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a b s t r a c t

Medium-scale gravity waves (MSGWs) observed during the Conjugate Point Experiment (COPEX) at Boa

Vista (2.81N; 60.71S, dip angle 21.71) have been ray-traced and studied based on zero wind and model

wind conditions. Wind profiles have been used from the TIE-GCM and HWM-07 models. Temperature

profiles were used from the NRLMSISE-00 and TIE-GCM models, and TIMED/SABER satellite data.

Doppler up-shifted MSGWs, at � 87 km of altitude, propagated to higher altitudes into the thermo-

sphere–ionosphere domain than waves that were un-shifted. Most MSGWs propagated upwards up to

� 140 km of altitude and were seen to be unlikely candidates to trigger equatorial plasma bubbles

(EPBs) at the F layer bottom side. However, three of them propagated up to heights close to the F layer

bottom side, where it could act in the EPB seeding directly. Moreover, three MSGWs, which propagated

equatorward, could act on EPB seeding by field-line-integrated effects.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Depending on the local thermodynamic condition, atmo-
spheric gravity waves (GWs) can be refracted, reflected or
absorbed in the ambient atmosphere. These last two physical
processes are responsible for filtering a GW spectrum when it
propagates upward from the lower to middle and upper atmo-
sphere. Critical level (where a GW is absorbed) and turning level
(where a GW is reflected) filtering are a result of the vertical
variations in the wind and temperature profiles. So, if a GW
escapes from these levels, it can potentially propagate to high
altitudes in the thermosphere–ionosphere (TI). However, above
� 100 km, molecular viscosity and thermal diffusivity increase
considerably with altitude (due to the decreasing background
atmospheric density).

Depending on its vertical wavelength and intrinsic period, a
gravity wave’s amplitude increases nearly exponentially with altitude
until it succumbs to dissipative processes. At that point, it completely
dissipates and the amplitude becomes � 0. Hence, all the energy and
momentum are transferred into the background atmosphere. These
GW breaking processes modify the properties of the thermosphere
background (Miyoshi and Fujiwara, 2008; Yigit et al., 2009; Vadas and
Nicolls, 2009; Vadas and Liu, 2009, 2011; Yigit and Medvedev, 2010).

In the last few decades, many authors have considered gravity
waves as a possible mechanism for seeding of equatorial plasma
bubbles (EPBs). Indeed, theoretical (e.g., Richmond, 1978;
Anderson et al., 1982; Huang et al., 1993; Huang and Kelley,
1996; Sultan, 1996; Tsunoda, 2007, 2010; Keskinen and Vadas,
2009; Kherani et al., 2009) and observational (e.g., Kelley et al.,
1981; Sobral et al., 1981, 2001; Rottger, 1982; Hysell et al., 1990;
McClure et al., 1998; Vadas and Nicolls, 2008; Takahashi et al.,
2010, 2011) studies have provided significant process in this
concern. However, about the sources of these GWs, it is still an
open question. Gravity waves could be generated either in the
troposphere by convective plumes and propagate into the lower
TI (e.g., Pfister et al., 1993; Dewan et al., 1998; Taylor et al., 1998;
Sentman et al., 2003; Suzuki et al., 2007) or by wind shear or
thermospheric body forcing in the thermosphere (e.g., Fritts and
Alexander, 2003; Vadas and Fritts, 2009; Vadas and Liu, 2011).

