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Abstract

The field of atom optics has progressed rapidly over the past 20 years since the reali-
sation of Bose-Einstein condensation, such that the wave behaviour of atomic gases is
now routinely demonstrated. Furthermore, the study of quantum atom optics, which
goes beyond a ‘mean-field’ description of quantum systems to consider the behaviour
of single particles, has demonstrated both the similarities between photons and massive
species, and their differences as a result of the internal structure and external interac-
tions of atoms. An important class of observable quantities which allow such effects to
be measured are nth order correlation functions, which can be interpreted as a result
of either particle or wave behaviour. These functions provide a statistical description of
fluctuations in n-tuples of particles in a source, which rigorously defines concepts such
as coherence. The quantum statistics of a Bose-Einstein condensate should be the same
as that for an optical laser, while an ideal thermal Bose gas matches the behaviour of
incoherent light. However, correlation measurements can also be used to quantify the
influence of interactions, dimensionality, confining potentials and waveguides, and the
difference in quantum statistics between fermions and bosons, which illustrates the rich
range of behaviour exhibited by atomic gases.

In this thesis, several aspects of quantum atom optics are explored with experiments
using ultracold metastable helium, a species with the unique advantage of facilitating
simple single-atom detection with high resolution, while still allowing Bose-Einstein
condensates to be formed. The coherence of atomic systems is shown to be maintained
when outcoupled as pulsed atom lasers, and the long-range order characteristic of Bose-

iii



iv

Einstein condensates is demonstrated to third order for the first time. Conversely, ther-
mal bunching is observed for a variety of atomic systems, including the measurement
of correlation functions up to sixth order with near-ideal interference contrast. These re-
sults clearly demonstrate the correspondence between the quantum statistics of photons
and atoms as was formalised by Glauber, as well as confirming the validity of applying
Wick’s theorem to simplify the statistics of atomic gases. Correlation functions are also
shown to be an ideal tool to probe the quantum state of an ultracold gas, and were used
to observe the phenomenon of transverse condensation in an elongated Bose gas, as well
as characterise the mode occupancy of matter waves guided by an optical potential.

Ultracold metastable helium is also suitable for exploring other fundamental topics
in quantum optics such particle/wave duality. The notion of complementarity stim-
ulated long running philosophical discussions about how apparently mutually exclu-
sive behaviours can coexist, which culminated in Wheeler devising his famous ‘delayed
choice’ gedankenexperiment. A proposed experimental method to realise Wheeler’s ex-
periment with ultracold atoms is discussed, and preliminary measurements presented
which indicate that the completion of this experiment could be achieved in the near
future. Not only is this of interest in its own right, but the implementation of this exper-
iment has also developed techniques which may enable further studies in quantum atom
optics such as investigations of the Hong-Ou-Mandel effect and quantum entanglement
with massive particles.
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Chapter 1

Introduction

In the beginning of the history of experimental
observation, or any other kind of observation on
scientific things, it is intuition, which is really based on
simple experience with everyday objects, that suggests
reasonable explanations for things. But as we try to
widen and make more consistent our description of what
we see, as it gets wider and wider and we see a great
range of phenomena, the explanations become what we
call laws instead of simple explanations. One odd
characteristic is that they often seem to become more
and more unreasonable and more and more intuitively
far from obvious.

— Richard Feynman [1]

Quantum mechanics is arguably the most powerful yet perplexing physical theory in ex-
istence. Despite the remarkable accuracy to which it has been tested, and its widespread
application to modern science and technology, some consequences of quantum theory
remain poorly understood to the point where consensus among physicists has not yet
been reached on a variety of fundamental ideas [2–4]. While this may appear disconcert-
ing, it continues to stimulate the development of new ideas to this day which contribute
to a deeper understanding of physical behaviour. Many of the misconceptions about
quantum mechanics are the result of a desire to reconcile this abstract theory with the
more intuitively familiar concepts of classical physics, however it is this process which
also helped uncover many of the revolutionary aspects of quantum mechanics.

Accordingly, the development of humankind’s understanding of light has taken a
long and winding path, with a history of conflicting theories being proposed to describe
its behaviour1. After several centuries of rudimentary use of optics to provide basic
technologies, the seventeenth century gave rise to the first detailed studies which pro-
vided insight into the true nature of light [5]. Central to this was the question of whether
light behaved as a wave, which would be compatible with measurements such as those
of interference patterns by Robert Hooke and the subsequent wave theory of light by
Christiaan Huygens; or that light was corpuscular, which for example Isaac Newton
used to explain the colour of light. Despite the considerable sway of Newton’s con-
victions, the case for a wave description of light was strengthened by Thomas Young’s
study of interference, particularly after his famous double slit experiment. This was
followed by a thorough mathematical theory of interference by Augustin-Jean Fresnel,

1A detailed history of which is presented in books such as Ref. [5].
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2 Introduction

and the work of James Clerk Maxwell and Heinrich Hertz among others which firmly
established light as an electromagnetic wave [6].

At the beginning of the 20th century, during the early development of quantum the-
ory, Max Planck assumed that light was to be treated as particles to explain the spectrum
of black body radiation [7]. Albert Einstein also invoked this assumption to explain the
photoelectric effect [8], and as did Arthur Compton to explain the wavelength change
for scattered x-rays [9], and these early results of quantum mechanics confirmed that
light did indeed behave as a particle. Eventually, it was accepted that the concepts of
both particles and waves were both equally applicable for understanding light. Louis de
Broglie then extended this to include the notion that massive bodies normally thought of
as particles could also display wave behaviour [10], and an experimental measurement
of electron diffraction in the famous Davisson-Germer experiment [11] confirmed that
de Broglie’s hypothesis was correct (as did a later famous experiment which showed
that interference can even be observed with much larger C60 ‘bucky-balls’ [12]).

Classical descriptions of radiation are still used to understand not only familiar phe-
nomena such as diffraction and image formation, but also in some cases non-linear op-
tical effects [13]. However, development of theory for the particle nature of light and its
interaction with quantum atoms with discrete energy levels was one of the key achieve-
ments of quantum mechanics. Among the most fundamental concepts was that light of
frequency f could be absorbed and subsequently emitted by atoms as photons with en-
ergy E= h f , where h= 2πh̄ is Planck’s constant. Equations to describe the evolution of
quantum systems were developed in the context of particles with the matrix mechanics
of Werner Heisenberg, while Erwin Schrödinger’s equation captured the wave nature of
quantum systems [5]. Later, a more thorough treatment for this was provided by Paul
Dirac [14], which accounted for both interference and interactions with matter and thus
provided a unified theory of wave and particle behaviour [15].

As these abstract mathematical theories were being produced, the views of the sci-
entists who formulated them on how to reconcile these theories with experimental ob-
servations, not to mention intuition, began to diverge. Many people such as Heisenberg
were unconcerned with the failure of classical ideas, and were content to ‘trust the math-
ematics’, while others such as Niels Bohr wanted to explore the significance of the act of
measurement, and the interface between a microscopic quantum system to be measured
and a classical macroscopic measurement device [5]. While Bohr’s so-called correspon-

dence principle does reconcile quantum theory with classical physics in the limiting case
of large systems (or more specifically, large quantum numbers), it certainly does not
imply that classical analogies can be extended to microscopic systems.

While providing a theory which accurately describes the behaviour of light and
atoms, quantum mechanics also has many counter-intuitive consequences which have
challenged long-held ideas about the physical world, to the point where a variety of
interpretations have been invoked to reconcile quantum theory with our understanding
of nature. In particular, the discontinuity that occurs upon the interaction of quantum
system with measurement device was problematic for Bohr, as it implied a lack of de-
terminism. It therefore became important to define the act of measurement carefully,
and to consider how to separate the microscopic from the macroscopic. Another key
highly non-classical consequence of this new quantum theory was Heisenberg’s uncer-
tainty principle, which mathematically dictates that a pair of conjugate observables such
as position and momentum, or time and energy, cannot both be known simultaneously
with arbitrary precision. Bohr saw this as an example of a deeper-lying complementarity
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in quantum theory, where the application of a classical concept to understand a par-
ticular aspect of a system prevents a different and complementary aspect from being
described with reference to classical concepts within the same picture. This was largely
inspired by the distinction between the experimental apparatus used to measure pairs
of complementary behaviours, which inevitably precludes the measurement of the two
behaviours simultaneously, as is illustrated by the Heisenberg microscope gedankenexper-

iment. Bohr used this idea to address the issue of why light and matter could sometimes
be observed to act as particles, and sometimes as waves [16]. With his complementarity
principle, Bohr claimed that whether particle or wave behaviour of light or matter is
measured is determined by the nature of the experiment being performed, a concept
which Richard Feynman later identified as the ‘only mystery’ in quantum mechanics
[1]. For example, Bohr claimed that for an electron incident on a pair of holes [1],

it is impossible to design any apparatus whatsoever to determine through
which hole the electron passes that will not at the same time disturb the
electron enough to destroy the interference pattern.

The concept for complementarity, along with the classical concept of determinism
being replaced with a probabilistic view of nature, formed the centrepiece of the Copen-

hagen interpretation of quantum mechanics championed by Bohr, which eventually be-
came a widely but not universally accepted way of understanding the indisputably
accurate mathematics of quantum theory. However, there were some notable dissidents
of Bohr’s position, including Einstein and his colleagues Boris Podolsky and Nathan
Rosen, who were uncomfortable with the abandonment of determinism and were moti-
vated to identify a perceived problem with the Copenhagen interpretation by outlining
the famous Einstein-Podolsky-Rosen (EPR) paradox [17]. The purpose of this paper was
to advocate the idea that the quantum theory developed to that point was incomplete,
as it was unable to account for correlations between causally separated pairs of particles
which were supposed to not be in a specific state before measurement. Through the dis-
cussions following this paper, concepts such as entanglement were introduced to account
for the apparent non-local link between the pair of particles (famously coined ‘spooky
action at a distance’), while hidden variables were required to ‘complete’ quantum theory.
This fuelled a long-running debate between Bohr and Einstein which is covered in detail
in Ref. [5], and remained in the realm of philosophical discussion until an experiment
could be devised to determine if either view was correct.

A resolution for the EPR paradox was finally found several decades later by David
Bell, who mathematically defined an inequality which unambiguously distinguishes be-
tween quantum physics and a classical picture where hidden variables and local realism
both hold (a complete history of which can be found in Ref. [18]). When it was shown
experimentally by Alain Aspect that Bell’s inequality was indeed violated by entan-
gled pairs of photons [19, 20], it seemed like Einstein’s idea of a realist world where
properties exist independent of observation was discredited and that the Copenhagen
interpretation had been proven to be correct. However, a variety of other interpretations
have emerged in the following years, some of which such as the Bohm pilot-wave theory
are able to circumvent problems associated with complementarity by allowing particle
and wave behaviours to coexist, while others have revived some of Einstein’s arguments,
such that the issue is still yet to be settled conclusively[5].

While progress continued to be made which refined the quantitative accuracy of
quantum theory, an interest in exploring the philosophical aspects of quantum mechan-
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ics remained. Bohr’s concept of complementarity was readdressed by John Wheeler,
who wished to isolate the role that the experimenter plays in choosing whether particle
or wave behaviour is observed in a twin slit-style experiment. In his famous delayed-
choice gedankenexperiment, the choice of experimental configuration is made after the
particle to be measured has exited the slits, however the fact that the experiment does not
have a definite configuration at that point does not prevent the expected result according
to the principle of complementarity from being found. Although it took some time for
an experiment to be performed which matched Wheeler’s idea sufficiently closely, upon
its successful completion [21] the conclusions drawn by Wheeler and Bohr were vindi-
cated. However, this again shows the fallacy of thinking in terms of classical concepts,
as this result does not imply that the choice of experimental configuration influenced
the past behaviour of the particle, but instead emphasises that nothing can be concluded
about the behaviour of the particle until a measurement is made.

A further twist to the concept of complementarity is the idea that a continuum of
intermediate behaviours exist between the two limits of particle and wave, as opposed
to the naïve view of the two being mutually exclusive [22]. This is quantified by the
Englert–Greenberger duality relation [23], which defines the limit of the which-way
information characteristic of particles is available depending on the wave interference
visibility observed, without making reference to Heisenberg’s uncertainty relation. Fur-
thermore, the choice of the experimental configuration in Wheeler’s experiment can be
switched with a quantum state in any arbitrary superposition of the two options [24],
which not only demonstrates a mixture of particle and wave behaviours, but also shows
that the behaviour observed depends on whether the result of the quantum ‘switch’
state is known or not [25–27]. This is an example of quantum erasure of information.

Other concepts from classical physics required less confronting revisions as quan-
tum theory was developed, such as statistical distributions of particles, and the concept
of coherence. While the Maxwell-Boltzmann distribution remains appropriate at high
temperatures, as a collection of particles is cooled, the discrete nature of the energy lev-
els that the particles can occupy becomes important, as does the parity of the particle
wavefunctions which determine how many particles can occupy the same level accord-
ing to the Pauli exclusion principle [28]. A particular feature of the statistics of bosons
in the phenomenon of Bose-Einstein condensation [29, 30], in which a macroscopically
large portion of particles occupy the exact same quantum state. This is in stark contrast
to a thermal distribution, in which the properties of the system are strongly dependent
on temperature, as the particles in a Bose-Einstein condensate (BEC) can all be repre-
sented by the ‘same wavefunction’ and have properties which are not associated with a
temperature.

While there intuitively appears to be an unmistakable contrast in coherence between
a BEC and a thermal distribution, in the sense of how ‘alike’ the particles are to one an-
other, the classical definition of coherence is not necessarily able to distinguish the two.
The invention of the laser, which produces a source of photons with identical quantum
behaviour, not only gave rise to the field of quantum optics where the behaviour of indi-
vidual photons is significant, but also provided an experimental way to evaluate a more
rigorous definition of coherence, which is discussed at length later in this thesis. Es-
sentially, quantum coherence is determined by correlation functions which consider the
interference between individual particles. It is important to note that such correlations
are not the result of entanglement or interactions in this case, but are rather dependent
only on quantum statistical distributions. In this context, coherent states such as lasers
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and BECs can be identified as those with the lowest uncertainty allowable by the Heisen-
berg uncertainty principle in their properties, and are consequently the states which in
some sense most closely mimic the behaviour of classical states.

Robert Hanbury Brown and Richard Twiss devised an experiment to measure the
size of distant stars with quantum correlation functions [31], by replacing standard
single-body Michelson interferometry with two-particle interference which demon-
strates an effect which bears their name. While this was a controversial proposal at the
time, the experiment was placed on a solid theoretical basis by a new theory of quantum
coherence by Roy Glauber [32], who later won a Nobel Prize for this work which laid
the theoretical foundation for modern quantum optics. In doing so, a truly quantum-
mechanical definition of coherence was established, which addresses the failings of the
classical notion of coherence by unambiguously showing the contrast between coherent
and incoherent sources, and clarified both the particle and wave-like aspects of inter-
ference. Furthermore, it provided a framework to understand the quantum statistics
of systems at a single particle level, and lead to further novel phenomena to test in-
distinguishability such as the Hong-Ou-Mandel effect [33], where pairs of particles that
interfere at a beamsplitter always exit via the same port.

Clearly, our understanding of quantum physics is yet to be completed or at the very
least agreed upon, which continues to stimulate study in fields such as quantum optics.
As technology improves, it provides the opportunity to not only test established theory
in novel ways, but to also learn about more complicated systems. A prominent example
of this is the field of quantum atom optics, which explores effects normally associated
with photons in the context of atomic systems. This will indeed be the main objective
of this thesis: to develop experimental techniques to observe novel quantum statistical
and matter wave interference effects in ultracold metastable helium.

Fundamental tests of quantum mechanics with ultracold atoms

A large portion of the research exploring the fundamental tenets of quantum theory has
been performed with photons. As sources of light with unique quantum properties such
as lasers became readily available, and given that the resultant photons are relatively eas-
ily manipulated with experimental setups of modest size and complexity, light provides
a natural testing ground for novel quantum phenomena. However, a fundamental result
of quantum mechanics is that massive particles such as atoms should show much of the
same behaviour as light, as the de Broglie hypothesis indicates that atoms should be
subject to the same particle/wave duality as photons, in addition to the fact that bosonic
atoms obey the same quantum statistical distribution as light. Glauber’s theory of quan-
tum coherence is therefore also appropriate for describing quantum gases [34], where
interference is characterised by the overlapping of de Broglie wave packets, which for
dilute gases occurs largely in the absence of electromagnetic interactions between the
atoms.

While it is relatively easy to observe the interference of light macroscopically, the de
Broglie wavelength for atomic systems is proportional to T−1/2 and is typically far too
small for interference effects for gases at room temperature (∼ 300 K) to be measured,
which corresponds to the familiar view of atoms as being ‘billiard ball’ particles. How-
ever, the development of the optical laser inspired significant advances in the precise
manipulation of atomic species, such that gases could be cooled to temperatures of mi-
crokelvin or below, at which point interference occurs over length scales which can be
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resolved on modern detectors. Success with this objective gave rise to the field of atom

optics, in which the roles of matter and light are essentially interchanged such that light
is used in addition to the application of external magnetostatic fields to cool, trap and
manipulate matter waves [35].

As was mentioned earlier, a characteristic feature of the Bose-Einstein distribution is
the condensation of a macroscopic portion of particles into the ground energy state of
a system. For this to occur, a bosonic gas must be cooled so that the de Broglie wave-
length of atoms approaches the mean inter-particle spacing such that there is significant
overlap between the wave packets [36]. Condensation in dense and strongly interacting
systems such as superfluid helium was identified as early as 1938 [37–39], and theory
was developed to demonstrate that such a system possessed long-range order [40–43],
which is a characteristic of coherence. However, while superfluids can display some
interesting phenomena such as quantised vortices, condensed dilute atomic gases in
which interparticle interactions are typically very small were seen as the ideal way to
test the principles of quantum mechanics with massive particles. Initial work in the
1970s attempted to condense hydrogen, however it was realised that alkali metals were
a better candidate for laser cooling due to their favourable electronic structure. Conden-
sation of a dilute quantum gas this was achieved in 1995 for 87Rb [44], 23Na [45] and
most probably 7Li [46] after several decades of effort, while condensation of a variety of
alkali, alkaline earth and lanthanide metals, as well as metastable helium [47, 48], soon
followed. Condensation is currently a topic of much interest in other systems, such as
exciton-polaritons [49] which uniquely can undergo this transition at room temperature
[50], and curiously, with photons2 [51].

It was soon demonstrated that BECs of ultracold atoms were able to exhibit the same
mean-field optical effects as conventional lasers, including a high interference fringe vis-
ibility characteristic of classical coherence. Many of the standard operations of linear
optics were also realised for condensed or ultracold but incoherent atomic sources via
atom-light interactions, such as diffraction, reflection, beamsplitting, focusing, waveg-
uiding and interferometry. This enables a wide range of experiments in atom optics
which emulate classical optics with intense and coherent sources of light to be per-
formed. In addition, non-linear effects such as four-wave mixing [52, 53] can be re-
alised, which may be facilitated by the production of atomic analogues of laser beams
by controllably releasing trapped atoms from a BEC.

However, the fundamental behaviour of quantum gases on a single particle level is
also of interest, just as it is in the study of quantum optics for sources of light. The
relatively new field of quantum atom optics is concerned with nonlinear and quantum
statistical effects in ultracold gases, which allows effects beyond the more classically
oriented mean-field behaviour to be observed. Indeed, there is a close correspondence
between processes such as parametric downconversion in optics with molecular disso-
ciation or collisions in atomic systems. While it is typically more difficult to measure
single atoms with high temporal and spatial resolution than it is for photons, noble gases
in a metastable excited state contain enough internal energy to be easily detected with
standard micro-channel plates. Of these gases, it is only helium which can be cooled
to the temperatures required for Bose-Einstein condensation, however metastable he-
lium has proven to be an ideal atomic species for exploring quantum atom optics, as its

2This process requires that the system is able to rethermalise a thermal distribution of photons while
conserving photon number, which does not occur for blackbody radiation or an optical laser.
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small atomic mass results in a large de Broglie wavelength and thus a more pronounced
wavelike behaviour.

Despite the considerable experimental difficulty in creating ultracold gases, research
in quantum atom optics has progressed rapidly since the realisation of Bose Einstein
condensation in dilute gases. Hanbury Brown-Twiss bunching has been observed in
atomic systems [54], and Glauber’s quantum definition of coherence was shown to
be satisfied for BECs to second order [55], while the uniquely quantum-mechanical
phenomenon of anti-bunching due to the Pauli exclusion principle was observed for a
fermionic isotope of helium [56]. The latter of those results highlights the richness of
quantum atom optics compared to its photonic counterpart, where the mass and inter-
nal structure of atoms add to the complexity of possible phenomena, such that atomic
experiments extend beyond demonstrations of optical concepts carrying over from pho-
tonics verbatim. A variety of other phenomena such as the Mott insulator to superfluid
transition [57] or the demonstration of atomic systems characterised by negative tem-
peratures [58] are further examples of the appeal of exploring quantum mechanics with
ultracold gases. Currently, atomic systems are proving to be crucial for advances in
fields such as quantum computing and precision measurement, which suggests that the
study of quantum atom optics will remain of interest for some time in the future.

The objective of this thesis is to develop and utilise novel techniques for observing
matter-wave interference and quantum statistical effects in ultracold gases of metastable
helium. The unique advantages of our experimental setup, such as the exceptionally sta-
ble magnetic and optical traps, and high-resolution single atom detector located deep
in the far field to accentuate matter-wave interference, are favourable for achieving sig-
nificant improvements in a variety of quantum atom optics experiments. Despite the
success of previous work to demonstrate phenomena such as the Hanbury Brown-Twiss
effect in atomic clouds, the experimental effort required to do so rendered such exper-
iments inappropriate in many cases for using quantum statistical measurements as a
probe to learn novel information about the quantum state of ultracold atomic systems.
Several of the experiments described in this thesis describe how the signal-to-noise ratio
of atomic bunching experiments can be improved concurrently with a considerable re-
duction in the time required to acquire experimental data. Such improvements allowed
bunching measurements to break new ground for probing quantum gases in several
different experiments, such as the evaluation of higher-order correlation functions, the
modal structure of waveguides, and the onset of transverse condensation in an elon-
gated trapped cloud. Several other investigations of matter-wave interference were also
undertaken, which take advantage of the unique advantages of our apparatus, while
additional work extended towards realising Wheeler’s delayed choice experiment with
massive particles for the first time.

1.1 Thesis structure

An overview of the concepts central to this thesis, including the quantum-mechanical
effects to be explored in the subsequent chapters, as well as the cooling and trapping
procedures used to prepare ultracold atomic samples, is provided in Chapter 2. The
chapter concludes with a brief discussion of the properties of metastable helium, the
species of choice for the experiments performed, which articulates the unique advan-
tages of its use in quantum atom optical experiments. This is followed by a description
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of the experimental setup in Chapter 3, which covers the implementation of the cooling
and trapping techniques introduced in the previous chapter, and the generation of atom
lasers from magnetic and optical traps, which plays a key role in several experimen-
tal results. Of particular importance is our detection systems for measuring individual
atoms with high resolution in up to three dimensions, such that statistical measurements
requiring single atom counting can be performed.

Chapter 4 describes the development of several methods for measuring Hanbury
Brown-Twiss quantum correlations. The experimental results presented in this chapter
range from a demonstration of the contrast between the quantum statistics of a thermal
source and a pulsed atom laser, to the first measurement of long-range three-body cor-
relation functions and the confirmation that BECs are coherent to at least third order.
Following this are experiments which greatly improve both the signal-to-noise and data
acquisition rates of quantum correlation measurements, such that higher-order correla-
tion functions can easily be measured for clouds in a variety of trapping configurations.
This culminates in the observation of thermal bunching up to sixth-order in the ideal
limit which is no longer hampered by statistical errors or imperfect detector resolution.
These new experimental techniques are then utilised in Chapter 5 to enable a subse-
quent experiment where correlation measurements revealed unique information about
quantum systems, such as the observation of transverse condensation as an elongated
Bose gas is cooled.

A variety of investigations of macroscopic matter-wave interference are detailed in
Chapter 6. The production of a far-field diffraction pattern by imaging an atom laser
on a microscopy diffraction mask appears to be a promising method for calculating
the Wigner function of a coherent quantum gas. The modal profile of ultracold gases
guided with an optical potential was also explored by either decomposing the transverse
density profile of a matter wave which is predominantly loaded into a single higher-
order mode of the confining potential, or with correlation measurements which illustrate
the contrast between guided atom laser and thermal gases which may otherwise be
indistinguishable.

Finally, a new method which aims to realise Wheeler’s delayed-choice gedankenex-

periment is presented in Chapter 7, which includes the development of an interferometer
for single ultracold atoms, and preliminary results which suggest the potential success
of this approach are discussed. While this experiment is yet to be completed due to
painstaking stability demands3, it not only represents an opportunity to test fundamen-
tal quantum-mechanical concepts such as complementarity, but also leads to further
similar experiments which could investigate topics such as the Hong-Ou-Mandel effect
and Bell’s test of quantum entanglement with massive particles.

1.2 List of publications

The work described in this thesis resulted in the following publications:

• A. G. Manning, S. S. Hodgman, R. G. Dall, M. T. Johnsson, and A. G. Truscott,
“The Hanbury Brown-Twiss effect in a pulsed atom laser,” Optics Express 18, 18712
(2010) [59].

3After the submission of this thesis, further work by the ANU group has brought this experiment to
completion.

http://dx.doi.org/10.1364/OE.18.018712
http://dx.doi.org/10.1364/OE.18.018712
http://dx.doi.org/10.1364/OE.18.018712


§1.2 List of publications 9

• S. S. Hodgman, R. G. Dall, A. G. Manning, K. G. H. Baldwin, and A. G. Truscott,
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• A. G. Manning, W. RuGway, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A.
G. Truscott, “Third-order spatial correlations for ultracold atoms,” New Journal of

Physics 15, 013042 (2013) [63].

• R. G. Dall, A. G. Manning, S. S. Hodgman, Wu RuGway, K. V. Kheruntsyan, and
A. G. Truscott, “Ideal n-body correlations with massive particles,” Nature Physics

9, 341 (2013) [64].

• Wu RuGway, A. G. Manning, S. S. Hodgman, R. G. Dall, A. G. Truscott, T. Lam-
berton, and K. V. Kheruntsyan, “Observation of Transverse Bose-Einstein Conden-
sation via Hanbury Brown-Twiss Correlations,” Physical Review Letters 111, 093601
(2013) [65].

• A. G. Manning, R. Khakimov, R. G. Dall, and A. G. Truscott, “A Source of Single
Metastable Atoms in the Nanokelvin Regime,” Physical Review Letters 113, 130403
(2014) [66].

• A. G. Manning, R. Khakimov, R. G. Dall, and A. G. Truscott, “Wheeler’s Delayed
Choice Gedankenexperiment with a Single Atom,” under review (2014).

http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1364/OL.36.001131
http://dx.doi.org/10.1364/OL.36.001131
http://dx.doi.org/10.1364/OL.36.001131
http://dx.doi.org/10.1038/ncomms1292
http://dx.doi.org/10.1038/ncomms1292
http://dx.doi.org/10.1038/ncomms1292
http://dx.doi.org/10.1088/1367-2630/15/1/013042
http://dx.doi.org/10.1088/1367-2630/15/1/013042
http://dx.doi.org/10.1088/1367-2630/15/1/013042
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1103/PhysRevLett.111.093601
http://dx.doi.org/10.1103/PhysRevLett.111.093601
http://dx.doi.org/10.1103/PhysRevLett.111.093601
http://dx.doi.org/10.1103/PhysRevLett.111.093601
http://dx.doi.org/10.1103/PhysRevLett.113.130403
http://dx.doi.org/10.1103/PhysRevLett.113.130403
http://dx.doi.org/10.1103/PhysRevLett.113.130403


10 Introduction



Chapter 2

Background theory

The central theme of this thesis will be the study of quantum atom optics, where ef-
fects typically associated with light are observed with massive particles. This essentially
exchanges the roles of matter and light with regards to standard quantum optics ex-
periments, where light is now used to manipulate matter waves such that phenomena
including interference can be measured. Not only does this provide the opportunity
to test fundamental quantum mechanics with massive bodies containing internal struc-
ture, but also allows a range of novel effects not possible for photons to be investigated.
As the field of ultracold atomic physics has matured and expanded significantly over
the last few decades, the cooling and trapping of quantum gases has become relatively
routine, and consequently will not be covered comprehensively here due to the range
of review publications available which are cited as appropriate throughout this chapter.
This chapter will therefore only provide a brief overview of the processes required to
produce quantum gases which are sufficiently coherent for wave-like properties of mat-
ter to be apparent, including the phenomenon of Bose-Einstein condensation, which is
the atomic analogue of an optical laser. However, the unique quantum-mechanical ef-
fects which will be the focus of the results presented in this thesis are explored in more
detail.

2.1 The quantum nature of light and atoms

The development of quantum physics has required the revision of many classical theo-
ries. In some cases, this seems to occur as an extension of existing ideas, however at their
heart quantum effects cannot generally be reconciled with our intuitive understanding
of nature. In particular, while coherence can be understood in a classical sense, a fully
quantum-mechanical treatment leads to not only fundamental change in the definition
of coherence, but also the possibility of observing many highly non-classical effects.
Furthermore, due to a perceived need to associate interpretations with quantum theory,
analysis of the role of measurement of a quantum system has uncovered many apparent
paradoxes, the discussion of which has lead to improvements in our understanding of
quantum processes.

This chapter begins with a discussion of the two driving themes of this thesis: quan-
tum correlation functions, which can be used to quantify the coherence of ultracold
atomic gases; and Wheeler’s delayed choice gedankenexperiment, which highlights the
importance of complementarity in the understanding of quantum behaviour. Although
theoretical discussions of such topics could constitute theses in their own right, an em-
phasis will be placed on experimental considerations, and this section serves as a primer
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for the chapters that follow which describe experiments aiming to measure these phe-
nomena.

2.1.1 Development of quantum optics – the Hanbury Brown-Twiss effect and
correlation functions

Interferometry is a widely used technique for making accurate measurements on micro-
scopic scales, with applications ranging from the famous Michelson-Morley experiment
which disproved the existence of luminiferous ether [67], to modern studies of metrol-
ogy, surface testing, and the search for gravity waves. After the invention of the optical
laser in the 1950s, techniques of laser cooling (discussed in §2.2) were developed to slow
atoms such that their de Broglie wavelengths become significant, and matter-wave in-
terference can be observed. Interferometry of ultracold neutral atoms is currently an
active area of research, where for example the precision of atomic clocks and gravitation
sensors are improving in a remarkable manner.

Interferometry is usually thought of as the consequence of wave superposition, the
most obvious example of which being Young’s double-slit experiment, which allows the
interference of sub-millimetre wavelength light to be observed on a macroscopic scale.
A key characteristic of the stationary interference pattern seen for an interferometer is
its fringe visibility

V =
Imax − Imin

Imax + Imin
, (2.1)

which compares the highest intensity Imax and lowest intensity Imin of the interference
pattern. In the classical theory of wave interference, the visibility reveals the coherence
of the wave source, where a completely coherent source has a perfectly resolved wave
interference pattern and V=1, while a completely incoherent source does not show any
interference whatsoever and V = 0. Essentially, this depends on the spectral linewidth
of the source, where monochromatic light results an a high-visibility pattern, while
interference washes out for broadband light.

Classical fringe (first-order) correlation functions

The use of fringe visibility to determine classical wave coherence can be extended to the
notion of correlation functions, which measure how well a source of waves retains its
state over distance or time. Light is treated classically as a continuous wave, where the
wave amplitudes for two or more nearby points in time or space are linked by having the
same phase and fluctuations. On the other hand, the correlation between these points
decreases at larger temporal or spatial separations for incoherent light, until different
locations in the wave become independent and show no interference [13]. Before the
invention of the laser, any source of light had a spectral shape with a finite width, and
the Fourier transform of this sets the separations over which correlations can occur.

