is formed by the coefficient of bilinear interpola-

tion. The blur kernel corresponds to w = (w1, w2, ..., wn)T

in Eq. (1), weights for each camera pose. n is the total num-

ber of poses. Only the ratio of tx/z, ty/z, tz/z is required

to parameterize homography H. Under constant depth z,

the family of homography in the above blur process forms

a 6D parameter space.

H and Uniform Deblurring In the uniform blur model,

θx, θy , θz and tz are all set to zeros. The remaining param-

eters are tx/z and ty/z in estimation. The solution space

is thus in 2D, corresponding to shift horizontally and verti-

cally in image plane.

H and Non-uniform Deblurring The full six-parameter

model is excessively complex even for non-uniform deblur-

ring. Previous methods, such as those of [23, 4], tackled

this problem in 3D subspaces with only rotation or in-plane

rotation plus translation. Effectiveness of these methods

in approximating blur caused by typical hand-held camera

shake was verified [11]. Specifically, a full homography-

based model was adopted in [20] for non-blind deconvolu-

tion. It is however unknown how to blindly estimate the

blur kernel and latent image simultaneously, given the large

solution space.

Importance of Out-of-Plane Translation In nearly all

prior deblurring methods, out-of-plane translation is ig-

nored, assuming no movement orthogonal to the image

plane. As noted in Section 1, this type of translation, how-

ever, is dominant in ubiquitous forward motion situations.

In what follows, we discuss if motion caused by out-of-

plane translation can be modeled by previous methods.

We create an image δ, which contains a few regularly

placed dots, as shown in Fig. 2(a). This image is blurred

with forward motion only, i.e. the homography in Eq. (3) by

setting all elements to 0s except for tz . The blurred image

is shown in Fig. 2(b), visually indicating that the blur is

spatially variant in a radial shape. At image center, there is

almost no blur; along the boundary, moving the camera 1cm

causes a pixel shifting 30 pixels in the 2000 × 2000 image

when setting scene depth z = 1 meter.

Note this is a special example used only for illustration.

Our method actually handles a more general problem where

blur occurs by translation with components existing along

all axes and the motion is not necessarily perpendicular to

the image plane.

Inherent Difficulty Existing non-uniform methods, such

as those of [23, 4], cannot tackle this problem. Another fun-

damental issue is on the depth value assumption. Almost

all practical single-image motion deblurring methods with

(a) Dotted pattern (b) Forward blur

Figure 2. Simple out-of-plane translational blur illustration.

implementation available online assume distant or front-

parallel scene, which is actually not appropriate for gen-

eral forward motion. It is because requiring objects com-

pletely undergo translational motion perpendicular to the

camera sensor plane is overly restrictive. For example, traf-

fic surveillance cameras are normally placed higher than ve-

hicles or beside highway. Their viewing planes are slanted

and pixels are not moving strictly forward.

In our method, we allow for varying depth and mod-

eling them in a parametric form, related to 3D plane nor-

mals. This strategy balances system practicality and prob-

lem tractability, making the method a reasonable one for

forward motion deblurring.

4. Our Model

In our framework, points on various 3D planes are mod-

eled. Their projection on the blurred image is constrained,

availing following optimization.

For a 3D plane denoted as π = (n, d), where n is the

normal vector and d is the offset to the camera center, any

point X on the plane satisfies X
T π = 0. By convention,

the latent sharp image l is captured by a camera with pro-

jection center at the origin. The projection matrix between

the world and image plane coordinates is K[I|0]. Two im-

ages produced by varying camera positions are linked by a

homography as

H = K(R +
tn

T

d
)K−1, (4)

where R refers to rotational motion and t denotes transla-

tion. This representation is different from Eq. (3) for its

consideration of varying depth. Generally, points lying on a

3D plane can be with different depth values.

Because we aim to deal with images primarily produced

by car or traffic surveillance cameras, the rotation matrix is

set to an identity I. In addition, plane points make t/d in

Eq. (4) a three-variable vector, which is still represented as

[tx ty tz ]
T . The homography representation similar to Eq.