Recent measurements from the SpreadFEx campaign (Fritts et al.,
2009), conducted at several Brazilian equatorial sites in 2005,
revealed important new aspects about the seeding of EPB by the
waves from lower altitudes. Kherani et al. (2009) simulated two
gravity waves occurring during the SpreadFEx, and examined
propagations of them from a convective source region. They con-
cluded that GWs may play an important role in the EPB seeding
depending on the ionospheric conditions. Using the Rayleigh–Taylor
instability (RTI) linear theory, Abdu et al. (2009a) studied the effects
of GWs observed by ionosonde data on. They concluded that a large
GW induced winds could contribute for a fast growth of the
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polarization electric filed, and, consequently, causing more efficient
development of spread-F. Another important result from the
SpreadFEx campaign was find an evidence of gravity waves at the
bottom of the F layer originating from the tropospheric deep
convection system (Vadas et al., 2009). Fritts et al. (2008) argued
the existence of large GW amplitudes in the wind and temperature
at these heights. They showed that gravity waves modulated by
tides, for example, enhance their parameters and influence the
plasma instability growth rates. Finally, a linear relationship
between EPB spacing and wavelength of medium-scale gravity
waves (MSGWs) observed at the OH layer (� 87 km height) was
presented and discussed by Takahashi et al. (2009) as an evidence of
neutral–ion atmosphere coupling.

Makela et al. (2010) observed periodic EPB spacing structure at
La Serena in Chile (29:91S), and mentioned that the spacing was
comparable to the secondary GW spectrum (manifested as traveling
ionospheric disturbances—TIDs) generated from deep convections.
During the COPEX campaign carried out at Boa Vista (2.81N; 60.71S,
dip angle 21.71N) in November and December 2002, plasma bubble
observation by an OI630 nm airglow imager indicated an almost
linear relationship between the horizontal wavelength of MSGWs
and the EPB spacing (Paulino et al., 2011). These studies strengthen
the hypothesis that gravity waves could have an important role for
the initial development of equatorial spread-F. Some studies have
pointed out that the eastward thermospheric wind is the primary
controlling factor for the initiation of the irregularities (Kudeki and
Bhattacharyya, 1999; Kudeki et al., 2007). In this case, gravity waves
will not be necessarily required to trigger the RTI. However, in this
case, it would be necessary to have appropriate ionospheric condi-
tions for the EPB development.

The present work is a continuation of the studies of MSGWs
and EPBs observed at Boa Vista during the COPEX campaign
(Abdu et al., 2009b; Sobral et al., 2009; Paulino et al., 2011). We
simulated the propagation of GWs into the TI using the ray-trace
methodology by Vadas and Fritts (2005) and Vadas (2007) in
order to investigate the growth of their amplitudes in the wind
fields. Results from the ray-tracing will improve our understand-
ing of the role that GWs have in EPB seeding in the F layer bottom
side. Evaluation of the wind effect on the GW propagation is
discussed here in two cases: zero wind (ZW) and model wind
(MW) conditions. Ray-tracing temperature database was
employed from the TIMED/SABER satellite and numerical models,
and wind profiles were taken from models. Details about ray-
tracing database are presented in Section 2. Results are in Section
3, and discussed in Section 4.

2. Ray-tracing methodology and database

Medium-scale gravity waves observed during the COPEX
campaign were ray-traced based on the model of Vadas and
Fritts (2005). In this model, GW dissipation due to molecular
viscosity and thermal diffusivity were included in order to
consider the damping of high-frequency GW in the TI. The GW
dispersion relation for non-hydrostatic and compressible fluids is
used, but it excludes acoustic waves similar to Marks and
Eckermann (1995). It can be written as
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where oIr is the real part of the intrinsic frequency, n is the

molecular viscosity, k2
¼ k2
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the buoyancy frequency, g is the gravitational acceleration,

y ¼ T ðpo=pÞR=Cp is the potential temperature, T and p are the mean
temperature and pressure, respectively, R¼ 8314:5=XMW is the gas
constant, Cp ¼ gR=ðg�1Þ is the mean specific heats at constant

pressure, g¼ Cp=Cv, Cv is the mean specific heats at constant

volume, and XMW is the mean molecular weight of the particle in
the gas. More details how to calculate these variables can be found
in Vadas (2007). On the other hand, the imaginary part of the
intrinsic frequency gives the inverse decay rate in the time for a
dissipating GW and can be written as
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Since oIi changes in time and space, the spectral momentum
flux per unit mass when a GW is launched from z¼ zi and t¼ ti

(Vadas and Fritts, 2009, Eq. 50) is
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where x
!
¼ ðx1,x2,x3Þ ¼ ðx,y,zÞ is the position of the wave at each

time t, ~uH , and ~w are the horizontal and vertical winds due to the
GW, and n means the complex conjugate.