A monochromatic plane wave of light with wavevector k = 2πk̂/λ for wavelength
λ is considered to be a continuous, oscillating electric field E(r, t) = E0 cos (k · r − ωt),
while any arbitrary waveform can be composed from a linear superposition of plane
waves. If we take the amplitude of any such arbitrary electric field to be E(r, t), with an
intensity I(r, t)=E∗(r, t)E(r, t), we can define the first-order correlation function which
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compares the wave between spatial positions r1 and r2 and times t1 and t2 as [13]

G(1)(r1, t1; r2, t2) = 〈E∗(r1, t1)E(r2, t2)〉 , (2.2)

where the angular brackets signify an average over time and space. Furthermore, this
function can be normalised to remove the dependence on the bulk intensity, to

g(1)(r1, t1; r2, t2) =
G(1)(r1, t1; r2, t2)

〈E∗(r1, t1)〉 〈E(r2, t2)〉
. (2.3)

For situations such as the commonly used Michelson interferometer, where the av-
erage light intensity is constant in time and we want to compare the relative behaviour
between positions r and r + ∆r, Eq. 2.3 simplifies to

g(1)(∆r) =
〈E∗(r)E(r + ∆r)〉
〈E∗(r)〉 〈E(r + ∆r)〉 . (2.4)

If the average intensity of the light is spatially uniform, then V=max{|g(1)(∆r)|}. Sim-
ilarly, measuring correlations in photocurrent between times t and t + τ can be written
g(1)(τ) = 〈E∗(t)E(t + τ)〉/ [〈E∗(t)〉 〈E(t + τ)〉], where in this case spatial information is
not considered.

Initial attempts to measure the angular size of distant stars made use of Michelson-
type interferometers, where this angle results in a phase shift between light travelling
along different paths from the star to the interferometer. For time-independent illumi-
nation, the angle φ between two wavevectors k1 = kk̂1 and k2 = kk̂2 for plane waves Ekj

(j= 1, 2) with 〈Ekj
〉= 0 and 〈Ekj

Ekn
〉= δjn I0 emanating from the star can be determined

from [68]

G(1)(∆r) ∝ I0

{

1 +
1
4

cos [(k1 + k2) · ∆r] cos [(k1 − k2) · ∆r]

}

,

≈ I0

{

1 +
1
4

cos [(k1 + k2) · ∆r] cos
[

π |∆r| φ

λ

]}

. (2.5)

However, the term proportional to (k1 + k2)·∆r in Eq. 2.5 is highly susceptible to me-
chanical and atmospheric instabilities, which compromises the usefulness of this ap-
proach.

Intensity (second-order) correlations

To circumvent the limitations of first-order interferometry encountered as a result of
Eq. 2.5, Robert Hanbury Brown and Richard Twiss borrowed the idea of intensity in-
terferometry from radio astronomy, and applied it to optical measurements. Instead of
interfering light on the wavelength scale, as occurs for a Michelson-type interferometer,
correlations are computed between the photocurrents measured on two individual de-
tectors. Although the amplitude and phase of photons incident on the two detectors will
vary considerably, within the coherence length of the source the intensity fluctuations
will be correlated in the same way as for first-order correlations.

Analogously to Eqs. 2.2 and 2.3, we can define unnormalised and normalised
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second-order correlation functions

G(2)(r1, t1; r2, t2) = 〈E∗(r1, t1)E∗(r2, t2)E(r2, t2)E(r1, t1)〉
= 〈I(r1, t1)I(r2, t2)〉 , (2.6)

g(2)(r1, t1; r2, t2) =
〈I(r1, t1)I(r2, t2)〉
〈I(r1, t1)〉 〈I(r2, t2)〉

, (2.7)

while simplified forms which consider correlations in separations of one variable can be
made in a similar fashion to that of Eq. 2.4. As can be seen in Eq. 2.6, the relative phase
between the arms of the interferometer for the fields E1 and E2 determines the value
of the second-order correlation function, even though the absolute phase of the light is
not measured directly. This means that measurements of the second-order correlation
function are far less sensitive to the instabilities than Michelson-type interferometers.
Indeed, if we replicate the reasoning for a plane wave source in Eq. 2.5 for second-order
correlations, we arrive at [68]

G(2)(∆r) ∝ I2
0

{

1 +
1
2

cos [(k1 − k2) · ∆r]

}

, (2.8)

where the term proportional to (k1 + k2) ·∆r has now been eliminated. If instabilities do
occur, their effect on the measurement will be minimised by the common mode between
k1 and k2.

Incoherent sources of bosons such as light from a star will exhibit a phenomenon
referred to as bunching, which results in enhanced intensity fluctuations in coincidence
measurements for separations within the correlation time or length. This effect can be
understood in a classical sense by analysing the light intensity measured on the two
detectors I(tj) (j = 1, 2), where a path length difference1 induces a time lag t1 − t2 = τ

between the two arms. The measured intensity I(t) = 〈I〉 + δI(t) can be decomposed
into an average intensity 〈I〉 and a term containing fluctuations δI(t). These fluctua-
tions average in time to zero 〈δI(t)〉 = 0, and correlations are seen between the two
arms for values of τ smaller than the correlation time tc such that 〈δI(t)δI(t + τ)〉 6= 0
due to the local coherence of the wave, while for τ ≫ tc the correlation disappears
and 〈δI(t)δI(t + τ)〉 = 0. Thus, the behaviour of the classical second-order correlation
function can be characterised by

g(2)(τ) =
〈I(t)I(t + τ)〉

〈I(t)〉2 ,

≈







〈I2+δI(t)2〉
〈I〉2 > 1 τ . tc,

1 τ ≫ tc,
(2.9)

where bunching is signified by g(2)(τ)> 1. A basic property of this second-order cor-
relation function is its symmetry where g(2)(τ) = g(2)(−τ), while the Cauchy–Schwarz
inequality bounds the function such that g(2)(0)≥ g(2)(τ) ≥ 1.

Intensity interferometry for classical radio waves was a well established method prior
to the work of Hanbury Brown and Twiss, who believed that a similar technique would

1Since the two photocurrents are not necessarily mixed before being recorded, any arbitrary time differ-
ence can be achieved in post-processing of the data.
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apply for optical interferometry. Indeed, they succeeded in demonstrating this bunching
effect which later bore their name in a proof of principle table-top experiment using a
mercury arc lamp [69], before applying it in a measurement of the angular size of Sirius
[31]. However, it was not long before serious doubt was cast over the validity of this
result2, which is often attributed to being the consequence of a quote from Dirac [71]
stating that

each photon . . . interferes only with itself. Interference between two different
photons never occurs.

In particular, Brannen and Ferguson [72] among others claimed that bunching was not
observable in their experiments which also attempted to measure Hanbury Brown-Twiss
bunching. A resolution to this was provided by Purcell [73], who concluded that the
bandwidth of Brannen and Ferguson’s light source, which determines its correlation
length, resulted in a bunching signal which was too small to be observed given their ex-
perimental parameters, but was nevertheless present. Even Dirac’s famous quote, which
is appropriate for describing average interference, was shown to be misleading by Man-
del [74, 75] in experiments which clearly demonstrated that instantaneous interference
between two independent beams could occur.

Quantum correlation functions

The invention of the optical laser in the 1950s provided a new source of light with
coherence properties which far surpassed any other available sources. It was realised
that a full quantum-mechanical treatment of coherence was required to understand this,
where light must be considered as individual photons as opposed to continuous classical
waves. A description of the Hanbury Brown-Twiss effect for particles was provided by
Fano [76], which considered the measurement of two particles described by the states
|a〉 and |b〉 on a pair of detectors 〈1| and 〈2|. Assuming the two detectors have the same
behaviour, the probability amplitude of measuring particle |a〉 is 〈1 |a〉= 〈2 |a〉= A, and
similarly 〈1 |b〉= 〈2 |b〉=B. If we attempt to measure two distinguishable particles, such
as those separated by a large enough time or distance that they do not interfere, then
the probability of measuring a single particle on each detector is

Pdist = |〈1|a〉 〈2|b〉|2 + |〈2|a〉 〈1|b〉|2 = 2 |A|2 |B|2 . (2.10)

However, when the pair of detectors are within the correlation length of the particles
such that interference does occur, bosons become indistinguishable, and due to the sym-
metry of their overall wavefunction we find that

Pbosons = |〈a|1〉 〈b|2〉+ 〈a|2〉 〈b|1〉|2 = |2AB|2 = 2Pdist. (2.11)

On the other hand, the parity of fermion wavefunctions leads to the famous Pauli exclu-
sion principle, giving the highly non-classical result of

Pfermions = |〈a|1〉 〈b|2〉 − 〈a|2〉 〈b|1〉|2 = 0, (2.12)

2A history of the development of the now-famous Hanbury Brown-Twiss effect was written by Robert
Hanbury Brown [70].
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Figure 2.1: If a pair of photons (a and b) from a source such as a star are measured
such that one falls on each of two detectors (1 and 2), and these detectors
are separated by less than the correlation length of the source (r12 is less
than the size of the wave packets shown in blue), then bunching will be
observed due to the interference of the two particles as they are recorded.
However, if another two photons (c and d) arrive on two detectors (2 and
3) which are separated by a distance r23 larger than the correlation length,
the particles remain distinguishable and no bunching will be seen.

which is in clear violation of the Cauchy-Schwartz inequality. It is important to note that
only the behaviour of the two particles at the detector influences whether interference
occurs, irrespective of the separation at the source, which for example allows the size of
an extended source such as a distant star to be measured. This is shown in Fig. 2.1.

However, a theory was needed to distinguish between monochromatic light which
could be produced by a lamp, and the truly coherent output of a laser. Glauber, in his
landmark theory of quantum statistics [32], addressed this by defining nth order cor-
relation functions for quantum fields, which described the probability of coincidence
measurements of n particles separated in time or space. In doing so, a true definition of
coherence requiring coherence to all orders n∈N was established, which distinguished
laser light from thermal light which can only possibly be coherent to first order. This
definition, which formally eliminated the condition for monochromaticity, also had the
important consequence that it did not require stationary states and allows for any arbi-
trary time dependence for the fields. Therefore, coherence can occur for sources with
non-uniform and time-dependent density profiles, which will be of particular impor-
tance for the atomic measurements described in this thesis.

The results derived from Glauber’s theory had two main consequences, which were
to provide a solid quantum-mechanical framework to support the conclusions of the
semi-classical treatment of the Hanbury Brown-Twiss effect, while providing an expla-
nation of effects which cannot be understood in the context of classical theory. A syn-
opsis of this theory will be presented here, which was originally developed to describe
light, but will prove equally applicable to quantum gases.

As was the case for the classical treatment, correlations in the electric field of light
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E(r, t) will be calculated. This field can be split into positive E(+)(r, t) and negative
E(−)(r, t) frequency components such that E(r, t)=E(+)(r, t) + E(−)(r, t), where the two
frequency components are the adjoint of one another and represent the annihilation
and creation of a single photon respectively. The transition rate between an initial state
|i〉 and a final state | f 〉 is proportional to the matrix element 〈 f |E(+)(r, t)|i〉 by Fermi’s
golden rule, where

∑
f
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∣
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〈
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i
〉

. (2.13)

It is important to note that the average of E(−)(r, t)E(+)(r, t) is the ‘intensity’ quantity
measured by a detector, rather than E(r, t)2 which fails to account for vacuum states.

This can be extended to a measurement of the correlation of the field on several
detectors at different points r1 and r2 and times t1 and t2. Such a measurement is
proportional to the matrix elements 〈 f |E(+)(r2, t2)E(+)(r1, t1)|i〉, giving a transition rate
proportional to
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(2.14)
This is the basis of understanding the Hanbury Brown-Twiss effect, which measures a
pair of particles at position and time coordinates (r1, t1) and (r2, t2) with the applica-
tion of the annihilation operator E(+). Furthermore, this can be generalised to n-fold
coincidence count rates for n∈N as
〈

i
∣

∣

∣
E(−)(r1, t1)E

(−)(r2, t2) . . . E(−)(rn, tn)E
(+)(rn, tn) . . . E(+)(r2, t2)E

(+)(r1, t1)
∣

∣

∣
i
〉

. (2.15)

While this reasoning has so far only considered pure states, determining the sta-
tistical distribution of a source means that the exact field is not well known, but is
characterised by a density matrix ρ̂. This represents the average over the unknown pa-
rameters of a distribution of pure states |ψ〉 such that ρ̂={|ψ 〉〈ψ|}av, and is appropriate
for describing thermal sources of light such as stars or lamps. Given that the expectation
value of any operator Ô is

〈

Ô
〉

= tr
{

ρ̂Ô
}

, where Tr
{

Ô
}

denotes the trace of Ô, we can
generalise Eq. 2.14 to

G(1)(r1, t1; r2, t2) = tr
{

ρ̂E(−)(r1, t1)E
(+)(r2, t2)

}

. (2.16)

This is the (unnormalised) first-order correlation function, and the quantum counterpart
of the classical correlation function Eq. 2.2. Extending this to higher orders n∈N gives

G(n)(r1, t1; . . . ; rn, tn; rn+1, tn+1; . . . r2n, t2n) =

Tr
{

ρ̂E(−)(r1, t1) . . . E(−)(rn, tn)E
(+)(rn+1, tn+1) . . . E(+)(r2n, t2n)

}

. (2.17)
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Normalising these functions to

g(n)(r1, t1; . . . ; rn, tn; rn+1, tn+1; . . . ; r2n, t2n) =

G(n)(r1, t1; . . . ; rn, tn; rn+1, tn+1; . . . r2n, t2n)

∏
2n
j=1
[

G(1)(rj, tj; rj, tj)
]1/2 , (2.18)

gives the normalised probability of measuring n particles at positions and times (r1, t1),
(r2, t2), . . . , (rn, tn) respectively, such that a measurement of g(n)(0, . . . , 0)=1 means that
the ensemble follows an uncorrelated Poissonian distribution, while g(n)(0, . . . , 0) > 1
implies that particles prefer to ‘bunch’ together.

While the property that 0 ≤ |g(1)(r1, t1; r2, t2)| ≤ 1 carries over from
the classical case, higher-order correlation functions have the property of
g(n)(r1, t1; . . . ; rn, tn; rn+1, tn+1; . . . r2n, t2n) ≥ 1 for statistical distributions of bosons un-
der most circumstances. This serves as the basis of the definition of a fully coherent
field, which requires that for all n∈N ,

∣

∣

∣
g(n)(r1, t1; . . . ; rn, tn; rn+1, tn+1; . . . r2n, t2n)

∣

∣

∣
= 1. (2.19)

It is immediately obvious that plane waves, which are the archetype of a classically
coherent source, satisfy this condition, while other sources are not excluded from also
doing so.

This definition of coherence is also capable of differentiating between incoherent
sources, such as monochromatic thermal light which is capable of forming interference
patterns in the manner of Young’s experiment, and fully coherent sources such as lasers
which satisfy the requirements of Eq. 2.19. In particular, classically coherent sources will
only satisfy this condition for n=1, and are thus considered to be coherent to first order,
but not fully coherent. A consequence of Eq. 2.19 is that the numerator and denomi-
nator of Eq. 2.18 must be equal for a coherent state, which means that the count rate
measured on the individual detectors are statistically independent for coherent states.
Therefore, fields which are eigenstates of the annihilation operator E(+) (which is indeed
a well-known characteristic of coherent states in the sense of minimising Heisenberg un-
certainty) imply coherence automatically. Conversely, incoherent sources of bosons such
as those used by Hanbury Brown and Twiss to demonstrate bunching result in a positive
correlation for small separations, such that interference occurs and g(2)(r, t; r, t + τ)> 1
for small τ within the correlation time of the source.

Hanbury Brown-Twiss bunching can be examined by simplifying the second-order
correlation function to consider temporal measurements of stationary pure boson modes
represented by the annihilation operator â and creation operator â†. The probability of
detecting a second particle a time delay τ after a previous one is

g(2)(τ) =

〈

â†(0)â†(τ)â(τ)â(0)
〉

〈â†(0)â(0)〉2 . (2.20)

By taking τ=0, and recalling the commutator relation for bosons
[

â, â†
]

=1, this can be
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further simplified to

g(2)(0) =

〈

â†(ââ† − 1)â
〉

〈â† â〉2 ,

=

〈

â† â
〉2

+
〈

(

â† â
)2
〉

−
〈

â† â
〉2 −

〈

â† â
〉

〈â† â〉2 ,

= 1 +
σ2

N̄
− N̄

N̄2 , (2.21)

where the expectation number of bosons is N̄ = 〈â† â〉, and the variance in number is
σ2

N̄
= 〈(â† â)2〉 − 〈â† â〉2.
The correlation function of different sources can therefore be determined from the

statistical distribution of particle number. For example, a chaotic black-body light source
has σ2

N̄
= N̄2 − N̄, which leads to the bunching seen according to the Hanbury Brown-

Twiss effect where g(2)(0) = 2. On the other hand, coherent sources such as lasers
have σ2

N̄
= N̄ and thus g(2)(0) = 1 as expected. Non-classical states can have correla-

tion functions which deviate from the predictions of classical wave theory, where for
example number (Fock) states have σ2

N̄
= 0 and their correlation function shows the

unique property of ‘anti-bunching’ where g(2)(0) = 1 − 1/N̄ < 1. Similarly, fermions
have 0 ≤ g(2)(0)≤ 1 due to the substitution of the bosonic commutator for a fermionic
anticommutator.

Higher-order correlation functions for thermal sources

Correlation functions rapidly become cumbersome at higher orders, however Wick’s
theorem [77] allows functions for n≥ 2 to be simplified to products of first-order corre-
lation functions for thermal distributions. First, we recall that the first-order correlation
function for pure stationary modes â are G(1)(r1, t1; r2, t2) = 〈â†(r1, t1)â(r2, t2)〉, where
the particle density is ρ(ri, ti)=

〈

â†(ri, ti)â(ri, ti)
〉

. To apply Wick’s theorem, it is impor-
tant to recognise the distinction between the second-order correlation function, which
is
〈

â†(r1, t1)â†(r2, t2)â(r2, t2)â(r1, t1)
〉

=
〈

â†(r1, t1)â(r1, t1)â†(r2, t2)â(r2, t2)
〉

−
〈

â†(r1, t1)â(r1, t1)
〉

δ(r1 − r2)δ(t1 − t2), (2.22)

and density-density correlations, which are described by the
〈â†(r1, t1)â(r1, t1)â†(r2, t2)â(r2, t2)〉 term in Eq. 2.22. However, the second term in
Eq. 2.22, which represents density autocorrelations, is generally negligible and can
be ignored in the high temperature limit. Therefore, the theoretical second-order
correlation function is essentially equivalent to density-density correlations, which is
what is measured experimentally.

Following on from this (the detail of this derivation have been relegated to the Ap-
pendix §A.2), the application of Wick’s theorem to the second order correlation function
simplifies it to

g(2)(r1, t1; r2, t2) = 1 +

∣

∣

∣
G(1)(r1, t1; r2, t2)

∣

∣

∣

2

ρ(r1, t1)ρ(r2, t2)
. (2.23)



20 Background theory

This can be extended further to the third-order correlation function, which is

g(3)(r1, t1; r2, t2; r3, t3) =1 +
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}

,

(2.24)

several measurements of which will be presented in Chapter 4. Decompositions of cor-
relation functions up to any arbitrary order of n follow in a similar way (functions up
to n = 4 are derived in §A.2), however a pattern emerges as a consequence of Wick’s
theorem, such that the maximum bunching amplitude is g(n)(0, . . . , 0) = n! for the nth
order correlation function of an incoherent source. A key result of this thesis is the mea-
surement of correlation functions up to order n=6 (described in §4.5) for an incoherent
gas of bosons, the results of which illustrate this relationship.

Correlation measurements with matter

Matter is composed of massive particles, which can interfere as waves according to
the de Broglie hypothesis. Therefore, the concepts of coherence and the computation
of correlation functions for light carry over directly to describe quantum systems of
massive particles. Dilute ultracold quantum gases are particularly conducive to corre-
lation measurements, as cold temperatures lead to substantial de Broglie wavelengths
of atoms, and incoherent thermal gases can be compared to Bose-Einstein condensates
(BEC), which are considered to be the matter wave analogue of optical lasers.

Naraschewski and Glauber extended the latter’s original theory of optical coherence
to describe trapped Bose gases [34], where the atomic field annihilation operators Ψ̂(r, t)

replace those of the electric field E(+)(r, t) (or pure bosonic modes â(r, t)), and similarly
for the respective creation operators. With this substitution, the general results of the
optical case are replicated for atoms, where thermal gases exhibit bunching, while BECs
are fully coherent. The theory of Bose-Einstein condensation, which will be covered in
§2.3.1, describes the condensate mode with an order parameter which is the classical
limit of a quantum wavefunction. As coherent states can be thought of as being states
with interference properties which most closely match that of a precisely defined clas-
sical field [34], perfect coherence naturally follows from having all atoms in the same
single-particle state, which is the phenomenon of condensation. Although imaging in-
dividual atomic clouds will only allow density to be measured, off-diagonal terms of
the density matrix corresponding to first-order correlations can be revealed via interfer-
ometry. As for incoherent sources of light, thermal clouds will display visible fringes
which quickly decay on a lengths scale of order λdB, while the correlation length of
BECs extend over the entire condensed portion of the cloud.

One of the principal differences between light and atoms is the existence of interac-
tions for the latter, where interactions of sufficient strength can alter the form of correla-
tion functions, especially over the short spatial separations between particles. However,
as the densities and interaction strengths of atoms in the quantum gases produced by
our experiment are quite low, these effects will not be significant for most of the results
presented in this thesis, most notably for those in Chapter 4. This is especially true
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considering that we measure correlation functions in the ‘far field’ where the gas has ex-
panded considerably during its time of flight from the trap to the detector. More specific
details on this topic relevant to the experiments presented in this thesis can be found
in §4.1.1. On the other hand, weak interparticle interactions are seen to play an impor-
tant role in understanding the observation of transverse condensation in an elongated
ultracold gas, as is discussed in Chapter 5.

Novel and non-classical correlation effects

For bosonic sources, we expect to measure g(n)(r1, t1; . . . ; rn, tn)≥1 for n≥2 under most
circumstances, a concept which is adequately predicted by a classical treatment of cor-
relation functions. However, the quantum-mechanical theory of correlation functions
(§2.1.1) has introduced the possibility of g(n)(r1, t1; . . . ; rn, tn)≤ 1 for particular statisti-
cal distributions, which cannot be explained classically. A key result which confirmed
the validity of Glauber’s theory was the prediction by Carmichael and Walls of sub-
Poissonian, ‘anti-bunched’ light from resonance fluorescence of a two-level atom [78],
and the successful measurement of this effect [79] was pivotal in the establishment of the
field of quantum optics. Sources dependent on the statistical behaviour of small num-
bers of photons, such as heralded single photons [80] and parametric down-conversion
sources [81] can also be investigated with correlation measurements. Indeed, a strongly
sub-Poissonian single-atom state will be investigated in §7.2 of this thesis.

Another unique correlation phenomenon is the Hong-Ou-Mandel effect [33, 82],
where the interference of two indistinguishable photons incident on a 50:50 beamsplit-
ter causes the pair of photons to always exit on the same port of the beamsplitter. If
the path length travelled by the two photons is the same, which is equivalent to the
measurement of the photons being within their correlation time, then the non-classical
result of g(n)(r1, t1; . . . ; rn, tn) ≤ 1 will again be found. Correlation measurements can
also be used to identify exotic quantum states such as entangled states which violate
Bell’s inequalities, for example by the Rarity and Tapster scheme [83], or to enhance
ghost imaging [84, 85].

As has been alluded to, correlation effects should also be measurable in systems of
massive particles, and indeed have been observed for nuclear collisions [86], free elec-
trons [87], and neutrons [88]. Of particular importance to this thesis was the successful
measurement of correlations in atomic gases, which was first achieved in a beam of ther-
mal bosonic neon [54], and the difference in coherence between chaotic and condensed
Bose gases [55] confirmed the correspondence between statistical distributions of atoms
and photons. Furthermore, observations of anti-bunching in thermal fermionic systems
[56, 89] provided a clear illustration of the Pauli exclusion principle.

Correlation measurements for atomic systems can also be used to probe processes
such as molecular dissociation [90] and four-wave mixing in the spontaneous [91] and
stimulated [53] regimes. As four-wave mixing produces pairs of atoms scattering back-
to-back in the centre of mass frame, violation of the Cauchy-Schwarz inequality can
be observed directly for atom number correlations for modes with opposite momenta
[92]. Studies of exotic states in quantum gases such as those exhibiting spin-squeezing
entanglement [93, 94], spin interactions in optical lattices [95], and spin polarisation
spectroscopy [96, 97] are also fruitful applications of correlation measurements.

When measuring quantum correlations in ultracold gases, it is quite often the
second-order correlation function that is measured. While first-order correlation mea-
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surements typically require the quantum gas to undergo an explicit interferometry op-
eration, second-order functions can be measured directly from a statistical analysis of
the cloud’s density distribution. However, it is not generally the case that correlation
functions for orders above n = 2 are measured, due to not only the experimental diffi-
culty encountered in such an undertaking, but also that the behaviour of the third-order
function can be extrapolated from density correlations by Wick’s theorem. Although
Glauber’s theory requires coherence to exist for all orders of n for a state to be fully
coherent, limitations are set by the physical size or number of particles in a source,
and thus satisfying correlations to the first few orders is usually considered sufficient
to establish full coherence. Correlation functions up to n = 3 have been measured for
exciton-polaritons [98], while fourth-order thermal bunching has been measured for
light from a microcavity [99] and compared to laser light of that order [100]. To the
best of the author’s knowledge, the highest-order correlation function ever measured
was one which confirmed that laser light is coherent to n = 8, while demonstrating
pseudo-thermal bunching up to n=6 [101].

However, it is only with the experiments described in Chapter 4 that this has been
confirmed for atomic systems above n = 2. In particular, the measurement of true
thermal bunching up to n=6 (§4.5), as opposed to inducing noise on a coherent source,
makes this result the most thorough test yet of the applicability of Wick’s theorem to
quantum statistical systems. In addition to verifying that the predicted g(n)(0, . . . , 0) =
n! relationship holds for a thermal distribution, higher-order correlation functions in
quantum gases may deviate from this idealised form due to pair production processes,
three-body losses, the formation of Efimov states [102], or other effects specific to a
certain number of particles. Such measurements could also provide information beyond
that of g(2) when probing processes such as the thermalisation of isolated quantum
systems [103], or could aid with determining the tomography of quantum states [104].

2.1.2 Wheeler’s delayed choice gedankenexperiment

Importance of measurement

Of the many significant departures from classical mechanics which are required to un-
derstand quantum theory, one of the most discussed is the effect that the act of mea-
surement has on a physical system. Despite overwhelming experimental evidence which
supports predictions derived from the mathematical framework of quantum mechanics,
the implications of many quantum phenomena do not correspond to intuitive classical
behaviour, which has resulted in a variety of interpretations which aim to account for
these discrepancies. This has remained a topic of debate to the present day, where a
consensus is still yet to be reached on how to understand many foundational ideas of
quantum mechanics [2].

Perhaps the most widely known of the many debates resulting from different in-
terpretations of quantum behaviour was the apparent paradox presented by Einstein,
Podolsky and Rosen [17] (commonly referred to as EPR). The basic premise of the EPR
argument was that if strong correlations occur between a pair of particles which have
interacted and subsequently separated by a space-like distance, the measurement of
one of the pair could result in ‘spooky action at a distance’ and thus knowledge of the
behaviour of the other particle without directly performing a measurement on it. Fur-
thermore, if a different observable is measured for each particle, and those observables
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are incompatible (such as position and momentum), it was claimed that this would al-
low measurements violating the Heisenberg uncertainty principle to be achieved. The
result of this argument was to question the completeness of quantum theory, and to
advocate the existence of ‘hidden variables’ which would account for such correlations
which are referred to as being the result of entanglement, without invoking the notion
of non-local action.

A response to counter the conclusions drawn by Einstein, Podolsky and Rosen was
proposed by Bohr [105] which appealed to his previous idea of complementarity [16],
a cornerstone of the widely used Copenhagen interpretation of quantum mechanics.
Essentially, Bohr highlighted the inapplicability of classical ideas to explain quantum
behaviour, and argued that the measurement of one observable would inevitably pre-
clude the measurement of the other. While it is generally considered that Bohr’s expo-
sition of this argument is particularly unclear [106], his views were nevertheless widely
accepted, if not fully understood. However, the possibility of a local hidden-variable
theory was not conclusively dismissed until Bell mathematically derived an inequality
which results in a contradiction between theories containing local hidden-variables and
the predictions of quantum mechanics [18]. Experiments which demonstrate a violation
of Bell’s inequality have been performed [20], and have thus ruled out local hidden-
variable theories and settled this particular argument in favour of Bohr.

Complementarity and particle-wave duality

In the years after his exchange with Einstein, Bohr sought to clarify the importance of
complementarity, which lead to an emphasis being placed upon the act of measure-
ment to determine what brings about ‘reality’. A particularly striking example of this
is particle-wave duality, where photons or atoms can behave as either waves or discrete
particles depending on the type of experiment performed. A basic example of this is
shown in Fig. 2.2, where the presence or absence of a double slit at the intersection
of two beams of light gives either a wave-like interference pattern or particle-like di-
rectional information respectively. While Einstein would have argued that it should in
principle be possible to observe an interference pattern while simultaneously knowing
which path each photon took, this example provides a simple illustration of Bohr’s view
that the two properties are mutually exclusive [107].

Wheeler decided to test the idea of complementarity further with his famous
‘delayed-choice’ gedankenexperiment3 [108], and in particular investigate whether pho-
tons or matter could have particle and wave properties simultaneously. Bohr’s statement
that [109]

it can make no difference, as regards observable effects obtainable by a def-
inite experimental arrangement, whether our plans for constructing or han-
dling the instruments are fixed beforehand or whether we prefer to postpone
the completion of our planning until a later moment when the particle is al-
ready on its way from one instrument to another

spurred Wheeler to devise a scheme which conclusively rules out Einstein’s argument

3The word ‘gedankenexperiment’ is German for ‘thought experiment’, and is used as a nod to the vast
contribution of German speakers to modern physics in general, and in particular the discussion of apparent
paradoxes like EPR or Schrödinger’s cat.
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Figure 2.2: An experiment in the style of an interferometer which demonstrates com-
plementarity. Light incident on a beamsplitter then passes through a pair
of fibres (or through free space), and is either recombined with a double
slit aperture (a) or passes directly to a screen (b), where in either case it
creates a distinctive intensity distribution. If the double slit aperture is
present, information about the path taken by photons from the fibres to
the screen is lost, but instead a pattern of wave interference can be ob-
served. Conversely, if the slits are removed, no interference is seen, but
the positions of photons in the light beam are well defined. The design
of the interferometer, such as the length or layout of the fibres, can have
implications for the relativistic separation of the choice of interferometer
orientation from the entry of the photon to the interferometer.
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for local reality. Wheeler’s reasoning can be paraphrased4 by an extension to the ex-
periment described in Fig. 2.2, where a single photon traverses the beamsplitter and
enters the fibres. If the fibres are long enough, a decision about whether the slits should
be present or not can be made, and its result implemented, before the photon exits the
fibre. In particular, the layout of the fibre and the timing of the choice must be such that
there is no inertial frame in which information about the slit configuration can reach the
photon before it enters the interferometer, to exclude explanations of local reality which
support Einstein’s argument.

To create a wave interference pattern, it could be said that the single photon must
have passed through both fibres, while information about the location of the particle is
possible if the photon only travelled down one of the fibres. It would therefore appear
that the delayed choice could influence the past dynamics of the photons, as producing a
result to match the configuration of the slits requires the photon to have ‘known’ which
of the fibres to enter. Wheeler argues against the violation of causality, however, by
stating that [108]

. . . the past has no existence except for that which is recorded in the present.
No phenomenon is a phenomenon until it is an observed phenomenon.

This builds upon Bohr’s view that [110]

it is wrong to speak of the ‘route’ of the photon in the experiment of the
beamsplitter. It is wrong to attribute tangibility to the photon in all its travel
from the point of entry to its last instant of flight.

Instead, Wheeler proposes that no paradox exists as we are only influencing what we
know about the past, where the past is undefinable without observation. It is indeed the
measurements that are made which shape the reality that is observed, rather than reality
having to exist before a measurement is made. According to Bohr, it is the ‘irreversible
act of amplification’ resulting in measurement, rather than the presence of ‘conscience’,
which constitutes an ‘observation’ [110].