(4) is thus

H = K

⎛

⎝

1 + txn1 txn2 txn3

tyn1 1 + tyn2 tyn3

tzn1 tzn2 1 + tzn3

⎞

⎠K
−1 (5)



(a)

(b) (c) (d)

=+w
3

++w2w1

x

y

z
(1,0,0)

x

y

z

x

y

z (0,0,1)

(0,1,0)

l1 l2 l3

=+w
3

++w2w1

l1 l2 l3

=+w
3

++w2w1

l1 l2 l3

Figure 3. Demonstration of homography bases considering three special normals. (a) Natural images generally contain planar surfaces. (b)

Corresponding forward motion blurred image to (a). (c) Three special cases. Each blurred surface is a weighed sum of a few transformed

planes li defined in Eq. (1). (d) Resulting blurred planes.

where n = (n1, n2, n3)
T in 3D space. Given tx, ty , tz and

n, we can uniquely determine a homography, which also

corresponds to a N ×N warping matrix P described in Eq.

(1) – one P maps to one homography H. In this regard, we

transform originally very difficult whole-image deblurring

to a plane-wise tractable problem, counting in non-frontal

3D planes.

Homography Space Eq. (5) indicates that one ho-

mography, or the corresponding camera pose, is deter-

mined uniquely by vectors t = (tx, ty, tz)
T and n =

(n1, n2, n3)
T with a total of 6 variables (or 5 of them if

n is normalized). We thus propose constructing 3D homog-

raphy space t = (tx, ty, tz)
T and sample each tx, ty , and

tz discretely to predefine a few camera poses. The normal

n, contrarily, is set as another parameter updated in passes.

Put differently, our method uses a series of discrete H
n

i to

present the original continuous homography space, each ho-

mography or status is determined by a corresponding n and

by a pose ti indexed by i.

Fig. 3 shows an example for demonstrating the specialty

of forward motion blur. We use the dotted pattern to visu-

alize point trajectories and homography basis, which make

this kind of blur formation easy to comprehend. (a) is to

show that forward motion blurred images, such as that in

(b), can generally find a few planes.

We then consider three special cases with plane normals

n being respectively (1, 0, 0), (0, 1, 0), and (0, 0, 1), as il-

lustrated in the three rows in Fig. 3(c). Previous methods,

even for non-uniform deblurring, mostly consider the case

n = (0, 0, 1), whereas our method handles all of them as

well as planes with all non-zero elements in normal n.

+ + =

b

l

w1 1l
...w2 2l w3 3l

...

Figure 4. Scale variance in forward motion blur formation. Each

li = P
n

i Gil is with possible scale change as illustrated.

Fig. 3(d) illustrates representative blur structures. For

planes with normals (1, 0, 0) and (0, 1, 0) (top two rows in

(c)), a column and a row of pixels do not blur at all. It is

because these points are infinitely distant or the plane passes

the camera center.

Color Mixing Issue The blur formation represented as

b =
∑

i wili + ε in Eq. (1) given li = P
n

i l does not con-

sider color mixing arising in forward motion blur, which

is caused by scale variation in each transformed image li.

Previous work does not have this problem because without

out-of-plane translation, the transformed images li captured

at different camera poses are with similar resolutions.

Note in out-of-plane motion, a similarity transform for

each li is resulted in, which changes image scales. In this

regard, one pixel in the blurred image is not a summation (or

integration) of a few isolated unblurred pixels, but rather a

combination of several patches, as illustrated in Fig. 4.



We generally take the reference image l as the one with

the highest resolution among all. It is with tz = 0 and all

other li are with tz < 0, corresponding to down-scaled ver-

sions of l. To practically model the resulting blurred image

b and avoid aliasing, we regard b as the sum of latent im-

ages li blurred by Gaussian filter, whose standard deviation

is determined by tz corresponding to each li. Typically,

we set the standard deviation of Gaussian in [0.1, 0.5] and

linearly interpolate pixels according to tz . This process is

similar to image sampling, but with different convolution

kernels. The final blur model is finely expressed as

b =
∑

i

wiP
n

i Gil + ε, (6)

where Gi is a BTTB (block-Toeplitz with Toeplitz-block)

matrix representing the Gaussian blur kernel in a matrix

form. Our final li is expressed as P
n

i Gil. We describe

in the next section our deblurring algorithm based on this

model.

5. Forward Motion Deblurring

The model in Eq. (6) depends on three sets of variables,

namely w, l, and normal n. Solving for w and l with a fixed

n corresponds to a non-uniform deblurring problem. We re-

sort to alternating minimization to estimate them iteratively.

5.1. Kernel and Image Restoration

The first sub-problem is to fix n and estimate w and l,

which is referred to as blind deconvolution. w is known

as blur kernel, since it records the duration of each camera

pose, conceptually similar to 2D uniform blur PSFs.

