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FOULKES CHARACTERS

FOR COMPLEX REFLECTION GROUPS

ALEXANDER R. MILLER

(Communicated by Jim Haglund)

Abstract. We investigate Foulkes characters for a wide class of reflection
groups which contains all finite Coxeter groups. In addition to new results,
our general approach unifies, explains, and extends previously known (type A)
results due to Foulkes, Kerber–Thürlings, Diaconis–Fulman, and Isaacs.

Introduction

Foulkes discovered a marvelous set of characters for the symmetric group by
summing Specht modules of certain ribbon shapes according to height. These char-
acters have many remarkable properties and have been the subject of many investi-
gations, including a recent one [3] by Diaconis and Fulman which established some
new formulas, a conjecture of Isaacs, and a connection with Eulerian idempotents.

We widen our consideration to complex reflection groups and find ourselves
equipped from the start with a simple formula for (generalized) Foulkes characters
which explains and extends these properties. In particular, it gives a factorization
of the Foulkes character table which explains Diaconis and Fulman’s formula for the
determinant, their link to Eulerian idempotents, and their formula for the inverse.
We present a natural extension of a conjecture of Isaacs and then use properties of
Foulkes characters which resemble those of supercharacters to establish the result.
We also discover a remarkable refinement of Diaconis and Fulman’s determinantal
formula by considering Smith normal forms.

Classic type A Foulkes characters have connections with adding random num-
bers, shuffling cards, the Veronese embedding, and combinatorial Hopf algebras;
see [3,9]. Our formula brings Orlik–Solomon coexponents from [14] the cohomology
theory of [12] complements into the picture with the geometry of the Milnor fiber
complex [10], and it gives rise to a curious classification at the end of the paper.

The paper is structured as follows. Section 1 introduces Foulkes characters for
Shephard and Coxeter groups. Key properties are quickly gathered, including our
main formula. In Section 2, properties of type A Foulkes characters are explained
and extended from the symmetric group to the infinite family of wreath products. In
Section 3, Isaacs’ type A conjecture is sharpened for the Coxeter–Shephard–Koster
family. Diaconis and Fulman’s type A determinantal formula is also extended here.
Lastly, we determine exactly when the Foulkes characters form a basis for the space
of class functions χ(g) that depend only on the dimension of the fixed space of g.
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1. Foulkes characters for complex reflection groups

Let V be an �-dimensional C vector space, and let W be a finite group of the
form

(�) 〈r1, r2, . . . , r� | rpi

i = 1, rirjri · · · = rjrirj · · · ∀ i < j〉
with mij ≥ 2 factors on both sides of the second relation, pi ≥ 2, and pi = pj
whenever mij is odd.1 Finite Coxeter groups are the ones where every pi is 2, and
each has a canonical faithful representation W ⊂ GL(V ) as a (complex) reflection
group, by which we mean that the ri’s act on V as reflections in the sense that
the fixed spaces ker(1 − ri) are hyperplanes. This familiar picture for Coxeter
groups extends [4] to all W presented above, and we agree to identify the abstract
group with its faithful representation as a reflection group. Henceforth, assume
that this representation is irreducible. When W is not a Coxeter group, it is known
as a Shephard group (the symmetry group of an object called a regular complex
polytope). Write R = {r1, r2, . . . , r�} and call � the rank of W .

For each Shephard and Coxeter group W there exists [10] a simplicial complex Δ
called the Milnor fiber complex (which is a strong deformation retract of a Milnor
fiber) whose faces are indexed by [11] the cosets wWI (I ⊆ R) of standard parabolic
subgroups WI = 〈I〉 ordered by inclusion. In the case of Coxeter groups, this
simplicial complex is the Coxeter complex, which is the intersection of the real
sphere S�−1 with the polyhedral pieces cut out in R� by the reflecting hyperplanes
of a real form of the group. In general, each type-selected subcomplex ΔS (S ⊆ R)
is homotopy equivalent to a bouquet of spheres, and the CW -module on the top
homology group is called a ribbon representation. Its character ρS has the following
description as an alternating sum of characters induced from principal characters
of parabolic subgroups:

ρS =
∑

I
(−1)|S\I|

�

�⏐
WR\I

where the sum ranges over all subsets I of S; see [7] for details and history.
In the special case when W is the symmetric group, a ribbon representation is

a Specht module of a certain skew ribbon shape [10] and Foulkes’ construction for
the symmetric group translates to summing the ρS according to cardinality |S|.