The Vadas and Fritts (2005) ray-tracing model follows the
formalism of Lighthill (1978), i.e., the wind, density and other
background parameters are assumed to change slowly with
altitude. If a wave packet is propagating in a background wind
V
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Þ¼ ðV1,V2,V3Þ ¼ ðu,v,wÞ, then its evolution can be described
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where oIr ¼oOr�ku�lv, oOr is the observed frequency of each
GW, i,j¼ 1,2,3 and repeated indices imply a summation. Using
the ray-tracing results and the model described by Vadas and
Fritts (2009) it is possible to reconstruct the gravity wave fields
(temperature, density, zonal, meridional, and vertical wind velo-
cities) from GW sources (such as a deep convection plume).

In the present work, the initial position has been assumed to
be equal to the location of the observatory and the OH airglow
layer, i.e., xi

!
¼ ðxi,yi,ziÞ ¼ ð36:41W,7:51S,87 kmÞ. The initial wave

vector was taken from the OH images (horizontal component,
ki ¼ 2p=lxi

,li ¼ 2p=lyi
, where l2

H ¼ l2
xi
þl2

yi
) and from the disper-

sion relation (vertical component) shown in Eq. (1). The initial
intrinsic frequency was calculated by oIr ¼ ð2p=tiÞ�kU�lV , where
ti is the observed period.

Each GW’s amplitude was inferred from the fractional
intensity perturbation in the images (I0=I). Then, the cancelation
factor (CF) equation of the Vargas et al. (2009) has been
used to calculate the fractional temperature perturbation as
ðT 0=T Þ ¼ ðI0=IÞ=CF. Following the methodology described by
Vadas et al. (2009), the average momentum flux, at the OH layer,
was estimated for all waves. In addition, the reconstruction of the
gravity wave fields ( ~u, ~w, ~T , ~r), for a specific height were
calculated as the same form of Vadas and Fritts (2009).

The ray tracing starts at the OH height and goes downward
until to touch the ground. After, it goes upward until the GW
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dissipates completely. The algorithm excludes GWs with group
speed higher than 90% of the sound speed. The ray tracing stops
whenever either the local kinematic viscosity varies quickly or the
GW reaches a critical level.

The biggest challenge in the use of the ray-trace methodology
for GW studies is to obtain temperature and wind profiles from
the surface to TI heights. In the present work, we use the daily
mean temperature measured by the TIMED/SABER satellite over
Boa Vista area (201�201). Fig. 1 illustrates a mean daily tem-
perature profile on 5–6 October 2002. In this case, 12 profiles
were used to yield the mean profile. Fig. 1(a) shows the position
and time of the satellite measurements near Boa Vista. Two
satellite orbits passed over the Boa Vista area, the first one
between � 10 : 48 and 11:08 UT on 5 October 2002, and another
one from 02:10 to 02:28 UT on 6 October 2002. The correspond-
ing profiles are plotted as dashed lines in Fig. 1(b). The heavy line
represents the mean temperature profile and the error bars
represent standard deviation.

No other temperature nor wind measurements from the
ground were made during the COPEX campaign. Therefore,
temperature profiles were supplemented by the NRLMSISE-00
(Picone et al., 2002) from the surface to 20 km height, and by the
Thermosphere–Ionosphere-Electrodynamic General Circulation
Model (TIE-GCM, Roble and Ridley, 1994) above 130 km. Wind

profiles were built from the TIE-GCM model above 100 km and
the Horizontal Wind Model (HWM07 Drob et al., 2008) from the
ground to 100 km. Vertical wind was assumed to be zero in the
whole atmosphere. Fig. 2 shows temperature and wind profiles
(plus and dot symbols representing eastward and northward,
respectively) from the surface to 400 km of altitude at 02:00 UT
on 6 October 2002. Shaded areas indicate each model/measure-
ment range used for all the profiles. For ray-tracing, there are
temperature and wind profiles every 2 h and every 2 km in
altitude from the ground to 400 km. These parameters are
assumed to be latitude and longitude independent. SABER tem-
perature profiles used (from 20 to 130 km) were obtained by
taking an average of all the observed profiles of the day in
concern.

