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ABSTRACT

Determining the underlying haplotypes of individual

human genomes is an essential, but currently

difficult, step toward a complete understanding

of genome function. Fosmid pool-based next-

generation sequencing allows genome-wide gener-

ation of 40-kb haploid DNA segments, which can be

phased into contiguous molecular haplotypes com-

putationally by Single Individual Haplotyping (SIH).

Many SIH algorithms have been proposed, but the

accuracy of such methods has been difficult to

assess due to the lack of real benchmark data.

To address this problem, we generated whole

genome fosmid sequence data from a HapMap trio

child, NA12878, for which reliable haplotypes have

already been produced. We assembled haplotypes

using eight algorithms for SIH and carried out direct

comparisons of their accuracy, completeness and

efficiency. Our comparisons indicate that fosmid-

based haplotyping can deliver highly accurate

results even at low coverage and that our SIH

algorithm, ReFHap, is able to efficiently produce

high-quality haplotypes. We expanded the haplo-

types for NA12878 by combining the current haplo-

types with our fosmid-based haplotypes, producing

near-to-complete new gold-standard haplotypes

containing almost 98% of heterozygous SNPs.

This improvement includes notable fractions of

disease-related and GWA SNPs. Integrated with

other molecular biological data sets, this phase

information will advance the emerging field of

diploid genomics.

INTRODUCTION

Human individuals are diploid, with each somatic cell con-
taining two sets of chromosomes, one from each parent.
However, current standard sequencing technologies
provide mostly mixed-diploid readout, missing intrinsic
information on the unique haploid structures of each in-
dividual chromosome. This limits the description, analysis
and interpretation of individual genomes and their
function. In view of abundant genome sequence variability
within a diploid genome, it is essential to determine the
specific combinations of variants for each of the two hom-
ologous chromosomes (haplotypes). Knowledge of phase
may be key to understanding the relationships between
genetic variation and gene function, phenotype, and med-
ically relevant traits such as susceptibility to disease and
individual response to drugs (1–4).
To be able to resolve the underlying haplotype se-

quences of individual genomes, both computational
and experimental approaches have been developed.
Computational approaches to haplotyping are preassump-
tion based (5,6) and require genotypic data from entire
populations or trios to predict the most likely haplotypes
for an individual. In the case of population-based statis-
tical phasing, phase can be determined at common
SNP positions but not for rare and novel SNPs. Also,
the quality of this phasing is lower than other methods,
especially in regions with low linkage disequilibrium.

*To whom correspondence should be addressed. Tel: +49 30 8413 1468; Fax: +49 30 8413 1462; Email: hoehe@molgen.mpg.de
Correspondence can also be addressed to Jorge Duitama. Tel: +32 1675 1402; Fax: +32 1675 1391;
Email: Jorge.DuitamaCastellanos@biw.vib-kuleuven.be

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Published online 18 November 2011 Nucleic Acids Research, 2012, Vol. 40, No. 5 2041–2053

doi:10.1093/nar/gkr1042

� The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
0
/5

/2
0
4
1
/1

0
9
9
7
0
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Trio-based phasing (5,7) is generally accurate but unable
to phase variants for which both parents are heterozygous
(�20% of SNPs). Experimental techniques that attempt to
physically separate entire (homologous) chromosomes,
such as chromosome micro-dissection (8) or micro-fluidic
separation (9) should provide accurate results, but are cur-
rently still very challenging. Thus, to date, no complete
whole genome haplotypes have yet been resolved by
such a method. A more feasible, alternative strategy is
to perform shotgun sequencing of an entire genome and
then attempt to assemble long, contiguous haplotypes
using the heterozygous variant positions within overlapp-
ing sequenced fragments. Fragments must be long enough
to span at least two heterozygous loci, providing evidence
for co-occurrence of alleles on the same chromosome.
This approach was taken to assemble the genome of
J. Craig Venter, using Sanger sequencing of mate-paired
reads (10). However, Sanger sequencing is cost-intensive
and in this case only allowed the reconstruction of partial
haplotypes with an N50 length close to 300 kb.
Specifically, in the context of this article, N50 is defined
as the phased block length such that blocks of equal or
longer lengths cover half the bases of the total phased
portion of the genome. Next-generation sequencing
(NGS) technologies provide a cost-effective way to
assemble diploid genomes (11,12) but such technologies
fail to directly deliver the information required, mainly
because reads are too short to cover more than one het-
erozygous position (13). To provide sequence fragments
long enough to assemble large segments of homologous
chromosomes, we developed a fosmid pool-based
approach to whole genome haplotype analysis (14). This
technique yields haploid DNA segments significantly
larger than any other standard shotgun sequencing tech-
nology (40 kb fosmids) and when used in conjunction
with NGS provides a scalable shotgun sequencing tech-
nique for individual whole-genome haplotyping [E.-K.
Suk et al., 2008, Personal Genomes, abstract, (15,16)].
Fragments of this size are likely to span several heterozy-
gous variants and can be tiled into large contiguous haplo-
types based on identical alleles within regions of overlap.
A schematic overview of this method as outlined in detail
by Suk et al. (16) is provided in Figure 1. Fosmid-based
haplotyping was used to achieve N50 block lengths of
about 300 kb (15), similar to the Venter genome (10) and
we were able to achieve blocks of almost 1 Mb covering
99% of SNPs in the genome of a European individual
(16). Although these are not complete chromosomal
haplotypes, they are long enough to be used for many
practical applications.
The computational problem of reconstructing haplo-