Experimental realisations of complementarity and Wheeler’s experiment

It is relatively easy to perform experiments which confirm that the basic behaviour of
the experiment described in Fig. 2.2 is as expected, in that the addition or removal of a
‘mixing’ operation (such as a double slit or a second beamsplitter and waveplate) to a
bimodal source in a static configuration lacking a ‘delayed choice’ results in complemen-
tary observations [111]. A multitude of experimental schemes have added the delayed
choice element for investigations with photons [112–114], while other approaches in-
clude the application of Stern-Gerlach interferometry to a beam of metastable hydrogen
[115] or spin interferometry for cold neutrons [116] to test complementarity. While these
experiments did essentially support the arguments put forth by Wheeler, each of them
were not able to avoid violating the strict conditions required to conclusively deny Ein-
stein’s local hidden variables view. These conditions, which include the requirement for
true single particle sources, and that the delayed choice is performed in a truly (quan-
tum) random way while relativistically separated from the entry of the photon to the

4Wheeler’s original proposal included seven different experimental setups which essentially measure
the same effect, and the one chosen here is another equivalent modification based on the Mach-Zehnder
configuration suggested by Stapp [108].
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interferometer, can be seen somewhat analogously with loopholes in entanglement mea-
surements. A recent landmark experiment was able to satisfy each of these criteria [21],
and thus by realising the idealised version of Wheeler’s experiment it was conclusively
demonstrated that Bohr’s concept of complementarity was correct.

Delayed choices have also been used in conjunction with quantum erasers [117, 118]
to show that acquiring or subsequently ‘erasing’ knowledge about the path taken by
one of an entangled pair of photons can influence whether an interference pattern can
be produced by the other photon. In this case, the delayed choice is achieved by de-
ciding whether ‘which way’ information is recorded after having recorded the photon
which reveals whether wave-like behaviour is present. Further extensions to this have
been explored, including experiments which probe the particle and wave behaviours of
photons simultaneously, and actually show that a continuum of behaviours exist rather
than the simplistic view of wave and particle properties being absolute and mutually
exclusive [24–27]. However, experiments with atoms have not reached the same level
of sophistication as those using photons, and are yet to realise the idealised version of
Wheeler’s experiment. An experiment which has made progress towards this aim is
discussed in Chapter 7.

2.2 Atom cooling and trapping

To obtain a sample of atoms suitable for measuring quantum behaviour, dilute clouds of
weakly-interacting bosons must be cooled to temperatures at which their wave nature
becomes apparent. This requires multiple stages of cooling and trapping, each of which
rely on the interaction of atoms with electromagnetic radiation. An overview of the
concepts required to understand the experimental apparatus described in Chapter 3 is
given here, and more detail can be found in textbooks such as Refs. [119, 120] or review
papers such as [121].

2.2.1 Atom-light interactions

In the context of laser cooling and trapping, atoms can be thought of as quantum sys-
tems containing many energy levels which can be coupled with electromagnetic radi-
ation. The energy levels in helium are the result of fine structure due to spin-orbit
coupling, where atoms with total electronic angular momentum |J|= |L + S| for spin S

and orbital angular momentum L are often labelled by the angular momentum quantum
number J, which takes integer values between |L − S| and |L + S|. The projection of the
angular momentum on the direction of an externally-applied magnetic field mJ , which
ranges from −J to J in integer steps, gives the atom a magnetic dipole moment which
can interact with the applied magnetic field. It is generally instructive, and in many
cases sufficient, to simplify this by considering atoms to be two-level systems, where
transitions between the ground and excited states can be induced by laser light. The
transfer of momentum occurring as an atom absorbs and emits a photon applies either
a coherent dipole force or a spontaneous scattering force, depending on the detuning
δ = ωlaser − ωatom of the laser light angular frequency ωlaser from the energy difference
h̄ωatom between the two levels in the atom.
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Scattering force

Incoherent scattering of photons is the primary method used for the initial stages of the
cooling process. In the low detuning limit, the absorption of a photon with wavevector
k transfers an impulse of ∆p = h̄k to the atom. After an average decay time τ = Γ−1,
where Γ is the natural transition linewidth, the atom of mass m will emit the photon in
a random direction, resulting in a change in energy of Erec = h̄2k2/2m due to the recoil
experienced by scattering the photon. While the incoming direction of the photons is
collimated, the emission will by symmetrically distributed and thus averages to a net
momentum transfer of zero after many absorption and emission cycles, which results in
an overall force which acts in the direction of the laser beam. The average force in one
dimension applied over many scattering events to atoms with a velocity v interacting
with such a laser field of intensity I will be

F (v) = h̄k
Γ

2

[

I/Isat

1 + I/Isat + 2 (δ − k · v)/Γ

]

, (2.25)

where Isat = Γhck3/24π2 is the saturation intensity of the transition, such that the scat-
tering rate does not increase for I> Isat.

Zeeman slower

A beam of atoms emanating from a source will have an average velocity which is far
too high to be successfully captured in a magneto-optical trap. Therefore, a red-detuned
(δ < 0) beam of near-resonant laser light can be used to apply a scattering force to
oppose the motion of the atoms. Although it is possible to apply the maximal scattering
force of h̄kΓ/2 for a detuning that matches the Doppler shift k · v, the scattering rate
will decrease as the atom slows and shifts the incident laser light off resonance. In
particular, the linewidth of the transition must be much greater than the frequency shift
h̄k2/m induced by a single scattering event, otherwise the scattering process will fall off
resonance too quickly for the scattering force to effectively cool the atom5.

However, after absorbing and emitting many photons, the atoms will eventually
slow such that the laser is too far away from resonance to apply a significant scattering
force. This can be compensated by a spatially-varying magnetic field. A Zeeman slower
utilises a tapered solenoid which produces a magnetic field B such that the energy levels
are shifted by UZeeman =−µ·B, where µ is the magnetic moment of a particular atomic
state [122]. This Zeeman shift is tuned to match the Doppler shift experienced by the
atoms as they decelerate during their passage through the centre of the solenoid, such
that the laser remains on resonance along the entire length of the solenoid.

Magneto-optical trap

Once the atoms are slowed to a velocity such that k · v.Γ, they can be further cooled by
applying the scattering force with two counterpropagating red-detuned laser beams, so
that the Doppler shift brings atoms moving in the opposite direction of the beam closer
to resonance, while moving the copropagating beam away from resonance. This means
that the atom scatters more photons from the beam which opposes its motion, which

5For the 1083 nm transition for metastable helium, the frequency shift of 260 kHz is much smaller than
Γ=2π × 1.6 MHz, while alkali atoms have an even smaller shift due to their large mass.
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slows it down. From Eq. 2.25, we see that such a laser setup with I ≫ Isat applies a
velocity-dependent damping force to the atoms

Ftot = |F (v) + F (−v)| ≃
{

4h̄k2 I

Isat

2δ/Γ

[1 + (2δ/Γ)2]2

}

v, (2.26)

which is strongest for δ ≃ −Γ/2. Atoms can thus be cooled by applying light in this
manner along all three Cartesian directions to form an optical molasses.

However, atoms cannot typically be trapped solely by radiation pressure, as atoms
eventually diffuse out of the molasses. A quadrupole magnetic field produced by a pair
of anti-Helmholtz coils, which gives a field linear in all directions with a zero at the
centre, can be applied to form a magneto-static trap, which will be discussed further
in the following section. However, this field is typically not used in this manner, but
instead to add a position and polarisation dependence to the scattering force applied by
a 3D optical molasses to form a magneto-optical trap (MOT) [123]. In a similar way to
the Zeeman slower, the field lifts the degeneracy of different magnetic substates such
that the (δ − k · v) term in Eq. 2.25 is modified to (δ − k · v + β(r)), for Zeeman shift
β(r) = gJµBmJ B(r)/h at position r in each Cartesian direction, where µB is the Bohr
magneton and gJ is the Landé g-factor.

If we consider for example transitions from the J = 0 singlet to the J = 1, mJ = 0,±1
triplet of states, red-detuned light will be closer to resonance for the transition to the
mJ =−1 state for spatial locations where the field is positive, and similarly for transitions
to mJ = 1 for areas of negative field. To conserve angular momentum, these transitions
must be driven with light of the correct polarisation, in this case σ− and σ+ which carry
−1 and 1 unit of angular momentum respectively. By choosing beam polarisations for
the counterpropagating pairs such that scattering pushes atoms towards the trap centre,
Eq. 2.26 can be modified from the form Ftot =−αv to Ftot =−αv − (αβ/k)z. Therefore,
the motion of atoms in a MOT is that of an overdamped harmonic oscillator, which is
now dependent on both position and velocity, and provides a combination of trapping
and cooling.

In principle, the cooling achievable will be bounded by the recoil limit Trecoil =

(h̄k)2/2m, at which point the scattering of a single photon adds energy to the system.
However, in practice the natural atomic transition linewidth will determine the rate at
which atoms go on a random walk due to spontaneous scattering of individual photons,
which results in Doppler temperature limit TDoppler= h̄Γ/2kB for a two-level system. Al-
though the Doppler limit is usually at a considerably higher temperature than the recoil
limit, sub-Doppler cooling techniques are available for atomic species with degenerate
energy levels. However, a lack of nuclear spin I = 0 results in the absence of hyperfine
splitting for helium and consequently the total atomic angular momentum F= I + J= J,
which prevents this from being used in our experiment.

2.2.2 Magnetic and dipole trapping

The temperatures and phase-space densities possible for atoms in a MOT are gener-
ally not sufficient for achieving Bose-Einstein condensation or the observation of atom-
optical effects. Neutral atoms can be confined by external fields, and while these static
traps do not inherently cool the atoms further, they allow other mechanisms for cooling
below the Doppler limit towards quantum degeneracy while in principle not providing
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any heating mechanisms. Such traps are typically either magnetic fields, which interact
with the permanent dipole moment of the atoms, or optical traps which apply a force
by inducing an electric dipole in the atom. Our experiment utilises both of these types
of trap, to take advantage of the contrasting advantages that they offer.

Magnetostatic traps

Magnetostatic traps apply a force F=∇ (µ · B) due to an inhomogeneous magnetic po-
tential U=−µ·B by the Zeeman effect [124]. As a well-known consequence of Maxwell’s
equations of electrodynamics is that local field maxima are forbidden, these traps will
capture low-field seeking atoms in the mJ = 1 state, while being insensitive to mJ = 0
atoms and repulsive to mJ =−1 atoms. Atoms are typically pre-cooled in a MOT before
transferring to a purely magnetic trap, as the depth of the latter is usually limited to
temperatures only possible after laser cooling is applied to the atomic cloud. Although
it would seem obvious to use the quadrupole field produced by the MOT as the mag-
netostatic confinement, the point of B = 0 at the trap centre allows atoms to undergo
Majorana transitions, which spin-flip the atoms into magnetic substates not trapped by
the field (mJ =0 or -1) and therefore forms a significant loss channel as the cloud cools.

The trap must ideally provide sufficiently strong confinement to facilitate a reason-
able collision rate, which ensures that the atoms rethermalise during cooling, while
simultaneously lacking a zero in the magnetic field. A variety of coil designs have been
implemented to achieve this, each of these resulting in a potential which is essentially
harmonic at the trap centre, and most commonly produces a ‘cigar’ shaped cloud with
two tightly confined axes and a weak direction along which the cloud extends while
trapped. The geometry of these traps is generally fixed, and although the strength of
the trap can be altered by changing the current passing through the trap coils, substan-
tial changes to the trap aspect ratio, and therefore dimensionality of the trapped cloud,
often cannot be achieved.

Cooling to temperatures far below the Doppler limit can occur with atoms held in a
magnetic trap by the process of radio-frequency (RF) evaporative cooling. As magnetic
potentials are conservative, atoms can only reach spatial locations further away from the
trap centre by having a relatively large amount of kinetic energy. Thermal equilibrium
occurs through elastic collisions which redistribute energy between atoms in the cloud,
such that the temperature of the cloud depends on the most probable kinetic energy of
the atoms. By selectively removing the most energetic atoms, the cloud will eventually
rethermalise to a lower temperature after each atom undergoes several collisions. This
can be achieved by outcoupling atoms from a specific spatial location, or equivalently
magnetic field strength, by applying RF radiation of the correct energy to spin-flip atoms
from the field sensitive, trapped mJ = 1 state to the untrapped mJ = 0 state which can
escape from the cloud. By slowly sweeping the energy of the RF radiation applied from
high to low, at a rate slow enough to allow the cloud to remain in equilibrium at all
times, yet fast enough to not allow other loss mechanisms such as inelastic collisions
to become dominant, the temperature will drop while the peak atomic density remains
high. In particular, if a high enough phase-space density is achieved, a Bose-Einstein
condensate can be formed.
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Optical dipole traps

In contrast to the spontaneous scattering force applied to atoms by laser light with
a small detuning from an atomic transition, light with a large detuning can apply a
stimulated dipole force to trap atoms [125]. This force is the result of coherent scattering
of light, where the electric field E of the radiation induces an electric dipole moment in
the atom −er. The interaction energy between the two is U= er·E/2≈ h̄Γ2 I/8δIsat, which
is analogous to the Zeeman shift for magnetic fields. The force applied can be likened to
a classical harmonic oscillator driven below resonance for red-detuned light, where the
electric dipole is driven by an oscillating electric field and undergoes an a.c. Stark shift
dependent on laser intensity, while the spontaneous scattering rate is negligible in the
limit of a large detuning. As is always the case, the force applied is proportional to the
spatial derivative of the potential, which will in turn depend on the intensity gradient
of the light field. While the scattering rate of the radiation pressure force is proportional
to 1/δ2, the dipole force goes as 1/δ and thus large detunings are favourable to avoid
spontaneous scattering which results in loss of atoms from the trap.

A trapping potential can be formed by a gradient in the intensity of a focused
red-detuned laser beam, where different trap geometries can be realised in accordance
with beam parameters calculated with classical Gaussian optics. Optical traps allow for
greater control over trapping geometries than is generally possible for magnetic traps,
where regimes of lowered dimensionality can be reached, in addition to the formation
of lattice potentials. The use of crossed-beam traps can allow for precise control over the
trap aspect ratio, while altering the laser beam intensity tunes the harmonic trapping
frequencies and trap depth. In addition, waveguides can be formed which confine the
atoms in two Cartesian dimensions, without sufficient trap depth to hold them in a third
direction.

This forms a conservative potential in a similar manner to a magnetic trap, although
cooling can be achieved by lowering the trap depth to allow more energetic particles
to escape. Although dipole traps with a large enough trap depth and volume can in
principle capture atoms directly from a MOT, in our experiment atoms are evaporatively
cooled to near the critical temperature for BEC formation in a magnetic trap before being
transferred to the optical trap. A unique feature of dipole traps is their ability to hold
atoms of any magnetic substate mJ , which will be exploited for our single atom source
described in §7.2.

2.3 Bose-Einstein condensation

Bose-Einstein condensates serve as a testbed for a wide array of quantum-mechanical
phenomena, as they are relatively easy to manipulate with external electromagnetic
fields, and are often quite isolated from environmental perturbations. In many of the
quantum statistical experiments undertaken in this thesis, the coherence of a condensed
gas will be contrasted with the chaotic nature of a thermal cloud, which exempli-
fies the correspondence of a BEC with an optical laser and highlights the importance
of Glauber’s theory of coherence for understanding quantum systems. While several
sources such as Refs. [36, 126, 127] provide detailed information about theoretical and
experimental aspects of Bose-Einstein condensation, a brief review of concepts relevant
to our experiment is presented here.



§2.3 Bose-Einstein condensation 31

2.3.1 Requirements for condensation in three-dimensional gases

The cooling and trapping techniques described in the previous section are typically able
to cool quantum gases from room temperature, where either a bosonic or fermionic
gas will behave as an ideal gas described by a Maxwell-Boltzmann energy distribution,
to ultracold temperatures where the quantisation of energy levels becomes important.
With Einstein’s extension [30] to Bose’s theory of photon statistics [29], it was realised
that low temperatures and high densities would result in macroscopic occupation of the
ground state of a bosonic system, which occurs even in the absence of interactions which
are required for familiar phase transitions such as the freezing of a liquid. The average
occupation 〈ni〉 of the ith energy level with energy ǫi for a system of N indistinguishable
bosons at a temperature T is given by the Bose-Einstein distribution

〈ni〉 =
1

e(ǫi−µ)/kBT − 1
, (2.27)

where kB is the Boltzmann constant. The chemical potential µ is the energy required to
add one particle to the system, and is set by the requirement that N=∑i 〈ni〉. In the lim-
iting case of high temperatures and low densities, the Maxwell-Boltzmann distribution
is recovered from Eq. 2.27.

However, at low temperatures, high energy states become inaccessible, while the
populations of the lower energy states increase until a critical temperature Tc is reached,
where the lowest energy state becomes macroscopically occupied. This signals the on-
set of Bose-Einstein condensation, which occurs when there is significant overlap of the
wave packets of the atoms in the gas, which are characterised by the de Broglie wave-
length

λdB =

√

2πh̄2

mkBT
, (2.28)

for Planck’s reduced constant h̄ and mass m. At room temperatures, λdB is very small,
and the atoms act classically. However, when the phase-space density of the gas is
sufficiently high such that the λdB approaches mean particle spacing ρ−1/3 for particle
density ρ, which is quantified as

ρλdB = ζ(3/2) ≈ 2.612, (2.29)

where ζ(x) = ∑
∞
j=1 j−x is the Riemann zeta function, the wave packets of individual

atoms become indistinguishable in the ground state. This signifies that Tc has been
reached.

The temperature at which condensation occurs depends on the trapping potential
V(r) holding the atoms. Magnetic and optical dipole traps will generally be harmonic
at their centre, taking the form

V(r) =
1
2

m
(

ω2
xx2 + ω2

yy2 + ω2
z z2
)

, (2.30)

where ωi is angular harmonic trap frequency from each Cartesian direction. Then, the
temperature at which Eq. 2.29 is satisfied for three-dimensional systems will be

Tc =
h̄ω̄

kB

[

N

ζ(3)

]1/3

≈ 0.94h̄ω̄N1/3

kB
, (2.31)
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where the geometric mean of trap frequencies is ω̄ =
(

ωxωyωz

)1/3. For temperatures
lower than Tc, the occupation of the ground state N0 is

N0

N
= 1 −

(

T

Tc

)3

, (2.32)

while a thermal component will remain for a gas at temperatures above absolute zero.

While interactions are negligible for a high-temperature gas, and remain relatively
weak at quantum degeneracy compared to other systems such as liquid helium su-
perfluids, they are still important for condensed gases. For clouds with a macroscopic
occupation of the ground state, mean field repulsive interactions due to a two-body con-
tact potential of the form Vint(r, r′)= gδ(r − r′), where δ is the Dirac delta function and
g is the two-body interaction energy, can be used to alter the familiar linear Schrödinger
equation to the non-linear Gross-Pitaevskii equation for the expectation value of the
bosonic field order parameter Ψ(r, t) [126]

ih̄
∂Ψ(r, t)

∂t
=

(

− h̄2

2m
∇2 + V(r) + U0 |Ψ(r, t)|2

)

Ψ(r, t). (2.33)

The interaction energy is approximated by the U0 |Ψ(r, t)|2 term proportional to local
density |Ψ(r, t)|2, where U0=4πh̄2a/m for s-wave scattering length a. The order param-
eter can be interpreted as the classical limit of a de Broglie wave, where quantisation
is no longer important and Ψ(r, t) acts as the wavefunction of the BEC with density
ρ(r) = |Ψ(r, t)|2 [36]. For dilute gases where the mean particle spacing is much larger
than the s-wave scattering length, the order parameter is useful for computing the be-
haviour of macroscopically occupied condensates on length scales which exceed a.

This is particularly useful for calculating condensate dynamics, where in the
Thomas-Fermi approximation the kinetic energy term − h̄2

2m∇2 is negligible and can be
discarded, allowing the density profile to be easily computed for a harmonic potential
as

ρ(r) = max
(

µ − V(r)

U0
, 0
)

=
µ

U0

(

1 − ∑
i

x2
i

R2
i

)

. (2.34)

Normalisation of the wavefunction allows the chemical potential to be determined from
N0 as

µ =
1
2

h̄ω̄

(

15N0a

l

)2/5

, (2.35)

where the ground state harmonic oscillator length is l=
√

h̄/mω̄. The size of the trapped
condensate is given by the Thomas Fermi radii

RTF,i =

√

2µ

mω2
i

. (2.36)

In contrast, the size of a trapped thermal gas is

Ri =

√

2kBT

mω2
i

, (2.37)
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which allows the condensed portion of the cloud to be identified from the bimodal
spatial density distribution of the trapped cloud.

2.3.2 Ballistic expansion of ultracold clouds

A feature unique to our experimental setup is the ∼850 mm distance between the trap
and the delay-line detector used to acquire most of our experimental data, which will be
discussed in detail in the following chapter. A cloud released from the trap will evolve
as it falls under gravity such that the position distribution at the detector will essentially
depend on the in-trap momentum. Taking the trapped size R(0) of a BEC from Eq. 2.36,
for the tight trapping axes R⊥ of the trap [128] after an expansion time texp,

R⊥(texp) = R⊥(0)
√

1 + (ω⊥texp)2 ≈ R⊥(0)ω⊥texp, (2.38)

while in the weak, axial direction R‖ we have

R‖(texp) = R‖(0)
{

1 +
(

ω‖
ω⊥

)

[

ω⊥texp arctan
(

ω⊥texp
)

− ln
√

1 + (ω⊥texp)2
]

}

. (2.39)

In contrast, the expansion of the thermal cloud will be dependent on thermal energy
rather than the trapping potential, such that 2.37 is modified to

Ri(texp) =

√

Ri(0)2 + t2
exp

2kBT

m
≈ texp

√

2kBT

m
. (2.40)

In the far field, the thermal cloud will be spherical and symmetric, while the density dis-
tribution of the condensate will retain its asymmetry which again allows the condensate
to be resolved from the thermal background.

2.4 The effect of dimensionality on Bose gases

The phenomenon of Bose-Einstein condensation occurs purely as a result of quantum
statistics, where the chemical potential µ of the Bose gas becomes close to zero and
the ground state of the system becomes macroscopically occupied [129]. Identifying
the onset of condensation amounts to determining a value for µ which normalises the
number of atoms N in the Bose-Einstein distribution, which we recall from Eq. 2.27 is

N = ∑
i

1
e(ǫi−µ)/kBT − 1

≈
ˆ ∞

0
g (ǫ)

1
e(ǫ−µ)/kBT − 1

dǫ, (2.41)

where converting the sum to an integral is valid when the discretisation of the states
becomes insignificant for kBT≫ ǫ0. The density of states g (ǫ) represents the number of
single-particle states available as a function of energy, which will be dependent on the
confining potential of the system, and in particular the dimensionality of the gas. For
high temperatures, µ ≪ ǫ0 and the occupation of each state is very small, according to
Eq. 2.27, and the gas essentially follows the Boltzmann distribution.

As the temperature decreases and the average occupation of each low-energy state
grows, the chemical potential increases but is bounded by the requirement that µ < ǫ0,
as violation of this would result in 〈n0〉 < 0. Therefore, the mean occupation of each
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state is restricted to

〈ni〉i>0 < ∑
i

1
e(ǫi−ǫ0)/kBT − 1

. (2.42)

In this case, it is possible for nexcited = ∑i 〈ni〉i>0 < N, in which case the remaining
particles must accumulate in the ground state, with a population n0=N − nexcited [127].

Whether condensation can occur in a given system will clearly depend on the density
of states at small energies, which takes the general form g (ǫ)∝ ǫ(d/2−1) for an untrapped
d-dimensional gas [127]. However, for a harmonic oscillator potential,

g (ǫ) =
ǫd−1

(d − 1)! ∏
d
i=1 h̄ωi

= Cdǫd−1. (2.43)

The condensation temperature Tc will thus be T for which Eq. 2.41 is satisfied for µ=0,
as this is the condition for which the integral approximation due to kBT ≫ ǫ0 results in
the largest value of N. For T > Tc, µ < 0 and no one particular state is macroscopically
occupied, whereas for T < Tc, Eq. 2.41 only accounts for particles in excited states and
n0 is no longer negligible, at which point a Bose-Einstein condensate forms. We can
explicitly calculate this for a harmonic potential by inserting Eq. 2.43 into Eq. 2.41,
which results in

Tc =
N1/d

kB [CdΓ(d)ζ(d)]1/d
, (2.44)

where ζ(d) is again the Riemann zeta function, and Γ(d) =
´ ∞

0 xd−1e−x dx. For d = 3,
we recover Eq. 2.31, while condensation is also possible for a harmonically-trapped
two-dimensional gas at finite temperature6. However, ζ(1) diverges and thus macro-
scopic occupation of the ground state cannot be achieved for harmonically-trapped one-
dimensional gas at a non-zero temperature in the thermodynamic limit (N → ∞ while
density remains constant, which requires that volume to also goes to infinity). Further-
more, Landau-Ginzburg theory of critical phenomena for phase transitions rules out the
establishment of long-range order for Bose gases in 1D due to phase fluctuations which
dominate even at T=0 [130–132].

Although the above analysis approximated the discrete level structure of a Bose
gas by a continuous distribution, and considered phase transitions to occur only in the
thermodynamic limit, removing these assumptions gives a more realistic treatment of
experimentally realisable systems [133, 134]. For a harmonically trapped gas of a finite
number of atoms, macroscopic occupation of a single state is seen to be possible for
one-dimensional systems due to a shift in condensation temperature for small N. For
three-dimensional systems, finite number effects result in a slight lowering of critical
temperature for the onset of condensation below that of Eq. 2.31, and while true phase
transitions can only occur in the thermodynamic limit [133, 134], it can be shown that
the behaviour for N&104 is virtually indistinguishable from that in the thermodynamic
limit. As establishment of the order parameter and onset of long-range order upon
macroscopic occupation of the ground state is possible for systems of finite N, this is
seen as essentially being equivalent to the phase transition to BEC.

Following the same procedure for a 1D system, a transition temperature T1D
c which

marks the onset of a macroscopic occupation of the ground state of a harmonically

6In the absence of a trapping potential, condensation for a uniform 2D gas is only possible at T = 0,
where the effective form of g(ǫ) mirrors that of a harmonically-trapped 1D gas [127].
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trapped gas can be found from [133]

N =
kBT1D

c

h̄ω‖
ln

(

2kBT1D
c

h̄ω‖

)

. (2.45)

Thus, a critical temperature can be reached for finite N, but fails in the limit that N→∞

while Nω‖ remains finite. The question of whether this constitutes true Bose-Einstein
condensation in the sense of long-range order requires the influence of interactions to
be considered, which will be discussed further in §2.4.1.

Systems of reduced dimensionality are rich with novel behaviour, in particular for
the study of quantum statistics. The role of dimensionality on the phase transition to
Bose-Einstein condensation can be investigated by measuring the correlation length of
Bose gases, which depends on a critical exponent [135]. For uniform two-dimensional
systems which cannot reach BEC at finite temperatures, ‘quasi-condensate’ superfluids
can be formed at finite temperatures due to the Berezinskii–Kosterlitz–Thouless (BKT)
transition which can be identified with coherence measurements [136, 137], while large
numbers of vortices can also be induced in a 2D lattice of BECs in the BKT regime [138].

2.4.1 Quantum correlations in 1D Bose gases

The quantum correlation functions of ideal gases in the 3D limit was discussed in §2.1.1,
where thermal gases display bunching characterised by g(2)(0) = 2, while bunching is
absent for condensates with long-range order such that g(2)(∆r)=1 for all ∆r. However,
long-range order cannot be established in a 1D system due to fluctuations in the order
parameter [130, 131]. Interacting one-dimensional gases are nevertheless of interest be-
cause they provide a rare opportunity for exact solutions to be obtained for many-body
Hamiltonians in certain regimes [139]. These include Tonks-Girardeau gases of bosons,
where infinitely repulsive contact interactions cause the bosonic atoms to mimic the be-
haviour of fermions [140, 141], while a general class of Lieb-Liniger gases with contact
potentials at T = 0 also allow correlation functions to be calculated [142–144]. Correla-
tions at finite temperatures have also been explored for the Yang-Yang model [145] and
Luttinger liquids [146]. However, the properties of systems outside these regimes are
difficult to calculate, and extending the parameter space over which correlations in 1D
can be calculated remains an active area of research.

As the aforementioned theoretical treatments are for 1D gases with a uniform linear
density n1D, we must first check whether this is suitable for describing the more experi-
mentally realistic case of a harmonically trapped Bose gas [147]. This requires the trans-
verse harmonic oscillator length l⊥=

√
h̄/mω⊥ to be much smaller than both λdB and the

length scale of density fluctuations determined by the healing length ξheal= h̄/
√

2mn1Dg

for interaction strength g=2h̄ω⊥a. In this case, a harmonically trapped 1D gas will be-
have like a uniform 1D gas on length scales smaller than the longitudinal harmonic

oscillator length l‖ =
√

h̄/mω‖, which will naturally be much larger than l⊥, when the

3D s-wave scattering length a ≪ l‖. However, the one-dimensional scattering length
a1D = h̄2/g, which is the length scale of interactions between individual atoms in a 1D
geometry, will be much larger than l‖.

The properties of a uniform 1D gas with repulsive contact interactions at finite tem-
peratures essentially depend on two dimensionless parameters [145], which are the cou-
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pling parameter

γ =
mg

h̄2n1D
, (2.46)

and the reduced temperature

τ =
T

Td
=

2mkBT

h̄2n2
1D

. (2.47)

The quantum degeneracy temperature Td = h̄2n2
1D/2mkB corresponds to the temperature

at which the average spacing between particles is equal to λdB.
These two parameters can be used to define several regimes, which are characterised

by their second-order correlation functions [148]:

• Strong coupling 1 < γ < ∞ gives the Tonks-Girardeau regime. For low tempera-
tures where τ ≪

{

γ2, 1
}

, impenetrable contact interactions result in the ‘fermion-
isation’ of the degenerate Bose gas, for which 0≤ g(2)(0) < 1 at finite T. At high
temperatures where τ > 1, bosons also act like a non-interacting Fermi gas where
0≤ g(2)(0)<1.

• In the high-temperature decoherent classical regime where τ ≫ max
{

1, γ2
}

, the
thermal de Broglie wavelength is smaller than both the particle spacing and a1D,
and the behaviour of an ideal gas (γ=0) is essentially recovered where g(2)(0)≈2
[149]. The in-trap correlation length is lcorr ≈ λdB/

√
2π, and g(2)(∆r)→ 1 asymp-

totically over this length scale.

• For weakly coupled degenerate gases {τ, γ}<1, there are several regimes (or more
accurately, a continuous spectrum of behaviours) which depend on the mechanism
by which fluctuations are driven. The degenerate phase correlation length lφ =

h̄2n1D/mkBT [146] sets the length scale of local coherence for weakly interacting
gases at low temperatures, and the lack of long-range order can be understood
from coherence not being able to extend over distances larger than lφ.

– A mean-field approach can be used for the low-temperature region for where
τ ≪ γ ≪ 1 in a similar way to the T = 0 limit, where quasi-condensation
occurs such that the coherence is dominated by quantum phase fluctuations,
and while g(2)(0) ≈ 1 locally, such clouds do not exhibit long-range order
[150].

– At higher temperatures where γ< τ<
√

γ, fluctuations for mean-field quasi-
condensates become predominantly thermal and g(2)(0)&1.

– Increasing the temperature further so that
√

γ ≪ τ ≪ 1 results in the loss of
phase coherence, and g(2)(0). 2 in the decoherent quantum regime. In this
case, no quasi-condensate is present, and phase coherence occurs on length
scales lφ ∼ ξheal such that short range correlations are similar to that of an
ideal gas, even in the presence of a significant ground-state population [145].

