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ABSTRACT

The fossil software package is a collection of analytical tools to synthetically anal-
yse ecological and geographical data sets. The software is designed to be used with
the R Statistical Language and is under an Open Source license, making it free to
download, use or modify. The package includes functions for estimating species rich-
ness, shared species/beta diversity, species area curves and geographic distances
and areas. The package also contains extensive documentation and examples of how

to use all of the functions.
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INTRODUCTION

Multivariate analyses in palaeontology have
become an increasing focus of many palaeontolog-
ical research programs, especially with the devel-
opment over the past decade of large datasets
(e.g., Paleobiology Database; Carrano 2000; Alroy
et al. 2001; Carrasco et al. 2005) and readily avail-
able computing power. A variety of statistical pro-
grams and software has been used and developed
by and for palaeontologists, ecologists and evolu-
tionary biologists as these massive data sets have
become more commonplace (e.g., Hammer et al.
2001; Colwell 2009; Harrison and Larsson 2008;
Maddison and Maddison 2009).

Large databases necessarily involve large
numbers of collaborators, which may lead to an
issue of heterogeneity and incompatibility of com-
puting platforms and file formats. Despite the large
number of freely available programs, there are few
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truly cross platform solutions available. One statis-
tical environment gaining recognition over the last
decade with its ability to perform intensive statisti-
cal analyses has been the R Statistical Language
(R Development Core Team 2010; Ezard and Pur-
vis 2009). This software is cross platform, freely
available (Open Source) and has an extensive
installed user and contributor base. While the base
software when installed can perform many com-
mon statistical procedures, the software is easily
extensible through packages, such as phylogenetic
analysis (Paradis et al. 2004), time series analysis
(Hunt 2008) and palaeobiological phylogenies
(Ezard and Purvis 2009). These packages are
available through a central repository called the
Comprehensive R Archive Network, or CRAN.
Additionally, data from virtually any source can be
used, from plain text and Microsoft Excel tables to
images and GIS shapefiles, and graphs and fig-
ures can be output in virtually any format. This flex-
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ibility and availability is what has made it a growing
success in the field of statistics and database anal-
ysis.

Here | present a new package that has been
developed to enable a selection of ecological and
geographic analysis tools to be added to the base
R environment. The package was originally devel-
oped with palaeontologists in mind and is appropri-
ately entitled fossil. As of this writing, it is in version
0.3.2, and although there are planned additions to
the code, the functions already present allow for a
large number of analyses to be performed.

Reasons for developing fossil are many fold.
The underlying impetus was to create a single
package to examine large datasets with up-to-date
methods of biodiversity estimators and ecological
pattern recognition that can be used in conjunction
with geographic data over long time scales. Macro-
ecological analysis is a growing area and palaeon-
tologists now have a real opportunity to answer
modern questions of biodiversity distributions,
thanks in large part to the deep time of the fossil
record. By providing powerful tools that integrate
well, we can spend more time on the questions
rather than the methods.

A number of the functions that have been
implemented in fossil can also be found in the
excellent package vegan (Oksanen et al. 2010).
Many of the species diversity and species estima-
tor functions are implemented in both packages.
However, the fossil package was implemented to
cover a number of use cases that vegan did not
cover. Initially, the primary function that was
needed was a way to estimate species diversity
using a number of functions all at once. As well, the
function to create distance matrices with user
defined measures was at the time more difficult to
use, and so | have tried to implement a more easily
extensible method. The fossil package also imple-
ments a number of spatial analysis and export
tools that are not found within vegan, such as
methods to calculate geographic distances and
areas from a set of points.

For example, the fossil record, while accurate,
is by no means complete (Benton et al. 2000) yet
can still provide important information on biogeo-
graphic patterns. Using fossil, we can compare
sparse ecological data with a number of ecological
similarity indices (e.g., Chao-Jaccard, Chao-Soren-
son, Simpson) and then observe the patterns of
connectivity using various types of neighbour join-
ing techniques. These patterns can then be visual-
ised in ecological space, using ordinations to group
similar sites, and in geographic space, placing

localities on a map and observing how this ecologi-
cal connectivity relates to geography. Combining
spatial, ecological and temporal data provides a
more complete picture of the evolution of the bio-
sphere than any one factor alone.