3. Results

All MSGWs observed during the COPEX campaign (Paulino
et al., 2011) were ray-traced using two different wind conditions:
(1) zero wind (ZW) and (2) model wind (MW). Ray-tracing each
MSGW through both zero and model winds allow us to investi-
gate the role of the wind in altering the predicted ray path of the
GWs. As we are interested in investigating possible GW effect in
TI dynamics, the present work will focus on the forward ray-trace
results.

Fig. 3 shows the forward horizontal paths of the MSGWs
plotted on a geographic map for (a) zero wind (ZW) and
(b) model wind (MW). ‘Plus’ symbols represent the position of
the maximum momentum flux for each MSGW. ‘Star’ symbols

Fig. 1. Temperature profiles measured by the TIMED/SABER satellite. (a) Filled

circles indicate the position of each sounding of the satellite on the geographic

map on 02–06 October 2002, close to Boa Vista (filled square). Universal Time of

the measurements are printed above the respective circles. (b) Averaged mean

temperature profile on this day is shown by heavy line. Error bars are the standard

deviation of the mean. Twelve profiles were plotted as dashed lines.

Fig. 2. Mean temperature and wind profiles at 02:00 UT on 6 October 2002.

Shaded areas indicate the range chosen for each model/measurement labeled in

the respective box. (a) Temperature profile. From the ground to 20 km height was

used the NRLMSISE-00 model. Between 20 and 130 km is shown a daily

temperature from the SABER. Above 130 km, TIE-GCM was plotted. (b) ‘þþþ ’ is

to the eastward wind profile and ‘y’ is to northward one. HWM-93 was used

below 100 km and TIE-GCM above it.
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indicate the position where the momentum flux was less than 1%
of the initial value (at 87 km) for each GW.

The position and time of the maximum momentum flux occurs
prior the GW starts the dissipation (e.g., Vadas, 2007; Vadas et al.,
2009). This is a critical position/time where the wave has the
largest momentum. Above/after this level, the wave amplitude
diminishes rapidly. When the wave momentum flux decays to
less than 1% of its initial value, it is totally dissipated.

The definition of position/time prior to dissipation is clear in
Fig. 4. For this MSGW #10 (MSGWs were numbered in
Tables 1 and 2), the height prior to dissipation was higher for
the model wind case (solid line) than for the zero wind case
(dashed line), although the momentum flux profiles were similar
below 130 km.

Comparing the two cases, ZW with MW, shown in Fig. 3, it can
be seen that the positions of maximum momentum flux (‘plus’)
due to ZW and MW are not significantly different. That is, the MW
did not significantly affect the propagation of the MSGWs in the
lower thermosphere (o125 km). However, above the maximum
momentum flux heights, the GW paths with the MW are west-
ward tilting for almost all of them. This GW spectrum could
propagate horizontally from Boa Vista to 150–530 km away for
the ZW condition, and up to 590 km for the MW condition, prior
to its dissipation.

Up to attaining less than 1% of their initial momentum flux, the
GW horizontal propagations are confined between 300–780 km
for the ZW condition and 100–1200 km for the MW condition.
Details about the MSGWs at maximum momentum flux and 1% of
the initial momentum flux are shown in Tables 1 and 2, respec-
tively (event numerations are the same as presented in Table 1 by
Paulino et al., 2011). In most of the cases, the MSGWs propagated

far from Boa Vista when the model wind was used instead of the
zero wind.

All the dissipation heights (i.e., the altitude of maximum
momentum flux) are located between 96 and 136 km for the zero
wind (4th column of Table 1) and between 102 and 153 km for
the model wind (5th column of Table 1). Note that the dissipation
heights are similar for both the cases, indicating little change in
this altitude from the background wind. The travel time of the
gravity wave prior to dissipation is between 1 and 5.3 h for both
wind conditions.