While the discussion above is valid for trapped Bose gases, it is important to note
that measurements of correlation functions are only possible in the far field for our
experimental apparatus. This means that the spatial distribution at the detector will
correspond to the in-trap momentum distribution. The lack of long-range order in 1D
means that g(2)(∆k)≈ 2 for all weakly-interacting states, and in particular the suppres-
sion of density fluctuations for trapped quasicondensates which implies g(2)(∆r)∼1 for
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small ∆r does not translate to coherence in the far field. Therefore, it can be difficult to
distinguish between different regimes by measuring the trapped momentum correlation
functions g(2)(∆k) in the far field, which is especially so given the lack of sharp phase
transitions for 1D gases in the weakly-interacting limit. The only difference between
quasicondensates and ideal Bose gases in this case would be the characteristic length of
the decay of the g(2)(∆k) function, which is 1/2lφ for the former as opposed to 1/lφ for
the latter.

2.4.2 Transverse condensation of highly anisotropic quantum gases

Most cold-atom experiments trap Bose gases in elongated, ‘cigar’ shaped traps with
cylindrical symmetry where the harmonic trapping frequency in the axial dimension
ω‖ is considerably lower than that in the radial direction ω⊥. While the aspect ratio of
these traps λ=ω⊥/ω‖ is often around 10 to 100, condensates of large numbers of atoms
are routinely formed in accordance to the three-dimensional theory presented in §2.3.1
with no noticeable dependence on λ aside from the Thomas Fermi radii. Conversely, the
dynamics in the radial dimension can be frozen out when h̄ω⊥> kBTc, which produces
a one-dimensional geometry where atoms do not have enough energy to populate more
than one transverse mode, and long-range order is not possible.

Closer inspection of the thermodynamics of elongated Bose gases reveals another
mechanism by which the dimensionality of a system can be lowered, where the gas can
condense radially while remaining thermal axially, forming a ‘multimode condensate’
[151]. This so-called ‘two-step condensation’ occurs in a limited parameter space where
the number of atoms in the gas N is slightly higher than the trap aspect ratio, and acts
as an intermediate step between thermal and fully condensed gases as temperature is
lowered. Note that this does not involve the freezing of dynamics radially, as this would
prevent a true 3D BEC from forming at an appropriately low temperature.

For a fixed number of atoms N, any of the three regimes of ‘single-mode’ (i.e. true
3D) condensation, two-step condensation, and 1D gases can be reached by adjusting
the trap aspect ratio λ > 1. The boundaries between these regimes can be quantified
by considering the temperatures at which macroscopic ground state occupation occurs,
where we will take T3D

c to be that in Eq. 2.31, while T1D
c is derived from Eq. 2.45, where

T1D
c ≈Nh̄ω‖/kB ln (2N) for large N. Two-step condensation requires T3D

c >T1D
c without

h̄ω⊥ > kBT3D
c , the consequence of which being that the population of states excited in

three dimensions saturates to a single state before the population of states excited in
only one direction does [151]. As both T1D

c and T3D
c include a factor of N, we can define

the range of λ for a given N such that two-step condensation can occur, which is

N [g3(1)]
1/2 [ln(2N)]−3/2

< λ <
N

g3(1)
. (2.48)

Cooling a gas under these conditions will first result in the accumulation of atoms into
a state condensed in two dimensions, but excited in the third, which occurs at T≈T3D

c .
By further reducing the temperature such that T<T1D

c , the atoms finally condensed into
the full three-dimensional ground state of the system to form a BEC. It is also important
to note that a significant transverse ground state population can be present if the two-
step condensation process occurs near the 1D crossover as the temperature is reduced
to approach h̄ω⊥/kB.

An experiment which probes this transition is presented in Chapter 5, where mea-
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surements of the second-order correlation function show that coherence is established
in the transverse direction, while the cloud continues to display bosonic bunching char-
acteristic of thermal clouds in the axial dimension, if the conditions for two-step con-
densation are satisfied. In addition, the increase in radial transverse correlation length
to essentially the size of the cloud allows for higher-order correlation functions to be
measured axially with perfect contrast, as is detailed in §4.5.

2.5 Metastable helium

Although most experiments with ultracold atoms are performed with alkali or alkaline
earth metals, in principle any bosonic species where the sum of the number of protons,
neutrons and electrons in a neutral atom is an even integer can be cooled to quantum
degeneracy to form a Bose-Einstein condensate. However, the ability to achieve this in
practice depends largely on factors such as the elastic and inelastic collisional properties
of a given species, as well as technical limitations such as the availability of stable and
narrow linewidth lasers at the desired cooling transition wavelength. If such conditions
can be satisfied, the cooling and trapping techniques discussed in the previous section
will be effective in increasing the phase-space density of that species such that the phase
transition to BEC can occur. Early experiments concentrated on the cooling and trap-
ping of alkali metals7 due to their simple single valence electron structure, with cooling
transitions occurring at visible wavelengths for which lasers are readily available.

As cooling and trapping techniques developed, a greater variety of species have been
successfully condensed. Many of these species have unique characteristics making them
suitable for particular types of experiments, although some also present considerable
challenges. The metastable helium used throughout this thesis is an especially notable
case, as while loss due to Penning ionisation was initially thought to be the limiting
factor for its cooling, this can be suppressed effectively enough to allow condensation to
occur. Furthermore, cold atoms in a metastable state can be detected with single atom
resolution, which is pivotal for quantum atom optics experiments such as quantum
statistical measurements which will be the focus of much of this thesis.

2.5.1 Unique features of He*

A comprehensive review of metastable noble gases is available in Ref. [152], so only the
key features of metastable helium will be mentioned here. At first glance, laser cooling
of noble gases seems futile due to transitions from the atomic ground state occurring
at extreme ultraviolet wavelengths, for which lasers are not commonly available. How-
ever, noble atoms can be excited to a metastable state with a high-voltage discharge or
electron bombardment, from which transitions accessible with currently available lasers
are present. Bosonic isotopes of noble gases lack hyperfine structure, as they do not
carry a net nuclear spin, which simplifies their level structure and avoids the need for
atoms to be repumped to close the cooling transition cycle, at the cost of an inability
to achieve sub-Doppler cooling. While the outer shell of the core electron levels is not
closed, metastable noble gases are quite similar to alkali metals as both have a single

7The first attempts of laser cooling were applied to hydrogen, which is chemically similar to alkali metals
due to it having a single valence electron. However, as for noble gases, there are no readily accessible
cooling transitions from the ground state.
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Figure 2.3: The level scheme for helium-4 is shown on the left (not to scale). Al-
though cooling has been achieved for the 389 nm transition (blue), most
experiments including all those described in this thesis will cool via the
1083 nm transition indicated in red. On the right, the 23P manifold is
shown in more detail for the 1083 nm transition (also not to scale). The
23S1→23P2 transition is always used for cooling, however the 23S1→23P1
and 23S1 → 23P0 transitions, which are also readily accessible with our
cooling fibre laser, can be used for Bragg and Raman transitions. Energy
levels from ❤tt♣✿✴✴♣❤②s✐❝s✳♥✐st✳❣♦✈✴P❤②s❘❡❢❉❛t❛✴❍❛♥❞❜♦♦❦✴❚❛❜❧❡s✴

❤❡❧✐✉♠t❛❜❧❡✺✳❤t♠. The Russell-Saunders spectroscopic notation used
here is of the form n2S′+1LJ [119], where capital letters signify a sum over
that quantity for all constituent particles, in particular S′ = ∑ s for both
the total spin of the core and valence electron. For states with J 6= 0, the
degeneracy of different mJ states is lifted by the application of an external
magnetic field.

‘valence’ electron. The level scheme of metastable helium-4 (He*) is illustrated in Fig.
2.3.

Among the metastable states available for bosonic isotopes of noble gases, helium-4
presents the most favourable properties for laser cooling. These include the lowest mass
(and thus largest de Broglie wavelength at a given temperature), the simplest electronic
structure, the longest-lived metastable state (23S1, at 7870 s [153]), the highest internal
energy which gives the best detection efficiency, strong interaction with magnetic fields
due to the magnetic moment being two Bohr magnetons, and a low saturation intensity.
The decay from the 23S1 metastable state for He* is doubly forbidden by quantum-
mechanical selection rules, as while the 21S0 → 11S0 transition is forbidden as angular
momentum conservation does not allow spin to be carried away by a photon, 23S1 →
11S0 is suppressed further by spin polarisation in a magnetic field, giving this state a
lifetime which is much longer than the duration of any experiment, and thus making it
essentially the ground state of the system. In addition, the simple level structure of He*
allows various quantum electrodynamical properties of this atom to be calculated very
accurately, and compared to experiments.

Helium is the only metastable noble gas to have been cooled to quantum degeneracy
thus far, which was first achieved by the École Normale Supérieure [48] and Institut
d’Optique [47] groups in 2001. This was followed by condensate of He* by the Vrije

http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable5.htm
http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable5.htm
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Universiteit group [154], here at ANU [155], and by a buffer gas method at Harvard
University [156], while an experiment with ultracold helium has also been established
at the University of Vienna [157]. One drawback with the use of He* is that the efficiency
of exciting to the metastable state in a discharge source is very low, resulting in an atomic
flux much smaller than is easily obtained for a vapour of alkali atoms produced by an
oven.

2.5.2 Penning ionisation

The most notable feature of metastable helium is the 19.8 eV of internal energy carried
by each atom in the 23S1 state. This energy is enough to cause ionisation or electron
ejection after collisions with other He* atoms, background particles, or the vacuum
chamber itself, via a process called Penning ionisation. Loss due to collisions with any
background atom or molecule X (excluding neon, due to its ionisation energy of 21.6 eV
[158]) occurs via the mechanism

He∗ + X → He + X+ + e−. (2.49)

Otherwise, the dominant loss mechanism is Penning ionisation from the collision of two
He* atoms via

He∗ + He∗ → He + He+ + e−, (2.50)

while the associative Penning ionisation process also occurs at around 5% of the rate of
Eq. 2.50 by [159]

He∗ + He∗ → He+2 + e−. (2.51)

Other decay mechanisms such as radiative escape and fine structure changing collisions
occur at a much smaller rate compared to these processes [159].

This loss can be characterised for a trapped cloud loaded at a rate L by considering
the dependence of the population of the cloud as a function of time N(t) as

dN(t)

dt
= L − αN(t)− β

ˆ

ρ2(r, t) d3r. (2.52)

The single body loss rate α will depend on collisions with background particles (and
thus the density of the background gas X in Eq. 2.49, necessitating the attainment of
ultra-high vacuum in the trapping chamber), while the two-body loss rate β accounts
for Penning losses (Eqs. 2.50 and 2.51). In most cases, the density of the cloud will be
small enough for loss due to collisions between three or more bodies to be negligible.
By setting L=0 and integrating over the spatial extent of the cloud characterised by an
effective volume V, the decay in the cloud population can be found to be [160]

N(t) =
23/2αN(0)V

[23/2αV + βN(0)] exp (αt)− βN(0)
. (2.53)

It was initially thought that the severity of the Penning loss mechanism, with a
rate constant calculated to be β > 5×10−10 cm3s−1 [161–163], would prevent the elastic
collisions required for evaporative cooling to occur for this species. However, this rate
constant can be reduced by five orders of magnitude with the application of an external
magnetic field to polarise the spins of the particles [164], which conveniently occurs
naturally in a magnetic trap. This suppresses the Penning ionisation process due to
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spin conservation in Eqs. 2.50 and 2.51, as while the sum of the spins of the colliding
trapped atoms is S = mJ + m′

J = 2, the right hand side of these equations has at most
S = 1 as all the electrons in the ground state helium atoms are paired and antialigned.
This reduction of the two-body loss rate for collisions between pairs of spin-aligned He*
atoms is sufficient for the elastic collisions required for cooling and trapping to dominate
over inelastic collisions. However, the effectiveness of this loss suppression is diminished
for metastable noble gases more massive than helium, meaning that condensates for
such species has not yet been achieved.

Loss rates for the unsuppressed collision pairs with S = 0 such as (mJ , m′
J) = (0, 0)

and (−1, 1) result in two-body loss rates β(mJ , m′
J) which have been measured to

be consistent with theoretical predications at β(0, 0) = (6.6 ± 0.4)×10−10 cm3s−1 and
β(−1, 1)= (7.4 ± 1.0)×10−10 cm3s−1 [165]. Conversely, for spin-polarised helium in the
mJ =1 state, theoretical studies have shown that β(1, 1)∼2×10−14 cm3s−1 [163, 164, 166],
while the three-body loss rate is much smaller at γ(1, 1)∼10−26 cm6s−1 [167, 168], which
agrees well with experimental measurements of β(1, 1)= (2.9 ± 2.0)×10−14 cm3s−1 and
γ(1, 1)=(1.2 ± 0.7)×10−26 cm6s−1 [169].

However, it is the large internal energy stored in He* atoms which permits single
particle detection via Auger de-excitation (which proceeds in a similar manner to that
in Eq. 2.49 for the interaction of He* with the detector surface) where detection systems
for charged particles or energetic photons, such as those involving micro-channel plates,
can be used. In particular, this gives helium relatively simple and flexible methods of
single atom counting with high-resolution three-dimensional information [170], which
is a unique feature among species used for quantum atom optics. This will be covered
in more detail in §3.3, and is one of the most important considerations which influences
the type of experiments performed with this species. In addition to this, we have utilised
the Penning ionisation process to induce losses in clouds of He* to produce single atom
sources, which is described in §7.2. This is of importance for the fundamental tests of
quantum mechanics outlined in the previous sections, and in particular is pivotal to the
realisation of Wheeler’s delayed choice experiment, as discussed in Chapter 7.
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Chapter 3

Experimental apparatus and methods

This chapter will provide a brief overview of the experimental apparatus and methods
used to obtain the results described in this thesis. Of particular interest are the features
unique to our use of metastable helium (He*), the most important of which being the
single atom detection systems utilised. The physical processes resulting in cooling or
trapping which were explained in the previous chapter will also be discussed in the
applied context of the experimental setup. Each of our experiments will require the
creation and subsequent manipulation of ultracold atomic clouds in magnetic and pos-
sibly also optical traps, and as trap stability will be a factor crucial to our experimental
results, the implementation of several stabilisation mechanisms will also be discussed.

3.1 Helium BEC apparatus

Bose Einstein condensation in He* was first achieved at ANU in 2007 [155], and the
experimental process used to produce condensates has remained largely unchanged
since. The experimental procedure from which all of our subsequent experiments follow
will only be outlined here, while more technical information about the apparatus can be
found in the relevant references. The main features of the apparatus are illustrated in
Fig. 3.1.

Experimental control

Achieving Bose Einstein condensation for He*, as well as the subsequent manipulation
of ultracold clouds to perform novel experiments, requires a large and complicated ex-
perimental setup (see Fig. 3.1) which involves several stages of cooling and trapping.
However, even the most elaborate of experimental procedures is essentially composed
of the precise application of laser light, radio frequency (RF) radiation and magnetic
fields to a source of He* atoms, as well as sequences of TTL triggers for various pro-
cesses such as to initiate detector acquisition. These can be readily manipulated with
the use of a desktop computer running National Instruments LabVIEW, which commu-
nicates to components in the experiment such as current controllers and acousto-optical
modulator (AOM) drivers through a variety of digital and analogue output cards. This
setup provides the precision, flexibility and stability over many experimental iterations
typically required for our experiments.

43
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Figure 3.1: Solidworks schematic of the experimental apparatus. A more detailed
schematic of the detector stack will be seen later in Fig. 3.8.

Vacuum system

As is the case for any ultracold atomic experiment, and especially so for metastable
helium due to collisional losses via Penning ionisation (see §2.5.2), ultra-high vacuum
(UHV) pressure must be maintained within the experimental chamber for cooling to
occur. However, the excitation of helium from its true ground state to the metastable
23S1 state in our atomic source (described below) is only ∼0.01% efficient [152], leaving
a large background of other atomic states in the source chamber. Therefore, the exper-
imental apparatus was designed to minimise the background pressure in the chamber
where condensation is to be achieved. In addition to the large number of vacuum pumps
used to remove particles from the chamber, and differential pumping stages to isolate
the later stages from the background at the source, the ‘line of sight’ from the helium
source to the first magneto-optical trap (MOT) is blocked, as is the direct path from the
Zeeman slower to the second MOT where the final cooling to quantum degeneracy is
performed. Instead, atoms in the desired He* state are selectively manipulated by laser
light to pass through small apertures linking the different sections of the vacuum cham-
ber, resulting in a partial pressure of helium below 5×10−12 Torr at the second MOT.
This is many orders of magnitude better than what is possible further upstream, and
is sufficient to allow ultracold atomic clouds with a single-body collisional lifetime of
about 60 seconds to be produced.
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Cooling laser

Although laser light will interact with the He* atoms to perform cooling at several
locations in the experimental apparatus, all of this light is derived from a single 1083
nm 3 Watt fibre laser. This laser is locked to the 23S1 → 23P2 cooling transition, and is
split into many arms which have their power and frequency controlled independently
with AOMs.

3.1.1 Atomic beam used to load a MOT

Helium source and Zeeman slower

The cooling of our atomic samples starts with high-purity helium-4 gas being injected
from a bottle at room temperature into a vacuum chamber cooled by a cryostat, where
ground-state helium is excited to the 23S1 state with a DC discharge, as is described in
Ref. [171]. At this stage, the background pressure of helium is ∼10−5 Torr. The cryostat
is cooled with liquid nitrogen rather than liquid helium, as the latter provides only a
modest increase in atomic flux while requiring more frequent replenishment. The beam
of helium which exits from the cathode nozzle then passes through a skimmer, followed
by a collimation stage consisting of a 2D optical molasses which reduces the velocity
spread of atoms in the transverse direction of the beam [172]. After this, a rotated 1D
optical molasses stage deflects the beam of atoms in the 23S1 state by ∼1.7◦ to pass
through a small aperture, while the background of other atomic species remain unde-
flected and thus removed from the experiment. The beam of atoms exiting the bending
stage then passes down a Zeeman slower, which reduces the average longitudinal ve-
locity of the beam from 103 ms−1 to around 70 ms−1 [173], while differential pumping
between the source and collimation stage reduces the background pressure to 10−7 Torr.

First MOT and LVIS+

The atomic beam is then loaded from the Zeeman slower into the first MOT, where the
atoms are trapped and cooled to temperatures of a few mK. As the background pressure
at this stage is still too high for a condensate to be formed, a beam of atoms from the first
MOT is extracted as a low-velocity intense source (LVIS) [174] and loaded into a second
MOT in the BEC chamber. This is achieved by having a mirror and λ/4 waveplate with
a 1.5 mm circular hole to retro-reflect one of the MOT beams under vacuum, where the
imbalance in radiation pressure allows very cold atoms to leak through the hole and
proceed towards the second MOT at a 90◦ angle to the Zeeman slower. As with the
bending stage, the lack of line of site in addition to the differential pumping after the
first MOT allow pressures low enough for a BEC to be formed in the BEC chamber. The
LVIS flux is increased by a very weak laser beam used to further imbalance the radiation
pressure and ‘push’ the atoms to create what we call the LVIS+. This loading is aided
by a focusing stage, which consists of a 2D optical field and a anti-Helmholtz coil pair,
which reduces the divergence of the LVIS+ atomic beam.

Either of two metal tags mounted on translators at different positions inside the
vacuum chamber can be inserted into the path of the LVIS+ to measure the atomic
flux, as the de-excitation of a He* atom via the Auger process creates a small current
which can be read on a picoammeter. These tags, along with similar tags situated
after the collimator and Zeeman slower, are invaluable for optimising the loading of the
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second MOT, which is typically achieved by fine-tuning the alignment of the cooling
laser beams.

Second MOT

As the beam of atoms transferred via the LVIS+ has already been cooled significantly, the
capture velocity and volume required to load these atoms into a second MOT is lower
than for the first MOT. This allows us to use laser beams and anti-Helmholtz coils with
very small radii (∼7 mm) to create the second MOT in the BEC chamber [155]. A loading
beam applied at 15◦ to the horizontal is added to the standard three counterpropagating
pairs of beams to increase the loading efficiency. After the second MOT is loaded, a
very low intensity (I ∼ 0.01Isat) 1D in-trap Doppler cooling stage is applied to further
reduce the temperature of the cloud from 1 mK to around 100 µK. The population of
the trapped cloud can be monitored and optimised when required by measuring the
amount of resonant light scattered off the trapped cloud with a photodiode.

3.1.2 BiQUIC magnetic trap

Once the second MOT is loaded into the anti-Helmholtz (quadrupole, Q) coil pair of the
magnetic trap, a second pair (bias, B) of coils are used to create a purely magnetic trap
in the bi-planar quadrupole Ioffe configuration (BiQUIC) [155], as is shown in Fig. 3.2.
By minimising the trap coil radius, the amount of current required to provide sufficient
magnetic field confinement is also decreased, which results in better trap stability. While
other commonly used configurations such as cloverleaf traps typically require current of
the order of hundreds of ampere, our BiQUIC trap requires a peak current of 40 A, which
significantly reduces temperature fluctuations due to ohmic heating or eddy currents
induced upon trap switch-off. The shot-to-shot reproducibility of the magnetic trap is
also significantly enhanced by a temperature controlled water cooling system. Although
the coils are small in both radius and pair separation (dimensions are specified in Fig.
3.2), which restricts the radius of any laser beam directed at the atom cloud, optical
access is still available in each Cartesian axis of the chamber.

This coil configuration typically produces a cigar-shaped trap which has harmonic
trapping frequencies of around ω⊥ = ωx = ωz = 2π×500 to 550 Hz and ω‖ = ωy =

2π×50 to 55 Hz in the radial and axial directions respectively (see Fig. 3.2). These
trapping frequencies are measured by sinusoidally modulating the coil current, which
results in a loss of atoms from the trap which is greatest when the modulation frequency
matches that of the trap confinement. The geometry of the trap can also be adjusted by
altering the ratio of currents passing through the two coil pairs, which we use to create
a spherical ‘sagged’ trap with ωx = ωz ≈ ωy ≈ 2π × 80 Hz and a trap centre displaced
by several mm from the centre of the cigar-shaped trap, as shown in Fig. 3.2. This
‘sagged’ configuration is especially useful improving optical access to the magnetically
trapped cloud, as is brings the trap centre closer to the middle of the quadrupole coil
pair, through which dipole trapping and Bragg scattering beams can be applied, as will
be seen in the following sections.

Magnetic trap stabilisation

Both the short-term and long-term stability of our magnetic trap are of vital importance
to the quality of experimental results that can be obtained. While the latter is typically
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Figure 3.2: BiQUIC magnetic trap with bias (B) and quadrupole (Q) coil pairs, in
(a) its normal ‘cigar’ configuration where the current passing through
each coil pair is equal (IB = IQ), and (b) the ‘sagged’ configuration where
IB < IQ.

limited by thermal drifts in the trap coils, sources of unwanted external magnetic fields
can perturb the trap at both low and high frequencies. Passive solutions to this problem,
including the use of mu-metal to shield nearby noise sources such as the turbo pumps,
locating other noisy devices (typically involving 50 Hz hum from mains electricity) as
far from the BEC chamber as possible, and having the BEC chamber itself made from
titanium which has a low magnetic susceptibility, are limited in their success.

A critical feature of our experimental setup is the use of an active magnetic field
stabilisation system, which we refer to as our ‘nullerometer’ [175]. Pickup coils are
used to measure AC and DC magnetic field components in each Cartesian axis, and an
actively regulated current controller drives Helmholtz coil pairs in each axis to cancel
out magnetic field noise at frequencies from 0 Hz to about 3 kHz. This noise reduction
is effective to ∼30 µG, or less than 1 kHz in the minimum of the trapping field, where
a 1 G field results in a h×2.8 MHz trap bias energy1. The nullerometer also allows
the bias magnetic field to be adjusted by a few gauss in each Cartesian axis, and is
typically set to produce a trap bottom energy of around h×1 MHz, as while high bias
fields reduce the trap confinement, bias frequencies lower than about 500 kHz leave
the trap susceptible to Majorana (spin flip) losses. The direction of this bias field is also
important for providing a quantisation axis for Bragg scattering, as will be seen in §7.3.2.

Evaporative cooling

An RF evaporation ramp is then used to continue cooling atoms to quantum degeneracy
in the magnetic trap. A ramp defining radiation frequency as a function of time, which
is an approximately exponential sweep over 17 seconds, is composed in LabVIEW and
used to control an arbitrary waveform generator. The RF radiation is transmitted to an
antenna situated in the bias coil of the BiQUIC trap, which outcouples atoms from the
trap by spin flipping them into the field-insensitive mJ = 0 state. The lowest frequency
of this ramp determines the final temperature of the cloud, and can be repeatably con-
trolled to either side of the critical temperature (Tc is typically around 1 µK for our trap)
for the formation of a BEC.

After the evaporative cooling process is complete, the trapped cloud of atoms can
either be manipulated further – the manner of which is unique to each different experi-

1This is due to the gyrofrequency of an electron in a magnetic field being fg = qB/2πm for mass m,
charge q and magnetic field B.
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mental result – and then dropped under gravity to the detectors below. The properties
of the cloud, typically including the temperature and condensate fraction, can be ob-
tained from the density distribution of atoms measured on a variety of detectors in our
system, details of which will be given in §3.3.

3.1.3 Optical dipole trap

The use of optical dipole traps can enable a great variety of experiments which require
strongly-confining or high aspect-ratio trapping geometries, optical guiding, or the abil-
ity to hold atoms in the magnetic field insensitive mJ =0 state, each which will be seen in
later chapters of this thesis. Although magnetic traps are usually required to cool atoms
to ultracold temperatures, we can transfer atoms from the BiQUIC trap to the focus of
one or two laser beams which are red detuned from the atomic cooling transition. As
with the magnetic traps, optimising the stability of our dipole traps is of critical impor-
tance, especially for correlation measurements which can be obscured by classical noise
sources. In addition, the ability to change the trap depth over a wide range is a desirable
property of optical traps, and will prove especially useful for creating quantum gases
with unique correlation properties.

Dipole trapping lasers

Several different dipole trapping lasers have been used in our experimental setup. How-
ever, each are essentially of the same design, being fibre or diode lasers outputting 1550
nm light. This wavelength is far detuned to the red of the cooling transition at 1083 nm,
resulting in an attractive trapping potential with minimal spontaneous scattering. The
diode laser produces 120 mW beams, and our two different fibre lasers 5 W and 30 W
beams respectively, where in general higher powers allow deeper and tighter traps to
be easily produced, at the cost of poorer stability. In fact, the 30 W laser proved to be
far too unstable to be used for trapping, while the 5 W laser benefited greatly from the
installation of an optical isolator to eliminate feedback. While our earlier experiments
used a single dipole trap derived from the 120 mW laser, later results which utilised a
crossed-beam geometry required a larger amount of laser power, especially since each
of the beams were to be derived from the same laser, and thus necessitated the use of
the 5 W laser.

Beam setup and dipole trap stabilisation

A simplified schematic of the crossed-beam trap setup is shown in Fig. 3.3, while the
single beam setup eliminates the ‘horizontal’ beam. Light from the fibre laser passes
through an optical isolator, and then is telescoped with a lens pair and split into two
paths with a polarising beamsplitter and λ/2 waveplate, the orientation of the latter
tuning the power balance between the two arms. In each arm, the light is focused
through an AOM which controls the light intensity entering the vacuum chamber, while
the undiffracted portion of the beam is blocked by an iris. A small amount of light
is picked off after each AOM and measured by a photodiode, while the remainder of
each beam is collimated and then passes through a mechanical shutter to be focused
into the BEC chamber. The focusing lenses, which are chosen so that the focus of the
beam coincides with the centre of the BiQUIC trap, are mounted on linear translation
stages incorporating micrometers to allow for precise adjustments to their alignment,
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in three dimensions for the vertical beam and one dimension for the horizontal beam.
Each of these translators are then locked in position once correctly aligned to reduce
beam vibrations.

The intensity of each beam is controlled by the RF power delivered to an AOM by
an AOM driver, which consist of an RF source such as a voltage-controlled oscillator
(VCO) at the correct driving frequency of the AOM, an RF switch, linear attenuator
and amplifier. The attenuation levels are manipulated by proportional-integral (PI) loop
circuits which match external set points, typically produced by analogue voltage ramps
sent from LabVIEW, with the light level measured on each photodiode. These ‘noise-
eaters’ use operational amplifiers to actively compensate for the difference between the
set point and measured light levels, at a bandwidth of ∼100 kHz. Each component of the
feedback circuit was carefully optimised to maximise the dynamic range and minimise
the noise floor of the PI controllers, which were ultimately limited to 2000 and < 0.1%
of maximum power respectively.

Trap geometry

A comprehensive review of the properties of red-detuned optical dipole traps is pro-
vided in Ref. [176], the key points of which will be briefly reviewed here. The trap
depth and harmonic confinement frequencies for a single, cylindrically-symmetric fo-
cused Gaussian beam are essentially set by the waist size and power of the beam. A
Gaussian beam of power P propagating in the ẑ direction with a focused 1/e2 radial
spot radius of W0 and Rayleigh length zR = πW2

0 /λdip for λdip = 1550 nm will have an
intensity profile

I(r, z) =
2P

πW(z)
exp

( −2r2

W(z)2

)

, (3.1)

where the beam radius is W(z) = W0
√

1 + (z/zR)2. The dipole potential due to the
red-detuned light field will be [120]

Udip(r, z) =
3πc2

2ω3
0

Γ

∆
I(r, z) =
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8∆Isat
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where for 4He* the transition linewidth is Γ=2π×1.6 MHz and the saturation intensity
is Isat=2.7 Wm−2. In the absence of gravity, the trap depth will be

Udip(0, 0) =
h̄Ω2

4∆
, (3.3)

for Rabi frequency Ω = Γ
√

I0/2Isat and detuning ∆ = ωdip − ωtrans of the dipole beam
from the atomic transition. As this potential provides a harmonic confinement of the
form U(r, z) ≈ Udip(0, 0)

(

1 − 2(r/w0)2 − (z/zR)
2
)

, we can extract harmonic trapping
frequencies
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Figure 3.3: Schematic of the twin dipole beam setup, which enters the BEC chamber
as shown in Fig. 3.5. The analogue set points and switch TTL waveforms
can be controlled independently for the two beams. The AOMs detune the
light by around 100 MHz, which is insignificant compared to the ∼ 1014

Hz detuning between the dipole laser and atomic cooling transition.
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We can also include a gravitational potential Ugrav(z)=−mgz, for gravitational acceler-
ation g = 9.8 ms−2, which is important for our vertically-aligned trap where the weak
trapping axis is against gravity. In this case, the trap depth is reduced and confinement
frequencies become position dependent, although this change is typically no more than
10%. A quadratic fit to the centre of the combined potential will again give the approx-
imate trap frequencies, while the trap depth is the lowest energy required for a particle
to escape the trap. This is shown in Fig. 3.4 for a spot size (20 µm) and range of powers
powers (5 mW to 50 mW) typical for the vertical beam used in our experiments.
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Figure 3.4: Axial potentials for dipole traps sagging under gravity, created with a
beam of 1550 nm light with a 20 µm waist. For a 5 mW beam (left), the
trap depth Udepth/kB ≈ 2 µK, while the trapping frequencies are ωr =
2π × 2.6 kHz and ωz = 2π × 57 Hz. For a 50 mW beam (right), the trap
depth is 57 µK, and the trapping frequencies are ωr = 2π×8.5 kHz and
ωz =2π×209 Hz.

The focused spot radius of a collimated beam of radius Wcol passing through a con-
verging lens with focal length f0 under the assumptions of standard Gaussian optics is
W0=λ f0/πWcol, to which corrections can be applied for aberrations. Therefore, by mea-
suring either the collimated beam radius or ideally the focused spot size of the beam, in
addition to the total beam power, the trap parameters can be determined theoretically.
However, the trap frequencies for each optical dipole trap can also be determined empir-
ically by modulating the trap depth, in the same manner as for the magnetic trap. While
this technique does not allow the frequencies of a crossed-beam trap to be measured
directly, as the two beams intersect at right angles and are of considerably different
trapping frequencies, the combined trap confinement can be determined by adding the
frequencies of the two individual traps in quadrature.