WHAT IS R AND WHY SHOULD WE USE IT?

The fossil package is constructed for use with
the R Statistical Language. R owes its origins to
the S Language, a program initiated at Bell Labs in
the 1970s as a way to implement a computational
statistical language (Becker et al. 1988). The S
Language has been the basis for another well
known statistical program, S-PLUS. In 1991 Ross
Ihaka and Robert Gentleman at the University of
Auckland began developing a statistical language
for their teaching laboratory since no adequate
commercial solution existed at the time. Their work
mimicked many of the styles and methods of S,
and eventually this package evolved into the R
Language for Statistical Computing (Ihaka and
Gentleman 1996). Since its origins, R has been
open-sourced under the GNU Public License,
meaning that anyone who chooses to use, redis-
tribute or improve the software is free to do so pro-
vided they allow others the same rights (Stallman
1999). The program was originally written for a
Macintosh system, but it has since been ported to
virtually every computing architecture, both legacy
and modern. This makes it an ideal candidate for a
statistical system in many modern laboratories,
where researchers possess their own (if not multi-
ple) computers, often with different operating sys-
tems.

Many other statistical programs encourage
their users to manually select their data and
choose the analyses to be run with a mouse cur-
sor. At first glance, this is a much simpler way of
interacting with the data, but it suffers from a major
drawback; analyses of this type are not truly repro-
ducible (Leisch and Rossini 2003; Green 2003).
Although descriptions of statistical procedures
used in refereed papers are a must, trying to
record exact mouse clicks and button selections is
virtually impossible. R on the other hand encour-
ages users to record each and every step of the
process used. Most users of R will write their meth-
ods of analysis out in a text editor of some kind and
then proceed to run this code in the R environment,
with every step, from analysis to figure creation,
fully documented.

The deeper benefits of this method may not
be obvious. | have personally experienced situa-
tions where mistakes were made early on in the



process of data analysis and not found until much
later. While in a graphical, mouse driven environ-
ment trying to repeat all the steps necessary is
often time consuming, well written R code can be
easily modified and re-run with minimal fuss. Fur-
ther, as the program is consistent across platforms,
collaborators can run the code on their platform of
choice, without having to worry if their version of a
program has the same available functions. This
benefit also extends to other scientists, who by tak-
ing other researchers' code can re-run published
findings exactly, without having to purchase soft-
ware of any kind.

What follows is not an in-depth introduction to
R; there have already been many books written on
the subject. For a good start, the original text by
Becker et al. (1988) and a more recent text by
Braun and Murdoch (2008) are highly recom-
mended. Rather the focus of this paper is the use
of the functions found within the fossil package.

SETTING UP THE ENVIRONMENT

R is available for virtually any platform and
can be installed from the R Project website, www.r-
project.org/. Please note that throughout this paper
all R commands are distinguished from ordinary
text using a bold-face font, and blocks of R com-
mands are set apart in monospace font. All com-
mands are preceded by a chevron (>) that does not
need to be entered, but simply represents the
beginning of a new command.

Throughout much of this paper, | use a theo-
retical data set called fdata, consisting of three
parts. fdata.list is a table with each row represent-
ing an individual species occurrence and columns
for locality name, species name, species abun-
dance, latitude and longitude. fdata.mat is a matrix
(12 by 12) with each unique species as a row and
each locality as a column. The last part is
fdata.lats, a SpatialPoints object containing the
longitude and latitude for each locality. All of this
data is found as part of the fossil package. As well,
the entirety of the code used to analyse the data
and create figures for this paper is available as a
supplementary file, along with full instructions on
how to use it.