One nice property of Eq. (6) is the bilinear form it takes,

since Gi is a linear translation-invariant operator. We thus

write
∑

i

wiP
n

i Gil = B
n

l = A
n

w, (7)

where B
n =

∑

i wiP
n

i Gi and coli(A
n) = P

n

i Gil. coli(·)
returns the i-th column of matrix A

n. w is the vec-

tor (w1, w2, ...)
T . We define the quadratic data cost term

‖b−
∑

i wiP
n

i Gil‖
2 following tradition.

Kernel Update We update w by solving energy function

E(w) = ‖An
w − b‖2 + γ‖w‖2,

s.t.
∑

i wi = 1 (8)

where γ controls the smoothing strength. The constraint
∑

i wi = 1 is for energy conservation. The objective func-

tion is quadratic with respect to w. However, directly solv-

ing Eq. (8) involves inversion of An, which is computation-

ally expensive and unstable. We use the local uniform as-

sumption [6] for acceleration considering smoothly chang-

ing blur kernels under depth variation on 3D planes.

Conjugate gradient (CG) is employed to update w in this

step. Normalization to make
∑

i wi = 1 is applied after the

result of w is obtained.

Image Update In uniform deblurring, extra steps with

shock filter [1] are generally employed to help kernel es-

timation. Recent development [13, 26] shows that sparsity-

pursuit regularization can replace these ad-hoc steps and

generate similar or better representations in a unified energy

minimization framework. Speed of convergence and result

quality can both be enhanced [26]. Our method follows this

line and similarly adopts the high-sparsity form as

E(l) = ‖Bn

l − b‖2 + λφ(∇l), (9)

where φ(∇l) is the high-sparsity regularization term on im-

age gradients, approximating L0-norm (defined in [26]). λ
is a weight. The scale-invariant property of L0-sparsity is

vital to guide blur kernel estimation. We do not perform

shock filtering and instead use the efficient solver in [26]

for optimization.

The image and kernel estimates are updated iteratively in

a multi-scale scheme [23]. It converges quickly. The finally

restored image, based on the kernel result, is produced by

optimization incorporating a natural image hyper-Laplacian

[12] prior. Other image priors, such as that in [27], can also

be adopted.

5.2. Normal Refinement

The above method depends on a specified normal n. We

will discuss in Section 6 the way to initialize it. In what

follows, we parameterize n for its refinement.

A plane normal is parameterized in the spherical coordi-

nate system as

n = (n1, n2, n3)
T = (cosα sinβ, sin α sin β, cosβ)T , (10)

where α and β are polar and azimuthal angles respectively.

With the constraint that each n is normalized, the number of

parameters is actually 2. The energy function with respect

to n is

E(n) = ‖
∑

i

wiP
n

i Gil − b‖2. (11)

The derivatives of E(n) are non-linear. Gradient descent

[3], such as Matlab fminunc function, fails to produce rea-

sonable results in practice.

Our strategy to update the normal estimate is sampling

and testing. Given the input normal specified by angles α0

and β0, we update them within α0±15◦ and β0±15◦, with

each interval 5◦. We have therefore a total of 49 candidates,

which are fed into Eq. (11) for evaluation. The one with

the smallest energy is kept as the new normal in the current

pass. This process guarantees energy decreasing.

After the normal is updated, we solve for w and l again.

Only 3 passes are enough to obtain a reasonable result in

our experiments.



Figure 5. Illustration for finding vanishing lines. Two sets of paral-

lel lines on a blurred plane are drawn to find two vanishing points.

It is easy to locate parallel lines based on scene structure by hu-

mans.

6. Implementation and Discussion

We give more details about algorithm implementation,

including normal initialization in images. We set λ and γ in

Eqs. (9) and (8) to 6E−3 and 5E−3 respectively for most

examples.

Where Are the Planes? Traffic sign boards, building fa-

cade, to name a few, are typical scenes captured by cameras

on moving cars. Vehicles are contrarily targets of surveil-

lance cameras. They all consist of planes. We in general set

the input scene initially as frontal parallel and let the nor-

mal evolve automatically during optimization, as described

in previous sections. If there is a quite slanted surface to de-

blur, we use the following method for manual initialization.

Finding Initial Plane Normals Our method makes use

of multi-view geometry [5] if frontal-parallel initialization

is not suitable. It is based on the fact that planes’ orienta-

tion relative to camera coordinates can be determined from

vanishing lines. A plane with vanishing line v has it normal

determined as n = K
T
v.