types from fragments generated by sequencing is known
as Single Individual Haplotyping (SIH), and has been
studied from the theoretical perspective for more than
10 years (17,18). In brief, for each chromosome, the two
alleles of each heterozygous variant are encoded as 0 and 1
and fragments mapping to that chromosome (fosmids in
this case) are aligned as rows of a matrix M with as many
columns as heterozygous variants. Any algorithm aiming
to solve this problem has two major tasks: (i) Split the
fragments (rows of M) into two disjoint sets such that,

if two fragments were extracted from the same chromo-
some copy, they should belong to the same set. (ii) group
all allele calls belonging to the same chromosome copy to
reconstruct the final haplotypes. The outcome of this tech-
nique when using real sequencing data is a set of haplo-
type blocks, where each block contains variants that can
be linked together by one or more fragments. The number
and composition of blocks depends solely on the informa-
tion from the fragment matrix and can even be calculated
before solving SIH (19,20). Simulations indicate that
longer fragment lengths are able to link more variants
with the same coverage (21). If fragments could be
sequenced without errors, the solution for SIH within
each block would be straightforward. Overlapping frag-
ments would be assigned to the same group if they are
equal and to different groups if they differ, and subse-
quently haplotypes could be assembled by simple consen-
sus. However, sequencing errors and uncalled variants
make the problem computationally difficult (22), giving
rise to a wide variety of problem formulations and algo-
rithms (19,21,23,24). Most of these algorithms aim to find
haplotypes that minimize the number of allele calls that
have to be corrected in the input matrix to make it con-
sistent (which give rise to the metric Minimum number of
Entries to Correct, MEC). For this reason, SIH can also
be seen as an error correction problem (20). Currently, due
to lack of real sequence data for testing, most comparisons
between algorithms have been carried out on simulated
fragments (21,23) with MEC generally being used to
assess quality of the haplotypes under the assumption
that lower MEC implies better quality (19,20). Real data
currently exists for the Venter genome (10), a Gujarati
individual (15) and a European genome (16) but for all
of these a validated haplotype to assess the accuracy of
the resulting haplotypes is not available and therefore
quality assessment was done indirectly by comparing
output haplotypes with HapMap haplotypes of the popu-
lation of Utah residents with ancestry from northern and
western Europe (CEU) (25).

In this work we generated whole genome fosmid
sequence data for NA12878, a HapMap trio child from
the CEU population, providing molecular contiguity over
40 kb haploid DNA segments. Confident trio-based
phasing of about 80% of the SNPs for which NA12878
is heterozygous, has been provided as part of the 1000
Genomes Project. Using this trio-based haplotype as a
gold-standard we can directly assess both the validity of
our fosmid pool-based NGS approach to haplotype-
resolve whole genomes and the accuracy of SIH algo-
rithms for assembly using real (molecular) sequence
data. Specifically, we implemented and compared eight
published SIH algorithms, including our own algorithm
ReFHap (21). We provide, for the first time, solid
evidence that fosmid pool-based whole genome haplotyp-
ing can deliver highly accurate results even at low fosmid
coverages. We examine current quality metrics and
propose alternative ones to compare different algorithms
for SIH. Particularly we find that minimizing MEC does
not guarantee finding the true haplotypes and that lower
MEC solutions do not imply better quality haplotypes.
This justifies the use of efficient heuristic algorithms
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such as ReFHap to assemble confident haplotypes, and
indeed we find that ReFHap delivers the highest quality
haplotypes of all algorithms compared in a computation-
ally efficient manner. We provide publicly available
implementations of several alternative fast heuristics for
SIH, including ReFHap under GPL license (see Web
Resources). Finally, we have expanded the haplotypes
for NA12878 to almost the full set of SNPs detected by
the 1000 Genomes Project by combining haplotypes
assembled by fosmid pool-based NGS with the haplotypes
obtained by trio phasing. These near-to-complete haplo-
types define a new gold-standard, which can be used for
further advances in experimental and computational
methods.

MATERIALS AND METHODS

Generation of fosmid pool-based NGS data for NA12878

We have applied our fosmid pool-based NGS approach,
which has previously been described in detail (16), to
generate whole genome fosmid sequence data from
NA12878 as the input for analyses. As indicated above,
NA12878, a HapMap trio child, has undergone deep
resequencing as part of the 1000 Genomes Project, and
therefore provides a gold-standard as reference for
analysis. Independent molecular haplotype-resolving
NA12878 offers potential synergy with genetic variation
studies in this context, particularly to assist validation and
inform development of new approaches for using shotgun
short-read data, especially within complex genomic
regions. NA12878 is available as a lymphoblastoid cell
line (GM12878), generated from the DNA of a female
donor with Northern and Western European ancestry.
To haplotype-resolve the genome of NA12878, about
1.44 million fosmids were generated using a modified
version of our previously described protocol (14,16).
Briefly, particular modifications included selection of
two distinct sizes of haploid DNA inserts (33–38 kb
and 38–45 kb), which were ligated to the pCC2FOSTM

Vector (Epicentre Copy Control HTP Fosmid Library
Production Kit) to facilitate subsequent DNA
purification. Fosmids were pooled into working units of

15 000 cfu. For sequencing with the SOLiD system,
barcoded sequencing libraries were prepared from 32
pools as per standard protocol, and up to 8 pools
sequenced in a single flow cell. Raw reads have been de-
posited in the European Nucleotide Archive (ENA) with
accession number ERP000819. After sequencing, SOLiD
reads were aligned to the reference genome (Hg18) with
Bioscope 1.2 (www.solidsoftwaretools.com) using default
parameters and only reads mapping uniquely to the
genome were retained. To detect fosmids we used a
sliding window approach to locate suitable length
regions above a coverage threshold, defined dynamically
based on the total number of mapped bases. Fosmids were
detected as un-gapped contigs ranging from 3kb to 45 kb.
We performed fosmid-specific allele calls for the heterozy-
gous SNPs obtained by the 1000 Genomes Project using
the SNVQ SNP caller (26). We finally detected events of
co-occurrence of homologous fosmids by looking at het-
erozygous calls in individual fosmid pools; where such
events were identified, fosmids were broken down and
only their homozygous tails were retained to prevent
chimeric fragments with switch errors.