To begin using the fossil package in an inter-
active session, you must first ensure the package
has been installed on your computer. It is available
online from CRAN and can be downloaded from
within an R session by typing install.packages
(‘fossil’) at the command prompt. You will be
prompted to choose a download location; simply
try to choose one closest to your location. Once the
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fossil package is available on your computer, you
can load it in to R using the command library (fos-
sil). Every time you start a new session, you will
have to load the package again using the library()
command as extra libraries are not loaded by
default to keep the memory use as low as possible.

>library(fossil)

LOADING YOUR DATAIN R

Large databases used in palaeoecology stud-
ies are often simply tables, whether in plain text
files or Excel tables, where every row consists of a
unigque observation, usually of a species at some
location in space and time. However, the species,
locations and times in these lists are rarely unique,
and often consolidation of the data into usable
matrices of species versus location is needed.
There are two functions that aid in the conversion
of lists of points into two types of matrices that will
be referred to throughout the remainder of the
paper. The first function is the create.matrix()
function, which takes a list of species and their
occurrences and converts it to a matrix of species
(rows) by localities (columns). With the commands

>data (fdata.list)
>create.matrix (fdata.list, tax.name="s
pecies",locality="1locality")

we can create an occurrence matrix from the
fdata.list example data set; alternatively, if we wish
to create an abundance matrix, we use virtually the
same command, but include the option abund =
TRUE and give the name of the abundance column
(in this case, 'abundance') for the abund.col
option. This method will give us an abundance
matrix identical to fdata.mat.

>data (fdata.list)

>create.matrix (fdata.list, tax.name="s
pecies",locality="1locality",
+abund=TRUE, abund.col="abundance")

For the fossil package, data follows the con-
vention of species as rows and localities as col-
umns. Data that is in matrix format already but with
species as columns and localities as rows can be
transposed with the t() command.

Similarly, much palaeontological data comes
with some sort of spatial data about its provenance
integrated with the occurrence data. As such, the
locality data is often duplicated for each unique
species at a certain site. In order to simplify plotting
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TABLE 1. Names, formulas and alternate names for included similarity coefficients. Variables in the
formulae are: a = number of shared species, b = number of species found only in the first sample, and ¢
= the number of species found only in the second sample.

Coefficient Name Formulae Alternate Name Function Call
Jaccard al(a+b+c) Coefficient of Community jaccard()
Sorenson 2a/(2a+b+c) Dice, Czekanowski, Coincidence Index sorenson()
Simpson a/(a+min(b,c)) - simpson()

Braun-Blanquet al/(a+max(b,c))

Ochiai a/sqrt{(a+b)(a+c)}

Kulczynski [a/(atb)+al(a+c))/2

georeferenced data, a function called create.lats()
can be used to extract the site coordinates from a
list, eliminating duplicate entries.

>data (fdata.list)

>create.lats (fdata.list,loc="1locality
",long="longitude",

+lat="latitude")

DISTANCE/SIMILARITY/BETA DIVERSITY
INDICES

Measuring the ecologic distance between sets
of samples is often a necessary first step in many
multivariate analyses (Green 1980; Shi 1993). As
such, it also is often a contentious one, with differ-
ent researchers advocating different measures,
with at times multiple correct arguments. Although |
do not wish to provide a full explanation here of
every single measure, | will provide a brief over-
view of those included in the fossil package. Some
of these measures are best described as indices of
beta diversity, although they are grouped here with
other similarity measures for convenience since
they are typically used in a similar fashion.

All of the similarity functions can be used in
the same way. The functions need two arguments
representing the two samples. It is important that
the species occurrences are arranged in the same
way for each site, and that any absent species are
represented by a zero.

>sampleA<-c(1,1,0,1,1,1,1)
>sampleB<-c(0,1,1,0,0,1,1)

>sorenson (sampleA, sampleB)

[110.6

Coefficient of Closeness

- braun.blanquet()
ochiai()

- kulczynski()

The species estimator functions included can
be broadly grouped into two categories, those that
use occurrence data and those that use abun-
dance data. As abundance data is not always
available, especially in palaeontology, more mea-
sures that use occurrence data are included in the
package. Occurrence based measures can also be
used with abundance data, but the abundance
matrix is converted to an occurrence matrix by the
function.