In our system, two sets of lines parallel to the plane are

drawn by the user, snapping to edges in the image, as shown

in Fig. 5. We note there are several methods that can auto-

matically or semi-automatically find parallel lines. But they

are not reliable enough on blurred images. To develop a ro-

bust automatic plane detection method for forward motion

blur will be our future work.

Sampling Details We regularly sample tx, ty , and tz to

get our homography basis H
n

i , accounting for out-of-plane

and in-plane translation. Sampling ranges can be adjusted

according to the degree of blurriness. It is also set according

to intrinsic parameter K so that one sample in each direction

roughly causes one pixel displacement in the corresponding

plane for numerical tractability. Another general principle

is to sample z more densely than x and y.

7. Experimental Results

We first evaluate the influence of normal estimation in

our model and show how our approach evolves the estimate

starting from a coarse initialization. To this end, we use

the same blurred image illustrated in Fig. 5, whose normal

is much deviated from the initial (0, 0,−1)T . In fact, the

human labeled normal is (0.48,−0.07,−0.87)T .

Our system solves for the latent image and blur kernel,

and updates this normal iteratively. The outputs from the

initial and final (3rd) passes are shown in Fig. 6(c) and (d).

Their respective blur kernel and normal estimates are visu-

alized in (g)-(h). These images demonstrate that the initial

normal yields a central-symmetric kernel, which is not cor-

rect. The deblurred image thus contains visual artifacts and

leftover blur (see the close-ups). The final estimate in (h) is

with normal (0.32,−0.12,−0.94)T , close to the user label-

ing result. It manifests the ability of our method to optimize

the normal from a coarse initialization.

We further compare our result with those produced by

other uniform and non-uniform approaches with publicly

available implementation. The results of [1, 24, 23] are

shown in (b), (e) and (f). Not surprisingly, these methods

do not model out-of-plane translation and by nature cannot

deblur this image correctly.

A traffic image is shown in Fig. 7 to further demon-

strate that existing methods cannot nicely address this type

of blur, as shown in (b)-(e). Our method produces a more

compelling result from the single image input, shown in (f),

with the corresponding 3D plane and blur kernel visualized

in (g) and (h). Fig. 8 contains another example.

We show the last challenging image in Fig. 9, with the

input also downloaded from internet. It contains a blurred

highway traffic sign. The image is taken in a poor lighting

condition with high-speed car movement, producing signif-

icant blur. The left-most characters in (a) cannot be read.

This image is not possible to be restored by prior methods.

Our result is shown in (f), with the associated plane and

kernel visualized in (g) and (h). It is not perfect due to the

existence of heavy noise and JPEG artifacts. But the charac-

ters are recognizable after restoration. More examples and

data can be downloaded from our project website (see the

title page).

8. Conclusion

In this paper, we focused on addressing a special and

important type of motion deblurring problem, namely for-



(a) Input

(e) Xu & Jia [ ]23

(b) Whyte et al. [ ]22

(f) Cho & Lee [ ]1

n

=(0,0,-1)n =(0.32,-0.12,-0.94)

n

x

y
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n

(g) Initial normal and kernel

(c) Initial pass result (d) Final pass result

(h) Final normal and kernel

Figure 6. A slanted surface blurred with forward camera motion. Given the input in (a), we show results of other methods in (b), (e), and

(f). The initial and final deblurring results are shown in (c) and (d). The corresponding kernel and normal results are shown in (g) and (h).

(a) Input (b) Cho & Lee [1]

(c) Xu & Jia [24] (d) Krishnan et al. [13]

(e) Whyte et al. [23] (f) Ours
z

n=(0 21,-0.45,-0.87).

n

y

x

(g) Normal (h) Kernel

Figure 7. Traffic sign deblurring.

ward/backward blur removal, which generally arises for

traffic surveillance or vehicle cameras. Its specialty lies on

modeling depth variation and pixel blending with high di-

(a) Input (b) Cho & Lee [1]

(c) Krishnan et al. [13] (d) Ours

z

n=(-0 02,-0.001,-0.99).

n

y

x

(e) Normal (f) Kernel

Figure 8. Road sign deblurring.

versity. We presented a method based on 3D plane models,

which only needs rough plane normal initialization. Our

method has been applied to several challenging examples.