Main definition. For a Shephard or Coxeter group with generators R as in (�),
and for any integer s with 0 ≤ s ≤ �, the Foulkes character φs is the sum of all
ribbon characters ρS for subsets S ⊆ R with |S| = s.

The main tools of this paper are Section 1.1, and an explicit formula in Section 1.2
for Foulkes characters, which gives a factorization of the (resp. reduced) Foulkes
character table in Section 1.3. Our main results will follow from this factorization.
In particular, it elucidates the type A theory, which previously rested on ad hoc
proofs by induction.

Our formula for φs(g) will depend on the fixed space of g, and we will be par-
ticularly interested in the case when it depends only on the dimension of the fixed
space. When this happens the Foulkes character table reduces to a remarkable
square matrix called the reduced Foulkes character table.

1If mij is odd, then the two reflections ri, rj must in fact be conjugate because in this case

the braid relation says that (rirj)
(mij−1)/2ri = rj(rirj)

(mij−1)/2.
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1.1. A decomposition of the regular character. Let εi denote the character
of the ith exterior power of the irreducible reflection representation V , so that εi is
irreducible for 0 ≤ i ≤ � by a theorem of Steinberg; see [2, Chapter V, Exercise 3].
The following properties are corollaries of [7, Theorem 12.1 and Theorem 12.2]
(after the Coxeter case [17]), two finer results for individual ribbon representations.

• The sum φ0 + φ1 + . . .+ φ� is the character of the regular representation.
• The εi-isotypic component of the regular character is a constituent of φi.

In this way, Foulkes characters bear resemblance to supercharacters ; cf. [3, p. 429].

1.2. A formula for Foulkes characters.

Theorem 1. Let g ∈ W and consider its fixed space X = {v ∈ V | gv = v}. Then

φs(g) =
∑

i
(−1)s−i

(
�− i

s− i

)
fi−1(Δ ∩X)(1)

where fi−1(Δ ∩X) denotes the number of (i− 1)-dimensional faces of Δ ∩X.

Proof. Write φs in terms of the ρ’s, and the ρ’s in terms of cosets, so that

φs(g) =
∑
|S|=s

∑
I⊆S

(−1)|S\I|
�

�⏐
WR\I

(g)

=
∑
i

∑
|I|=i

(−1)s−i

(
�− i

s− i

)
�

�⏐
WR\I

(g)

=
∑
i

(−1)s−i

(
�− i

s− i

) ∑
|I|=i

�

�⏐
WR\I

(g).

The inner sum is the number of (i− 1)-faces of Δ that are stabilized by g. Since Δ
is a balanced simplicial complex (see [7]), it follows that a face is stabilized by g if
and only if it is fixed pointwise by g, or in other words, is a face of Δ ∩X. �

1.2.1. A formula for calculating the face numbers fi−1(Δ∩X). Let L be the collec-
tion of all intersections of reflecting hyperplanes of W ordered by reverse inclusion,
and write μ for its usual Möbius function. For each X ∈ L define a polynomial
BX(t) ∈ Z[t] by BX(t) = (−1)dimX

∑
Y≥X μ(X,Y )(−t)dimY . Also associated with

W is a set of numbers called exponents, the smallest of which is denoted by m1; we
will review these numbers in Section 3.2 below. Orlik [10] (after Orlik–Solomon in
the Coxeter case) showed that

fi−1(Δ ∩X) =
∑

Y
BY (m1)(2)

where Y varies over all i-dimensional subspaces that lie above X in L. Note that
fi−1(Δ ∩X) and BX(t) are determined by the restriction

LX = {Y ∈ L | Y ≥ X}.

1.3. The Foulkes character table. Define the Foulkes character table of W to
be the matrix Φ = [φi(gj)]ij with rows indexed by φ0, φ1, . . . , φ� and columns
indexed by (conjugacy) class representatives g0, g1, . . . , gc, ordered in such a way
that respects fixed space codimension; in particular, g0 = 1 fixes the whole space
and gc fixes only the origin. The Foulkes character table factors according to
Theorem 1.
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Corollary 1.1. The Foulkes character table has the following factorization:

Φik =

[
(−1)i−j

(
�− j

i− j

)]
ij

×
[
fj−1(Δ ∩Xk)

]
jk

(3)

where 0 ≤ i, j ≤ � and Xk is the (pointwise) fixed space of representative gk.