One of the oldest and best known occurrence
measures is the Jaccard measure, also known as
the Coefficient of Community (Table 1; Jaccard
1901; Shi 1993). The measure has seen extensive
use, largely due to its simplicity and intuitiveness
(Shi 1993; Magurran 2004). A similar measure also
in common use is the Sorenson measure (also
known as Dice, Czekanowski or Coincidence
Index), which places more emphasis on the shared
species present rather than the unshared, as can
be seen in the difference in values for the example
data set. Again, the calculation is relatively simple
and intuitive, and both indices have been shown to
provide useful results (Wolda 1981; Hubalek
1982). Two other similar indices that are occasion-
ally used are the Ochiai and Kulczynski measures.
While Hubalek (1982) lists the Ochiai and Kulczyn-
ski indices as providing good results, the Jaccard
or Sorenson are typically more recommended if
only because they are more commonly used.

One of the most common problems in palae-
ontology, and indeed in many ecological studies, is
that of differing sample sizes. Comparing two sites
of very unequal sampling intensities can give a
biased view of the actual species overlap. For
example, a subsample of a site could be consid-
ered identical to the original site, as all the species
in the subsample will be within the original. How-



ever, all the previous measures would show less
than complete similarity due to their mathematical
properties. With this in mind, Simpson (1960)
developed a measure, which can account for vari-
ability of sample sizes. His formula scales the
value by the number of species from the least sam-
pled site, so that the subsample in this case would
have full similarity with the original. The Simpson
measure is often used with data that is highly vari-
able in sampling intensity, such as fossil datasets,
for this very reason.

While the fossil package contains a number of
occurrence based similarity indices, by no means
are they all included. For example, Shi (1993) lists
39 and Hubalek (1982) lists 43 different variations
of the similarity index, many of which are rarely
used outside their original papers.

While not as common in palaeontological data
sets, abundance values can provide valuable infor-
mation about a community that is not possible
using occurrence data. Analyses of community
structure are very limited without abundance data,
and abundance data can provide more subtle dis-
tinctions between communities. As well, species
abundances can provide some measure of sam-
pling intensity.

Possibly the most widely used abundance
based measure is the Bray-Curtis measure, due to
its strong relationship to ecological distance under
varying conditions (Bray and Curtis 1957; Faith et
al. 1987; Minchin 1987; Clarke 1993). The mea-
sure is equivalent to the Sorenson coefficient when
used as a similarity measure with occurrence data.
The Morisita-Horn index, while not as common as
the Bray-Curtis, is also a highly recommended
measure due to its relative independence from
sample size and diversity (Wolda 1981; Magurran
2004). While there are several variations of the
measure, | have used the version found within
Magurran (2004).

Luckily, though the diversity of indices may
seem somewhat overwhelming, the package pro-
vides an easy way to use them with large data
sets. An included function called dino.dist() will
take a matrix of species occurrences versus local-
ity (or any analogous groupings) and return a full
pairwise distance matrix as output. This function is
written such that any other similarity index, includ-
ing those defined by other packages or by the user,
can be specified and used to calculate the matrix.
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NON-PARAMETRIC SPECIES ESTIMATORS
AND RAREFACTION

An obvious problem in palaeontology is the
incompleteness of the record, and therefore our
incomplete knowledge of the number of species
present, whether locally or globally. Modern ecolo-
gists suffer from the same problem, whereby it is
impractical to sample every single member of even
relatively small communities of organisms
(Chazdon et al. 1998). However, smaller samples
still contain important information about the com-
munity and can be extrapolated from to provide
estimates of the true richness of the total commu-
nity. Of course, such extrapolations must account
for sampling intensity and area (Gleason 1922;
Preston 1948).