Horizontal GW amplitudes were calculated, following the
Vadas and Fritts (2009) methodology, and shown in Table 1

Fig. 3. Horizontal ray path for the 15 MSGWs observed during the COPEX

campaign. (a) is to zero wind and (b) is to wind from the model/measurements.

‘þ ’ represents where the momentum flux is maximum and ‘n’ represents the

position where the momentum flux is less than 1% of the initial momentum flux at

87 km height.

Fig. 4. Relative momentum flux u0w0 ðzÞ= u0w0 ð87 kmÞ for the model (solid line)

and zero (dashed line) winds on 06–07 October 2002. ‘þ ’ is the height of

dissipation, that is, the altitude where the momentum flux is the maximum. ‘n’

is the height where the momentum flux is less than 1% of the momentum flux at

87 km.

Table 1
Ray-tracing results for the maximum momentum flux. ‘ZW’ is to zero wind and

‘MW’ is to model wind. Shift column shows ‘dn’ down-shifted GW due to the wind

and ‘up’ up-shifted GW.

Event # Horizontal

distance

(km)

Height (km) Travel

time (h)

u0H (m/s) u0m (m/s) Shift

ZW MW ZW MW ZW MW ZW MW ZW MW

1 231.5 523.1 113.4 102.1 1.9 5.3 12.5 10.7 11.9 10.2 up

2 427.8 607.1 114.0 131.4 2.6 3.6 30.1 20.3 27.0 18.1 up

3 366.1 479.7 118.0 108.2 2.0 2.4 10.7 10.9 10.7 10.9 dn

4 436.8 761.6 118.0 110.8 2.2 2.6 20.8 22.2 2.0 2.4 dn

5 273.6 98.0 99.5 137.1 4.9 2.7 10.2 11.4 6.7 7.6 up

6 416.6 221.9 106.0 133.9 4.3 2.7 14.5 15.8 5.4 6.2 up

7 263.3 494.2 114.0 108.9 1.9 4.0 17.9 15.5 4.0 3.6 dn

8 356.5 502.0 110.8 105.1 2.9 4.2 15.7 16.5 13.4 14.2 dn

9 264.5 324.3 128.0 106.1 1.3 1.4 15.0 23.2 2.4 3.5 dn

10 408.3 336.6 136.0 152.1 1.3 1.1 20.4 19.3 20.3 19.0 up

11 476.3 586.4 129.4 112.0 1.9 1.9 14.0 21.3 7.0 10.6 dn

12 143.6 – 96.8 – 3.7 – 18.9 – 17.0 – dn

13 232.5 357.6 118.0 104.0 1.4 2.5 22.1 23.0 1.6 1.4 dn

14 526.7 – 126.1 – 2.1 – 18.5 – 0.9 – dn

15 291.5 – 131.1 – 1.2 – 16.2 – 2.8 – dn
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(columns 8th and 9th). It is important to note that the gravity
wave winds prior to dissipation were significant, i.e., larger than
10 m/s for all of them and reached � 30 m=s (event #2 for ZW
condition). Columns 10th and 11th of Table 1 show the GW
induced zonal winds (in geomagnetic coordinates). When the
gravity wave propagation direction is almost parallel to the
geomagnetic equator, the zonal wind is very close to the total
horizontal wind (e.g., events #1–3, #8, and #10).

The last columns of Tables 1 and 2 show the gravity wave
Doppler shift at the OH layer altitude, ‘up’ and ‘dn’ meaning up-
shifted and down-shifted, respectively. Almost all up-shifted GWs
propagate higher than un-shifted GWs, only the event #1 does
not follow this rule. Finally, Table 2 complements the results of
Table 1, for instance, most of the MSGWs traveled few hours (o5)
and reached � 135 km height until attaining less than 1% of their
initial momentum flux. Up-shifted MSGWs also propagated to the
highest altitudes, except the event #1.