The limitations of the current system include occasional

requirement to manually initialize planes and incapability

to handle arbitrary-moving objects. For textured areas, sat-

urated pixels in images taken at night, or small patches that

lack structural information, our method also does not work

very well. Our future work will be to develop methods to



(a) Input (b) Cho & Lee [1]

(c) Xu & Jia [24] (d) Whyte et al. [23]

(e) Xu et al. [26] (f) Ours
z

n=(0 21,-0.08,-0.97).

n

y

x

(g) Normal (h) Kernel

Figure 9. Significant forward motion blur. Existing approaches

cannot properly handle it. Our result contains characters and num-

bers, good for recognition.

relax these conditions. It is also possibly doable to fit many

images into other geometric representations for deblurring.

Acknowledgements

The work described in this paper was supported by a

grant from the Research Grants Council of the Hong Kong

Special Administrative Region (Project No. 413110).

References

[1] S. Cho and S. Lee. Fast motion deblurring. ACM Trans.

Graph., 28(5), 2009.

[2] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

ACM Trans. Graph., 25(3):787–794, 2006.

[3] R. Fletcher and M. J. Powell. A rapidly convergent descent

method for minimization. The Computer Journal, 6(2).

[4] A. Gupta, N. Joshi, C. L. Zitnick, M. F. Cohen, and B. Cur-

less. Single image deblurring using motion density func-

tions. In ECCV, pages 171–184, 2010.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, ISBN:

0521540518, second edition, 2004.

[6] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf.

Fast removal of non-uniform camera shake. In ICCV, pages

463–470, 2011.

[7] M. Hirsch, S. Sra, B. Schölkopf, and S. Harmeling. Efficient

filter flow for space-variant multiframe blind deconvolution.

In CVPR, pages 607–614, 2010.

[8] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image

deblurring using inertial measurement sensors. ACM Trans.

Graph., 29(4), 2010.

[9] N. Joshi, R. Szeliski, and D. J. Kriegman. Psf estimation

using sharp edge prediction. In CVPR, pages 1–8, 2008.

[10] E. Kee, S. Paris, S. Chen, and J. Wang. Modeling and re-

moving spatially-varying optical blur. In ICCP, pages 1–8.

IEEE, 2011.

[11] R. Koehler, M. Hirsch, S. Harmeling, B. Mohler, and

B. Schölkopf. Recording and playback of camera

shake: benchmarking blind deconvolution with a real-world

database. In ECCV, pages 27–40, 2012.

[12] D. Krishnan and R. Fergus. Fast image deconvolution using

hyper-laplacian priors. In NIPS, pages 1–9, 2009.

[13] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution

using a normalized sparsity measure. In CVPR, pages 233–

240, 2011.

[14] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Under-

standing and evaluating blind deconvolution algorithms. In

CVPR, pages 1964–1971, 2009.

[15] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient

marginal likelihood optimization in blind deconvolution. In

CVPR, pages 2657–2664, 2011.

[16] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Scholkopf.

Non-stationary correction of optical aberrations. In Com-

puter Vision (ICCV), 2011 IEEE International Conference

on, pages 659–666. IEEE, 2011.

[17] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf.

Blind correction of optical aberrations. In Computer Vision–

ECCV 2012, pages 187–200. Springer, 2012.

[18] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Trans. Graph., 27(3),

2008.

[19] Q. Shan, W. Xiong, and J. Jia. Rotational motion deblurring

of a rigid object from a single image. In ICCV, pages 1–8,

2007.

[20] Y. Tai, P. Tan, and M. Brown. Richardson-lucy deblurring for

scenes under a projective motion path. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 33(8):1603–

1618, 2011.

[21] Y.-W. Tai, P. Tan, and M. S. Brown. Richardson-lucy deblur-

ring for scenes under a projective motion path. IEEE Trans.

Pattern Anal. Mach. Intell., 33(8):1603–1618, 2011.

[22] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken

and partially saturated images. In ICCV Workshops, pages

745–752, 2011.

[23] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform

deblurring for shaken images. In CVPR, pages 491–498,

2010.

[24] L. Xu and J. Jia. Two-phase kernel estimation for robust

motion deblurring. In ECCV, pages 157–170, 2010.

[25] L. Xu and J. Jia. Depth-aware motion deblurring. In ICCP,

pages 1–8, 2012.

[26] L. Xu, S. Zheng, and J. Jia. Unnatural l0 sparse representa-

tion for natural image deblurring. In CVPR, 2013.

[27] D. Zoran and Y. Weiss. From learning models of natural

image patches to whole image restoration. In ICCV, pages

479–486. IEEE, 2011.