One of the most commonly used methods for
dealing with unequal sampling intensity is rarefac-
tion, or interpolation of the data (Sanders 1968).
Rarefaction provides a method of comparison
between different communities, whereby each
community is "rarefied” back to an equal number of
sampled specimens (Heck et al. 1975; Foote 1992;
Colwell and Coddington 1994). Within the fossil
package is a method for rarefaction known as a
Coleman Curve (Coleman 1981; Coleman et al.
1982). This type of rarefaction is carried out
through a resampling method rather than a rarefac-
tion formula; resampling is computationally much
simpler and faster, and provides indistinguishable
results from the formula based method (Coleman
1981; Coleman et al. 1982; Colwell and Codding-
ton 1994; Magurran 2004). The Coleman Curve is
an empirical measure of the rarefied number of
individuals, while the rarefaction function is a theo-
retical model of what the empirical curve would
look like. Although rarefaction can be useful, it is
very sensitive to the underlying pattern of species
abundance, such that collections with much lower
species evenness will often give lower estimates of
species diversity than those with very even abun-
dances, regardless if species diversities in reality
are equal (See Gotelli and Colwell [2001] for an in-
depth treatment of the issue.).

Although rarefaction interpolates data back,
non-parametric species estimators extrapolate
from the data to find what the 'true' number of spe-
cies may have been (Colwell and Coddington
1994). The typical way these estimators operate is
by using the number of rare species that are found
in a sample as a way of calculating how likely it is
there are more undiscovered species. As an exam-
ple, the Chao 1 estimator (Chao 1984; Colwell and
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Coddington 1994) calculates the estimated true
species diversity of a sample by the equation:

2

Fl
S,=8,, +—0
oos 2F2

where Sobs is the number of species in the sam-
ple, F1 is the number of singletons (i.e., the num-
ber of species with only a single occurrence in the
sample) and F2 is the number of doubletons (the
number of species with exactly two occurrences in
the sample). The idea behind the estimator is that if
a community is being sampled, and rare species
(singletons) are still being discovered, there is
likely still more rare species not found; as soon as
all species have been recovered at least twice
(doubletons), there is likely no more species to be
found. Tests of the estimator have shown that it
does provide reasonable estimates, at least for
modern data sets (Chao 1984; Colwell and Cod-
dington 1994; Chazdon et al. 1998). Of course, as
the value is an estimate there is a degree of uncer-
tainty, and a method to calculate the variance for
the estimators has been provided by Chao (1987)
in the form of

4
+(F1/F2)3+

FIF,
4

F]/Fz)z

var[Sl) =F, 5

Although the Chao 1 estimator works for
abundance data, often only occurrence data are
available. There is another estimator, named con-
veniently Chao 2 (Chao 1987; Colwell and Cod-
dington 1994), which uses occurrence data from
multiple samples in aggregate to estimate the spe-
cies diversity of the whole. This estimator is
defined as:

01
S, =8, +——
2 obs 2Q2

which is virtually identical to the Chao 1 estimator,
with singletons (Q1) being species occurring in
only one sample and doubletons (Q2) occurring in
two samples. This estimator can also make use of
the Chao 1 variance formula provided above, with
the substitution of F1 and F2 for Q1 and Q2,
respectively.

Chao and colleagues (Chao and Lee 1992;
Chao et al. 1993; Lee and Chao 1994) have also
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published another pair of estimators, called the
Abundance Coverage Estimator and the Incidence
Coverage Estimator, which use abundance and
occurrence based data sets, respectively. These
estimators are much more complex; the Abun-
dance-based Coverage Estimator takes the form