The cases without number in Tables 1 and 2 indicate that the
corresponding MSGW does not reach at the maximum momen-
tum flux point due to action of critical levels. The presence of
these critical levels was the primary difference when it was
compared the ray-tracing results using the HWM-93 (Hedin
et al., 1996) and HWM-07 models.

4. Discussion and conclusion

TIE-GCM neutral temperature profiles present a coherent daily
variability that show an increase during the local afternoon and a
cooling after midnight. Moreover, the exospheric temperature
changes according to the solar cycle, that is, the thermospheric
temperatures increase (decrease) with the increase (decrease) of
solar activity. The MSGW measurements at Boa Vista were carried
out in 2002, during the period of high solar activity. Regarding the
wind profiles, between 120 and 220 km of altitude the zonal wind
is normally westward during the evening period, and above
220 km it is eastward. However, the winds could be variable
from day to day with any other dynamical processes.

Comparing Fig. 3(a) and (b), it can be seen that the thermo-
spheric winds alter the wave trajectory, especially for the east and
west directions (note that the eastward wind is higher than
northward). However, the difference in height of the maximum
momentum flux for with and without wind is small. The path
modification in the horizontal path due to the wind was primary a
consequence of a northwestward wind between 100 and 180 km

during the nighttime. In this case, the wind acts as breaking the
waves, and can also change the direction of the GW propagation
(events #2, #5, and #6) a little.

When a GW propagates in the atmosphere, the background
winds change the frequency, i.e., oIr ¼oOr�ku�lv. Thus, depend-
ing on the wind intensity and direction, a GW can be down-
shifted (up-shifted) and the intrinsic frequency decreased
(increased). Down-shifted GWs dissipate at lower altitudes, while
up-shifted GWs tend to dissipate at higher altitudes with larger
amplitude and momentum flux, as shown theoretically by Fritts
and Vadas (2008) and Fritts et al. (2008). It happens because
increasing the intrinsic frequency, the GWs can easily escape from
the absorption process by critical levels.

From Tables 1 and 2, it can be seen that when the wave
frequency was upward shifted in the MLT region (where our ray-
tracing starts), it propagates much higher and, in some cases, the
amplitude is larger as well. If the wave frequency was downward
shifted, it propagates to a lower altitude, and loses momentum
much faster than the case of upward shifted GW. Therefore, it seems
that the wind structure in the MLT region may play an important
role for the condition of the upward propagation of GWs. The
current results are in agreement with the theoretical predictions by
Fritts et al. (2008). This result depends on our use of the TIE-GCM in
the thermosphere, which does not include some important lower
atmospheric components to the wind. Therefore, we cannot rule out
cases when the thermospheric wind changes its direction drastically
and cause Doppler down-shift in TI.

Besides a GW reaching high altitudes in the TI, its phase
propagation direction is very important for influencing the
spread-F generation by the RTI mechanism. Fritts et al. (2008)
showed that GWs propagating westward are likely a more
effective contributor for triggering the RTI in the F layer bottom
side. In the present work, columns 10 (u0m, ZW) and 11 (u0m, MW)
of Table 1, there are cases of gravity waves propagating almost
parallel to the magnetic equator with large zonal wind ampli-
tudes. Moreover, the events #2 and #10 presented the largest
zonal wind amplitude, respectively, 27 and 20 m/s for the ZW
condition, and 18 and 19 m/s for the MW condition.

Fig. 5 shows the complete ray path of the event #10:
Fig. 5(a) depicts the vertical trajectory as a function of the time,
and Fig. 5(b) shows the horizontal trajectory on the map. The
parameters of the MSGW are also shown in this figure. The GW
propagated almost parallel to � 201 magnetic latitude. Further-
more, the dissipation of the GW happened at high altitudes
(above � 150 km) and extended up to the bottom side of F region
(180–200 km) as can be seen in Fig. 5(a). In this case we expect a
favorable condition for EPB with a spacing of the GW horizontal
wavelength (� 190 km). Unfortunately, no EPB spacing close to
this GW wavelength were observed in this evening. It could be
because the EPB generated by this GW occurred far east of the
imager observation area, and therefore was not possible to
observe from Boa Vista. Investigating gravity wave effects in the
TI using an airglow imager would be more efficient for GWs
propagating westward. Although the present observations show
few GWs propagating westward, the TIE-GCM wind during the
nighttime, in the lower thermosphere, is primary westward, and
acts impeding them to attain high altitudes.