Example 1.1. The Foulkes character table of the symmetric group S4 is

(1)(2)(3)(4) (12)(3)(4) (12)(34) (123)(4) (1234)

φ0 1 1 1 1 1
φ1 11 3 −1 −1 −3
φ2 11 −3 −1 −1 3
φ3 1 −1 1 1 −1

The (pointwise) fixed subcomplexes Δ ∩X and their cell counts are as follows:

f−1 1 1 1 1 1
f0 14 6 2 2
f1 36 6
f2 24

In this way, equation (3) predicts this factorization of the Foulkes character table:⎡
⎢⎢⎣
1 1 1 1 1
11 3 −1 −1 −3
11 −3 −1 −1 3
1 −1 1 1 −1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(30)
−(31) (20)
(32) −(21) (10)

−(33) (22) −(11) (00)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1 1
14 6 2 2
36 6
24

⎤
⎥⎥⎦

1.3.1. The reduced Foulkes character table. Example 1.1 shows that some groups
have characters φi(g) which depend only on the dimension of the fixed space of g.
When this happens we consider the reduced Foulkes character table [φi(gj)], whose
columns are indexed by a subset of class representatives g0, g1, . . . , g� subject to the
condition that the fixed space of gi has codimension i, so that g0 = 1 fixes the whole
space and g� fixes only the origin. The reduced table stores the same information
as the full table and is obtained by deleting redundant columns. In particular, it
also factors according to (3); this will be the key to understanding the determinant
and inverse formulas of Diaconis and Fulman in the next section.

Example 1.2. The reduced Foulkes character table of the symmetric group S4 is⎡
⎢⎢⎣
1 1 1 1
11 3 −1 −3
11 −3 −1 3
1 −1 1 −1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(30)
−(31) (20)
(32) −(21) (10)

−(33) (22) −(11) (00)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
14 6 2
36 6
24

⎤
⎥⎥⎦

The first column gives the values φi(g) for any permutation g with exactly four
cycles (namely the identity), the second column gives the values for any permutation
with exactly three cycles, and so on. It is obtained from the full table in Example 1.1
by deleting one of the two columns indexed by an element with exactly two cycles.
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2. Foulkes characters for wreath products

Fix W = Zr �Sn, so that � = n if r > 1, and � = n−1 in the case when W = Sn.
Write Lp for the intersection lattice of Zr �Sp, so that Ln = L.

2.1. Dimension dependence and basis result. It is well known that in this
case LX � Ln−k for X ∈ L of codimension k; see [14].

Theorem 2. φs(g) depends only on the dimension of the fixed space of g.

Proof. Let X be the fixed space of g. The dimension of X determines LX , and
hence the cell counts of (2). Now (1) implies the result. �

Theorem 3. The Foulkes characters φ0, φ1, . . . , φ� form a Q basis for the space of
class functions χ that depend only on the dimension of the fixed space. Moreover,

χ =
∑

i

〈χ , εi 〉
dim εi

φi(4)

where εi is the character of the ith exterior power of V (so dim εi =
(
�
i

)
).

Proof. Recall from Section 1.1 that εi is irreducible for 0 ≤ i ≤ �, and that it is
a constituent of φj if and only if i = j. Hence the Foulkes characters are linearly
independent, and the basis claim follows from Theorem 2. In turn, the second
claim follows from the fact that εi appears in φi with multiplicity equal to its
dimension. �

2.2. Explicit formulas and a second factorization. Another consequence is
the following explicit formula for the cell counts appearing in Theorem 1, which in
turn gives an explicit formula for the character values φs(g).

Proposition 4. Let X ∈ L and let k denote the codimension of X. Then

fi−1(Δ ∩X) =
∑

j
(−1)i−j

(
n− �+ i

i− j

)
(rj + 1)n−k.(5)

In particular, fi−1(Δ∩X) = fi−1(Δn−k) where Δn−k is the complex for Zr �Sn−k.

Proof. For Y ∈ L of dimension i, one has LY � Ln−�+i, and so (2) tells us that
BY (m1) is the number of top cells in the Milnor fiber complex of Zr �Sn−�+i. These
top cells are indexed by the elements of the group, and so (2) further implies that

fi−1(Δ ∩X) = #{i-dimensional Y ∈ LX} × rn−�+i(n− �+ i)!.