Srare Fl
S =5 o oglrae, 1

ace common (W (*
“ace “ace

2
yace

where Scommon are the species that occur more
than 10 times in the sampling, Srare are those spe-
cies which occur 10 times or less, Cace is the sam-
ple abundance coverage estimator, and finally yace
is the estimated coefficient of variation for F1 for
rare species (See Chazdon et al. 1998, for a full
explanation and definition of the estimator). In sim-
pler terms, the formula uses the number of rare
species (>= 10) and the number of singletons (F1)
to estimate how many more undiscovered species
there might be. Although this formula is for the
abundance estimator, virtually the same holds true
for the incidence based estimator, except that
instead of the species abundance, it uses the num-
ber of samples each species occurs in. Both of the
coverage estimators have been found to give good
results and are highly recommended (Chazdon et
al. 1998; Hortal et al. 2006)

Another estimator provided is the Jackknife
estimator, developed by Burnham and Overton
(1978, 1979) originally for use with capture/recap-
ture studies. The formula

m—1

S]ac/c] - Sobs - QI m

represents the first order version of the estimator;
the variable m represents the total number of sam-
ples. Smith and van Belle (1984) also provided a
second order variation, with the formula

0,(2m=3] 0,(m—2f

m m|{m—1|

‘Sjac/\;? - LSobs

The second order Jackknife has shown to be one
of the most effective estimators and may be the
best estimator at the moment for highly sparse
palaeontological collections since it is the least



susceptible to sampling bias (Chazdon et al. 1998;
Hortal et al. 2006).

Finally, for completeness | also provide the
bootstrap estimator

Sobs

Sboo.t :Sobs—l_kzl (1_pk)2

developed by Smith and van Belle (1984). The
bootstrap richness estimator has been generally
regarded as one of the poorer species estimators,
and Chazdon et al. (1998) in fact recommend
against using it.

Though the various estimators vary greatly in
their formulae, the functions within fossil take care
of most of the nuances and generally require only
one argument, that being a species occurrence
matrix or species abundance vector or matrix.

>data (fdata.mat)
>chaol (fdata.mat)

[1112.25

>jackl (fdata.mat) [1]12.98980

It is often best to use a number of these esti-
mators in concert, as concurrence between their
individual values can lend support to their results.
Colwell (2009) has released a program for Win-
dows called EstimateS which does exactly this; it
can calculate multiple species estimators for a data
set, along with their variances and a species accu-
mulation curve. Since Colwell's program is so use-
ful, it was used as a template to create the function
spp.est(). The function has several important
options, namely the number of randomizations and
whether or not to use abundance data. The
spp.est() function calculates a rarefaction curve,
the Chao, Coverage Estimators and Jacknife, as
well as standard deviations for all the estimates. As
a default the function will run 10 randomizations of
the data, however for more accurate estimates a
much larger number of randomizations should be
run. It should be noted that with a large data set
and a large number of randomizations that the
function may take a long time to complete. At this
time, work has been undertaken to parallelize this
function, enabling a large increase in processing
time when using a multicore or multiprocessor sys-
tem.
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MINIMUM SPANNING TREES

Minimum Spanning Trees (MST) and the
associated Minimum Spanning Networks/Forests
(MSN) are a useful method of visually displaying
relationships between samples, whether those
samples are biogeographic or taxonomic in nature
(Figure 1; Gower and Ross 1969). The MST is
closely related to the final product of a Single Link-
age Cluster Analysis (SLCA; Sneath 1957; Gower
and Ross 1969) and connects all the points in a
sample with the minimum number of connections
(n - 1). The method used to find the tree—also the
most common method—is to begin with a single
point at random, and begin connecting to the clos-
est point not already in the tree. When there is
more than one equally close point, one will be cho-
sen at random. The randomness aspect of the con-
nections can be disabled in the options for the
function, if so desired, such that the first listed point
will be used as the start for the tree and if more
than one point is equally close, the first listed will
be chosen. Although there are other MST functions
available for R (Oksanen et al. 2010), those other
methods did not allow for a random start or random
selection of equally minimal branches. The MSN is
closely related to the MST; the MSN is a combina-
tion of all the possible MSTs. This could mean that
if there was only one shortest MST that the MSN
would be identical.