Takahashi et al. (2009) and Paulino et al. (2011) showed a
quasi-linear relationship between EPB spacing and horizontal
wavelength of MSGWs. Makela et al. (2010) presented a direct
correlation between these parameters as well. The present ray-
tracing results may give a new vision about these physical
relationships. GWs could influence RTI seeding in two ways: (1)
propagating directly to the bottom side of the F layer (� 200–
250 km) at the equatorial region, and (2) at lower altitudes of the
dip equator with sufficient field-line-integrated magnitudes.

Table 2
Similar to Table 1, but for the momentum flux less than 1% of the initial

momentum flux (87 km).

Event # Horizontal distance (km) Height (km) Travel time (h) Shift

ZW MW ZW MW ZW MW

1 418.5 543.9 132.2 104.0 3.5 7.4 up

2 785.5 689.9 133.5 143.2 5.0 4.3 up

3 637.2 901.6 139.3 113.6 3.6 4.1 dn

4 753.7 1195.0 138.3 115.3 3.9 3.8 dn

5 532.0 104.9 109.0 154.5 9.6 3.1 up

6 725.5 310.2 116.4 150.1 7.6 3.3 up

7 476.7 689.4 132.9 115.5 3.5 5.7 dn

8 569.8 924.9 122.4 112.9 4.9 6.0 dn

9 429.2 734.0 152.7 113.3 2.2 2.9 dn

10 711.5 469.8 173.0 173.8 2.3 1.5 up

11 755.1 725.9 151.7 115.2 3.1 2.1 dn

12 320.3 – 102.1 – 8.0 – dn

13 416.9 480.0 142.4 108.0 2.6 4.9 dn

14 848.4 – 148.1 – 3.5 – dn

15 480.8 – 161.2 – 2.1 – dn
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Paulino et al. (2011) showed seven GWs with EPB spacings and
horizontal wavelength very close each other (#1–4, #9, #11, and
#14). Using MW, six of them (#1, #3, #4, #9, #11, and #14) were
seen to propagate in the TI up to 120 km. Therefore, a direct
action of these MSGWs in the RTI triggering seems unlikely. Only,
one of them (#2) propagated up to high altitudes (4140 km). Off
the magnetic equator, as Boa Vista is, a GW may influence RTI due
to field-line-integrated effects if the GW had the phase structure
aligned along the slanted magnetic field line (e.g., Prakash and
Pandey, 1985; Fritts et al., 2008). It means that GWs propagating
toward the magnetic equator may be more efficient as shown in
the case of #5. Simulations of these GW effects on Spread-F
initiation may give a better understanding of this coupling
process, but this matter is out of the scope of this study. In
summary, calculation of the MSGW paths in the TI showed that:

1. Most observed MSGWs were tilted toward the northwest
direction and propagated longer horizontal distances in the
presence of winds.

2. The ray-tracing results indicate that most of the Doppler up-
shifted MSGWs in the MLT reached higher levels in the
thermosphere than un-shifted ones.

3. Event #10 reached a high altitude in the TI (180–200 km), and
had a large zonal amplitude of � 19 m=s at the maximum
momentum flux height. Therefore, this event could be a
candidate for directly triggering the RTI instability.

4. Two-third of the MSGWs observed during the COPEX cam-
paign propagated up to 150 km heights. Among them, three

cases did show further upward propagation above 150 km
altitude.

5. Study of GW effects on seeding RTI may be more efficient by
using airglow imaging if the GWs propagate westward.
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