The first factor is a Whitney number of the Dowling lattice LX � Ln−k, and it has
a well-known expression (see [14]) which can be written as [1, Eq. 6]

1

rii!

∑
j
(−1)i−j

(
i

i− j

)
(rj + 1)�−k.

Equation (5) follows if r > 1, when one has n = �. In the case when r = 1, so that

n = �+ 1, equation (5) follows from the identity (i+ 1)
(

i
i−j

)
= (j + 1)

(
i+1
i−j

)
. �

Proposition 4 gives the following formula for the character values φs(g).

Theorem 5. Let g ∈ W and let k be the codimension of the fixed space of g. Then

φs(g) =
∑

j
(−1)s−j

(
n+ 1

s− j

)
(rj + 1)n−k.(6)
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Proof. Let X denote the fixed space of g, so that by (1) and (5) one has

φs(g) =
∑

i
(−1)s−i

(
�− i

s− i

)∑
j
(−1)i−j

(
n− �+ i

i− j

)
(rj + 1)n−k.

Now switch the order of summation to get

∑
j
(−1)s−j(rj + 1)n−k

∑
i

(
�− i

�− s

)(
n− (�− i)

n− �+ j

)

and note that the inside sum is equal to
(
n+1
s−j

)
, since n ≥ �. �

The second part of Proposition 4 sharpens our main factorization (3), while
Theorem 5 gives a new, second factorization that involves a special Vandermonde
matrix. We collect these special factorizations for Zr �Sn in the following corollary.

Corollary 5.1. Maintain the notation of this section. In particular, W = Zr �Sn.
Then the reduced Foulkes character table Φ has the following factorizations:

(F1) Φ =
[
(−1)i−j

(
�−j
i−j

)]
ij
×
[
fj−1(Δn−k)

]
jk

(0 ≤ i, j, k ≤ �).

(F2) Φ =
[
(−1)i−j

(
n+1
i−j

)]
ij
×
[
(rj + 1)n−k

]
jk

(0 ≤ i, j, k ≤ �).

The second factor of (F2) is a special instance of a Vandermonde matrix. �
Example 5.1. In the case of Weyl group A2 = Z1 �S3 one has

Φ =

⎡
⎣ (20)
−(21) (10)
(22) −(11) (00)

⎤
⎦
⎡
⎣ 1 1 1
6 2
6

⎤
⎦

=

⎡
⎣ (40)
−(41) (40)
(42) −(41) (40)

⎤
⎦
⎡
⎣ 1 1 1
23 22 2
33 32 3

⎤
⎦ .

Example 5.2. In the case of Weyl group B3 = Z2 �S3 one has

Φ =

⎡
⎢⎢⎣

(30)
−(31) (20)
(32) −(21) (10)

−(33) (22) −(11) (00)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
26 8 2
72 8
48

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

(40)
−(41) (40)
(42) −(41) (40)

−(43) (42) −(41) (40)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
33 32 3 1
53 52 5 1
73 72 7 1

⎤
⎥⎥⎦ .

2.3. The determinant of the Foulkes character table. In the case of the
symmetric group, Isaacs conjectured (see [3, p. 429]) that the determinant of Φ
is divisible by n!. Diaconis and Fulman confirmed this by in fact showing that
the determinant is equal to n!(n − 1)! · · · 2!. They argued by induction. Our first
factorization (F1) elucidates and extends this formula for the determinant: the left
triangular factor of (F1) has 1’s along its diagonal, while along the right diagonal
we find the group cardinalities ftop(Δi) = |Zr �Si|. Alternatively, one may use our
second factorization (F2) and the well-known Vandermonde determinant formula.

Theorem 6. detΦ = rn(n+1)/2 n!(n− 1)! · · · 2!. �
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2.4. The branching rule and a recursion for Foulkes characters. The next
theorem gives a recursion for the Foulkes character tables and follows from either
one of our factorizations (F1) or (F2). Write Φ(p) for the (reduced) Foulkes char-
acter table of Zr �Sp, so that Φ(n) = Φ.

Theorem 7. Φ
(n)
i,k = Φ

(n−1)
i,k−1 − Φ

(n−1)
i−1,k−1 for k > 0.