Genotype and trio-based haplotypes for NA12878

We utilized the 1000 Genomes Project genotype informa-
tion for NA12878, which includes 1 704 166 heterozygous
SNPs. The trio-based haplotypes for NA12878 generated
by the 1000 Genomes Project contained phase information
for 1 411 836 heterozygous SNP positions.

ReFHap algorithm

In (21), we introduced a novel algorithm for SIH which we
called ReFHap (Reliable and Fast Haplotyping). We pre-
sented an alternative problem formulation, aiming to find
the partition of fragments that maximizes an objective
function which resembles the real origin of the fragments.
The input for SIH is a matrixM with m rows, one for each
fragment, and n columns, one for each heterozygous
variant. Each entry Mij2 {0, 1,�} represents the allele
call in the fragment i for the variant j. The character ‘–’
is used for variants not covered by each fragment. For two

Figure 1. Fosmid pool-based NGS approach to haplotype-resolve whole genomes (16). (A) Diploid genomic DNA of an individual is used to
generate approximately 1.5 Mio fosmid clones, and (B) partitioned into pools of 15 000 fosmids, each covering about 15% of the genome in 40-kb
haploid DNA segments. (C) Fosmid pools are sequenced using NGS. Here only three pools are shown as an example. (D) Fosmids are mapped to
the genome and positions of heterozygous variants detected. (E) Single Individual Haplotyping is used to separate fragments into the two underlying
haplotypes based on allelic identity at overlapping positions. With low coverage fosmid data, the presence of fosmids on only one haplotype can be
used to inform the phase, given accurate SNP calling data. (F) Long contiguous haplotype blocks are generated, covering the entire genome.
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fragments in rows i1 and i2 of the matrix M, we define the
score s(M, i1, i2) as in (17):

sðM; i1; i2Þ ¼
X

n

j¼1

sðM½i1; j �;M½i2; j �Þ ð1Þ

where the score s(a1, a2) of two allele calls is defined by:

sða1; a2Þ ¼

�1 if a1 6¼ � ^ a2 6¼ � ^ a1 ¼ a2,

1 if a1 6¼ � ^ a2 6¼ � ^ a1 6¼ a2,

0 otherwise.

8

>

<

>

:

ð2Þ

This score works better in practice than the traditional
hamming distance because it takes into account both
matches and mismatches to separate fragments. While a
highly positive score indicates that the two fragments are
likely to be extracted from different chromosome copies,
a highly negative score indicates that the two fragments
are likely to be extracted from the same chromosome
copy. Inconsistencies will produce scores close to zero
which is the score for fragments that do not have
overlapping allele calls. Now, if we define a partition of
the fragments as a subset I of the rows ofM, we can assign
a score to I by adding the scores of every pair of rows i1,
i2 for which i12 I and i2 =2 I:

sðM; I Þ ¼
X

i2I

X

k =2 I

sðM; i; kÞ ð3Þ

Finally, we formalize the Maximum Fragments Cut
(MFC) problem as finding the partition I maximizing
s(M, I). In (21) we shown that this formulation is
NP-Complete and we introduced the following heuristic
algorithm, which is based on the Max-CUT problem (27):

(1) Build a graph G with fragments as vertices and edges
connecting overlapping fragments. The weight of
each edge is the score s(M, i1, i2)

(2) Solve Max-CUT on this graph to find the subset
I maximizing s(M, I)

(3) Build haplotypes consistent with I by generalized con-
sensus, assuming that all variants are heterozygous

To solve Max-CUT, we implemented a heuristic algo-
rithm similar to the one used in HapCUT (19). We use a
greedy algorithm to initialize a cut starting from a single
edge and then we use common heuristics to improve the
score of this cut. In contrast to HapCUT, we do not try
random edges to start the cut but we sort edges from
largest to smallest weight and then we start solutions
from the first K edges, where K can be adjusted. The as-
sumption is that edges with high scores are more likely to
cross the cut.
For the last step, ReFHap assumes that all variants in

M are heterozygous. Although the allele calls in M could
be used to validate which SNPs are really heterozygous,
often genotyping results are derived from different sources
of information which are more reliable. In our testing data
set, genotyping was performed by the 1000 Genomes
Project (28) based on three large separate short-read
sequencing experiments, so we can safely assume that
the heterozygous calls are correct. Instead of calculating

a separate consensus on the fragments that belong to I and
on fragments that do not belong to I, which can lead to
homozygous calls, we calculated a generalized consensus
for a partition I as follows:

(1) For each column j
(a) Ij,0 {i:(i2 I6M[i, j]=0)_(i =2 I6M[i,

j ]=1)}

(b) Ij,1 {i:(i2 I6M[i, j]=1)_(i =2 I6M[i,
j ]=0)}

(c) If jIj,0j> jIj,1j then hj 0

(d) If jIj,0j< jIj,1j then hj 1

(e) Otherwise, let hj undefined
(2) output h

The last step of the cycle in this algorithm is actually
different from the one proposed in (21). This step deter-
mines what to do if the consensus assigns the same score
to both alleles. The two possible options are (i) decide at
random or (ii) leave the allele call undecided. The main
advantage of the first option is that the output haplotypes
are complete within blocks whereas the second option
leaves gaps. However, we find that in practice, even at
low coverage, this situation occurs for only a small
number of variants, and moreover it is better for the
quality of the haplotype to highlight difficult variants by
leaving them undecided rather than generating a random
phase which will be incorrect half of the time. We discuss
in detail this compromise between completeness and
accuracy in the ‘Results’ section.