Optical trapping of atoms

The vertical beam, first collimated to around 15 mm, is focused by either a 150 mm lens
mounted above the BEC chamber, or a 75 mm lens inserted in a tube which is positioned
close to the re-entrant window above the BiQUIC trap (see Fig. 3.5). This produces a
spot of size 20−25 µm which is slightly elliptical due to the diffraction occurring in the
AOM. Over a variety of slightly different implementations used for the results in this
thesis, the power in the beam is typically less than 100 mW, which gives radial trapping
frequencies which can reach ∼10 kHz, while a power of at least ∼5 mW is required to
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provide axial confinement of at least 15 Hz which is required to hold the atoms against
gravity. The horizontal beam is focused by a 500 mm lens to a 40 to 50 µm ×∼120 µm
spot, and provides radial trap frequencies up to ∼ 1 kHz at 500 mW.

To load a cloud of atoms into the optical trap, ∼106 atoms are first cooled to around
Tc ≈ 1 µK in the magnetic trap. As the depth of a trap (in units of temperature,
Udepth/kB) must be at least an order of magnitude greater than the actual temperature
of the cloud2, it would not be possible to capture atoms directly from a MOT without
a very powerful laser. After the RF evaporative cooling process, the vertical beam is
typically ramped up over ∼100 ms to a power of about 60 mW, which provides a con-
finement of ωr ≈ 2π× 6 to 7 kHz and ωz ≈ 2π×60 to 80 Hz. This superposition creates
a ‘dimple’ in the trapping potential, into which a condensate is almost always formed
[177, 178].

After switching off the magnetic trap, around 104 atoms are held in the optical trap.
The cloud can then be evaporatively cooled by ramping down the trap depth over a
few 100 ms, which selectively releases the more energetic atoms in a similar fashion
to RF evaporative cooling. While held solely in the vertical dipole beam, the atoms
are confined at a very high aspect ratio, which is sufficient to allow lower-dimensional
effects to be seen, as is investigated in the experiments described in §4.5 and Chapter 5.
If instead we want to remain in the 3D regime, the horizontal beam can then be ramped
up to typically ∼200 to 500 Hz, which allows the vertical beam to be further weakened
to a similar radial harmonic frequency, so that the cloud is held in a roughly spherical
potential.

3.2 Atom lasers

In general, atoms can be released from a trap by either suddenly switching the trap off,
or by some process which outcouples a portion of a cloud from the trap. A review of
atom lasers outcoupled from BECs is provided in Ref. [179], while the concept of an
atom laser can also be extended to the outcoupling of thermal atoms which is possible
by the same mechanisms. Atom lasers themselves can be interesting to study, where
for example the correlation function of a pulsed atom laser (which will be covered in
§4.2.1) was found to be coherent, which is consistent with the view that atom lasers are
the matter wave equivalent of an optical laser and retain the coherence of the BEC from
which they are extracted. Conversely, atom lasers can be used as an experimental tool
to perform tasks such as outcoupling a small portion of a BEC to prevent the detector
saturation that would otherwise occur if the entire cloud was dropped, to deplete the
population of the trapped cloud, or to control the energy spread of atoms being mea-
sured at the detector. The thermal portion of a cloud can also be selectively outcoupled
from the trap, which is particularly useful for experiments where the condensed and
thermal portions of the cloud are to be investigated separately.

3.2.1 RF atoms lasers from magnetic traps

While there are many mechanisms by which atoms can be extracted from a magnetic
trap, we typically use RF radiation to spin flip atoms to the field-insensitive mJ =0 state
in the same manner as for evaporative cooling. In this case, the frequency of RF radiation

2This is to ensure that the entire thermal distribution is captured.
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Figure 3.5: Atoms enter from the LVIS+ to be loaded first into the BiQUIC trap inside
the BEC chamber, and then transferred into a crossed-beam optical dipole
trap. The foci of the vertical and horizontal dipole beams are aligned to
coincide with the centre of the magnetic trap. As is depicted, the mini-
mum distance from the trap centre to the vertical and horizontal lenses
are approximately 75 mm and 500 mm respectively, while for some ex-
periments a larger diameter f = 150 mm lens can be used for the vertical
trap by mounting it above the BEC chamber. The cloud transferred to the
dipole trap can then either be outcoupled and guided or dropped to the
detectors below by lowering or switching off the trapping beam intensity.
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applied can selectively outcouple atoms from a particular energy, or equivalently spatial
location, within the Thomas-Fermi radius of the BEC. On the other hand, applying
short Fourier-broadened pulses of RF can outcouple atoms approximately isotropically
over a wide spread in energy. Due to the small mass of helium compared to other
commonly laser-cooled atoms such as alkali metals, RF atom lasers tend to ‘fountain’ out
of the trap and produce intensity profiles in the far field containing complicated fringe
patterns, which was studied in depth in Ref. [180]. By outcoupling at energies above the
chemical potential of the condensate, thermal atoms can be selectively extracted from
the trap. These different scenarios are illustrated in Fig. 3.6.

BEC
µ = 8 kHz 

Thermal
atoms

Energy / h

Trap bottom ~ 1 MHz 

f1

f2

f3

Magnetic trap potential

Figure 3.6: A cloud containing condensed (dark grey) and thermal (light grey) com-
ponents are held in a harmonic magnetic trap (blue line). The red lines
represent RF outcoupling over different frequency ( f =E/h) ranges. Nar-
rowband radiation at f1 outcouples from within the BEC, and similarly
for f2 from the thermal component, while f3 is Fourier broadened to out-
couple both condensed and thermal atoms. The outcoupling frequencies
are offset by the trap bottom, which is typically around 1 MHz. Note that
the chemical potential of the BECs formed in our experiment is around
h×8 kHz.

3.2.2 Atom lasers and waveguides from optical dipole traps

As was seen in the previous section, a reduction in dipole beam power leads to a lower
trap depth, which can effectively provide a mechanism for evaporative cooling. This
process can also be used to selectively outcouple the most energetic portion of the cloud,
as is shown in Fig. 3.7. This technique will prove particularly useful for loading atoms
into an optical waveguide, where the intensity of the vertical dipole beam is lowered
such that it confines the cloud radially yet not axially, as will be seen in the experiments
outlined in §§6.2.3 and 6.2.4.

3.3 Detectors for single metastable atoms

The principal motivation for performing quantum atom optics experiments with He* is
the unique single atom detection capabilities available for this species. Most ultracold
atomic experiments are performed with alkali metals, or less frequently alkaline earth or
lanthanide metals, and use the interaction of these atoms with resonant light to perform
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Figure 3.7: Cartoon representation of outcoupling atoms from an optical dipole trap,
where the form of the combined optical and gravitational potentials U(z)
(red lines) are the same as those shown in Fig. 3.4. In (a), both the
condensed (dark grey) and thermal (light grey) atoms are held in the
trap. By lowering the trap depth adiabatically, first the thermal (b) and
then condensed (c) portions of the cloud are outcoupled.

fluorescence or absorption imaging, while far detuned light can allow phase contrast
imaging. An overview of this is presented in Ref. [126], and while in principle such
techniques could be employed for the detection of He* atoms, the strong distortion due
to radiation pressure suffered by He*, in addition to the poor performance of silicon-
based CCD detectors at 1083 nm, has in the past limited the usefulness of imaging
He* with resonant light [152]. However, with the increasing availability of high-quality
InGaAs cameras, which are far more sensitive at 1083 nm than Si cameras, this form
of imaging is beginning to be adopted in the He* community3. However, these detec-
tion techniques do not typically allow for single atom counting data to be obtained,
and while mean-field atom optics effects can readily be observed, the measurement of
full quantum statistics is usually not possible. The principal motivation for performing
quantum atom optics experiments with He* is the unique single atom detection capa-
bilities available for this species. Most ultracold atomic experiments are performed with
alkali metals, or less frequently alkaline earth or lanthanide metals, and use the interac-
tion of these atoms with resonant light to perform fluorescence or absorption imaging,
while far detuned light can allow phase contrast imaging. An overview of this is pre-
sented in Ref. [126], and while in principle such techniques could be employed for the
detection of He* atoms, the strong distortion due to radiation pressure suffered by He*,
in addition to the poor performance of silicon-based CCD detectors at 1083 nm, has in
the past limited the usefulness of imaging He* with resonant light [152]. However, with
the increasing availability of high-quality InGaAs cameras, which are far more sensitive
at 1083 nm than Si cameras, this form of imaging is beginning to be adopted in the He*
community4. However, these detection techniques do not typically allow for single atom
counting data to be obtained, and while mean-field atom optics effects can readily be
observed, the measurement of full quantum statistics is usually not possible.

Measurements of quantum gases with single atom sensitivity have been possible
with a variety of species, using techniques such as coupling to cavities [181, 182] and
light sheets [183]. However, the energy stored internally in metastable atoms is sufficient
to ionise other atoms or cause electron ejection from materials, and this allows the use

3Initial results using these devices by the Vassen (❤tt♣✿✴✴✇✇✇✳♥❛t✳✈✉✳♥❧✴⑦✇✐♠✴❈♦❧❞❴❆t♦♠s✴
❝♦❧❞✷✳❤t♠❧) and Boiron/Westbrook/Aspect (❤tt♣✿✴✴✇✇✇✳❧✉♠❛t✳✉✲♣s✉❞✳❢r✴■▼●✴♣❞❢✴✷✵✶✷✵✻✶✾✴▲❯▼❆❚❴
✶✾❏✉✐♥✷✵✶✷✳♣❞❢) groups have been encouraging.

4Initial results using these devices by the Vassen (❤tt♣✿✴✴✇✇✇✳♥❛t✳✈✉✳♥❧✴⑦✇✐♠✴❈♦❧❞❴❆t♦♠s✴
❝♦❧❞✷✳❤t♠❧) and Boiron/Westbrook/Aspect (❤tt♣✿✴✴✇✇✇✳❧✉♠❛t✳✉✲♣s✉❞✳❢r✴■▼●✴♣❞❢✴✷✵✶✷✵✻✶✾✴▲❯▼❆❚❴
✶✾❏✉✐♥✷✵✶✷✳♣❞❢) groups have been encouraging.

http://www.nat.vu.nl/~wim/Cold_Atoms/cold2.html
http://www.nat.vu.nl/~wim/Cold_Atoms/cold2.html
http://www.lumat.u-psud.fr/IMG/pdf/20120619/LUMAT_19Juin2012.pdf
http://www.lumat.u-psud.fr/IMG/pdf/20120619/LUMAT_19Juin2012.pdf
http://www.nat.vu.nl/~wim/Cold_Atoms/cold2.html
http://www.nat.vu.nl/~wim/Cold_Atoms/cold2.html
http://www.lumat.u-psud.fr/IMG/pdf/20120619/LUMAT_19Juin2012.pdf
http://www.lumat.u-psud.fr/IMG/pdf/20120619/LUMAT_19Juin2012.pdf
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Figure 3.8: Cutaway Solidworks schematic of the detector stack (vertical positions
of detectors not to scale). The electron multiplier and phosphor screen
detectors are mounted on translators which allow them to be removed or
inserted into the flight path of the atoms as they fall under gravity from
the trap. The windows through which the vertical and horizontal dipole
trapping beams are also indicated to supplement Figs. 3.3 and 3.5.
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of detection systems based on electron multipliers, which is summarised in Ref. [152].
Such detectors, which have been commercially developed for applications with charged
particles or energetic (UV or X-ray) photons, are appealing due to the flexibility of
implementations available, where measurements of quantum gases with good temporal
and spatial resolution over large spatial areas with modest incident fluxes are possible.
In particular, micro-channel plates (MCPs) are well suited to imaging He* atoms, and a
study of their performance with different coating materials and voltage configurations
is available in Ref. [184].

Our experimental apparatus primarily makes use of the three different detectors
shown in Fig. 3.8, each of which are based on electron multipliers. These detectors
posses inherent strengths and weaknesses, and having a variety of detectors with com-
plementary attributes is important for learning about the properties of the quantum
gases produced, which is especially true given that we are currently unable to make
in-trap measurements of our ultracold clouds.

3.3.1 Electron multiplier

Our discrete dynode electron multiplier, which is mounted approximately 135 mm be-
low the trap, is often the first detector used to characterise the properties of our ultracold
gases. Although this detector is not sensitive to spatial information, as it effectively in-
tegrates the cloud over a spatial area to give a time-of-flight profile, it has a larger open
area fraction and thus higher quantum efficiency than is possible for an MCP, which is
essentially a 2D array of electron multipliers. In addition, this detector can operate in
either single atom counting (digital) or low-gain analogue modes, the latter of which
allows atomic fluxes of up to ∼ 109 Hz to be measured. The electron multiplier is most
useful for measuring the temperature of clouds above quantum degeneracy, for investi-
gating high-flux operations such as RF atom lasers outcoupled from the magnetic trap,
or for accurately measuring the population of small clouds.

3.3.2 MCP and phosphor screen

An MCP and phosphor screen located ∼669 mm below the trap can be used for mea-
surements in the spatial (x-y) plane of the atomic flight path at high flux. The MCP used
for this detector, which has a 40 mm diameter and ∼50 µm spatial resolution, converts
single atoms to spatially-localised charge pulses with a gain which is set by the potential
across the MCP stack (typically −1500 V on the front, and ground on the back). These
charge pulses are accelerated over 4600 V and collide with the phosphor screen which
converts them to visible light, and this light is reflected by a mirror through a window
in the vacuum chamber to a CCD camera which captures the illumination pattern.

As the electron multiplier saturates in single atom counting mode once a sizeable
condensate fraction is produced, while the phosphor screen can measure flux of up to
1010 Hz with high dynamic range in analogue mode, the latter is especially useful for
determining the condensate fraction of a cloud below Tc. This is achieved by visual-
ising the bimodal density distribution, as is illustrated in Fig. 3.9. Although single
atom counting can in principle be achieved with this detector, it requires both ultrafast
cameras to capture the illumination of the screen with good temporal resolution, and ex-
tensive computation effort to extract the centroid of each detection event, which makes
this approach generally prohibitive.
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Figure 3.9: Images taken on the MCP and phosphor screen showing uniform illumi-
nation for a thermal cloud above the condensation temperature (left), and
the Thomas-Fermi profile of a condensate with a small thermal fraction
(right). Each glowing ‘spot’ on the detector represents the arrival of a
single atom.

3.3.3 Delay-line detector

DLD apparatus

The use of an MCP and delay-line detector (DLD) allows the information available from
the electron multiplier and phosphor screen to be obtained simultaneously for single
atoms, making it the ideal detector to record data for quantum atom optics experiments.
Photographs of our MCP and Roentdek DLD80 setup, which is mounted 852 mm below
the traps, are shown in Fig. 3.10. A pair of 80 mm diameter MCPs with 30 µm pores
and 60 µm pore spacing are stacked in the chevron configuration, where a potential of
-2 kV is set on the top surface, while the back is grounded. This results in a gain of
around 106 electrons liberated per incident He* atom, which can be increased to 107 if
the top voltage is adjusted to -2.4 kV. These spatially-localised pulses of electrons are
attracted to an orthogonal pair of helical delay-line anode signal wires, which are set to
a potential of 300 V.

After the burst of charge reaches each of the two delay-line wires, a short (∼5 ns
wide) pulse of current propagates in both directions down each winding, and the time
of arrival of the pulse on each of these four channels (X1 and X2 for one winding, and
Y1 and Y2 for the other) is measured, as is illustrated in Fig. 3.11. Both of the delay-line
wire loops actually consist of a pair of wires, where a second reference loop is set to 250
V, and the current pulse is extracted by a differential measurement between the signal
and reference wires.

Signal processing

The process which converts the arrival of a current pulse at the end of each wire to a
three-dimensional position and time of the atom’s arrival is summarised in Fig. 3.12.
The analogue signals on each channel of the delay-line wires exit the vacuum chamber
via a feedthrough and undergo preamplification before being processed by a constant
fraction discriminator (CFD). Single units which perform the preamplification and dis-
crimination of the signal are commercially available, where we have used a Roentdek
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Figure 3.10: The delay-line detector assembly shown from below (left) and above
(right). A pair of MCPs sit above the two orthogonal windings of delay-
line wires in the chevron configuration. A feedthrough allows voltages
to be applied to the MCPs and DLD wires, and carries the signals from
the wires to be processed by various electronics.

DLATR-6 for our earlier results, before upgrading to a Roentdek ATR-19. The newer
electronics have better specifications, the most noticeable of which being a reduction in
cross-talk between the channels.

The amplification of each channel can be set in conjunction with the threshold of the
CFD to optimise the ratio of genuine to false counts extracted. As there will naturally
be a distribution in pulse amplitudes from the preamplifiers, the CFD is triggered at the
zero crossing of the derivative of the signal, so that the pulse shape and not amplitude
is what determines whether a count is recorded or not. The output of the CFD is a fast
NIM logic pulse, which has a resolution of less than 1 ns and can distinguish between
pulses at least 20 ns apart.

This signal is then transmitted to a time-to-digital converter (Roentdek TDC8P),

Figure 3.11: Cartoon representation of a single atom detection event on the DLD. A
He* atom (yellow sphere) strikes the inside of one of the pores of the
MCP stack (shown as a cutaway). This causes a shower of electrons in
the pore to be accelerated from the MCP stack to the delay-line wires
below (only one of the two windings shown) which are floated at 300 V.
This spatially localised cascade of electrons then propagates to each end
the wire where the DLD electronics process the signal.
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which uses a precise frequency reference to convert the square NIM pulses to digital
information containing the channel and a clock timestamp, which has 25 ps time bins
and is accurate to 100 ps for signals at least 10 ns apart. The output of this card, which
is mounted in a desktop PC, is captured as a text file by a C++ program, from which
more meaningful information about the arrival time and position of each atom can be
later calculated in C++ or MATLAB.

Signal picked off wire

Pre-amplified
analogue signal

Constant fraction
discriminator

Time to digital converter ❬❝❤❛♥♥❡❧✱ t✐♠❡st❛♠♣❪

Data analysis software
C++ or MATLAB

❬t✱①✱②❪ and fur-
ther analysis

Figure 3.12: Flowchart outlining how signal from the DLD is processed.

Calculation of time and position of arrival for each atom

The data acquisition process is initiated by a master trigger, which provides a common
external ‘zero’ time for each experimental cycle. After this trigger, the three-dimensional
time and position of arrival for single atoms (t, x, y) can be uniquely determined from
the output of the TDC. An arrival time for each atom can be derived from a signal
capacitively picked off the MCP stack itself, which we can consider to be t. The signals
registered on each of the four channels X1, X2, Y1 and Y2 will therefore all be after t, and
the difference in time taken for the pulses to arrive at the end of each of the coils will
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be proportional to the position of arrival on the MCP. The spatial position of the particle
will thus be [170]

x = (X1 − X2)v⊥, (3.6)

y = (Y1 − Y2)v⊥, (3.7)

where v⊥ = 5.26×105 ms−1 is the effective propagation velocity of the signal along the
wires. Given that the two delay-line wire coils are the same length, the time taken for
the signal to traverse along the entire wire length Tsum=80 ns will be a constant, where

Tsum = X1 + X2 − 2t = Y1 + Y2 − 2t, (3.8)

independent of arrival time or position. The redundancy in this information is useful for
matching the signals for each channel of a given detection event in the high-flux ‘multi-
hit’ regime, where the difference in arrival times for consecutive atoms is less than Tsum,
or for reconstruction of detection events where only three channels successfully register
a signal. However, this also allows us to determine (t, x, y) for each atom without using
the MCP signal (Fig. 3.13), which typically has poorer a signal-to-noise ratio than the
signals from the delay line wires, the latter being sufficiently reliable and fail for only a
few percent of detection events. In this case, we can determine the arrival time from

t =
1
2
(X1 + X2 − Tsum) =

1
2
(Y1 + Y2 − Tsum) . (3.9)

In principle, multiple hits separated by at least 10 ns can be distinguished, however we
artificially impose a 100 ns electronic dead time to remove false counts due to ringing in
the electronics. As the MCP itself saturates when the average interval between successive
particles is 1 µs, this restriction does not significantly change the atomic flux measurable.

Figure 3.13: Pre-amplified pulses from the four corners of DLD, shown on a 20 ns
time scale at 200 mV per division (left). Signal from the MCP is not
typically used in data analysis due to the ringing on the pulses, shown
with a 20 ns time scale at 100 mV per division (right).

DLD specifications

The spatial resolution of the delay-line detector is quoted by the manufacturer to be
< 100 µm with a linearity of 0.2 mm across the 80 mm diameter, a temporal resolution
of a few nanoseconds, and a dead time of 20 ns. A calibration aperture mask was used
to verify that the resolution is around 130 µm, which is limited by both the MCP pore
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size and specifications of the signal processing electronics, with no observable error in
linearity.

The maximum flux that can be measured across the entire detector is less than 1
MHz, although the MCPs can be saturated for around 1 ms within the charge depletion
area of a pore which detects a single atom. Therefore, there is no hard limit to the
flux that can be measured accurately, although severe saturation can be observed in the
bulk profile of the cloud for fluxes exceeding 2 MHz. We typically aim to only measure
atomic fluxes of less than 1 MHz to avoid this problem. The dark count rate of ∼20 Hz
across the entire detector is usually negligible for our results, and therefore high-contrast
images with minimal noise can usually be produced.

Perhaps the greatest limitation of the delay-line detector system is the quantum ef-
ficiency (QE) of detection, which is estimated to be around 20%. While the open area
of the MCP stack restricts this to a theoretical maximum of about 50%, another research
group which uses a similar detector setup has estimated their QE to have a lower limit
of 10% [185]. In principle, this could be directly measured from the single atom source
which will be discussed in §7.2, however this test has not yet been undertaken. While
a poor QE prevent experiments such as some configurations of loophole-free entangle-
ment measurements from being successfully performed, for each of the results presented
in this thesis – in particular, bunching measurements – a low QE only has the effect of
reducing data acquisition rates, and has no influence on the conclusions drawn from the
data.



Chapter 4

The Hanbury Brown-Twiss effect

and higher-order correlation

functions

The measurement of quantum correlations in ultracold atoms heralded the genesis of the
field of quantum atom optics, just as the first measurements and theoretical treatment
of the Hanbury Brown-Twiss effect instigated quantum optics over 50 years ago. In this
chapter, several experiments which significantly improved our ability to observe atomic
correlation are discussed. In particular, by increasing data acquisition rates and observ-
able bosonic bunching amplitudes, higher-order correlation functions were measured to
directly test the validity of Wick’s theorem for ultracold atoms.

The experiments described in this chapter have been published in:

• A. G. Manning, S. S. Hodgman, R. G. Dall, M. T. Johnsson, and A. G. Truscott,
“The Hanbury Brown-Twiss effect in a pulsed atom laser,” Optics Express 18, 18712
(2010).

• S. S. Hodgman, R. G. Dall, A. G. Manning, K. G. H. Baldwin, and A. G. Truscott,
“Direct measurement of long-range third-order coherence in Bose-Einstein con-
densates,” Science 331, 1046 (2011).

• A. G. Manning, W. RuGway, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A.
G. Truscott, “Third-order spatial correlations for ultracold atoms,” New Journal of

Physics 15, 013042 (2013).

• R. G. Dall, A. G. Manning, S. S. Hodgman, Wu RuGway, K. V. Kheruntsyan, and
A. G. Truscott, “Ideal n-body correlations with massive particles,” Nature Physics

9, 341 (2013).

A popular summary of this research is presented in:

• S. S. Hodgman, R. G. Dall, A. G. Manning, M. T. Johnsson, K. G. H. Baldwin, and
A. G. Truscott, “Characterizing Atom Sources with Quantum Coherence,” Optics

and Photonics News 22, Issue 12, pp. 37 (2011).
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4.1 Quantum correlations with ultracold atoms

Experiments measuring quantum correlation effects in atomic gases have provided
strong evidence that the analogy often drawn between quantum optics and quantum
atom optics is appropriate. Dilute ultracold atomic systems, where interactions be-
tween atoms are naturally weak, provide an ideal opportunity to not only observe Han-
bury Brown-Twiss bunching in bosons, but to investigate a rich variety physical effects
which are not possible for photons. These include the comparison of quantum statistics
for bosons and fermions, studies of the influence that dimensionality has on quantum
statistics, and probing states containing order such as Mott insulators and weakly-bound
Feshbach molecules. Alternatively, the ability to tune interactions away from the ideal
gas limit also allows novel features such as the ‘fermionisation’ of bosons in the Tonks-
Girardeau regime to be realised.

In addition to the interest in learning about the fundamental coherence of ultracold
atoms, there is also a strong motivation to develop correlation function measurements
as a tool to reveal new information about atomic systems. However, until recently such
measurements have required lengthy data acquisition times and painstaking data anal-
ysis to yield correlation function measurements with bunching visibilities which are
small compared to the ideal limit of theoretical predictions. This is largely due to the
difficulty in measuring individual atoms, which demands the use of detectors which
are not suited to imaging the large atomic clouds that we typically create in our mag-
netic trap (N of order 106, Tc ≈ 1µK), where a resolution of order the atomic de Broglie
wavelength λdB would be required to observe bunching in-trap. For example, our ex-
perimental setup comprises a microchannel plate (MCP) and delay-line detector (DLD)
stack as our primary means for imaging atoms in correlation measurements (please refer
to §3.3 for more details). This detection system offers a great deal of flexibility with the
types of measurements we can perform, however the limited flux that can be measured
(∼1 MHz count rate) and good yet not perfect spatial resolution (∼100 µm, while the
temporal resolution is four orders of magnitude better) do not permit the direct mea-
surements of the aforementioned clouds at a resolution of order λdB = h̄

√
2π/mkBT∼1

µm and where atomic fluxes can exceed 100 MHz. Alternative detection methods also
have significant drawbacks, which are outlined in the following sections. Consequently,
there have been relatively few experiments undertaken which make use of bunching
measurements to probe novel coherence properties of atomic gases.

In the following sections, several experiments which address these limitations are
discussed. A unique feature of our He* BEC apparatus is the very large distance (∼850
mm) over which atoms fall under gravity from either a magnetic or optical dipole trap to
the DLD. Under most circumstances, this means that we view the cloud in the ‘far field’
of the trap, where the position distribution of atoms at the detector represents the in-trap
momentum distribution. A longer fall time gives a lower energy spread in the cloud per
unit volume, which increases the correlation length over which boson bunching can be
observed. Ensuring that this correlation length exceeds the spatial resolution of the DLD
prevents the bunching signal from being ‘washed out’, and addressing this issue will
prove to be a factor of great importance to the experiments presented in this chapter.

Another consideration is the amount of data needed to measure nth order corre-
lations g(n) with good signal-to-noise, and furthermore the amount of computational
effort and difficulty they require to compute. The ‘brute force’ approach that we took
for our earlier results, which typically involved acquiring data over many thousands
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of experimental cycles, taking days or weeks to complete, served us well in our ini-
tial attempts to measure second- and third-order correlation functions. We were able
to increase the effective experimental duty cycle compared to previous experiments by
creating a pulsed source from clouds of around 106 atoms at temperatures near Tc in
our magnetic trap. RF outcoupling was used to release 30 or more pulses of atoms from
the trap, which allowed us to acquire data from a larger portion of each ultracold cloud
of He* that we produce without experiencing detector saturation. In addition, we were
able to verify that this RF outcoupling procedure was coherent, in the sense that the cor-
relation properties of the cloud were unchanged by it. This is of particular interest for
the case of a pulsed atom laser, where second order coherence was found to be main-
tained despite the mean field interactions experienced by the outcoupled atoms. The
exceptional stability of our BiQUIC magnetic trap allowed us to extend this procedure
to measure the long-range third order correlation function g(3)(∆r1, ∆r2) with ultracold
atoms for the first time. This was found to be consistent with Glauber’s theory for ther-
mal clouds, and confirmed that g(n)(∆r1, . . . , ∆rn−1)=1 holds to order higher than n=2
for the first time in a coherent state of matter such as a BEC. However, data analysis
was an onerous task due to the sheer number of atoms required to plot each correlation
function in this manner.

In general, the bunching amplitude measured will depend not only on the ratio
of correlation length to detector resolution, but also the volume of the bins used to
compute the correlation histograms. When searching for n-tuples of atoms to calculate
g(n)(∆r), we must find n different atoms within a three-dimensional volume such that
the particles are separated by no more than the size of the bin in two dimensions,
with the third dimension providing the independent variable ∆r = ∆rêj (j = x, y, z) of
the histogram. The size of the bin must be carefully chosen to optimise the signal-to-
noise measured for the correlation function. Large bins encompass more atoms and
thus reduce statistical errors, but if the bin is large compared to the correlation length
then n-tuples of atoms which are not interfering are included, and thus the bunching
amplitude measured will be reduced, the basic concept of which is illustrated in Fig.
4.1. Therefore, the greatest improvements in the bunching amplitude measured are the
result of increasing the ratio of ‘correlation volume’ (i.e. the correlation length in each
Cartesian axis) to the physical size of the atomic cloud at the detector.

As we will see in §4.1.1, the correlation length after the time of flight to the detector
is proportional to the harmonic frequency of the trap from which the atoms are released,
and inversely proportional to the square root of temperature. Therefore, releasing atoms
from a tighter trap, or cooling to a lower temperature, will produce a source with a larger
correlation volume in the far field. Although the lowest thermal temperature possible
is obviously limited to Tc, at which point the cloud undergoes the transition to BEC
where bunching is no longer present, for clouds in the magnetic trap we can cool to
well below our typical Tc = 1 µK for ∼ 106 atoms by reducing the number of atoms
held in the trap, as Tc ∝ N1/3. By doing this, we formed small clouds at ∼ 95 nK which
allowed us to measure amplitudes for g(2) and g(3) at least five times greater than for
previous experiments. This experiment was also unique in its measurement of long-
range higher-order correlations in the spatial plane of the detector, as opposed to the
previous measurements in the time-of-flight axis of the cloud falling under gravity.

However, the most striking improvement in bunching signal measured was achieved
by transferring the ultracold atomic cloud from the magnetic trap to an optical dipole
trap. Our vertically-aligned dipole trap has a much higher radial confinement than is
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Figure 4.1: For atoms with de Broglie wave packets depicted in black, a large bin
size (blue) will capture more n-tuples of particles, but few of the parti-
cles within such a bin have overlapping wavefunctions. However, while
a smaller bin (green) increases the average interference between atoms
landing in such an area, the amount of data required to achieve robust
statistics when calculating correlation functions is considerably more than
for the larger bin.

possible for the BiQUIC magnetic trap, with the highest tightest trapping frequencies
now along the axes of the detector with the poorest resolution, which helps circumvent
the limitations of our DLD. In addition, the temperature of clouds held in our dipole
trap are typically less than a few tens of nanokelvin, and although this introduced
some effects due to one-dimensional physics, it still resulted in bunching according
to Glauber’s theory. Furthermore, data acquisition rates were considerably improved
due to the substantial increase in correlation length. This setup provided us with the
ability to measure correlation functions in the ideal limit, where the prediction of Wick’s
theorem that g(n)(0) = n! was measured directly. Because the correlation length of
these clouds in the radial dimension approached the physical size of the cloud, and the
computation of correlation functions required smaller numbers of atoms to be measured,
we observed correlation functions up to order n= 6, which provides the most rigorous
test yet of Glauber’s theory of quantum statistics.

In addition to the experimental results presented in this chapter, the use of correla-
tion functions as a tool to investigate features of ultracold atomic clouds will be studied
in detail in Chapters 5 and 6, and consequently much of what is discussed in the sections
below will be relevant to those experiments.

4.1.1 Theoretical modelling of correlation functions for thermal atoms

In this section, we will review extensions to the theory outlined §2.1.1 to include a treat-
ment suitable for noninteracting ultracold atoms in three dimensions. This material is
studied in great detail in Ref. [34] and [186], therefore we focus on key points which are
relevant to the experimental results discussed in the following sections. The majority of
the concepts from the optical case carry over for atoms, while the most obvious differ-
ence is the ballistic expansion of atoms as they fall under gravity from the trap to the
DLD below. These theoretical studies assume an ideal gas model, which is appropriate
for our experimental conditions as the average particle spacing at the detector (of order
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100 µm) is much larger than the inter-particle scattering length for He* (7.5 nm).
Bose-Einstein condensates, which are the atomic analogue of an optical laser and

are thus the archetype of a coherent state, are theoretically predicted to be coher-
ent to all orders, which is quantified by a complete absence of bunching, where
g(n)(∆r1, . . . , ∆rn−1) = 1. In practice, it is difficult to produce atomic systems where
N0/N = 1 and there is no thermal component present. However, as the density of the
condensed portion of the cloud is much greater than the thermal component (which is
especially so in the far field once the atoms have reached the DLD), and the nth order
correlation function measures the likelihood of n particles being close together, the con-
tribution from the condensate will almost inevitably dominate the correlation function
observed under most circumstances when a macroscopic condensed portion of the cloud
is present.