Proof. Factor Φ(n−1) according to (F2), so that the row subtraction takes place in
the left binomial factor, while the right, Vandermonde factor is unchanged. Now
the claim follows from the identity

(
n+1
i−j

)
=

(
n

i−j

)
+
(

n
i−1−j

)
. �

The following branching rule says that the Foulkes characters φs satisfy the
recurrence [18, Lemma 16] for Steingŕımsson’s colored Eulerian numbers E(n, r, s),
i.e., E(n, r, s) = (r(n+ 1)− (rs+ 1))E(n− 1, r, s− 1) + (rs+ 1)E(n− 1, r, s).

Theorem 8. φs
⏐�
Zr �Sn−1

= (r(n+ 1)− (rs+ 1))φs−1 + (rs+ 1)φs.

Proof. The formula translates to

Φ
(n)
s,k = (r(n+ 1)− (rs+ 1))Φ

(n−1)
s−1,k + (rs+ 1)Φ

(n−1)
s,k , k < �.

Equation (6) tells us that the right side is equal to

(r(n+ 1)− (rs+ 1))

s−1∑
j=0

(−1)s−1−j(rj + 1)n−1−k

(
n

s− j − 1

)

+ (rs+ 1)

s∑
j=0

(−1)s−j(rj + 1)n−1−k

(
n

s− j

)
.

(7)

Consider the terms indexed by j and observe that

−r(n+ 1)

(
n

s− j − 1

)
+ (rs+ 1)

((
n

s− j − 1

)
+

(
n

s− j

))
= (rj + 1)

(
n+ 1

s− j

)
.

It follows that (7) is equal to
∑

j(−1)s−j(rj + 1)n−k
(
n+1
s−j

)
, which is precisely our

expression (6) for Φ
(n)
sk . �

Corollary 8.1. φs(1) is the Eulerian number E(n, r, s). �

2.5. The inverse of the Foulkes character table and Eulerian idempotents.
For the symmetric group, Diaconis and Fulman showed [3, Thm. 3.1, Cor. 3.2] that
the rows of the inverse of the Foulkes character table are evaluations of Eulerian
idempotents. They accomplished this by first verifying an explicit formula for the
inverse, then comparing coefficients in order to connect with Eulerian idempotents.

We take the opposite approach and give a simple reason for why Eulerian idem-
potents appear, then get the formula for the inverse for free. The key is our second
factorization (F2). There are three bases in [6] Loday’s classic treatment of Euler-
ian idempotents, and what Diaconis and Fulman showed is that the transpose of
Φ is the transition matrix between two of them, known as the c’s and e’s. Our
factorization elucidates this by passing through the third, known as the λ basis.

Eulerian idempotents e0, e1, . . . , e� were introduced by Reutenauer and extended
to Zr � Sn by Moynihan [8, p. 94], after Bergeron–Bergeron in the type B case.
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They are defined according to the formula

∑
i

(
n+ x−1

r − i

n

)
ci =

∑
k
xn−ke�−k(8)

where i, k = 0, 1, . . . , � and the c’s are certain sums in the group algebra ZW .
Define a third set of elements λj by evaluating at x = rj + 1:

λj =
∑

i

(
n+ j − i

n

)
ci(9)

or equivalently

λj =
∑

k
(rj + 1)n−ke�−k.(10)

The transition matrix from the λj ’s to the ci’s is upper triangular with ones along
the diagonal, and its inverse is given by [6, Eq. 1.6.1] the formula

ci =
∑

j
(−1)i−j

(
n+ 1

i− j

)
λj .(11)

It follows from (11) and (10) that the transition matrix from the ci’s to the e�−k’s is[
(rj + 1)n−k

]
kj

×
[
(−1)i−j

(
n+1
i−j

)]
ji

(12)

which is precisely the transpose of Φ from (F2). Hence the following theorem.

Theorem 9. The transpose of Φ is the transition matrix from the ci’s to the e�−j’s.
Equivalently, Φ−T is the transition matrix from the e�−j’s to the ci’s. �
Corollary 9.1. Let s(k, l) denote the Stirling numbers of the first kind. Then

Φ−1
ij =

∑
k,l

s(k, l)(−1)n−i−l

k!rl

(
l

n− i

)(
n− j

n− k

)
.

Proof. Theorem 9 and equation (8) tell us that the i, j entry of the inverse is equal

to the coefficient of xn−i in
(
n+(x−1)/r−j

n

)
. Now write(

n+ x−1
r − j

n

)
=

∑
k

(x−1
r

k

)(
n− j

n− k

)

=
∑

k

(
n− j

n− k

)
1

k!