MEC algorithms for SIH

Most of the algorithms that have been proposed to solve
SIH try to find the haplotype for which the number of
entries to correct (MEC) in the input matrix is minimized.
Since this problem formulation has been shown to be
NP-Complete and difficult to approximate (22), all
proposed exact algorithms have an exponential depend-
ency on at least one parameter. For example, the
runtime of the dynamic programming approach
proposed by (24) is exponential in the maximum number
of allele calls for a fragment. Whereas this is a feasible
approach for short reads that are not likely to span
more than a few variants, it is not suitable for fosmids
because they often span even more than 100 variants,
making this approach computationally unfeasible. We
will briefly discuss in this section eight different heuristic
algorithms for the MEC problem formulation, which were
previously reviewed by (23). The first published algorithm
for SIH, called FastHare (17), sorts the fragments based
on their first informative locus and then goes left to right
assigning each fragment to the closest haplotype and
recalculating consensus after each step. Due to its simpli-
city, FastHare is a very fast algorithm. The algorithms
MLF (29), 2d-MEC (30) and DGS (used to assemble the
Venter genome) (10) are variants of the same repetitive
general procedure consisting of iterating until convergence
the following two steps:

(1) Calculate the haplotype Hi by consensus given a
fixed partition Ii of the fragments
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(2) Calculate the partition Ii+1 of fragments by assigning
each fragment to the closest between the haplotype
Hi and its complement.

The differences among these algorithms lie mainly on
the strategies used to create the initial partition I1 and in
the distance measures applied to decide if a fragment
is close to Hi or to its complement. In MLF, since the
partition is started at random, the whole procedure is
repeated 100 times to enlarge the space of visited
solutions.

The algorithm chosen to assemble the Gujarati
haplotypes is called HapCUT (19). HapCUT also works
by improving the answer haplotype iteratively but, in-
stead of using partitions of the fragments set, it tries to
find alleles that after flipping will reduce the MEC. The
improvement step can be summarized in the following
steps:

(1) Build a graph G(M,Hi) with variants as vertices and
weighted edges between variants linked by at least
one fragment. The weight of an edge is the number
of fragments inconsistent with Hi minus the number
of fragments consistent with Hi.

(2) Run a heuristic algorithm for Max-Cut on G to find
a subset Vi of the variants for which if alleles are
flipped in Hi, the MEC will be reduced. In practice,
any cut with positive weight is enough to improve
the current haplotype

(3) Build Hi+1 by flipping the allele calls corresponding
with variants in Vi

A randomized heuristic is applied for Max-CUT to
increase the number of visited solutions. The complexity
of the graph on which Max-CUT is solved makes this
algorithm the slowest but also the best to find close to
optimal MEC solutions.

Two more algorithms are mentioned in (23), a
randomized one called SHRThree (31), and SpeedHap
(32) which tries to build first a core solution with
variants and fragments with full agreement and evidence
of presence of the two alleles for each variant, and
then includes the remaining fragments and variants by
relaxing constraints. Among all these algorithms,
HapCUT was the only one for which there was an imple-
mentation available to be applied to real data and to
perform independent validation. We decided to imple-
ment all the other heuristic algorithms and made them
available along with ReFHap as part of a single
software package. We now release this package under
GPL license in (http://www.molgen.mpg.de/�genetic-
variation/SIH/data), so that our implementations can be
evaluated, improved and used for further advances in
haplotyping techniques.

Quality measures

Until now, there has not been a conclusive study ranking
SIH algorithms in terms of quality. This is mainly due to
the lack of real data but also to the lack of a standard
quality measure allowing the comparison of different
approaches. Most previous studies use the hamming

distance between the answer haplotype and the closest of
the real haplotypes as a measure of quality (23,29).
However, this measure can over-penalize simple switch
errors (20). Other studies compare MEC values mainly
because that is the optimization objective in the MEC
problem formulation, and because the MEC value of a
solution can be calculated without requiring the real
haplotype (24). Unfortunately, the correlation between
MEC values and haplotype quality is not perfect, which
makes this measure inaccurate for comparing similar so-
lutions (see ‘Results’ section for details).
Another more effective strategy to assign a score to a

completely assembled haplotype is to count the number of

switch errors. In general, a switch error (SE) is an incon-

sistency between an assembled haplotype and the real

haplotype between two contiguous variants. If either the

real or the assembled haplotype include gaps, then switch

errors are counted between pairs of variants for which

there is no intervening variant that has allele calls in

both the real and the assembled haplotype. This count

needs to be divided by the total number of overlapping

variants, and the normalized count is called the switch

error rate. Switch error rate is a good measure to assess

quality but it does not provide information on complete-

ness of the haplotype. In an extreme case, a haplotype

with just two allele calls well phased has a zero switch

error rate.
An alternative measure, called adjusted N50 (AN50)

was proposed by (20). This measure is calculated as
follows:

(1) Calculate span (in reference base pairs) from first to
last phased variant for each block

(2) Multiply each span by the proportion of phased
alleles inside the block (to correct for uncalled alleles)

(3) Sort blocks from largest to smallest adjusted span
(4) Traverse the list counting the number of phased

variants until this count is more than half of the
total number of variants.