For purely thermal atomic clouds at temperatures well above Tc, we begin by recall-
ing from §2.1.1 the basic form of the second order correlation function g(2)(∆r) in the
high temperature limit

g(2)(∆r) ≡ g(2)(0, r) = 1 +

∣

∣

∣
G(1)(0, r)

∣

∣
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2

ρ(0)ρ(r)
, (4.1)

where G(1)(0, r) is the unnormalised first order correlation function and ρ(r)=G(1)(r, r)

is the density at position r. If the chemical potential of the system is insignificant,
G(1)(0, r) takes a Gaussian form with respect to r= xx̂ + yŷ + zẑ which allows us to cast
Eq. 4.1 in a simple form in Cartesian coordinates
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, (4.2)

for correlation lengths lj in the j direction. We typically define these coordinate axes
to coincide with the trap geometry. Clearly, as the spatial separation between pairs of
particles becomes much larger than the corresponding correlation length in each axis,
g(2)(∆r)→1 monotonically and interference is no longer observed.

Glauber’s theory also allows correlation functions to be defined to orders higher
than n= 2 (see §2.1.1), which will be measured in several of the experiments discussed
in this chapter. As with the second-order function, these can be decomposed into first-
order correlation functions by Wick’s theorem, from which we can obtain the third-order
function (cf. Eq. 2.24)

g(3)(∆r1, ∆r2) ≡ g(3)(0, r1, r2) =
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Expressions for the nth order correlation function contains n! terms, so functions for
n > 3 will not be covered here for the sake of brevity, however they can be derived
in the straight forward yet cumbersome manner explained in §A.2. Nevertheless, such
correlation functions for thermal distributions continue to take on a form composed of
a sum of Gaussian functions which are characterised by the same correlation lengths lj
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as before. For example, the form for the two-body function in Eq. 4.2 can be extended
to the third-order correlation function, which for a measurement in the x axis is

g(3)(∆x1, ∆x2) = 1 + exp
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. (4.4)

In particular, it is important to realise that the form of the g(n) function will depend
on how the ∆rj are defined. This will be clarified in later sections where correlation
functions for n>2 are encountered.

In trap, the correlation length is lx,y,z = λdB/
√

2π for de Broglie wavelength λdB =

h̄
√

2π/mkBT, where T is the temperature, kB the Boltzmann constant, and m the particle
mass1. As previously mentioned, for 4He at 1 µK (which is a typical temperature for
Tc for large clouds in our magnetic trap), lx,y,z is of order one micrometre, which makes
bunching very difficult for us to observe in trap. However, by considering the cloud
expanding ballistically from a harmonic potential, it is found that the in-trap momentum
distribution maps directly to the far field position distribution at the detector. Here, the
coordinates for the correlation functions are rescaled from the near field rj to the far
field r̃j by r̃j ≈ rj/ωjtToF, for trapping frequency ωj in the j direction, and flight time tToF,
which for our experiment is rather large at 0.416 seconds. In such a case, we can relate
the z coordinate, which is by convention parallel to gravity, with an arrival time on the
detector such that z≈vz(t − t0) for trap release time t0 (where vz = gtToF=4.08 ms−1 for
gravitational acceleration g), and thus t̃≈ (t − t0)/ωztToF.

The correlation lengths in the far field are scaled similarly, where l̃j ≈ ljωjtToF. In
practice, our long fall distance ensures that the correlation time t̃c is equivalent to l̃z/vz.
In the high temperature limit, we can equate this with l̃j = pjtToF/m for momentum

‘correlation length’ pj = h̄/sj where sj =
√

kBT/mω2
j is the size of the trapped cloud.

This allows us to write the correlation length in a form which clarifies the experimental
parameters which influence it, namely

l̃j =
h̄tToF

msj
=

h̄tToFωj√
mkBT

. (4.5)

As the trapped size of the cloud sj is typically the only degree of freedom in an experi-
mental procedure, improving the bunching signal observed will depend on reducing sj

by decreasing the source temperature, and increasing the confinement of the harmonic
trap. We can physically interpret this increase in correlation length with fall distance by
considering the momentum spread of atoms within a spatial volume of a fixed size. In
this case, the correlation length can be written as λdB/

√
2π= h̄/∆ploc where ∆ploc is the

local momentum spread. As the cloud expands, the momentum spread per unit volume
decreases as the velocity components separate, decreasing the energy spread per vol-
ume. This also illustrates the difference between a dropped cloud and a continuously
outcoupled beam of atoms. For the latter, the momentum components in the direction
of the beam do not separate, and thus the correlation length in that direction does not
increase with distance when falling under gravity, making continuous beams of atoms

1The mass of 4He is 6.64×10−27 kg.
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often unsuitable for correlation measurements. Also, please note that from now on we
will no longer denote far field coordinates with a tilde, as all of our measurements are
taken in the far field.

4.1.2 Correlation data analysis and Monte Carlo simulations

We now turn our attention to how correlation functions can be computed from exper-
imental data, and also how we can theoretically simulate experimental imperfections
which reduce the bunching amplitude measured. Data acquired with the DLD is essen-
tially the arrival time and spatial position of individual atoms as they reach the detector,
in the form of a coordinate triplet (t, x, y). As we can only measure atomic densities
ρ(r), the nth order correlation function that we compute will be of the form

g(n)(∆r1, . . . , ∆rn−1) =
N ∑N 〈ρN(0)ρN(r1)ρN(r2) . . . ρN(rn−1)〉

〈∑N ρN(0)∑N ρN(r1)∑N ρN(r2) . . . ∑N ρN(rn−1)〉
, (4.6)

which sums over N realisations of the experiment. Roughly speaking, this gives us the
‘average of the correlations’ normalised by the ‘correlation of the average’, where 〈. . .〉
is the average over the detector.

However, without arbitrarily large amounts of data available to compute these corre-
lation functions, data must be binned so that the numerator and denominator of Eq. 4.6
take the form of discrete histograms. Essentially, we choose one axis which acts as the
independent direction along which we form the histogram (i.e. |∆r|=∆rj for j∈ (t, x, y)),
and form a bin in the plane orthogonal to this direction. For example, if we take j = t,
then to compute g(2)(∆t) we determine if the separation in the x-y plane between each
a pair of atoms is less than a set distance (the ‘bin size’): if so, a count is added to the
histogram array element appropriate for the temporal separation ∆t between the two
atoms; while if the x-y separation is too large, the pair of atoms is discarded from the
correlation measurement. In effect, we bin in all three dimensions, however the bin size
in the dimension of the histogram (in this example, t) must be much smaller than the
correlation length in that dimension, otherwise no bunching will be observed.

The procedure is extended to higher-order correlation functions by repeating this
process for the separation between first and second, second and third, and so on for
pairs within an n-tuples of atoms. This has the effect of integrating the correlation
function Eq. 4.6 over the bin volume in space:

g(n)(∆rj,1, . . . , ∆rj,n−1) =
N
´

bin ∑N 〈ρN(0)ρN(r1)ρN(r2) . . . ρN(rn−1)〉 d3r
´

bin〈∑N ρN(0)∑N ρN(r1)∑N ρN(r2) . . . ∑N ρN(rn−1)〉 d3r
.

(4.7)
The difference between the numerator and denominator of Eq. 4.7 is that the numerator
only searches for n-tuples of counts within a single experimental iteration, while the
denominator finds n-tuples over an entire ensemble of realisations. In effect, the former
only looks for groups of atoms which could possibly interfere, while the latter will
provide a bulk density correlation profile in the absence of any bunching, which allows
us to normalise g(n).

By integrating the correlation function over the bin volume, its average value will be
decreased as the interference monotonically reduces at larger separations. In particular,
if the size of the bin is large compared to the correlation length discussed in §4.1.1,
the contrast C of the measured correlation function in the j direction g

(2)
m (∆rj) will be
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reduced from its ideal theoretical value C=1, such that Eq. 4.2 is altered to

g
(2)
m (∆rj) = 1 + C exp

[

−
(

∆rj

lj

)2
]

, (4.8)

for some value of bunching amplitude C between 0 and 1. An example of the depen-
dence of C on the bin size in one dimension is illustrated in Fig. 4.2, while some actual
experimental data analysed with different bin sizes is shown in Fig. 4.3.
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Figure 4.2: If we average a generic form for g(2)(∆r) over different domains, we can
see how changing the bin size in one dimension will effect the bunching
contrast C. If our bin size R is 0.5lr, we can expect C = 0.907, while for
R = lr we have C = 0.743, R = 1.5lr gives C = 0.570 and R = 2lr gives
C = 0.441. When binning in three dimensions, the decrease in C with
larger bins is even more severe.

This analysis provides the basis for our theoretical modelling of the atomic systems
studied experimentally, and typically is found to be in good agreement with the cor-
relation functions obtained from our measurements. However, although this accounts
for the most significant cause of bunching contrast reduction seen in our data, there are
a few additional factors which become important for understanding why our pulsed
atomic source data has a low bunching contrast. These include the effects of local de-
tector saturation, where there is a reduced likelihood of measuring multiple particles at
separations of order the spatial MCP pore centre-spacing (60 µm) or the electronic dead
time (100 ns). The finite spatial resolution of the DLD, while typically smaller that the
bin radius in our data analysis, can ‘smear out’ the spatial distribution of atoms mea-
sured on the detector and make pairs of atoms appear to be separated by slightly larger
distances than they actually are, can also be included.

These effects are incorporated in a Monte Carlo simulation of the integrated corre-
lation function2 in the form of Eq. 4.7 to calculate the expected value of the bunching
amplitude C for a given experimental setup. We can ensure that the effect of these well-
known parameters on the model is generally minor by allowing them to vary within
experimentally realistic ranges. Generally, it is local saturation which has the greatest
impact on the value of C calculated, while the other parameters cause smaller changes.

It is also important to be aware that the higher-order correlation functions mea-

2This is favoured over an analytic model as the integrals are over non-trivial domains, especially for
higher-order correlation functions, and thus become cumbersome to compute.
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Figure 4.3: The effect of bin size on the correlation function measured, illustrated by
calculating g(2)(∆x) with actual data from the experiment detailed in §4.4.
The correlation lengths for this data are lt = 300 µs and ly = 120 µm. The
smallest bins (red) result in the largest bunching contrast, but also a large
amount of statistical noise, while the smallest bins (blue) give the lowest
amount of scatter and the smallest value of C. The best choice of bin size
will maximise the ratio of C to shot noise.

sured or simulated may change in appearance depending on the definition of inde-
pendent variables ∆ri or ∆ti along which the histograms are calculated. In particular,
we typically plot higher-order functions g(n)(∆r1, . . . , ∆rn) as a diagonal cross-section
g(n)(∆r) = g(n)(∆r, . . . , ∆r) due to our inability to visualise plots in higher dimensions.
If we are to for example compute g(3)(∆t1, ∆t2) for a triplet of particles arriving at times
t1, t2 and t3, defining ∆t2 = t3 − t1 rather than ∆t2 = t3 − t2, or substituting |∆r| for ∆r,
will change the form of the correlation function. In particular, the two-body correlation
length lc may no longer be extracted from a Gaussian fit to g(n)(∆r), depending on the
definition of each ∆ri in Eq. 4.4. While the two-body correlation length is the quantity
of most obvious physical significance, ensuring that the form of the correlation function
does not change qualitatively with small adjustments to the data analysis parameters
such as bin sizes is a useful diagnostic to distinguish genuine bunching from systematic
errors.

A final preliminary consideration which is worthwhile to mention is the effect of
detector quantum efficiency on the correlation functions measured experimentally. One
might naïvely consider that correlation functions are composed of well-defined n-tuples
of particles, where the failure to measure a particle will reduce the bunching contrast
C measured. However, bunching in the normalised correlation function will exist irre-
spective of a random and isotropic failure to detect individual atoms. As we recall from
§2.1.1, a source which distinguishes individual particles will have different quantum
statistics to the sources used for the results obtained for this thesis, which are indistin-
guishable bosons. Naturally, this is no longer true for sources with unique properties
such as those displaying number squeezing due to a pair-production process [185]. So,
while our detector efficiency is around 20%, this only results in a slower data acquisition
rate.

Under some circumstances, effects such as trap instabilities and temperature fluctua-
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tions can present themselves as a correlation signal which mimics bosonic bunching. To
distinguish these effects from genuine quantum interference, it is important to select an
appropriate length scale over which to investigate the correlation function and integrate
the bins of the histogram. By choosing a bin size of order the extent of such a source of
fluctuations, it is possible to exaggerate its effect on the measurement of g(n). The de-
pendence of the bunching contrast C on the bin volume can actually provide a valuable
diagnostic for this, as C failing to change in the expected manner with different bin sizes
can indicate that extraneous effects are influencing the correlation function computed.
Fig. 4.3 illustrates this effect in the limit where the bin size is the dominant factor which
determines the observed bunching contrast.

4.1.3 Previous atomic correlation measurements

It is only with recent advances in atomic cooling and single particle detection that
bosonic bunching has been observed with neutral atoms. Such measurements have
been achieved with a variety of atomic species and detection methods, a brief summary
of which will be given here. The key points which determine the success of these ex-
periments are the comparison of the correlation volume of the atomic source, and the
detection and data analysis method used. Correlation measurements in ultracold atoms
offer a rich variety of different behaviours, many of which are not possible for optical
sources, such as dependence on trapping geometries and dimensionalities, the presence
of interactions, and the comparison of bosonic and fermionic statistics.

First-order coherence

Although we consider Bose-Einstein condensates to be a coherent state, analogous to the
optical laser, early experiments only revealed the anisotropic density distribution typical
of a condensed cloud, and were unable to test the coherence or long-range order of such
a cloud. To probe the quantum nature of a BEC, an important step is to demonstrate
first-order or phase coherence, which as we saw in §2.1.1 is a necessary but not sufficient
criteria for establishing that a BEC is a truly coherent state. This was first achieved
by creating two spatially separated condensates, and allowing them to interfere and
produce a high-contrast fringe pattern in the resulting density profile [187] in a similar
manner to Young’s double slit experiment. The fringe pattern extended across a large
portion of the spatial profile of the cloud, which strongly suggested that long-range
order is present in a BEC. Further studies utilising Bragg spectroscopy showed that
phase coherence does indeed exist over the entire condensate [188, 189]. Among other
experiments which used measurements of first-order coherence to probe the state of
matter waves, a guided atom laser was diffracted by a transmission grating to produce a
distinctive interference pattern [190], which is a topic that will be studied in more detail
in §6.1.

First observation of two-body bunching in metastable neon

The first measurement of the Hanbury Brown-Twiss effect with atoms was achieved
with a beam of metastable neon [54], an atomic species which shares many properties
with He* such as the ability to use microchannel plates to detect individual atoms [152].
As neon has not yet been cooled to quantum degeneracy, the atomic source used for this
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experiment was restricted to the relatively high temperature attainable for a magneto-
optical trap (MOT) of order millikelvin, and therefore the correlation length over which
bunching can be observed was very small. This resulted in significant experimental
challenges, such as the need to carefully engineer the detection system to match the
wavefront of the atomic beam, and a lengthy data acquisition process to achieve even a
qualitative indication of bosonic bunching, which makes this observation all the more
remarkable. However, this style of experiment was superseded in favour of experiments
using sources with much larger correlation lengths.

Hanbury Brown-Twiss effect and fermionic antibunching in metastable helium

As clouds of metastable helium can be cooled to temperatures where the correlation
length is large compared to the resolution of detectors with single atom sensitivity, it
is an ideal species for correlation measurements. A milestone experiment which built
upon the observation of bunching in a beam of neon was the use of clouds of ultra-
cold 4He* dropped under gravity onto an MCP and delay-line detector to quantitatively
compare the second order correlation function for Bose condensed and thermal atomic
clouds [55]. By directly comparing the bunching signal for thermal atoms to the second-
order coherence of the BEC, the quantum coherence of a condensate was unambiguously
established. Similarly, the uniquely quantum-mechanical behaviour of ‘anti-bunching’
was observed in a thermal source of fermionic 3He* using a similar experimental tech-
nique [56].

Continuous beams of rubidium measured with a cavity

The time-of-flight flux of single atoms can also be detected with a high-finesse cavity,
which was used to measure the quantum statistics of a beam of 87Rb atoms outcoupled
from a magnetic trap with RF radiation [182]. Although measuring single atoms in such
a way is a considerable feat due to the precise engineering required, there are several
disadvantages which prevent this method from being a useful generally-applicable tool
for measuring correlation functions. The small size of the cavity restricts the portion of
atomic flux captured, while a lack of spatial selectivity and a dead time many orders
of magnitude higher than for a MCP-DLD system are still incurred. Thermal bunching
could therefore not be measured with this setup, due to the correlation function washing
out to C=0 over the area of the cavity. However, a pseudothermal beam was produced
from a condensed source by outcoupling atoms with narrowband RF radiation carry-
ing random noise to produce a beam with a small enough energy spread to observe
a bunching signal, which was in contrast to a coherent atom laser which showed no
bunching. While this did not directly compare the quantum statistics of thermal and
condensed sources, it does highlight that the energy spread of the source determines
the bunching signal observed.

Underlying structure such as lattices and molecules

The measurement of higher-order correlation functions can be used to extract informa-
tion from an atomic system that phase interferometry cannot reveal. Such measurements
can not only be derived from single atom counting measurements, but also from the au-
tocorrelation of atomic shot noise present in absorption imaging [191]. A particularly
striking example of this is when there is underlying structure to an atomic sample in
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position space in the near field, which is obscured in a density measurement in the far
field which represents the in-trap momentum distribution. The array structure of 87Rb
atoms released from an optical lattice in the Mott insulator regime has been recovered
by computing the spatial correlation function in the far field, where a correlation func-
tion showing a high-contrast array of localised bunching peaks was retrieved from a
featureless density absorption image [192], and similarly for anti-bunching in 40K [89].

Structure in an atomic cloud can also exist due to the pairing of weakly-bound
molecules coupled by a magnetic-field Feshbach resonance. When such molecules disso-
ciate, the two atoms of different spin states which constituted the pair will be correlated.
This is clearly observed in an experiment using absorption imaging to detect pairs of
40K atoms [90], where a strong noise interference peak is seen in the spatial correlations
between atoms in these two spin states.

Investigation of coherence across the BEC threshold

The emergence of phase (first-order) coherence as a Bose gas is cooled below the con-
densation temperature was demonstrated by measuring the visibility of a ‘double-slit’
style experiment which outcoupled atoms from a trap simultaneously at two different
RF frequencies [193]. The beating of these two outcoupled matter wave beams creates
an interference pattern in a similar way to Young’s experiment, with a visibility depen-
dent on both the energy separation of the two beams and the temperature of the cloud.
While fringes with relatively low visibility were observed for clouds with T > Tc over
small energy separations, highly visible fringes at larger separations became apparent
as the cloud is cooled to quantum degeneracy. This is analogous to the comparison
of incoherent light, which can exhibit limited coherence for sources with a sufficiently
narrow bandwidth, with truly coherent light which possesses true long-range order.

Although the coherence properties of noninteracting ultracold Bose gases are well
understood in both the high temperature T ≫ Tc and well below BEC threshold T ≪
Tc limits, complications arise which require modifications to the correlation function
theory presented above for temperatures around Tc. This was investigated for 87Rb
released from a chip trap capable of creating confining potentials ranging from the
3D to quasi-1D geometries, where Hanbury-Brown Twiss bunching was measured as a
function of T/Tc using fluorescence imaging [194]. The study concluded that bunching
was observed for each geometry at temperatures below Tc, which was attributed to a
persistent multimode state occupation in the weak (x) axis of the cigar-shaped trap. This
may occur due to the presence of 1D characteristics for the trapped gas in all geometries,
given the smooth transition between the ideal Bose gas and quasicondensate regimes for
an elongated gas as is discussed in §2.4.1. Furthermore, a dip of g(2)(0 < ∆x < lx)< 1
became increasingly pronounced at lower temperatures below Tc due to the beating of
different axial modes, which is in contrast to many other experiments which report that
g(2)(∆r)=1 for essentially any cloud with a macroscopic ground-state occupation.

4.2 Hanbury Brown-Twiss correlations in a pulsed atomic

source

Our first experimental measurement of quantum correlation functions was made by out-
coupling atoms from an ultracold cloud held in a magnetic trap. With this procedure,
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we were able to test the coherence of an atom laser outcoupled isotropically with radio
frequency (RF) radiation (see §3.2.1), and directly compare this with the bunching ob-
served in a pulsed thermal source. By outcoupling from the cloud isotropically, rather
than from a spatially localised region, we are better able to test the long-range order of
the entire cloud, and also confirm that the mean-field interactions experienced by the
atoms during outcoupling do not alter their correlation properties. This procedure also
has the practical benefit of acquiring experimental data much quicker than was possible
in previous correlation measurements with dropped clouds of He* [55].

4.2.1 Experimental method

As will be the case with every result presented in this thesis, we began by cooling
a cloud of He* to a temperature near the BEC critical temperature of our magnetic
trap, where Tc ∼ 600 nK for this particular experiment, as described in §3.1.2 and Ref.
[155]. Such clouds typically contained around 106 atoms held with harmonic trapping
frequencies

(

ωx, ωy, ωz

)

= 2π×(500, 50, 500) Hz. Whether we cooled to above or below
Tc, which was controlled by adjusting the evaporative cooling procedure, determined if
we created a BEC from which an atom laser could be produced, or a thermal source.
When forming a condensate, we ensured that N0/N was large, which was satisfied given
that T/Tc ∼ 0.2, so that the density profile and therefore also the correlation function
was dominated by the condensed portion of the cloud.

Once the evaporative cooling process was finished, we applied a sequence of 30
Fourier-broadened pulses of RF radiation to spin-flip atoms from the mJ = 1 to the
mJ = 0 state and thus release them from the magnetic trap. These RF pulses were
modulated by a 20 µs square wave, which gave them a Fourier frequency spread of
∆ f ≈ 300 kHz , which is large compared to the chemical potential of the condensates
(≈8 kHz), and will interact with the majority of thermal atomic clouds (with an energy
spread of ∼h×30 kHz) formed in our magnetic trap under these conditions. This means
that atoms were outcoupled isotropically across the entire cloud. The short duration of
the pulses necessitated the use of a 30W amplifier to increase the RF power available,
so that a reasonable number of atoms were outcoupled. The power of RF pulses was
ramped up from the first to last pulse in an attempt to outcouple approximately the same
number of atoms in each pulse, although later pulses tended to release fewer atoms as
the cloud held in the trap was depleted, as can be seen in Fig. 4.5. We also ensured that
the portion of atoms outcoupled was only a few percent of the entire cloud, so that the
outcoupling process had little impact on the energy distribution of atoms remaining in
the trap. By applying these pulses at 29 ms intervals, we ensured that the clouds did not
overlap after their expansion during the time-of-flight from the trap to the DLD, which
is illustrated in Fig. 4.4.

We acquired 1700 experimental realisations for both T > Tc and T < Tc, from which
second order correlation functions for thermal and Bose-condensed atoms respectively
were computed in the manner described in §4.1.2. The stability of our magnetic trap
allowed the formation of either thermal or condensed clouds to be made in a controllable
and repeatable manner over data runs spanning many tens of hours.
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Figure 4.4: Experimental setup for pulsed-source correlation function measurement.
Atoms are outcoupled from the BiQUIC magnetic trap with RF radiation,
and fall ∼850 mm under gravity to the DLD below (MCP not shown).
When the signal from a single atom detection event lands on the DLD
wire (only one of the two windings is shown), a signal propagates along
the wire to the timing electronics, which record information from which
the three-dimensional time and position of the atom’s arrival on the de-
tector can be calculated. The coordinate axis relates to the orientation
of the trapping frequencies. Note that the atomic cloud, which is cigar-
shaped with a long axis in the ŷ direction in-trap, represents a BEC in the
‘far field’ in this illustration.

4.2.2 Results

Before correlation functions were computed for this data, it was instructive to analyse
the density distribution of atoms measured on the detector. An example of this is the
time-of-flight profile shown in Fig. 4.5, which is the average of 10 experimental cycles for
thermal atom pulses. Each pulse of atoms arrives at the detector in a ∼20 ms window,
due to ballistic expansion during the time of flight, and successive pulses were found
to not overlap at the detector. If this were not the case, a reduction in correlation length
would be expected, due to the same loss of energy selectivity that occurs for a contin-
uous beam. Also, fitting the time-of-flight profile allowed a temperature for the atomic
pulses can be obtained, which was measured to be 850±100 nK for thermal atoms. Later
pulses were found to be slightly colder than earlier ones, due to the gain of our 30W am-
plifier being greater at higher frequencies, which preferentially outcoupled hotter atoms
and left less energetic particles in the trap. Finally, it was important to verify that the
flux of atoms measured on the DLD was less than 1 MHz, to ensure that the detector
did not saturate. In Fig. 4.5, we see that the atomic flux was typically no more than
150 kHz, except for the final high flux peak which was the atoms not removed by the
RF pulses being dropped onto the DLD. This final pulse was omitted from correlation
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Figure 4.5: Time-of-flight flux of thermal atoms on the DLD. A similar profile is seen
for the pulsed atom laser, however the pulses are narrower in that case.

function measurements. However, the majority of atoms in the trap contributed to the
correlation function measurements, making more efficient use of the atoms each cloud
than was possible for previous experiments [195].

We chose to compute correlation functions in the z axis, or equivalently in the time
of arrival t at the DLD. Because the magnetic trap is tightest in the x and t directions and
therefore the correlation lengths will be greatest in these axes in the far field, and the
DLD has superior resolution in t compared to the x-y plane, this is the natural choice for
this experimental setup. The correlation function histograms in the form of Eq. 4.7 were
computed using 700 µm bins in x and y, while the t axis was binned in 20 µs increments.
These binning parameters were determined empirically to optimise the signal-to-noise
of the g(2)(∆t) functions calculated, shown in Figs. 4.6 and 4.7, which resulted in ∼105

correlated pairs per 20 µs time bin.
The bunching amplitude and correlation time were measured for the thermal atoms

by fitting the form of Eq. 4.8 to the correlation function plotted in Fig. 4.6. This resulted
in a contrast of C=0.024, and a correlation time of lt =102 µs. Using Eq. 4.5, we expect
the correlation time3 to be 120±20 µs, and the Monte Carlo simulation outlined in §4.1.2
for these parameters predicted that C= 0.04. The discrepancies between the theoretical
and measured values for the correlation time and amplitude could be attributed to
temperature fluctuations, which alter the performance of the normalisation procedure.
The same correlation function computation procedure was then applied to the pulsed
atom laser data, as shown in Fig. 4.7. As expected, no bunching was present for this
source, which was confirmed by a fit of Eq. 4.8 to the data giving C=0.

4.2.3 Discussion

Although the thermal bunching amplitude of 0.024 measured in this experiment is small
compared to the ideal value of C = 1, it is consistent with our simulated value as we
make use of spatial bins of 700 µm, which are larger than the correlation lengths in

3As noted before, we convert between length and time scales with a factor of velocity, which for our
apparatus is ≈4.08 ms−1 at the DLD.
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Figure 4.6: Plot of second order correlation function g(2)(∆t) for thermal atoms at
T=850 nK, where the error bars represent shot noise.

the x-y plane of lx = 490 µm and ly = 49 µm. Because our thermal temperature of
850 nK is not significantly higher than Tc ≈ 600 nK, it is not possible to increase the
thermal correlation length significantly by cooling the clouds further without forming
a condensate fraction. Subsequent experiments which overcome this limitation will be
discussed in §4.4 and §4.5.

This thermal bunching measurement also cannot be readily improved by outcou-
pling atoms in a continuous beam. Although the correlation lengths in the x-y plane
will remain the same as before for this situation, in the z axis the correlation time be-
comes lt = h̄/∆E where ∆E=mv∆v [186]. Using v=

√
2kBT/m and ∆v=2v/g [196], we

find lt ≈ 22 µs for a continuous beam under our experimental conditions4. In addition
to this, the small mass of helium causes its outcoupling surfaces to have much higher
curvature than those for other species such as rubidium [180], causing atoms to foun-
tain upwards and further increase the effective energy spread of the beam. This means
that the approach taken for other previous experiments such as [182] would require an
unreasonably large amount of experimental data to observe bunching due to the poor
bunching amplitude C expected.

With this setup, we can circumvent some of the limitations of previous experiments
where detector saturation [55, 56] or low flux measurement rates [182] made obtaining
enough experimental data to calculate g(2)(∆t) an undesirably lengthy process (of order
weeks). We have instead measured a bunching signal similar to that seen in other He*
experiments [55, 56] with an order of magnitude faster data acquisition rate afforded by
the stability of our magnetic trap. Data could have conceivably been taken even faster,
as illustrated by the peak count rate in Fig. 4.5 being somewhat less than the saturation
flux of 1 MHz, however we wanted to ensure that the portion of the cloud outcoupled
was small for each pulse. This is important because the dynamics of RF outcoupling
from within the Thomas Fermi radius of a BEC is quite different to a sudden trap
switchoff, due to mean field interactions and the possibility for collective excitations
within the cloud [197], as well as the stability of the cloud over the 1 s interval between

4This is incorrectly stated to be 100 ns in [59].
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Figure 4.7: Second order correlation function g(2)(∆t) for a pulsed atom laser, where
the error bars represent shot noise.

the first and last outcoupled pulse. Also, Penning ionisation could be induced between
the atoms outcoupled via spin flipping to the mJ = 0 state, where the resulting ions
could cause perturbations to the atoms remaining in the trap. The coherence of our
pulsed atom laser source shows that RF outcoupling provides a minimally destructive
probe of the coherence of the cloud. As the aforementioned fountaining of outcoupled
atoms shows that helium is a species typically more susceptible to decoherence than
other commonly used atom species such as alkali metals, this result indicates that other
species should also retain coherence when outcoupled with broadband RF radiation.

Although the observation of bunching in this system is difficult, by measuring a clear
two-body interference signal for thermal atoms, in contrast to a pulsed atom laser which
displays no bunching, we can confirm that pulsed outcoupling does provide an unper-
turbed measurement of coherence. As we have improved upon data acquisition rates for
correlation measurements, we can apply this technique to expand our knowledge about
atomic coherence, as we will see in the next section.

4.3 Direct measurement of long-range third-order coherence in

Bose-Einstein condensates

A key consequence of Glauber’s theory of coherence (which was described in detail in
§2.1.1) was that the distinction between classical and quantum correlation functions is
truly unambiguous for the interference of n-tuples of particles, as opposed to more fa-
miliar first order correlation measurements. Although measurements of second-order
correlations such as that in the previous section provide enough information to distin-
guish between thermal and Bose condensed atomic samples, verification that coherent
states lack bunching to all orders of n in an important step towards confirming Glauber’s
theory is appropriate for Bose Einstein condensates. Furthermore, the small bunching
contrast does not directly demonstrate that g(n)(0, . . . , 0) = n! holds for thermal atoms
as a consequence of Wick’s theorem.



80 The Hanbury Brown-Twiss effect and higher-order correlation functions

Previous to this experiment, three-body loss rate measurements had hinted at the
effect of higher-order correlation functions in atomic samples [198, 199]. Although such
loss rates do give an indication of the interference of three atoms, and succeeded in
demonstrating the distinction between thermal and condensed sources of atoms, they
give no indication of the long-range coherence of the cloud. Such measurements are in-
evitably influenced by the strong interactions experienced on length scales tens of times
the s-wave scattering length a [34, 200], where a is of order nanometres (for He*, this is
7.5 nm [201]). Also, localised correlation measurements do not necessarily reveal infor-
mation about long-range order, such as for one-dimensional systems where true conden-
sates with long-range order cannot be created, but a measurement of g(n)(0, . . . , 0) = 1
can still be made in trap with quasicondensates which display local coherence [202]. By
allowing the atoms to ballistically expand during their fall under gravity from the trap
to the detector, the physical size of the cloud increases considerably from being around
10-100 µm in trap to larger than 1 cm at the detector. Thus, the average particle spacing
is around 0.1 to 1 mm, and typical correlation lengths are typically5 between 0.1 to 10
mm, both of which are considerably larger than the distance over which interactions
influence the correlation properties of the cloud. Therefore, the unperturbed long-range
coherence of the cloud can be probed in the far field where the effect of interactions is
negligible.