∑
l
s(k, l)

(
x− 1

r

)l

and use the binomial theorem to get the desired formula; cf. [3, Thm. 3.1 proof]. �

3. General results for Shephard and Coxeter groups

In this section we sharpen and generalize Theorem 6, which gave a formula
for the determinant of the reduced Foulkes character table for a wreath product.
In general, however, the full table may not reduce to a square matrix; exactly
when this happens is the subject of Section 3.3. Here we consider a finer invariant
called the Smith normal form, which exists for any matrix with integer entries;
cf. [5, Ch. III, §7].

Let M be an (� + 1) × (n + 1) matrix with integer entries. The Z-module
Zn+1/(Z row space of M) decomposes as Z/s0Z⊕Z/s1Z⊕ . . .⊕Z/snZ for a unique
sequence of nonnegative integers s0, s1, . . . , sn subject to the condition that si di-
vides si+1 for all i. Recall that the Smith normal form of M encodes the same
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information. An integral matrix D = [dij ] is said to be in Smith form if it is di-
agonal in the sense that dij = 0 whenever i �= j, and its diagonal entries dii are
nonnegative and satisfy the condition d00 | d11 | . . . | dmin(�,n). The matrix M
can be brought into Smith form by an appropriate change of basis, i.e., there exist
matrices P ∈ GL�+1(Z) and Q ∈ GLn+1(Z) such that PMQ = D is in Smith form.
The resulting Smith form is unique and its diagonal entries are given by dii = si.
These entries s0, s1, . . . , smin(�,n) are called the Smith entries of M . Note that if M
is square, then detM = ±s0s1 · · · s�.

3.1. A sharp generalization of Isaacs’ conjecture. Isaacs conjectured that
the determinant of the Foulkes character table for the symmetric group is always
divisible by n!. A stronger conjecture would be that the last Smith entry s� is
divisible by n!, or perhaps even equal to n!. This is in fact true.

Theorem 10. Let W be an irreducible Coxeter or Shephard group. Then the last
Smith entry of the Foulkes character table Φ is equal to |W |.

Proof. Let CLZ denote the Z-valued class functions on W . Recall that the Foulkes
characters of W are linearly independent, and so the last Smith entry s� is the
smallest positive integer s such that the following holds: whenever

∑
qiφ

i ∈ CLZ

for some qi ∈ Q, then one has that sqi ∈ Z. We show that s is the order of the
group.

To see that |W | divides s, recall that the sum of the Foulkes characters of W is
equal to the character of the regular representation of W , or in other words, that

1

|W | (φ
0 + φ1 + . . .+ φ�) = δid

for δK the class function that is 1 on the elements of class K, and 0 elsewhere.
To see that s divides |W |, suppose that

∑
qiφ

i ∈ CLZ for some qi ∈ Q. Write∑
i
qiφ

i =
∑

K
zKδK(13)

for integers zK indexed by conjugacy classes K. To show that |W |qi ∈ Z it suffices
to show that |W |qi is an algebraic integer because |W |qi is a rational number.
Recall from Section 1.1 the character εi of the ith exterior power of the reflection
representation. Apply 〈 εi,−〉 to both sides of (13) to get

εi(1)× qi =
∑

K
zK

|K| εi(gK)

|W |
or equivalently

|W | × qi =
∑

K
zK

|K| εi(gK)

εi(1)

for gK ∈ K. Since εi is an irreducible character of a finite group, a well-known result
from character theory tells us that the terms on the right are algebraic integers.
Hence |W |qi is an algebraic integer, as desired. �

3.2. A sharp generalization of the Diaconis–Fulman formula. Diaconis and
Fulman confirmed Isaacs’ conjecture by showing that in fact the determinant of
the Foulkes character table for Sn is equal to n!(n− 1)! · · · 2! via induction; see [3,
p. 429]. We give a remarkable generalization that holds whenever the determinant
is available, that is, whenever the full table reduces to a square matrix.
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Recall that the group acts on polynomial functions on V by gp(v) = p(g−1v),
and that there exists a set of homogeneous polynomials p1, p2, . . . , p� such that the
subalgebra of W -invariant polynomials is given by C[p1, p2, . . . , p�]. The degrees
di = deg(pi) are uniquely determined by the group, and we agree to number them
so that d1 ≤ d2 ≤ . . . ≤ d�. For example, when W is the symmetric group acting
irreducibly on the subspace of Cn where x1+x2+ . . .+xn = 0, then the elementary
symmetric functions e2, e3, . . . , en form such a set of homogeneous polynomials, and
so the degrees are 2, 3, . . . , n. In general, one has that |W | = d1d2 · · · d�.
Theorem 11. Let W be an irreducible Coxeter or Shephard group. Assume that
each φi(g) depends only on the dimension of the fixed space of g. Then

detΦ = d11d
2
2 · · · d��.