A similar measure of completeness called S50 can also
be calculated by sorting the blocks by number of phased
SNPs instead of adjusted span. Both measures penalize
incomplete haplotypes, but do not provide information
about quality.
To account for both completeness and quality, we

propose the following two steps procedure to calculate
an alternate measure that we called quality adjusted N50
(QAN50).

(1) Break each haplotype block into the longest possible
sub-blocks for which no switch error can be detected

(2) Calculate AN50, as described above, for these
sub-blocks.

This measure establishes a compromise between accur-
acy and completeness and also gives an idea on to which
extent (in genomic bases) assembled haplotypes can be
trusted. In the next sections we will show how different
algorithms score in terms of AN50, switch errors and
QA50.
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RESULTS

Fosmid pool-based NGS input data and NA12878
haplotype assembly

Sequencing of 32 fosmid pools of NA12878 (see
‘Materials and Methods’ section for details) resulted in
941 793 498 mapped reads, equivalent to a median 10x
genome coverage after duplicated reads had been
removed. Over 81% of the genome was covered at least
2� or greater. Heterozygous SNPs positions from the
1000 Genomes Project data set for NA12878 (1 704 166
SNPs) were used to inform the positions where alleles
were called within each fosmid, informing a total of
5 145 474 allele calls across all fosmids. For comparison,
this average of 18.03 calls per fosmid is six times larger
than the corresponding average number of calls in the
Venter genome. Only fosmids which contain two or
more SNPs are informative for phasing and our data set
contained 285 341 phase-informative fosmids (hereafter
termed fragments). From the input matrix for SIH, the
total number of blocks containing variants that can be
linked together by one or more fragments was 17 839,
covering 2.04 Gb of the genome. Figure 2 shows the dis-
tribution of blocks per number of SNPs. Even though the
fragment coverage is just 3.02 on average, long
overlapping fragments allow the phasing of up to
1 582 652 (92.9% of the total) SNPs into blocks with an
S50 of 215 SNPs. It is worth noting that this percentage of
SNPs seems to be inconsistent with the percentage of the
genome included in blocks (about 64%). The reason for
this difference is the existence of large repetitive regions in
the genome, such as the centromeres, in which it is very
difficult to map reads and reliably call SNPs. The largest
block contains 3921 SNPs and it is located in the MHC
region, which is known to have higher variability than
other regions in the genome. These blocks were used as
the input for eight SIH algorithms (namely ReFHap,

HapCUT, FastHare, DGS, MLF, 2d-MEC, SHRThree
and SpeedHap). Input matrices and assembled haplotypes
are available for download at (http://www.molgen.mpg
.de/�genetic-variation/SIH/data).

We verified that our coverage results were consistent
with other similar studies. The N50 phased block length
achieved for sequencing of the Gujarati individual (15)
was 386 kb, mainly because they sequenced about
600 000 fosmids (25% more), but also because they con-
sidered 1.9 million predicted heterozygous variants (about
10% more), which produces a greater number of overlaps
between fosmids. The N50 for Venter’s genome (10) was
about 350 kb after performing Sanger sequencing of
103 356 fragments covering 1.85 million predicted hetero-
zygous variants. A large N50 value was achieved in this
case by sequencing 1 kb ends of fragments larger than
100 kb, which allowed distant variants to be connected.
We have been able to generate the most comprehensively
haplotype-resolved individual genome, ‘Max Planck One’
(MPI) to date using our fosmid pool-based NGS
approach, and have achieved an N50 phased block
length of almost 1Mb containing 99% of SNPs (16).
This level of completeness required sequencing of 67
pools of 15 000 fosmids which resulted in 1.16 million
phase informative fosmids, equivalent to 6.38� fosmid
coverage of each haplotype.

Unfortunately, for all of these haplotyped genomes it
is not feasible to make a direct assessment of quality.
Validation for these haplotypes was performed by com-
parison to HapMap haplotypes assembled by statistical
phasing, on regions known to have high linkage disequi-
librium. Although comparisons with HapMap haplotypes
provide some general sense of reliability, they are not in-
formative enough to produce an accurate estimation of
the switch error rate and to investigate potential causes
of errors. When compared to haplotypes of 83 HapMap
trio children from the CEU population, the percentage of

Figure 2. Distribution of blocks per different number of phased SNPs.
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concordance in the phasing of consecutive variants for
NA12878, MP1 and the Gujarati individual is consistent
with the demographic origin of the samples
(Supplementary Figure S1). In the following sections we
use the trio-phased haplotype for NA12878 as a reference
to make a direct assessment of quality of our whole
genome haplotype assembly and compare different algo-
rithms for SIH.