By measuring the third-order correlation function in the same manner that the
second-order function was measured in §4.2, we show that g(3)(∆t1, ∆t2)=1 for a pulsed
atom laser, and compare the second- and third-order correlation functions for thermal
atoms to show that a scaling consistent with Wick’s theorem exists. As the computa-
tion of third-order correlations requires about an order of magnitude more data than
for the second-order function, the increase in data acquisition rate achieved by a pulsed
source was required for this experiment to be feasible for clouds with ∼ 106 atoms in
our magnetic trap.

4.3.1 Experimental method

To obtain a pulsed source of ultracold atoms from which second- and third-order corre-
lation functions were computed, we followed essentially the same experimental method
as outlined in §4.2.1. In this experiment, we outcoupled 2 to 3% of atoms from the
magnetic trap with trapping frequencies (ωx, ωy, ωz)= 2π×(565, 51, 565) Hz with each
of 30 pulses of RF radiation. The pulse duration of 5 µs gave a Fourier broadened fre-
quency spread of ∆ f ∼1.2 MHz , which exceeds the energy spread of the thermal cloud
(∼h×30 kHz) and chemical potential of the BEC (≈8 kHz). As before, we chose to cool
the atomic cloud to either above or below Tc ≈ 1 µK in a repeatable manner, where the
thermal clouds in this experiment were at a temperature of ∼1.3±0.2 µK. Note that the
experimental parameters are slightly different to those for the previous experiment, due
to small changes in the number of trapped atoms and the geometry of the magnetic trap
itself, while similar changes will also inevitably occur for subsequent experiments. To
obtain reasonable signal-to-noise levels for the third-order correlation function, we ac-
quired data over ∼24,600 experimental iterations for thermal clouds, while only ∼3,700
realisations were required for the pulsed atom laser due to the much higher density of
such clouds, yielding many more triplets of atoms within a given bin volume.

5In §4.2 we have lz = ltv≈500 µm, while in subsequent sections we will see experiments where lr exceeds
1 mm.
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Figure 4.8: Calculating the correlation function in time g(3)(∆t1, ∆t2) from a cloud
of He* atoms (represented by red spheres) as they arrive at the detector
(indicated with yellow flashes) requires that a two-dimensional area be
considered in the plane of the detector for each atom measured (in this
case, a bin of radius 700 µm shown in green), and histogram of the dif-
ferences in arrival time (labelled τ1 and τ2) for two more atoms arriving
subsequently on the detector is computed.

Fig. 4.8 illustrates the data analysis procedure outlined in §4.1.2 that is used to
calculate the third-order correlation function from our experimental data. The un-
normalised third-order correlation function G(3)(∆t1, ∆t2) is a histogram of the dis-
tribution of time separations between three atoms arriving on the detector within a
bin of size 700 µm in the x-y plane for each experimental iteration. This is nor-
malised by repeating this same process for the distribution of atoms over every ex-
perimental realisation in the data set, to give the product of bulk intensity pro-
files ρ(0)ρ(∆t1)ρ(∆t2), from which the normalised third-order correlation function
g(3)(0, ∆t1, ∆t2)=G(3)(∆t1, ∆t2)/ρ(0)ρ(∆t1)ρ(∆t2) is obtained.

4.3.2 Results

The third-order correlation functions for thermal and Bose-condensed sources are pre-
sented in Fig. 4.9 and Fig. 4.10 respectively. These plots show a distinct contrast be-
tween the bosonic bunching present for the thermal atoms and the lack of bunching for
the atom laser. The observation of g(3)(∆t1, ∆t1)=1.000±0.001 in Fig. 4.9 for all ∆t1, ∆t2

confirms that Bose Einstein condensates are coherent to third order as expected. How-
ever, the size of the bins required to compute the correlation functions with acceptable
signal-to-noise are large compared to the correlation length of the thermal atoms, which
decreases the peak bunching amplitude from the predicted g(3)(0, 0)=6 to 1.061±0.006
in a similar manner to that seen for the second-order correlation measurement described
in the previous section.

From the factorised form of the third order correlation function, which was derived
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Experiment Theory

g(2)(0) 1.022±0.002 1.025±0.005
lt 90±10 µs 80±20 µs

g(3)(0, 0) 1.061±0.006 1.075±0.015
(g(3)(0, 0)− 1)/(g(2)(0)− 1) 2.8±0.3 3.0±0.3

Table 4.1: Comparison of theoretical and experimental correlation parameters

in §2.1.1,

g(3)(∆t1, ∆t2) =
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ρ(0)ρ(∆t1)ρ(∆t2)

}

+ 1, (4.9)

we see that if either of ∆t1 or ∆t2 is much larger than lt, then G(1) terms containing
that time separation will tend towards zero and not contribute to the bunching signal
measured in g(3)(∆t1, ∆t1). For example, if we take ∆t2≫ lt, then Eq. 4.9 simplifies to

g(3)(∆t1, ∆t2)∆t2→∞ =

∣

∣

∣
G(1)(∆t1)

∣

∣

∣

2

ρ(0)ρ(∆t1)
+ 1 = g(2)(∆t1). (4.10)

Therefore, Eq. 4.10 confirms the intuitive notion that ‘three-particle interference with
one particle far away will be two-particle interference’. This is clearly illustrated in Fig.
4.9, where for ∆t2 > 200 µs, the peak bunching amplitude is C ≈ 0.02, considerably
lower than for g(3)(0, 0) but similar to the value of C = 0.024 obtained in our previous
experiment6.

We show this explicitly in Fig. 4.11 by averaging g(3)(∆t1, ∆t2) for either ∆t1 or ∆t2

larger than 200 µs to obtain effectively g(2)(∆t) for both thermal and Bose condensed
atoms. A maximum two-body bunching contrast derived from a Gaussian fit of C =

0.022±0.002 was measured for the thermal clouds, while a complete absence of bunching
is again observed for the atom laser. The correlation time lt was found to be 90±10 µs
for thermal atoms. We can compare the two-body correlation function directly with the
three-body function shown in Fig. 4.12 by taking a diagonal cross section g(3)(∆t) =

g(3)(∆t, ∆t) through the data shown in Figs. 4.9 and 4.10, which highlights the bunching
peak of g(3)(0, 0) = 1.061±0.006 for thermal atoms and lack of bunching in a BEC.
Although a ‘three-body correlation time’ can be measured as the width of a Gaussian
fit to g(3)(∆t) for thermal atoms, its value of 120 µs is largely an artefact of the binning
regime used to plot g(3)(∆t1, ∆t2), and is a factor of

√
2 larger than lt =90 µs due to this.

By applying the model described in §4.1.2, we can compare the measured and theo-
retical values of bunching contrast and correlation length for this experiment, which are
given in Table 4.1. In particular, we are able to directly compare g(2)(0) and g(3)(0, 0) to
verify that the predictions of Eq. 4.9 and its simplification to Eq. 4.10 are correct.

6The temperature of the thermal cloud was about 35% lower in that experiment, which accounts for the
higher bunching amplitude measured when using bins of the same size.
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4.3.3 Discussion

The results summarised in Table 4.1 confirm that we have successfully measured the
long-range third-order correlation function, and allow us to verify its relationship with
the second-order function. Although the peak bunching amplitudes of g(3)(0, 0) =

1.061±0.006 and g(2)(0) = 1.022±0.002 do not match the ideal theoretical value pre-
dicted by Wick’s theorem of g(n)(0, . . . , 0) = n!, the ratio (g(3)(0, 0) − 1)/(g(2)(0) − 1)
allows the scaling between correlation function orders to be verified. Importantly, this
ratio is less sensitive to imperfections in the normalisation procedure and the effects
of bunching contrast reduction due to the relatively large bin size required than a di-
rect measurement of C. As normalisation imperfections are responsible for the errors
quoted for our experimental measurements, taking the ratio of second- to third-order
peak bunching amplitudes helps to reduce the effect of such a systematic error. These
results thus confirm the quantum theory of boson statistics is applicable to weakly inter-
acting atomic gases, where a Bose Einstein condensate possesses long-range coherence
to at least order n=3, while the bunching observed in thermal clouds is consisted with
Eq. 4.9.

Although the time required to obtain enough experimental data (∼250 hours) was
considerably longer than for our previous measurement of g(2), and highlights the use-
fulness of our pulsed outcoupling method, the time required to compute the correlation
functions was the limiting factor in this experiment. This dissuaded us from improving
the signal-to-noise of this measurement, or even calculating order correlation functions,
by continuing with this pulsed source method. The following sections will describe ex-
periments which address this limitation, and allow higher-order correlation functions
with better signal-to-noise to be measured.

4.4 Large bunching amplitude third-order spatial correlations

In this experiment, we aim to significantly increase the correlation length of our atomic
samples to enable a long-range third-order quantum correlation measurement to be
taken in the spatial plane of a detector for the first time. Not only does this improvement
in observed bunching contrast make data acquisition and computation much quicker,
but also allows us to measure the individual moments of the correlation function that
give rise to Wick’s theorem, which has previously been achieved in trap [203] but not
yet over long ranges. With this, three-body effects such as collisions [198, 199, 204] and
Efimov trimers [102, 205, 206] could possibly be investigated. Measuring correlation
functions in the spatial plane of the detector also gives greater flexibility in the trapping
geometries can be utilised, where for example systems of reduced dimensionality [202]
which display different quantum statistics in the weak and strong axes of the trap due
to the lack of long-range order could be studied. Indeed, this will be important for
an investigation of transverse condensation in the following chapter of this thesis. In
addition, the visibility of spatial imaging techniques such as ghost imaging is enhanced
with the use of higher-order correlation functions [85].

As we saw in §4.1.1, in the 3D limit for an ideal thermal gas, correlations in each axis
for clouds dropped under gravity are the same apart from the scaling of the correlation
length due to the trapping frequencies. Previous measurements with photons were able
to confirm that photon coincidence count rates in the spatial plane of a detector are
consistent with previous measurements of temporal correlations to third order [85]. For
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our MCP and DLD system, as the detector resolution is far poorer in the x-y plane
than it is for t, computing long-range second- and third-order correlation functions in
this plane requires correlation lengths which far exceed this resolution limit to prevent
bunching from being washed out. We achieve this by cooling clouds in our BiQUIC
magnetic trap containing far fewer atoms than for previous experiments (∼ 103 rather
than ∼ 106), which drives Tc down by an order of magnitude. As lr ∝ T−1/2 (Eq. 4.5),
we can now cool thermal clouds to temperatures where the correlation length in the x

direction is now 1.3 mm, much larger than the spatial detector resolution of ∼100 µm,
and results in a peak bunching amplitude far greater than that which was seen with our
previous pulsed source technique.

4.4.1 Experimental method

Once again, we produced ultracold atomic clouds of ∼ 106 atoms at temperature just
above Tc ≈1 µK in our BiQUIC magnetic trap. However, rather than outcoupling pulses
of atoms from the magnetic trap with bursts of RF radiation, the population of the trap
was attenuated while continuing to cool the cloud in a manner which ensured that the
temperature remained above Tc at all times. We recall from §2.3.1 that Tc ∝ N1/3, which
sets the lowest possible thermal temperature as a function of trap population, and by
reducing the population to ∼ 103 atoms we achieved an ultimate critical temperature
of ∼100 nK. To achieve this, the cloud was attenuated over the final 2.7 seconds of
evaporative cooling by outcoupling atoms uniformly from the trap with 54,000 pulses
of RF radiation, which were significantly Fourier broadened due to their short duration
of 100 µs. During this process, the evaporative cooling was adjusted to compensate for
the decrease in trap population, and resulted in thermal clouds with a temperature of
≈95±10 nK. The reduction in temperature was limited by the stability of the trap, which
was already highly stabilised by our nullerometer (see §3.1.2). About 4,000 experimental
realisations of such clouds were then dropped under gravity to the MCP and DLD below,
where single atoms were detected as per the experiments previously discussed.

We then computed second- and third-order correlation functions along the x axis in
a manner similar to previous experiments. The x axis was chosen due to the trapping
frequency in that direction being 550 Hz where the correlation length was theoretically
predicted to be ∼1.5 mm, as opposed to 50 Hz in the y direction which gave a correlation
length of order the detector resolution (∼140 µm). We chose bins of 250 µs in time7, 1
mm in y and histogram in increments of 200 µm in the x direction, the latter being
restricted to at least the detector resolution of ∼100 µm. The bin sizes were chosen to
maximise the ratio of g(3)(∆x1 = 0, ∆x2 = 0) to shot noise. The dependence of second-
order bunching amplitude on bin size for this data set was illustrated previously in Fig.
4.3, however repeating this process for third-order correlation functions lead to poorer
signal-to-noise for for this data than is seen for g(2)(∆x).

4.4.2 Results

The second-order correlation function g(2)(∆x), complementary to those shown in Fig.
4.3 but with the bin size specified in the experimental method, is shown in Fig. 4.13.
A Gaussian fit to this profile measured a bunching contrast of C = 0.131±0.015, and a
correlation length of 1.30±0.03 mm, which is in good agreement with the results of the

7This corresponds to 1 mm in the z direction, with a fall velocity of ≈4 ms−1.
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Figure 4.13: Normalised second-order spatial correlation function g(2)(∆x) for ∼95
nK thermal atoms.

theoretical model discussed in §4.1.2 which predict C=0.14±0.02 and lx =1.5±0.2 mm
for these experimental conditions. Although this bunching contrast still falls short of the
ideal value of C= 1, we see that increasing the correlation length of our atomic sample
to a much larger fraction of the bin size gives a much stronger bunching peak than that
measured for our previous experiments with smaller correlation lengths, which were
restricted to C<0.024.

The third-order correlation function computed under the same conditions is also
shown in Fig. 4.14. As with our measurement of g(3)(∆t1, ∆t2) in Fig. 4.9, the inde-
pendent axes of this plot represent the separation in the x axis between the first and
second atoms in the triplet (∆x1 = x2 − x1), and between the second and third atoms
(∆x2 = x3 − x2). The experimental data in this figure (left) is displayed alongside a
fit to this surface (right), which is of the form of Eq. 4.9 and has free parameters for
the bunching amplitudes due to the two- and three-body moments, as well as the cor-
relation length. For clarity, a plan view of the same data is presented in Fig. 4.15,
which confirms that the measured correlation function (left) matches the form of the
theoretical model (right). This fit yielded a peak three-body bunching amplitude of
g(3)(0, 0)=1.44±0.02, which is consistent with the prediction of the theoretical model of
1.47±0.05. As with our previous third-order bunching measurement, g(2)(0) is recovered
for either g(3)(0, ∆x2> lx) or g(3)(∆x1> lx, 0).

A feature of the data plotted in Figs. 4.14 and 4.15 which was not present in our
temporal third-order correlation function measurements shown in Fig. 4.9 is a ridge of
bunching observed along the ∆x1 =∆x2 diagonal. This occurs in the spatial correlation
data due to a lack of monotonic ordering in x position of consecutive atoms within a
triplet, where an ordering is naturally present in time for our previous experiment. This
means that if ∆x1=−∆x2, there can exist a two-body bunching enhancement due to the
first and third atoms, while the second particle is far enough separated to not contribute
to the bunching. If ∆x1 =∆x2 > lx, then all three particles are mutually far apart and no
bunching exists, which is why the contrast of the diagonal ridge is roughly half that of
g(3)(0, ∆x2> lx) or g(3)(∆x1> lx, 0).

Due to the significant increase in three-body bunching amplitude for this data set



88 The Hanbury Brown-Twiss effect and higher-order correlation functions

02468
10

0
2

4
6

8

1

1.1

1.2

1.3

1.4

1.5

∆x1 (mm)∆x2 (mm)

g(
3)
(∆

x 1
,∆

x 2
)

02468
10

0
2

4
6

8

1

1.1

1.2

1.3

1.4

1.5

∆x1 (mm)∆x2 (mm)

g(
3)
(∆

x 1
,∆

x 2
)

0.9

1

1.1

1.2

1.3

1.4

1.5
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the experimental data (left) and theoretical simulation (right). Note the
diagonal ridge corresponding to bunching between the first and third
particles when ∆x1=∆x2.

0 2 4 6 8 10

0

2

4

6

8

10

∆
x 1

(m
m

)

∆x2 (mm)
0 2 4 6 8 10

0

2

4

6

8

10

∆
x 1

(m
m

)

∆x2 (mm)

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 4.15: Normalised third-order spatial correlation function g(3)(∆x1, ∆x2) for
the experimental data (left) and theoretical simulation (right) in plan
view.



§4.4 Large bunching amplitude third-order spatial correlations 89

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

∆x (mm)

C
or

re
la

ti
on

s

h(∆x)

g(3)(∆x)− 1

Figure 4.16: Comparison of the entire third-order correlation function g(3)(∆x, ∆x)−
1 = g(3)(∆x) − 1 (dashed red line) and the three-body moment
h(∆x, ∆x)=h(∆x) (solid blue line).

compared to that described in §4.3, we are now able to successfully measure the three-
body moment of the third-order correlation function for the first time. We can rearrange
Eq. 4.9 to isolate this moment h(∆x1, ∆x2),

h(∆x1, ∆x2) = 2ℜ
{

G(1)(∆x1)G
(1)(∆x2)G(1)(∆x2 − ∆x1)
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}

,

= g(3)(∆x1, ∆x2)−







∣

∣

∣
G(1)(∆x1)

∣

∣

∣

2

ρ(0)ρ(∆x1)
+

∣

∣

∣
G(1)(∆x2)

∣

∣

∣

2

ρ(0)ρ(∆x2)
+

∣

∣

∣
G(1)(∆x2 − ∆x1)

∣

∣

∣

2

ρ(∆x1)ρ(∆x2)
+ 1






,

(4.11)

and compare this to g(3)(∆x1, ∆x2) − 1, as shown in Fig. 4.16. The definition of
h(∆x1, ∆x2) implies a theoretical value of h(0, 0) = 2, however we find it to be around
0.05, which is suppressed due to our binning regime even more severely than seen for
the two-body bunching component shown in Fig. 4.13. However, this is to be expected
as h(∆x, ∆x) requires the mutual overlap of three particles, which results in a far lower
contrast three-body bunching signal than for interference between the first and second
or second and third particles which contribute to the two-body correlation function.

4.4.3 Discussion

This result clearly shows that engineering a source with the largest possible correla-
tion length gives not only a far better thermal bunching amplitude than for our pulsed
source method (g(3)(0, 0) = 1.44 rather than 1.061), but also requires considerably less
data and therefore less computational effort. In this experiment, only 4,000 experi-
mental cycles were obtained as opposed to 24,600 for our previous experiment, with
each cycle resulting in around three orders of magnitude fewer atoms measured. It
may seem counter-intuitive that discarding atoms can significantly improve the signal-
to-noise of our correlation functions measurements, however the order of magnitude
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increase in correlation length along each axis ensures that we achieve far greater wave-
function overlap at the detector for a given bin size, which is not surprising given the
conclusions drawn in §4.1.2. In doing so, this also allowed the three-body moment of
the correlation function to be measured, which was not possible with our previous data.

High-contrast correlation measurements in the spatial plane of a detector paves the
way to further experiments which probe novel phenomena. These include investiga-
tion of the correspondence between Hanbury Brown-Twiss bunching and speckle in a
guided atomic source (which will be discussed in §6.2.4) and the observation of trans-
verse condensation in an elongated quantum gas (Chapter 5). This technique could also
enable additional experiments such as the use of ghost imaging to test Bell’s inequality,
which has been previously achieved with photons [207].

4.5 Thermal bunching up to sixth order in the ideal limit

Although the experiment described in the previous section represented a significant im-
provement in our ability to measure quantum correlation functions, it remained unable
to observe bunching in the ideal limit of g(n)(0, . . . , 0) = n!, and did not provide the
opportunity to investigate correlation functions at orders higher than n = 3. However,
it emphasised that the best approach for observing higher-order bunching in the limit
where detector resolution or binning does not suppress the bunching contrast is to cre-
ate an atomic source with the largest possible correlation length, even if this comes at
the expense of the number of atoms in the cloud. While the previous result reached the
limit of what could be achieved with our magnetic trap, optical dipole traps (see §3.1.3
for more details) are capable of confining clouds at considerably lower temperatures
(of order a few tens of nK for our experimental setup, as opposed to ∼100 nK for our
BiQUIC trap), and with much tighter radial confinement (ω⊥ can be up to 8 kHz for
our dipole trap, while our magnetic trap is typically at most around 500 Hz). As we
recall from Eq. 4.5, both of these will result in a considerable increase to the bunching
correlation length. Although the axial trapping frequency is typically around a quarter
of that for the magnetic trap, the dipole trap is oriented such that this is aligned in the
z axis, which has a far better detector resolution than in the x-y plane and will therefore
not restrict the bunching measured with this trap, while the radial correlation lengths
will greatly exceed the spatial resolution of the MCP and DLD system.

We use an optical dipole trap in this manner to measure thermal long-range quan-
tum correlation functions in the ideal limit up to sixth order. This is made possible not
only by the tight radial trapping frequency (ω⊥=2π × 2050 Hz) and low temperature of
the cloud (63 nK), which in the 3D limit would result in an extremely large correlation
length of around 7.4 mm in the plane of the detector, but also by the role of dimen-
sionality, which was introduced in §2.4. As the dipole trap is very elongated in the z

direction, with an aspect ratio of ω⊥/ωz >100, we are able to enter a regime where the
cloud becomes partially condensed into the transverse axis of the trap, while remaining
thermal in the longitudinal axis [151], as is discussed in §2.4.2. The phase transition into
a transversely-condensed state will be studied in more detail in an experiment described
in Chapter 5, which shows that a gas in this state saturates the population of transversely
excited states into the radial ground state of the potential, behaving like a harmonically
trapped ideal Bose gas. However, the longitudinal behaviour is intermediate between a
highly degenerate ideal Bose gas and a weakly interacting quasicondensate, where the
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broad crossover [208] between these two regimes is influenced by small number effects
due to the fact that the clouds used in this experiment only contain ∼330 atoms.

This results in a cloud which possesses a transverse correlation length which es-
sentially covers the entire extent of the cloud, but lacks macroscopic occupation of the
ground state of the 3D potential, and therefore means that a true Bose-Einstein con-
densate with long-range order is absent. As both the ideal Bose gas and weakly inter-
acting quasicondensate regimes exhibit the usual Hanbury Brown-Twiss bunching of
g(n)(0)=n! in the far field [208], an intermediate state between these two cases allowed
quantum correlations to be measured with near-perfect contrast due to the transverse
correlation length of the cloud being much larger than the bin size required to com-
pute correlation functions. As this correlation length extended over a large portion of
the cloud, correlation functions up to order n = 6 could be computed without the loss
of signal-to-noise encountered for previous experiments with smaller bunching ampli-
tudes.

This measurement represents not only the first measurement of atomic correlation
functions above order n= 4 (where temporal correlations up to fourth order have been
measured for trapped thermal atoms [209]), but also the first time thermal bunching has
been observed in the ideal limit of g(n)(0, . . . , 0)=n! for each order up to n=6 for atomic
species. In addition to providing the most rigorous validation yet of the applicability
of Wick’s theorem to Glauber’s theory of coherence with massive particles, this also
demonstrates that atomic measurements are competitive with state-of-the-art quantum
optics experiments using photons for testing fundamental quantum physics.

4.5.1 Experimental method

Ultracold clouds of ∼ 106 4He atoms were first cooled to just above the BEC transition
temperature Tc ≈ 1 µK as usual. A dimple trap was then formed by ramping up8 the
intensity of a beam of 1550 nm laser light focused in the direction of gravity over 100 ms,
to form an optical dipole trap which captured about 104 atoms. Once atoms had been
transferred to the optical trap, the magnetic trap is switched off, after which the trapped
atoms were evaporatively cooled further by ramping down the intensity of the dipole
trapping beam over 200 ms. At this stage, the dipole trap provides an approximately
harmonic confinement of

(

ωx, ωy, ωz

)

=2π × (2350, 1800, 15) Hz.
However, the superposition of an optical trap over the magnetic trap acts like a

dimple trap, and almost inevitably results in condensation of the cloud [210, 211]. To
avoid this, a short pulse of near-resonant light (detuned to the red of the 23S1 → 23P2

transition by about 700 MHz) was then applied to remove some atoms from the trap
to ensure that the cloud remains thermal in the axial direction. This process was tuned
to preferentially remove the condensed component of the cloud due to a superradiant-
like effect [212], where the recoil velocity of the atoms absorbing a photon is enough
to eject the atom from the trap without heating the rest of the cloud. Similarly to the
experiment in the previous section, the removal of atoms lowers Tc so that a lower
thermal temperature can be achieved. The dipole trap is then suddenly switched off,
and the atoms fall ∼850 mm under gravity to the MCP and DLD below, as depicted in
Fig. 4.17.

8As the trapping frequencies which we produce with this trap are ω̄ ∼ 500 Hz, this ramp should occur
over a time scale much longer than 1/(500 s)=2 ms to be essentially adiabatic.
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Figure 4.17: (Left) Ultracold atoms are held in an optical dipole trap, at the focus of a
red-detuned laser beam. When the beam is switched off, the cloud drops
∼850 mm under gravity to the MCP and DLD system. (Right) The inset
shows a typical single longitudinal profile of the cloud at the detector
(red line), and an average profile of many experimental iterations (blue
line).

We acquired ∼2,000 experimental realisations to calculate correlation functions in
the z axis. The second and third order correlation functions were computed with bins
of size 1 cm in the x and y directions in the manner described for previous experiments,
while the functions for n=4 to n=6 were calculated with an autocorrelation procedure
which differs slightly from our usual computation of correlation functions. In the latter
case, the atoms were first binned temporally, then sorted in 8 mm bins in the x-y plane,
which reduced the computational effort required to calculate these correlation functions.
This had minimal effect on the correlation functions produced because the bins were
much smaller than the correlation length in these axes, which was confirmed by a direct
comparison of the two methods for n=2 and n=3.

4.5.2 Results

Before calculating the quantum correlation functions for this experimental data, the tem-
perature of the clouds produced was measured from the time-of-flight profile. This was
achieved by fitting an ideal 3D Bose gas model, where trap frequencies, atom number
and temperature could each by altered within experimentally realistic bounds, and was
found to be 63 nK for the clouds consisting of ∼ 330 atoms. Furthermore, the experi-
mental time-of-flight profile matched the shape of a thermal distribution, and a bimodal
profile distinctive of a cloud with a condensate fraction with suppressed density fluctu-
ations was not observed, which confirms that the cloud is thermal and thus incoherent
in the z axis. If we compare this temperature to the condensation temperatures in 1D



§4.5 Thermal bunching up to sixth order in the ideal limit 93

Experiment Theory

g(2)(0) 2.05±0.09 2
g(3)(0) 6.0±0.6 6
g(4)(0) 23±3 24
g(5)(0) 111±16 120
g(6)(0) 710±90 720

Table 4.2: Comparison of the maximum correlation function amplitude for orders
n=2 to 6 with the ideal theoretical values of g(n)(0)=n!.

and 3D (refer to §2.4), which are [151]

T3D
c ≈ h̄

kB

[

Nωzωyωz

g3(1)

]1/3

, (4.12)

T1D
c ≈ Nh̄ωz

kB ln(2N)
, (4.13)

where g3(1)≈ 1.202, we find that T3D
c ≈ 124 nK and T1D

c ≈ 37 nK. A final condition that
prevents radial dynamics from being ‘frozen out’ by the trap dimensionality, which is
ω⊥/ωz ≈137<Ng3(1)≈397 [151], ensures that these quantum gases satisfy the require-
ments for transverse condensation, which will be explored in more detail in Chapter
5. The quantum state of the gas should thus be influenced by one-dimensional physics
due to the fact that T1D

c < T < T3D
c , resulting in a lack of longitudinal coherence as is

discussed in Chapter 5. In particular, as kBT/h=1300 Hz <ω⊥/2π=2050 Hz, a signif-
icant occupation of the transverse ground state will exist, and as we will see in Chapter
5 the transverse correlation length is larger than the size of the cloud in the x-y plane.

The result of computing the quantum correlation functions g(n)(∆z) ≡
g(n)(∆z, . . . , ∆z) for n = 2 to 6 is shown in Fig. 4.18, and the resulting peak corre-
lation function amplitudes derived from Gaussian fits to these functions are given in
Table 4.2. It is clear that the bunching observed is in agreement with the prediction
due to Wick’s theorem that g(n)(∆z) = n! in the ideal limit, when binning and detector
resolution do not ‘wash out’ the interference measured. A Gaussian fit to the width of
the second-order correlation function gives a correlation length of 394 µm.

A full surface plot of g(3)(∆z1, ∆z2) is shown in Fig. 4.19 to compare this result
with our previous measurements of the third-order correlation function in Figs. 4.9
and 4.14. A marked increase in both signal-to-noise and bunching amplitude is seen
for the optically-trapped clouds, where the latter is improved from the peak bunch-
ing amplitude in our previous result of g(3)(0, 0) = 1.44. Plotting the complete fourth-,
fifth-, and sixth-order correlation functions, g(4)(∆z1, ∆z2, ∆z3), g(5)(∆z1, ∆z2, ∆z3, ∆z4),
g(6)(∆z1, ∆z2, ∆z3, ∆z4, ∆z5) fully without merely taking the cross-sections shown in Fig.
4.18 require four-, five- and six-dimensional plots respectively and are therefore not pos-
sible. As with previous results, the ‘nth-order correlation lengths’ discussed in relation
to Fig. 4.12 remain dependent on the binning regime chosen, in an extension to the
scaling seen in the form of Eq. 4.4. In addition, features in the surface plot of the third-
order function such as the bunching observed for g(3)(∆x, ∆x) in Fig. 4.14 are avoided so
that the cross-sections shown in Fig. 4.18 illustrate the most important information con-
tained in the correlation functions, namely a comparison of g(n)(0) with g(n)(∆z > lz)

which ensures that the peak bunching amplitude has been measured correctly, while
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Figure 4.18: Second-order (a) through to sixth-order (e) correlation functions g(n)(∆z)
measured. In (f), the peak correlation function amplitude (blue circles)
for each order is compared to the ideal n! scaling (dashed red line) on a
logarithmic scale.
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Figure 4.19: Surface plot of the three-body correlation function g(3)(∆z1, ∆z2).

remaining simple to interpret.

4.5.3 Discussion

The peak amplitudes of each nth-order correlation function summarised in Table 4.2
provide the strongest direct evidence yet that the application of Wick’s theorem in
Glauber’s theory of quantum coherence is valid. Although measuring Hanbury Brown-
Twiss bunching in quantum gases has proven to be difficult in previous experiments,
where the bunching contrast measured was restricted to small fractions of the ideal
values, this result allows quantum atom optics experiments to be directly compared
to traditional photon quantum optics, where high-contrast bunching measurements are
far less challenging. In particular, our measurement of g(6)(0)=710 ± 90, which implies
that the density-normalised likelihood of measuring six particles in close proximity is
almost three orders of magnitude greater than that for six particles at separations larger
than lz, is to our knowledge in excess of even state-of-the-art photonic measurements.

Similarly to the conclusions drawn about the experiment described in the previous
section, we find that increasing the correlation length of the cloud further at the expense
of number of atoms continues to give improvements in both bunching amplitude and
signal-to-noise. In this case, we acquire half the number of experimental iterations com-
pared to §4.4, where each shot contains a third of the number of atoms, and find that
correlations with ideal amplitude persist for each moment in the sixth-order correlation
function. Roughly speaking, the effect of bunching itself compensates for the reduc-
tion in statistics due to the increased number of independent variables ∆z1, . . . , ∆zn−1

required to describe n-tuples of particles within a bin as n increases. Therefore, the
signal-to-noise does not degrade at higher orders, which is in contrast to the experiment
in the previous section where the three-body moment h in the third-order correlation
function was heavily attenuated from its ideal value, which implies that measurements
of fourth-order correlations with that data would have poor signal-to-noise. While we
expect that correlation functions to seventh- and even higher-orders could be computed
in principle for the optically-trapped clouds, the limited atomic flux prevented normal-
isation of the correlation functions from being reliable at higher orders.