A much sharper result is the following.

Theorem 12. Let W be an irreducible Coxeter or Shephard group. Assume that
each φi(g) depends only on the dimension of the fixed space of g. Then the Smith
entries s0, s1, . . . , s� of the Foulkes character table are given by

si = d1d2 · · · di.
The empty product that occurs when i = 0 is defined to be 1.

Theorem 11 and Theorem 12 will follow from Theorem 1 and the next propo-
sition. The proof of the proposition relies on classic results of Orlik and Solomon
[13–15], which were established using the Shephard–Todd classification [16] and
nontrivial calculations showing that for every X ∈ L of dimension p there exist
positive integers bX1 ≤ bX2 ≤ . . . ≤ bXp such that

BX(t) = (t+ bX1 )(t+ bX2 ) · · · (t+ bXp ).

Call these positive integers Orlik–Solomon coexponents. When X = V they are the
usual coexponents n1, n2, . . . , n� from the invariant theory of the group, which in
the case of Shephard and Coxeter groups satisfy a remarkable duality involving the
exponents m1,m2, . . . ,m� (defined as mi = di − 1) which says that m1 + ni = di.

Proposition 13. Let W be an irreducible Coxeter or Shephard group such that
each φi(g) depends only on the dimension of the fixed space of g. Let X ∈ L and
write p = dimX. Then the following hold:

(i) The cell counts fi(Δ ∩X) depend only on p.
(ii) fp−1(Δ ∩X) = d1d2 · · · dp.

Proof. For (i), suppose otherwise and choose a p-dimensional Y ∈ L such that
fs−1(Δ∩X) �= fs−1(Δ∩ Y ) for some s. Fix s to be the smallest such number, and
choose g, h ∈ W with fixed spaces X,Y . Then (1) implies that φs(g) �= φs(h).

For (ii), recall that fp−1(Δ ∩X) = BX(m1), and hence

fp−1(Δ ∩X) = (m1 + bX1 )(m1 + bX2 ) · · · (m1 + bXp ).

Orlik and Solomon observed that for each Shephard and Coxeter group there exists
some p-dimensional Y ∈ L such that bYi = ni for 1 ≤ i ≤ p. Since (i) tells us that
fp−1(Δ ∩X) = fp−1(Δ ∩ Y ), it follows that

fp−1(Δ ∩X) = (m1 + n1)(m1 + n2) · · · (m1 + np).

Now use the duality m1 + ni = di to rewrite the product as d1d2 · · · dp. �
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Proof of Theorem 11 and Theorem 12. Choose a sequenceX0, X1, . . . , X� ∈ L such
that dimXi = i. Define Φ′ = [fi−1(Δ ∩ Xj)]ij where 0 ≤ i, j ≤ �. Note that the
left factor of (3) is square and has determinant equal to 1. Hence Φ and Φ′ have
the same determinant and the same Smith normal form.

Theorem 11 follows from Proposition 13(ii), which says Φ′ has diagonal entries

fi−1(Δ ∩Xi) = d1d2 · · · di.

These diagonal entries are the claimed Smith entries, and so for Theorem 12 it
suffices to show that each diagonal entry divides the entries to its right in Φ′, i.e.,
that fi−1(Δ ∩Xi) divides fi−1(Δ ∩Xj) whenever i ≤ j. But (2) tells us that

fi−1(Δ ∩Xj) =
∑

X
fi−1(Δ ∩X)

=
∑

X
fi−1(Δ ∩Xi),

where the sums are over all i-dimensional subspaces X ∈ L that lie above Xj and
the second equality follows from Proposition 13(i). This completes the proof. �

3.3. A curious classification.

Theorem 14. Let W be an irreducible Coxeter or Shephard group. Then the
following are equivalent:

(a) The characters φi(g) depend only on the dimension of the fixed space of g.
(b) The characters φ0, φ1, . . . , φ� form a Q basis for the space of class functions χ

that depend only on the dimension of the fixed space, and (4) holds.
(c) The reduced Foulkes character table Φ is square and detΦ = d11d

2
2 · · · d��.