Overall quality assessment

A comparison between all heuristic algorithms for SIH
across four different measures is shown in Figure 3,
A–D: (A) AN50, (B) switch error rate, (C) QAN50
(described above) and (D) runtime for our dataset.
Using ReFHap, 91.7% of SNPs were phased and the
QAN50 block size was 117.8 kb. ReFHap had the lowest
switch error rate (1.69%) and the highest QAN50 of the
eight SIH algorithms. DGS and FastHare phase about the
same number of SNPs as ReFHap but with slightly larger
switch error rates (1.82 and 1.74%, respectively).
HapCUT, for which we ran 10 iterations, phased slightly
more SNPs than any other algorithm, phasing 1068
(0.06% of input SNPs) more SNPs than ReFHap.
HapCUT also covered the largest fraction of the genome
after adding up the lengths of the blocks for which no
switch error can be detected and adjusting for unphased
SNPs (1.82 Gb). ReFHap, FastHare and DGS were close
with 1.8 Gb (1.79 Gb for DGS). However, as expected,
HapCUT also had significantly longer running time than
the other methods (Figure 3D). While ReFHap, DGS and
FastHare were all able to phase full chromosomes within a
few seconds, HapCUT can take hours for a single iter-
ation. This happens because the runtime for the first
three methods mainly depends on the number of
overlapping fragments in one block, while for HapCUT
it depends on the maximum number of SNPs connected
in one block. Fosmids are able to connect large numbers
of SNPs at low coverage, so algorithms such as ReFHap
require significantly less computational resources.
Chromosome 6 is an extreme case with HapCUT taking
more than 10 h to complete one single iteration compared
to 3.29 s for ReFHap; this is mainly due to the large blocks
of connected SNPs within the MHC region. As fosmid
coverage and number of heterozygous variants analyzed
increases, the number of connected components also in-
creases, making the instances more difficult to solve for
HapCUT.

We investigated the correlation between switch error
rate and different properties of the blocks such as size,
span, number of fragments, average fragment length and
coverage. We did not find positive or negative correlation
of switch errors with any of the analyzed characteristics.
As we show with the MEC analysis performed in the next
section, switch errors are directly correlated with the allele
calling error rate. The distribution of switch error rates
and correlation coefficients for each characteristic of the
input are included in the Supplementary Figure S2.

Given the lack of correlation between coverage and
switch error rate, we might wrongly infer that it is not
worth increasing the number of fragments sequenced to

improve the quality of the haplotypes. In practice,
however, increasing the number of variants and fragments
will generally change the number and composition of the
blocks, affecting the overall quality. To determine how
different input sizes change the quality of the haplotypes
and to assess how different algorithms are affected by the
input size, we ran the pipeline on subsets of the fragments
(8, 16 and 24 fosmid pools), and on subsets of the SNPs
(25, 50 and 75%) and we calculated the QAN50 of haplo-
types assembled by ReFHap, DGS, FastHare and
HapCUT. We found that the results of the comparison
with the whole dataset were consistent across the different
datasets. Figure 3E shows that the QAN50 grows linearly
with the number of fosmids, being zero for eight pools
because less than half of the total SNPs are phased, and
growing up to 111 395 bp, which is the maximum value
achieved by ReFHap for the whole data set. Taking
subsets on the total number of SNPs is a way to
simulate variation in the heterozygosity rate of the indi-
vidual. Low heterozygosity rates reduce the number of
variants linked in blocks and reduce the size of the
blocks which affects the QAN50. As the heterozygosity
rate increases, the length of the blocks also increases but
also more switch errors can be detected. Figure 3F shows
that the QAN50 grows with the number of SNPs, up to
75% of the data set. After this point, the effect of switch
errors equates and even becomes more important than the
increase in block length reducing the final QAN50.
HapCUT seems to be more affected by this effect than
the other algorithms.

MEC as a measure of quality

Previous studies compare algorithms based on the
minimum number of entries to correct to make the input
matrix consistent with the assembled haplotypes (MEC)
(19,24). If the complete real haplotypes were available, it
would be easy to align each fragment to the closest haplo-
type and to identify exactly the allele calls to be corrected.
Unfortunately our gold-standard is not complete, and
hence it can not be determined if allele calls in variants
uncalled by the gold-standard should be corrected or not.
To overcome this issue we ran SIH using only the al-
leles calls from the subset of SNPs that are present in
the trio-phased gold-standard. Since in this case the
gold-standard haplotype is complete, we were able to cal-
culate the real MEC. It is interesting to note that the MEC
percentage of the gold-standard, which was 2.89%, is the
exact allele calling error rate for this experiment.
We can also use the real MEC values of each block to

make direct comparisons with MEC values of assembled
haplotypes and check if optimizing MEC increases
quality. We compared the MEC of the gold-standard
with the MEC of HapCUT haplotypes, taking into
account that HapCUT is the algorithm achieving the
lowest MEC values. We found that the MEC values of
the gold-standard are consistently higher across all blocks
than those of the HapCUT haplotypes (see Figure 4). This
means that solutions with optimal, or close to optimal,
MEC values are likely to fix less erroneous calls than
actually need to be corrected and, in general, are not
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Figure 3. Comparison of algorithms for SIH on NA12878 whole genome fosmid sequence data. (A) Adjusted N50 which takes into consideration
block length and number of phased SNPs but not quality; (B) Switch error rate, calculated using comparison with gold-standard trio haplotypes; (C)
Quality adjusted N50 which combined measures of completeness and quality; (D) Runtimes of each algorithm on this data set (log scale); (E) QAN50
for ReFHap, DGS, FastHare and HapCUT on subsets of the data built by varying the number of fosmid pools considered; (F) QAN50 for ReFHap,
DGS, FastHare and HapCUT for different heterozygosity rates obtained by varying the percentages of SNPs considered.
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guaranteed to have better quality. To confirm this state-
ment, we calculated correlation coefficients between MEC
percentages and switch error rates for both the gold-
standard and HapCUT. We found a high correlation
(Pearson Correlation=0.84) between the MEC percentage
of the gold-standard and the switch error rate. However,
we found that the correlation of the HapCUT MEC per-
centage with the switch error rate decreased to just 0.11.
This means that predicted MEC values are skewed and
hence are not good predictors of the switch error rate.
Finally, we divided the set of blocks into bins of allele
calling error rates to look for another determinant
of switch errors. Surprisingly we found consistent
negative correlation (�0.5, �0.4) between HapCUT
MEC values and switch error rates, which means that so-
lutions with lower MEC values are more likely to increase
the number of switch errors.