BIOGEOGRAPHY AND GIS

Biogeography is concerned with locations of
organisms in space. The fossil package imple-
ments a number of functions to assist in converting
georeferenced datasets into formats useful for both
graphing within R and exporting to GIS programs.
R was originally created as a statistical language,
but its ability to use and display geographic data is
quite advanced for a non-GIS system. The sp
package (Pebesma and Bivand 2005) along with a
number of geographic libraries allows a user to put
in data in a number of projections and change pro-
jection and datum. For a thorough treatment of
spatial data analysis with R, | highly recommend
Bivand et al. (2008); here | provide only a cursory
description of the topic.

The simplest geographic function to use is
likely create.lats(), which as mentioned previously
can extract the locality data from a list of taxa
occurrences. With the output from this function, a
number of further analyses can be done. For
example, it is often useful to have the distances
between two points in space; this can be easily
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FIGURE 1. Minimum Spanning Tree for the fdata example data set from the fossil package, overlain over
a map of the USA. Letters correspond to locality name.

>data (fdata.mat)
>fdata.dist<-dino.dist (fdata.mat)
>fdata.mst<-dino.mst (fdata.dist)
>data (fdata.lats)

>library (maps)

>map ("state")

>mstlines (fdata.mst, coordinates (fdata.lats))

>points (coordinates (fdata.lats),pch=16,col="white", cex=3)
>points (coordinates (fdata.lats),pch=1, cex=3)

>text (coordinates (fdata.lats), labels=LETTERS[1:12])

accomplished with the earth.dist() function, which
returns a matrix of pairwise distances in kilometres
(Figure 2). One note, however, is that the original
matrix of locations must be in decimal degrees. Of
course, the sp package provides functions to con-
vert between coordinate systems if necessary.
Biogeography is concerned with species loca-
tions in space, and the sampling distributions of
those species can cause some interesting effects
in diversity calculations, namely the well
researched species/area effect (Arrhenius 1921;
Gleason 1922; Preston 1960; Connor and McCoy
1979; Rosenzweig 1995). Although palaeontology
often pays little attention to this effect, Carrasco et
al. (2005) have shown that it does hold true in fossil
data sets. As a way to observe these effects effi-
ciently, | have created the function sac() that can
create a summary species area curve for a data
set (Figure 3). As its arguments, it takes a table of
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longitude/latitude and a species occurrence matrix.
It makes use of another function called
earth.poly(), which can take a table of locations
and calculate which points create the vertices for a
minimum spanning polygon/convex hull, as well as
calculate the true geographic area of the polygon.
Though the R environment is powerful when
analysing GIS data, it lacks a large amount of
visual interactivity with the data. Often, it is simply
easier to use a GIS program to view geographic
data, and as such | have tried to make it as simple
as possible to move geographic data out of R. Cur-
rently the package provides helper functions for
exporting both geographic points (lats2Shape())
and MSTs/MSNs (msn2Shape) to shapefile format
using the package shapefiles (Stabler 2006). To
use the functions, you need the shapefile package
available on your system; the package can be
downloaded using the install.packages(shapefiles)
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FIGURE 2. Distances between three selected locations from the fdata sample data. Distances given

between points are in km.

>data (fdata.lats)

>fd.subset<-coordinates (fdata.lats) [1:3,]

>earth.dist (fdata.lats[1:3,1)
locA locB

locB 893.4992

locC 776.3101867.2648

>map ("state")
>polygon (fd.subset)

>text (c(-110,-101,-106),c(42,42,47),labels=round(earth.dist (fd.subset) [c (1,

+3,2)1))

>points (fd.subset,pch=16,col="white", cex=3)

>points (fd.subset, pch=1, cex=3)
>text (fd.subset, label=LETTERS[1:3])

command. Once the shapefiles have been created,
they can be saved using the write.shapefile()
command. The shapefiles can then be loaded in
any GIS program (Figure 4).