(d) The Smith entries s0, s1, . . . , s� of the table Φ are given by si = d1d2 · · · di.
(e) The isomorphism class of LX depends only on the dimension of X.
(f) The cell counts fi(Δ ∩X) depend only on the dimension of X.
(g) The numbers BX(m1) depend only on the dimension of X.
(h) The Orlik–Solomon coexponents bXi depend only on the dimension of X.
(i) The coexponent sequence n1, n2, . . . , n� is arithmetic.
(j) The degree sequence d1, d2, . . . , d� is arithmetic.
(k) The group W is not F4, H4, E6, E7, E8, or D� for � ≥ 4.

Proof. The proof of Theorem 3 gives the forward implication of (a)⇔(b); the con-
verse is trivial. (a)⇔(c) follows from Theorem 11. (a)⇒(d) is Theorem 12. The
proof of Theorem 2 gives the implication (e)⇒(a).

(i)⇔(j)⇔(k). These equivalences follow from [13, Table 2].
(a)⇔(f)⇒(g). The implication (a)⇒(f) is Proposition 13(i), and the converse

follows from equation (1). The implication (f)⇒(g) follows from the special case
fdimX−1(Δ ∩X) = BX(m1) of equation (2).

(g)⇔(h)⇔(i). The exceptional cases follow from the tables of [14, 15]. When
W is a dihedral group, the rank is 2, and properties (g)–(i) follow immediately.
There are two other nonexceptional cases: Zr � Sn and the Weyl group D� when
� ≥ 4. In the case when W = Zr �Sn, property (i) follows from [13, Table 2], while
(g) and (h) follow from the fact that LX , and hence BX(t), is determined by the
dimension of X. When W = D�, [13, Table 2] tells us that the coexponent sequence
is not arithmetic, and we claim that (g) and (h) fail in this case as well. In usual
coordinates [15], let X be the codimension-2 space where x1 = x2 and x3 = x4, and
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let Y be the space where x1 = x2 = x3. Then BY (m1) < BX(m1) = d1d2 · · · d�−2

by [15, Prop. 2.6], and the claim follows.
(d)⇒(g). Assume that (g) fails. We claim that s1s2 · · · s� < d11d

2
2 · · · d��. As in

the previous proof, it suffices to consider the matrix Φ′ = [fi−1(Δ∩ Y )]i,Y , Y ∈ L.
Recall Orlik and Solomon’s observation that for each Shephard and Coxeter group,
and for each integer p with 0 ≤ p ≤ �, there exists a p-dimensional Y ∈ L such that
bYi = ni for 1 ≤ i ≤ p. From the tables of [14, 15] and the previous paragraph, it
follows that there exists a sequence X0, X1, . . . , X� ∈ L such that dimXi = i and
BXi

(m1) ≤ d1d2 · · · di, with at least one strict inequality. Hence the determinant
of the submatrix [fi−1(Δ ∩ Xj)]ij is strictly less than d11d

2
2 · · · d�� by triangularity.

The claim now follows from a well-known result about Smith forms which says that
s0s1 · · · si−1 is the greatest common divisor of all i× i subdeterminants.

To end, it suffices to show that (k)⇒(e). Since (e) is a well-known property
of the infinite family Zr � Sn, let us suppose that W is dihedral or exceptional of
rank �. The cases dimX = �, 1, 0 are trivial, and when dimX = 2, the structure
of LX is determined by BX(t) = (t + bX1 )(t + bX2 ), which apparently depends
only on the dimension of X by (k)⇒(h). Having dispensed with the case when
� ≤ 3, the Shephard–Todd classification tells us that the only remaining case is
when � = 4 and W is the group known as G32. We need only consider the case
when X is a reflecting hyperplane, and this case follows from the fact that G32

acts transitively on its reflecting hyperplanes; indeed, each reflection of a reflection
group is conjugate to a power of some generating reflection ri, and in the case of
G32, all of the generating reflections are clearly conjugate. �

Acknowledgements

The author would like to thank P. Diaconis, P. Hersh, and V. Reiner for their
kind enthusiasm and comments. He also thanks V. Reiner for pointing out [3].

References

[1] Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996),
no. 1-3, 13–33, DOI 10.1016/0012-365X(95)00095-E. MR1415279 (98a:06005)

[2] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre
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