Construction of a new gold-standard haplotype

The current gold-standard haplotypes only contain phase
information for �80% of SNP positions due to the fact
that trio phasing cannot resolve SNPs that are heterozy-
gous in both parents and the child. Fosmid pool-based
phasing is theoretically able to resolve the phase of all
SNPs. Therefore we decided to create a new gold-
standard for NA12878 combining all SNPs from both
methods. We assembled these new gold-standard haplo-
types by combining both data sets and correcting
the switch errors as follows. We initially selected one of
the trio haplotypes as the template and then, for the
fosmid-based haplotypes, we built blocks of maximal
length within which no switch error is detected (the
same blocks built to calculate QAN50). Inside each of
these blocks, we augmented the template by filling
uncalled variants with calls of the assembled haplotype
consistent with the template. Between blocks, by defin-
ition, we know that a switch error occurred in one of
the variants. To correct this error, we ranked called

variants by consensus value and selected the variant with
lowest consensus as the position i where it is most likely
that the switch error was produced. We filled the uncalled
variants in the template before i with the haplotype
selected for the left-hand block and then we filled the
uncalled variants after i with the haplotype selected for
the right-hand block.
A priori there is no reason to think that the accuracy of

fosmid-based haplotyping would decrease in SNPs not
phased by the trio, and hence this procedure should
correct a large percentage of switch errors in the
assembled solutions. However, to assess the accuracy of
phasing for the SNPs not verified by the parental geno-
types, we compared our results with haplotypes assembled
with statistical phasing. We downloaded the latest
genotype calls released by the 1000 Genomes Project for
a collection of 288 individuals with European ancestry
(EUR). This collection groups samples from the following
populations: Utah residents (CEPH) with Northern and
Western European ancestry (CEU), Toscani in Italia
(TSI), British from England and Scotland (GBR),
Finnish from Finland (FIN) and Iberian populations in
Spain (IBS). We used FastPHASE (6) to predict the most
likely haplotypes for 21 878 SNPs in chromosome 22 of
NA12878, which has 22 801 SNPs in total (the remaining
923 SNPs were not present in the 1000 Genomes Project
genotypes). We also predicted haplotypes based on subsets
of the reference population of size 50, 100, 150 and 200 to
test how the concordance with the new gold-standard
haplotypes changes as the number of individuals in the
sample increases. We calculated separately the concord-
ance for adjacent SNPs phased with the parental informa-
tion (16 346) and SNPs phased with fosmid-based NGS
(5255), which add up to the 21 601 SNPs shared between
the statistical and the new gold-standard haplotypes.
Figure 5 shows that the concordance is lower for the
adjacent SNPs phased with fosmid-based NGS, but it is
still larger than 95% after 100 or more individuals are

Figure 4. Comparison of MEC values predicted by HapCUT with real MEC values. The dark grey bars show the increase of MEC percentage for
the gold-standard as the switch error rate increases. However, MEC percentages predicted by HapCUT (light grey bars) do not increase as they
should because HapCUT tries to find the solution minimizing MEC. The number of blocks analyzed for each bin (medium grey bars) is shown in the
right Y axis.
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included. The concordance always grows with the number
of individuals which means that, as the quality of the
haplotypes derived with statistical phasing improves, the
concordance with the new gold-standard haplotypes in-
creases. Even if the differences between the new
gold-standard haplotype and the haplotypes predicted by
FastPHASE in adjacent SNPs phased with fosmids
sequencing (207) were all due to errors in the new gold-
standard, the overall switch error rate would be <1%.
We were able to phase an additional 257 245 SNPs that

were not resolved in the trio phased haplotypes to achieve
a new total of 1 669 081 phased SNPs. The haplotypes
combining parental information with fosmid-based
haplotyping resolve the phase of 97.9% of SNPs in
NA12878 (compared to 82.8% previously) producing
almost complete SNP haplotypes in this individual. The
corrected haplotypes are available for download (http://
www.molgen.mpg.de/�genetic-variation/SIH/data).
These new haplotypes increase the phase information
within various important functional units or disease-
related regions (see Supplementary Table). For example
an additional 96 849 SNPs are phased within genes,
including 816 SNPs that cause non-synonymous muta-
tions or splice site mutations. In particular 847 of the
newly phased SNPs produce an amino acid exchange in
proteins, 108 of which are predicted to be damaging by
PolyPhen-2 (33) and 184 are predicted to be damaging by
SIFT (56 predictions overlap). The new gold-standard
also contains the phase of an additional 263 GWA SNPs
across the genome, a useful addition as it has been shown
that haplotype information increases the power of
genome-wide association studies (GWAS) (34). An

additional 11 395 phased SNPs were contained within
genes annotated by the Genome Association Database
(GAD), with single genes containing hundreds of newly
phased SNPs (Table 1). Some specific examples of GAD
genes containing many additional phased SNPs and
including at least one GWA SNP are shown in Figure 6.
These examples are associated with various cancers
(AGT1A genes and CDH1), drug sensitivity (UGT1A9),
and hypertension and osteoporosis (COL1A2).