>data (fdata.lats)
>shape.lats<-lats2Shape (fdata.lats)
>fdata.dist<-dino.dist (fdata.mat)
>fdata.mst<-dino.mst (fdata.dist)
>shape.mst<-

msn2Shape (fdata.mst, fdata.lats)

CONCLUSION

| optimistically envisage the fossil package
growing larger and larger in both function and use.
As the project is Open Source, | encourage others
to help aid in its development both by simply using
it in various and novel situations, as well as sug-
gesting new possible methods, indices and func-
tions that may be useful. As well, | readily
encourage others to use the original source code
for their own purposes, with the only caveat that
attribution is given where appropriate. | hope that
encouraging the recopying and reuse of this code
will save others time while developing their meth-
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FIGURE 3. Species area curve for the fdata
sample data.

>plot (log(sac (fdata.lats, fdata.mat) [
[1]]),ylab="1logspeciesrichness",
+xlab="logarea (km"*2)")

ods and allow more time for the actual data analy-
sis.
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APPENDIX

Appendix: R source code

S i i
###chunknumberl:data-in

S i i i
#linesstartingwitha#arecomments,andareignoredbytheRinterpreter
#install.packages ('fossil')

library(fossil)

FHEFHAHE R F AR A AR AR R A R S
###chunknumber2:1ist-to-occ-mat

FHEFHAHE R F AR A AR AR R A R S
data (fdata.list)

create.matrix (fdata.list, tax.name="species',locality="locality"')

FHAEH A R
###chunknumber3:list-to-abund-mat

FHAEH SRR R

data (fdata.list)

create.matrix (fdata.list, tax.name='species',locality="'locality’,

abund=TRUE, abund.col="abundance"')

FHEFHAHE R H AR A AR R R R
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###chunknumber4:1list-to-1lats

S i i
data (fdata.list)

create.lats (fdata.list,loc="'locality',long="longitude',

lat="latitude"')

FHEFHAHE R F AR A AR AR R R R S
###chunknumber5: sim-measure

FHEFHAHE R F AR A AR AR R A R
sampleA<-c(1,1,0,1,1,1,1)

sampleB<-c(0,1,1,0,0,1,1)

sorenson (sampleA, sampleB)

FHAEHH SRR
###chunknumber6: spp-ests

FHAEH AR
data (fdata.mat)

chaol (fdata.mat)

jackl (fdata.mat)

FHASHHF AR A AR A AR AR AR AR AR
###chunknumber7:shapefiles

FHEFHFHE R F AR A AR AR R R R R

data(fdata.lats)

14
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shape.lats<-lats2Shape (fdata.lats)
fdata.dist<-dino.dist (fdata.mat)
fdata.mst<-dino.mst (fdata.dist)

shape.mst<-msn2Shape (fdata.mst, fdata.lats)

S i i i
###chunknumber8 :mst-map

S i i i
data (fdata.mat)

fdata.dist<-dino.dist (fdata.mat)
fdata.mst<-dino.mst (fdata.dist)

data(fdata.lats)

library (maps)

map ('state')

mstlines (fdata.mst, coordinates (fdata.lats))

points (coordinates (fdata.lats),pch=16,col="white',6 cex=3)
points (coordinates (fdata.lats),pch=1, cex=3)

text (coordinates (fdata.lats), labels=LETTERS[1:12])

FHAEH SR S
###chunknumber9:geo-dist-map

FHAEH AR
data (fdata.lats)

fd.subset<-coordinates (fdata.lats) [1:3,]

earth.dist (fdata.lats[1:3,1)
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map ('state')

polygon (fd.subset)
text(c(-110,-101,-106),c(42,42,47),
labels=round (earth.dist (fd.subset) [c(1,3,2)1))
points (fd.subset,pch=16,col="white', cex=3)
points (fd.subset,pch=1, cex=3)

text (fd.subset, label=LETTERS[1:3])

FHAEH AR R
###chunknumberl0: spp-area-fig

FHAEH SR R
plot (log (sac (fdata.lats, fdata.mat) [[1]1]),

ylab='logspeciesrichness',xlab="'logarea (km"2) ")
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