DISCUSSION

Haplotyping has been identified as one of the most diffi-
cult steps toward full genome completion (13) and
therefore the development of an accurate and scalable
technique for direct haplotyping of diploid samples is of

Figure 5. Comparison of the new gold-standard haplotype (‘‘Overall’’) with haplotypes predicted by statistical phasing using different numbers of
individuals in the reference panel. The concordance was calculated separately for pairs of adjacent SNPs phased using parental genotypes (trio
phased) and pairs phased using fosmid-based haplotyping (non-trio phased).

Table 1. Comparison of numbers of phased SNPs in functional units

or disease-related regions between trio gold-standard and new

gold-standard haplotypes

Trio gold-
standard

New gold-
standard

Additional
SNPS
phased

Increase
(%)

Total SNPs phased 1 411 836 1 669 081 257 245 18.2
Genes 506 276 603 125 96 849 19.1
Missense, nonsense,

splice variants
4650 5466 816 17.5

GWA SNPs 1323 1568 245 18.5
GAD disease genes 63 085 74 480 11 395 18.1
ENCODE regions 13 140 16 207 3 067 23.3
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Figure 6. Examples of GAD genes containing many additional phased SNPs. Fosmid-based phasing allows resolution of the phase of significant
numbers of additional SNPs which may be particularly useful within disease-associated genes and SNPs detected in genome-wide association studies
(GWA SNPs). Here, we show three examples of disease-relevant genes that contain many additional phased SNPs: UGT1A genes associated with
various cancers; CDH1 which plays a role in drug sensitivity and COL1A2 associated with hypertension and osteoporosis. Tracks are taken from the
UCSC Genome Browser. SNPs resolved by trio phasing are shown in the top track with SNPs resolved using fosmid-based phasing shown below.
SNPs from the GWAS Catalog are shown as green bars in a separate track and those GWA SNPs that are resolved by fosmid-based phasing are
indicated by pink arrows. Annotation from the Gene Association Database (GAD) and OMIM are shown in the lower tracks.

Nucleic Acids Research, 2012, Vol. 40, No. 5 2051

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
0
/5

/2
0
4
1
/1

0
9
9
7
0
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



great interest for researchers in both theoretical and
applied genetics and genomics (4). Fosmid pool-based
haplotyping, utilizing NGS, is a scalable and cost-effective
method for the assembly of whole genomes into large con-
tiguous haplotypes and in this study we have undertaken
comprehensive assessment of quality for this method. We
confirm for the first time that this method allows assembly
of highly accurate haplotypes, and we also show that this
accuracy is correlated with the allele calling error rate.
Hence, improvements in quality and analysis of NGS
reads will also increase the accuracy of fosmid pool-based
haplotyping. We believe that this makes fosmid
pool-based haplotyping a valuable approach for a wide
variety of applications of human genome haplotyping
such as cancer genome sequencing, and it can even be
applied for sequencing of other types of organisms. The
SIH problem is at the core of the bioinformatics analysis
needed for any haplotyping technique based on shotgun
sequencing. Although this problem has been studied for a
long time, novel experimental approaches, such as fosmid
pool-based haplotyping, provide the real data needed to
find new directions for improvement. We have compared a
wide variety of algorithms for SIH, specifically assessing
accuracy, completeness and runtime for eight different al-
gorithms using real sequence data from fosmid pools.
Utilizing the genome of an individual for which there
already exists a gold-standard haplotype has allowed us
to comprehensively assess the quality of different
methods. For this quality assessment, we have proposed
a new metric which takes into consideration both the com-
pleteness and accuracy of the haplotypes which we call
quality adjusted N50 (QAN50). We find that according
to both switch error rate and QAN50, ReFHap yields
the best compromise between completeness, accuracy
and computational resources. We also show that the
MEC-based problem formulation used in most of the
recently proposed algorithms for SIH can lead to subopti-
mal haplotypes, even if the MEC problem is solved opti-
mally. This finding justifies the use of heuristic methods
not only because of their better efficiency, but also because
they yield higher accuracy, and leaves an open door for
novel bioinformatics solutions to SIH.
Despite the accuracy of the current gold-standard haplo-

types, the phase of almost 20% of the SNPs remained
unresolved by trio phasing. Here, utilizing our fosmid-
based phasing data in conjunction with the trio haplo-
types, we provide a nearly complete new gold-standard
haplotype for NA12878, covering 97.9% of heterozygous
SNPs that have been genotyped in this widely studied
HapMap individual. This has generated phase informa-
tion for almost all potentially disease predisposing SNPs
allowing them to be analyzed now in their molecular
context, an indispensable prerequisite to explore their po-
tential functional implications and pathophysiology.
Furthermore, we were able to include a notable fraction
of GWA SNPs into phase context, an important step to be
able to track the underlying causative variants. This phase
information is particularly useful in NA12878 given that
this individual (in the form of a stable lymphoblastoid cell
line) has been extensively analyzed in a variety of projects,
such as the ENCODE project (35) and the 1000 Genomes

Project (28). As data accumulates for this individual on
gene expression, histone modifications, transcription
factor binding sites and other such functional assays
(36), avenues for examining the effect of phase at a
functional level are opened. Our molecular phase data
from NA12878 can be integrated with data from
all other omics levels to develop a more coherent picture
of ‘phase-sensitive’ functional genomics (37). These
improved haplotypes will be of use to the scientific com-
munity when analyzing functional genomic data for
NA12878, allowing new insights into the importance of
phase.
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