This experiment has also served as a preliminary investigation of transversely-
condensed quantum gases. Although dimensionality was not the focus of this partic-
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ular result, the partial condensation of the cloud in the transverse direction of the trap
resulted in a cloud with ideal coherence properties for measuring axial correlation func-
tions, as the bin size in the x-y plane was far smaller than l⊥. The correlation length in
the axial direction provides further information about the quantum state of the clouds,
which is intermediate between an ideal Bose gas and a weakly-interacting quasiconden-
sate. The correlation length for a quasicondensate in the far field can be estimated from
the in-trap momentum correlation scale of ∆k∼1/2lφ [146] with ∆z= h̄∆ktToF/m, where
lφ = h̄2n1D/mkBT is the in-trap length scale of phase coherence for a quasicondensate.
Under the local density approximation, the 1D density n1D ≈ 2.0 atoms/µm leads to a
correlation length of ∼ 860 µm for the quasicondensate regime, while for an ideal Bose
gas lz ≈95 µm, so our measured correlation length of 394 µm is consistent with the gas
being in an intermediate state between these two limiting regimes. Furthermore, the
very weak confinement in the z direction against gravity will result in the cloud ‘sag-
ging’ in the optical trap, and therefore not provide the harmonic trapping confinement
which is assumed for our theoretical predictions.

The behaviour of the gas can also be characterised by the dimensionless parameters
for interaction strength and temperature from Eqs. 2.46 and 2.47 respectively. In this
case, the interaction parameter is small at γ=mg/h̄2n1D ≃0.006, while the dimensionless
temperature is τ=2mkBT/h̄2n2

1D ≃0.26. As this temperature is around three times larger
than the crossover temperature which is τC ∼√

γ ≈ 0.078 [150], it can be seen that the
system is indeed an intermediate between the decoherent quantum (approximately ideal
Bose gas where τ≫√

γ) and quasicondensate (τ≪√
γ) regimes [149, 150].

4.6 Summary

In this chapter, several experiments which each successively improve our ability to mea-
sure higher-order quantum correlation functions have been described. The coherence
of a pulsed atom laser outcoupled with RF radiation was verified, and directly com-
pared to a pulsed thermal source. Long-range third-order correlations were measured
for atomic systems for the first time temporally, where the coherence of a BEC was con-
firmed to third order, followed by a measurement of third-order thermal bunching in
the spatial plane of the detector with significantly improved amplitude and correlation
length. Finally, an optical dipole trap was used to create an atomic source with a trans-
verse correlation length which extended over the entire cloud radially, which allowed
thermal correlation functions to be measured in the ideal limit and thus confirmed the
applicability of Wick’s theorem for ultracold gases.

These experiments have not only added to the growing body of fundamental knowl-
edge about correlations in quantum gases, but have also developed techniques which
allow correlation measurements to be a useful experimental tool to probe the state of ul-
tracold atomic systems. Several fundamental tests of quantum mechanics with photons,
including realisations of Einstein-Podolsky-Rosen entanglement [213] and violations of
Bell’s inequalities [20, 83], rely on accurately measured correlations for quantum sys-
tems, and thus improvements in the measurement of atomic correlation functions could
allow similar tests with massive particles [104]. Higher-order correlation measurements
could also be useful for investigating p- and d-wave pairings [214] which may clarify the
mechanism of high-temperature superconductivity.

The next chapter of this thesis will carry on the theme of using Hanbury Brown-
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Twiss bunching as a probe for quantum systems, by using correlation measurements
to reveal the novel phenomenon of transverse condensation in an elongated Bose gas.
Systems of lower dimensionality can access a wide variety of regimes displaying unique
coherence behaviour which is not possible in 3D, while the transitions between these
regimes can in many cases be revealed with bunching measurements. A particular
example of a system influenced by dimensionality was explored in §4.5 of this chapter,
and it will be seen in the following chapter that the ideal bunching seen for this system
is a consequence of the saturation of the transverse ground state of the cloud, which
nevertheless remains incoherent longitudinally.
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Chapter 5

Using quantum correlations to probe

transverse condensation of an

elongated Bose gas

While most of the correlation experiments in Chapter 4 were performed for systems
well described by classical Boltzmann gas theory, a rich variety of different coherence
regimes can be explored for systems near transition points in degeneracy or dimension-
ality, as was discussed in §2.4.1. An example of such a system was seen in §4.5, where
a low temperature cloud held in a highly elongated trap was seen to be extraordinar-
ily conducive to high-contrast Hanbury Brown-Twiss interference measurements, and
enabled bunching for an incoherent gas in the ideal limit where g(n)(0) = n! to be ob-
served up to order n = 6. Although accounting for the effects of dimensionality or the
proximity to quasicondensation was not pivotal to understanding that particular result,
such striking correlation behaviour does encourage further study of the consequences
of these influences.

In this chapter, ultracold Bose gases confined in high aspect ratio cigar-shaped traps
at temperatures near quantum degeneracy are investigated. By producing systems in a
parameter space where the number of atoms in the cloud is of order the trap aspect ratio,
while the cloud remains in the 3D regime despite being close to the 1D crossover, the
phenomenon of transverse condensation can be observed. In this case, the gas saturates
the transverse ground state of the potential, while remaining incoherent axially, which
is consistent with the results seen in §4.5. Here, the quantum state of the gas is probed
with a measurement of long-range second-order correlation functions over a range of
temperatures and trap populations, which quantifies the disparate behaviour between
the longitudinal and radial axes characteristic of transverse condensation.

The experiment described in this chapter has been published in:

• Wu RuGway, A. G. Manning, S. S. Hodgman, R. G. Dall, A. G. Truscott, T. Lam-
berton, and K. V. Kheruntsyan, “Observation of Transverse Bose-Einstein Conden-
sation via Hanbury Brown-Twiss Correlations,” Physical Review Letters 111, 093601
(2013).
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The behaviour of trapped ultracold Bose gases can be accurately described by three-
dimensional ideal Bose gas theory for a wide range of experimentally-produced sys-
tems, where the weak inter-atomic interactions present are assumed to be negligible.
Each of the correlation measurements performed with clouds held in our cigar-shaped
magnetic trap described in Chapter 4 of this thesis fall under this category, where con-
siderations such as the trap geometry or the finite number of atoms in the system have
little bearing on the physical processes observed. In particular, the phase transition to
Bose-Einstein condensation for an ideal gas (§2.3.1) where long-range order is estab-
lished occurs simply due to quantum statistics, and does not require the influence of
interactions.

For thermal clouds at a temperature T somewhat above the critical temperature
for the transition to BEC, Hanbury Brown-Twiss bunching characteristic of a classical
Boltzmann gas can be observed, according to the theory covered in §4.1.1. In this case,
bunching occurs over an in-trap correlation length of l

(cl)
trap = λdB/

√
2π, for thermal de

Broglie wavelength λdB. As we recall from Eq. 4.5, this scales over the time of flight
tToF=416 ms to the detector in the far field of the trap to

l
(cl)
j =

h̄ωjtToF√
mkBT

, (5.1)

where ωj is the harmonic trapping frequency in the Cartesian direction j.

However, as was discussed in §2.4, the dimensionality of a quantum gas can po-
tentially be altered by the geometry of the trap it is confined in. In an anisotropic trap
where the transverse and longitudinal trapping frequencies (ω⊥ and ω‖ respectively) are
sufficiently different, dynamics can be frozen out in the direction j if the confinement in
that direction is strong enough to prevent multiple thermal modes in that direction from
being populated, which occurs when h̄ωj ≫ kBT (an overview of trapped gases in lower
dimensions is presented in Ref. [215]). In particular, an elongated cigar-shaped geom-
etry where ω⊥ ≫ ω‖ can lead to a one-dimensional cloud where excitations are only
possible in the longitudinal axis of the trap, while ω⊥≪ω‖ leads to a two-dimensional
‘pancake’ geometry where dynamics are suppressed in one dimension.

An important consequence of changing the dimensionality of a harmonically-
trapped Bose gas is an alteration to the density of states (Eq. 2.43), which in turn
changes the critical temperature Tc for condensate formation (Eq. 2.44). As we recall
from Eq. 2.31, in three dimensions this takes the familiar form in the thermodynamic
limit1 of

T3D
c =

h̄ω̄

kB

[

N

g3(1)

]
1
3

, (5.2)

for N atoms, where g3(1) ≈ 1.202 and ω̄ = (ωxωyωz)1/3 is the geometric mean of
the three trap frequencies ωj (j = x, y, z). While condensation is also possible for a
harmonically-trapped 2D gas, it can not occur for harmonically-trapped 1D gases in
the thermodynamic limit. However, removing the restriction of being in the thermody-
namic limit results in the possibility of macroscopic occupation of the ground state of a

1The thermodynamic limit describes systems where the number of particles goes to infinity, while the
peak density remains constant.
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1D system at the critical temperature

T1D
c ≈ Nh̄ωz

kB ln(2N)
. (5.3)

While it is well established that three-dimensional Bose-Einstein condensates possess
long-range coherence characterised by the quantum correlation functions g(n)(∆r) = 1
to all orders of n, it was seen in §2.4.1 that the coherence of one-dimensional Bose
gases depends on dimensionless parameters for interaction strength γ and temperature
τ [216–218]. A variety of regimes can be realised, from high temperature and weakly
interacting gases which behave in a way similar to ideal Bose gases, to strongly inter-
acting and low temperature Tonks-Girardeau gases which mimic the anti-bunching be-
haviour of fermions, to weakly-interacting but degenerate gases which display a range
of behaviours depending on the dominant source of fluctuations. The latter of these
regimes includes the phenomenon of quasicondensation, where density fluctuations are
suppressed and thus such clouds mimic the density profile of a BEC before expansion,
while phase fluctuations cause coherence to only be possible over small, localised re-
gions of the cloud. Therefore, while essentially no Hanbury Brown-Twiss bunching
should be observed in trap, regions which are not phase coherent eventually overlap
during ballistic expansion of the cloud and result in bunching being seen in momentum
space, which is what would inevitably be measured by our detector situated in the far
field of the trap.

Previous studies of quantum correlations influenced by system dimensionality

Several experiments have explored aspects of the effect of dimensionality on the coher-
ence of ultracold Bose gases. A measurement of bunching in quasicondensates for times
of flight intermediate between the near and far fields was achieved for 87Rb atoms re-
leased from a quasi-one-dimensional chip trap, using a light sheet to detect individual
atoms [202]. Phase fluctuations due to thermal excitations in BECs have also been char-
acterised over a range of temperatures and geometries, where fluctuations are found to
be more prevalent at large aspect ratios [219]. Other experiments have explored the role
of dimensionality by measuring in-trap collisional loss rates, in a manner similar to an
experiment which compared three-body loss rates for condensed and thermal sources
of bosons [198]. Although such experiments are not capable of determining long range
order, and can be significantly influenced by interactions due to the short spatial scales
being probed, measurements of density fluctuations do give an indication of quantum-
statistical properties over short ranges.

Bosons confined in a 1D geometry incorporating an optical lattice can also display
behaviour normally associated with fermions such as anti-bunching in the strongly-
interacting Tonks-Girardeau regime, as was discussed in §2.4.1. A characteristic of such
gases is the dependence of the axial radius of the trapped cloud on interaction strength,
which was observed in a system lacking strong confinement in one axis [220]. Tonks-
Girardeau gases in an optical lattice have also been observed to have a momentum
distribution characteristic of strongly-interacting Bose gases, which differs from that for
a fermionic system [221]. First-order correlation measurements of phase coherence can
reveal information about the excitation spectrum of strongly interacting 1D gases held
in a lattice, where Bragg spectroscopy has been used to probe the transition between
the superfluid and Mott insulator states [222]. This study also observed the increase
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in fluctuations for 1D systems lacking long-range coherence, while the transition to a
3D state resulted in a significant change to the correlation length of the system. Tonks-
Girardeau gases can also be identified by a reduction in many-body loss rates indicative
of anti-bunching [143, 199, 204].

Several experimental studies have demonstrated that the exactly-solvable theory of
1D Bose gases with repulsive contact potentials developed by Yang and Yang [223] is
capable of describing the behaviour of such gases over a wide range of conditions.
Agreement with the measured in-trap spatial density profiles of a weakly interacting,
nearly one-dimensional gas provided the first test of Yang-Yang theory [224]. Further-
more, measurements of atom number fluctuation in a 1D gas were able to demonstrate
that Yang-Yang theory correctly accounts for the crossover from weakly interacting qua-
sicondensation to strongly-interacting gases displaying fermionic behaviour [225]. Cal-
culations of theoretical second-order correlation functions with Yang-Yang theory have
found good agreement with the behaviour predicted in the limiting regimes of quasicon-
densation and ideal Bose gas theory [145], while the Luttinger liquid approach has also
been used in the weakly interacting limit [146], as described by the parameter ranges
outlined in §2.4.1.

Another interesting transition can be realised in a two-dimensional gas, where for
temperatures around the Berezinskii-Kosterlitz-Thouless (BKT) transition point, differ-
ent regimes such as the superfluid and non-superfluid quasicondensate states occur.
Each of these regimes have characteristic correlation properties, which were identified
in an experiment which split a 2D gas with an optical lattice and interfered the clouds
to measure fringe visibility and the proliferation of free vortices as a function of temper-
ature [136], while another experiment measured the correlation length of a 2D gas using
Raman scattering to create a phase interferometer [137]. It has also been shown that the
critical number for the onset of a bimodal density distribution is not well predicted by
ideal gas theory, while the BKT model provides a much better description of this phase
transition [226].

Transverse condensation of Bose gases

A Bose gas confined to an anisotropic trap which is able to undergo complete three-
dimensional Bose-Einstein condensation can also access an intermediate state between
incoherence and full long-range order. In this case, the gas can condense into the tightly
confining axes of the trap while remaining thermal in the weak axis, as was first pre-
dicted by van Druten and Ketterle [151] and is discussed in detail in §2.4.2. For a general
class of elongated cigar-shaped traps, condensation can proceed in two steps if the three-
dimensional critical temperature T3D

c (Eq. 5.2) is higher than than in one dimension T1D
c

(Eq. 5.3). Transverse condensation can then occur when T1D
c < T < T3D

c , where the
transverse ground state of the gas becomes saturated. If the gas is then cooled further
to T<T1D

c , a full 3D condensate is then produced.

For this to be apparent, the gas should remain in the 3D regime where kBT & h̄ω⊥.
This requirement, in addition to the bounds on temperature, place restrictions on the
number of atoms in the system N and the aspect ratio of the trap λ = ω⊥/ωz, where
ω⊥ ≡ ωx =ωy is the frequency in the transverse direction, assuming a radially symmet-
ric confinement. This can be expressed in terms of placing bounds on λ for a given N
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such that transverse condensation is possible, which we recall from Eq. 2.48 is

λmin ≡ N [g3(1)]
1/2 [ln(2N)]−3/2

< λ <
N

g3(1)
≡ λmax. (5.4)

As with the phase transition to a normal 3D condensate, the critical transition to trans-
verse condensation is quantum degeneracy driven, and does not occur as the result of
interactions [208].

When analysing the correlation behaviour of quantum systems at temperatures near
to quantum degeneracy, it no longer suffices to assume that ideal Bose gases are well
described by taking the high-temperature Boltzmann limit. Specifically, the theory de-
veloped in Refs. [34] and [186] first considers an ideal Bose gas, which is described by a
first order correlation function of

G(1)(r, r′) =
1

π3/2

∞

∑
j=1

exp
(

jµ̃

kBT

)

∏
α=x,y,z

1

σα

√

1 − exp (−2τα j)

× exp

[

− tanh
(

τα j

2

)(

rα + r′α
2σα

)2

− coth
(

τα j

2

)(

rα − r′α
2σα

)2
]

, (5.5)

where τα = h̄ωα/kBT, µ̃ = µ − h̄ ∑α ωα/2, and the harmonic oscillator length is σα =√
h̄/mωα. The density of the gas can then be determined from ρ(r)=G(1)(r, r). However,

the theory used to describe most of the correlation measurements in this thesis, which
was discussed in §4.1.1, simplifies Eq. 5.5 to the limit where µ → −∞ for a high-
temperature Boltzmann gas. This eliminates the need to sum over j, and results in

G(1)(r, r′) =
N

λ3
dB

∏
α=x,y,z

τα exp

[

τα

2

(

rα + r′α
2σα

)2

− π

(

rα − r′α
λdB

)2
]

. (5.6)

When the expression in Eq. 5.6 is normalised by density, the familiar correlation length
of l

(cl)
trap = λdB/

√
2π is recovered for a trapped Boltzmann gas, while the characteristic

length of the correlation function for an ideal Bose gas in Eq. 5.5 will not necessarily
be described by such a simple relationship. Thus, the longitudinal correlation length
for a transversely condensed gas would be expected to deviate from that for a classical
Boltzmann gas, as T<T3D

c in this case.
The ground state population of an ideal Bose gas can be extracted from the density

distribution of the cloud, by determining what fraction of the system is in the lowest
energy state with a density profile [186]

ρ0(r) =
exp (µ̃/kBT)

1 − exp (µ̃/kBT) ∏
α=x,y,z

exp
(

−r2
α/σ2

α

)

(√
πσα

)3 . (5.7)

The ground state fraction can be found for a classical gas from the appropriate Boltz-
mann factor, which implicitly accounts for the role of dimensionality in the system.

Competition between formation of quasicondensates and BECs

An important consideration for describing the behaviour of elongated, transversely-
condensed clouds is to quantify whether quasicondensation or true Bose-Einstein con-
densation is likely to occur as the cloud is cooled. As we saw in §2.4.1, such systems can
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be characterised by dimensionless parameters for interaction strength (Eq. 2.46)

γ =
mg

h̄2n1D
, (5.8)

where the interaction strength is g=2h̄ω⊥a, n1D is the linear density, and a is 3d s-wave
scattering length, which is 7.5 nm for He* [201]; and a density-independent temperature
parameter T , derived from τ in Eq. 2.47 such that

T =
τ

γ2 . (5.9)

In the limit of weak interactions where γ≪1, a 1D gas can either undergo condensation
to the ground state of the system which is driven by quantum degeneracy, or interaction-
driven quasicondensation [208].

For a weakly-interacting 1D system with a uniform density distribution, the transi-
tion to quasicondensation occurs in a continuous manner as T drops below Td

√
γ, where

the quantum degeneracy temperature Td is [208]

Td =
h̄2n2

1D
2mkB

. (5.10)

Similar behaviour occurs for a harmonically-confined 1D gas, which unlike the uni-
form gas can also undergo condensation for an ideal Bose gas at the temperature T1D

c

(Eq. 5.3). The factor which determines which of these behaviours dominates is the lon-
gitudinal trapping frequency ωz, where weak confinement will be shown to leads to
quasicondensation, while strong confinement gives statistically-induced condensation.

The crossover temperature Tco and number Nco for quasicondensation for weak lon-
gitudinal traps can be determined using the local density approximation (LDA). This
requires that the characteristic length of density fluctuations lc ≃ h̄/

√

m |µ0|, where
µ0 ≈ gn is the chemical potential at the centre of the cloud, is much smaller than the
length scale of density variations, which is given by L ≃

√

|µ0| /mω2
z for incoherent

clouds or L ≃
√

2ncog/mω2
z for quasicondensates with density nco. The LDA can be

shown to hold if

ωz ≪ ωco ≡
[

m(gkBT)2

h̄5

]1/3

. (5.11)

in which case quasicondensation occurs in the same fashion as for a uniform gas.
For large enough values of the density-independent temperature parameter (T >

103), the interaction-induced crossover to quasicondensation can be shown to dominate
over the formation of a BEC if Eq. 5.11 is satisfied, while a statistically-driven BEC
will form if ωz ≫ ωco [208]. Such behaviour is also expected to extend to the bound-
ary between 1D and 3D geometries where T ∼ h̄ω⊥, where quasicondensation is also
able to occur in 3D. Furthermore, the quasicondensate transition is predicted to retain
properties influenced by 1D physics even if kBT> h̄ω⊥.

An experimental study to test this regime measured density fluctuations in an ideal
gas through the transition from an ideal gas to quasicondensation, with a range of trap
geometries from 1D to nearly 3D [227] such that the freezing of dynamics due to dimen-
sionality is strong but not perfect. This experiment was performed in a parameter space
conducive to transverse condensation, and was thus able to probe the interplay between
lower-dimensional and 3D physics at the quasicondensate crossover. It was found that
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a continuous change in behaviour occurs across the dimensional crossover temperature
TDC ∼ h̄ω⊥/kB, and that while the transition to quasicondensation at the 1D to 3D
crossover is always dictated by 1D effects, it occurs via degeneracy-driven transverse
condensation in the 3D limit, and by interactions in the 1D limit, as expected. In all
cases, a modified Yang-Yang theory using ideal Bose gas theory for excited states in the
transverse axis was able to successfully describe the behaviour of the gas. Measurements
of in-trap loss rates have also been used to probe the behaviour of quasi-condensates
across the transition from 1D to 3D geometries, in regimes where either degeneracy or
interactions drive phase transitions [203].

5.1 Direct observation of transverse condensation in an elon-

gated Bose gas

In this experiment, the quantum state of Bose gases in trap geometries near the 1D to 3D
crossover, and at temperatures close to quantum degeneracy, will be investigated with
measurements of second-order correlation functions in the far field. This will allow the
coherence of the cloud to be tested along both the transverse and longitudinal axes,
which will be able to unambiguously identify the phenomenon of transverse conden-
sation. This study extends the investigation presented in §4.5, which only considered
coherence in the longitudinal axis, by comparing radial and axial correlation functions
at a variety of temperatures.

5.1.1 Experimental method

The experimental method for investigating transverse condensation in an elongated Bose
gas essentially followed the same procedure that was used to observe ideal longitudinal
thermal bunching up to sixth order in §4.5.1. While the aspect ratio of the magnetic
trap of around λ≈10 is far too low for this experiment to be feasible, highly anisotropic
one-dimensional (λ > 100) traps can easily be produced with red-detuned dipole laser
beams. Small clouds of about 104 atoms were first loaded from a magnetic trap with
a temperature of around 1 µK into a dimple trap at its maximum trap depth. Near-
resonant but low intensity (I ≈0.01 Isat) light was then applied to reduce the number of
atoms N in the cloud, which ensured that λ∼N≈102 to 103 was achieved independently
of trap strength.

The depth of the dipole trap was then reduced to evaporatively cool the trapped
cloud to different levels (refer to §3.1.3), which resulted in a range of trap depths, tem-
peratures, and cloud populations. The three different settings used in this investigation
are described in Table 5.1, and include the fully three-dimensional high-temperature
and number regime (a), clouds which are cooled such that a macroscopic portion of the
population is in the transverse ground state of the potential (b), and clouds which are
cooled even further so that the majority of the cloud is in the transverse ground state
(c). Justification for the names given to these regimes will be provided in the following
sections.

The trap aspect ratio for each experimental configuration in Table 5.1 was seen to
satisfy the bounds placed by Eq. 5.4, which ensured that transverse condensation is
possible for temperatures between the 1D and 3D critical temperatures. The values for
N quoted in Table 5.1 are corrected by a factor of the quantum efficiency of the delay-



106 Using quantum correlations to probe transverse condensation of an elongated Bose gas

Regime N (ωx, ωy, ωz)/2π λmin λ λmax

(a) 3D thermal, no TC 2800 (5400, 4500, 38) Hz 121 130 2330
(b) Partial TC 820 (2700, 2300, 21) Hz 45 119 682
(c) Full TC 370 (2350, 1700, 13) Hz 24 154 307

Table 5.1: The three different regimes entered in this experiment, each having under-
gone different degrees of transverse condensation (TC).

line detector, which according to a variety of other measurements performed with our
detector is is assumed to be ∼20%. The coherence of the cloud can then be measured in
the transverse (x or y axes) and longitudinal (z) directions by calculating second-order
momentum space correlation functions in the same manner as the other experiments
described in Chapter 4. To achieve this, a data set of at least 103 experimental iterations
was obtained for each of the three experimental settings.

5.1.2 Results

To first confirm the thermal and incoherent nature of the gas in the longitudinal di-
rection, and compare this to the ideal nth order bunching result in §4.5, second-order
correlations are measured in the z axis of the system. In this case, the bins used to
compute the correlation functions are 5 mm in both the x and y directions for data set
(a), and 10 mm for (b) and (c). These correlation functions (A) to (C) are illustrated in
Fig. 5.1, accompanied by the corresponding longitudinal density profiles (a) to (c). The
density distribution is well described in each regime by ideal Bose gas theory with Eq.
5.5, and the temperatures measured for each system thus correspond to these fits. We
can then compare these measured longitudinal temperatures with the 3D and 1D tran-
sition temperatures in Eqs. 5.2 and 5.3, the result of which is shown in Table 5.2. Here,
we can see that T>T1D

c in all cases, and while T<T3D
c for (b) and (c), no bimodality is

evident in the density profiles (B) and (C) in Fig. 5.1, which indicates that a macroscopic
occupation of the longitudinal or full 3D ground state is not present. Also, note that
while we are inevitably close to the 1D crossover, kBT& h̄ω⊥ in all cases.

Regime T T3D
c T1D

c T/T3D
c kBT/h̄ω⊥

(a) 3D thermal, no TC 1.7 µK 620 nK 592 nK 2.74 7.18
(b) Partial TC 155 nK 214 nK 111 nK 0.72 1.29
(c) Full TC 63 nK 124 nK 37 nK 0.52 0.66

Table 5.2: Temperature measurements in each regime, the corresponding 1D and 3D
transition temperatures, and a comparison of temperature with the 3D
transition point and transverse confinement.

The correlation functions (a) to (c) in Fig. 5.1 confirm that long-range order is not
present in any of the three regimes, and instead display a bunching signal character-
istic of an incoherent Bose gas. The ratio of the correlation length to bin size in the
x-y plane, and consequently the bunching amplitude, increases with decreasing tem-
perature. However, we recall that the correlation length for a classical Boltzmann gas
(Eq. 5.1) in the x-y plane of the bins, which determines the bunching contrast, depends
on both temperature T and predominantly the radial trapping frequency ω⊥ such that
l(cl) ∝ ω⊥T−1/2. For our dipole trap setup, a decrease in temperature is accompanied by
a reduction in trapping frequencies during the evaporation process, such that the trans-
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verse classical correlation length only increases by a factor of around two between (a)
and (c) and is thus unable to account for the marked difference in bunching amplitude
observed between these regimes. This provides further evidence that the coherence in
the transverse direction of the cloud is not behaving in a manner associated to a clas-
sical Boltzmann gas. In particular, we see that regime (c) provides perfect a bunching
amplitude of g(2)(0)=2 and a correlation length of 394 µm, with a quantum gas which
matches that used to obtain perfect bunching up to sixth order in §4.5. Otherwise, the
bunching amplitude is attenuated due to the effect of binning in the same fashion as
other experiments described in Chapter 4.
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Figure 5.1: (Top row) Longitudinal cross sections of the density distribution of the
cloud at the detector n(0, 0, z) (blue circles), and theoretical fits using the
ideal Bose gas model (red lines) for the three sets of data described in
Table 5.1. (Bottom row) The corresponding longitudinal second order-
correlation functions g(2)(∆z).

Correlation functions can then be computed in a similar manner for the radial di-
mension x (which should show essentially the behaviour as the y direction), using bins
which are 6 mm in y and 160 µm in z. The result of this is shown in Fig. 5.2, where
the data points correspond to the same regimes are before. In particular, it is seen that
the measured correlation l

(corr)
x diverges from that for a classical Boltzmann gas (Eq.

5.1) as the gas is cooled. In the high-temperature limit (a), the measured correlation
length coincides with the predicted classical length, signifying that the gas is indeed an
ideal Boltzmann gas as expected. However, when T drops below T3D

C for points (b) and
(c), the measured transverse correlation length becomes significantly larger than that
for a classical gas, which is accompanied by a macroscopic occupation of the transverse
ground state. For (b), the ground state occupation is 51% according to the ideal Bose gas
model, as opposed to 29% for a Boltzmann gas, while the discrepancy in the correlation
length increases for (c), where the ideal Bose gas model predicts a ground state popula-
tion of 82% compared to 61% for a classical gas. This trend is captured by a theoretical
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curve of l
(corr)
x /l

(cl)
x against T/T3D

c , which includes a weak dependence on atom number
when T<T3D

c and is thus produced by an average over experimental parameters for (b)
and (c), including their respective uncertainties. In all cases, the transverse correlation
function is well represented by ideal Bose gas theory.
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Figure 5.2: For the three points (A) to (C) which correspond to different tempera-
tures normalised against the 3D transition temperature T/T3D

c according

to Table 5.2, the radial correlation length l
(corr)
x measured from the trans-

verse correlation functions g(2)(∆x) is compared to the correlation length

for a classical Boltzmann gas l
(cl)
x . Here, we see that the scaled transverse

correlation length l
(corr)
x /l

(cl)
x increases with decreasing normalised tem-

perature. The error bars on these points account for the uncertainty in T

(10%), N (25%), ωi (10%), and l
(corr)
x (5%). The dashed red line is derived

from a fit to the RMS width of correlation functions simulated using the
full ideal Bose gas theory in Eq. 5.5, compared to the classical limit in
Eq. 5.6. The insets (a) to (c) show the measured transverse correlation
function corresponding to each point (A) to (C). The red and green lines
are theoretical curves for an ideal Bose gas and classical Boltzmann gas
respectively, where the two curves coincide for the high-temperature gas
(a).
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5.1.3 Discussion

The results in Fig. 5.2 show that the behaviour in the transverse axis of the trap is well
described by ideal Bose gas theory for a degenerate system, where radial coherence can
be identified given that the transverse correlation length exceeds the size of the cloud
once T < T3D

C , as was seen most strikingly in regime (c). This implies that the satura-
tion of the transverse population of the system occurs due to the quantum degeneracy
effects characteristic of ideal Bose gases, rather than being driven by interactions. As
the transversely-condensed gases in regimes (b) and (c) are inevitably close to the 1D
crossover at kBT∼ h̄ω⊥, a transverse ground state population would also be present due
to the dimensionality constraints on the system. However, while this is accounted for by
the classical estimate of the ground state population, the larger ground state occupation
predicted by the ideal Bose gas model shows that a sizeable portion of this population
is due to transverse condensation driven by quantum statistics.

In contrast, the longitudinal behaviour in Fig. 5.1 is obviously incoherent. More
specifically, the longitudinal coherence, especially for temperatures below T3D

c , is inter-
mediate between that for an ideal Bose gas and a weakly-interacting 1D quasiconden-
sate. This conclusion can be arrived at by considering the correlation length for the
coldest cloud (c), where the measured correlation length of 394 µm is between that for
an ideal Bose gas at 95 µm, and the predicted correlation length of a 1D quasicondensate
of 860 µm, as was discussed previously in §4.5.3. Given that τ≈0.26 and γ≈0.006, the
system is not described exclusively by either the quasicondensate (τ ≪ √

γ) or ideal
Bose gas (τ ≫ √

γ) regimes.

Although the quantum degeneracy temperature is Td = 243 nK, the temperature of
cloud (c) still exceeds to the threshold for the smooth transition to quasicondensation for
a uniform (untrapped) gas at Td

√
γ = 18.8 nK due to the small interaction strength. The

density-independent temperature parameter in Eq. 5.9 is T ≈ 7200 for (c), so the more
accurate treatment for a harmonically trapped system could also give insight into the
longitudinal behaviour of the cloud. Once again, we see that the crossover for the axial
trapping frequency in Eq. 5.11 is ωco=2π × 85.6 Hz, which is of order ωz =2π × 13 Hz
and is thus not unambiguously in either the quasicondensate or ideal Bose gas regimes.
As Hanbury Brown-Twiss bunching of g(2)(0)=2 is expected in the far field for both of
these cases [146], the behaviour in the longitudinal axis of the cloud resides in the broad
crossover between these regimes.

The distinction between the second-order correlation functions in the longitudinal
and transverse axes also gives a clear indication of transverse condensation. The perfect
longitudinal bunching signal measured in regime (c) up to sixth order in §4.5 can be
explained by a high level of radial coherence, which allows the reduction in bunching
amplitude due to binning to be circumvented. It must be noted here that the lack of
precise agreement between g(2)(∆x = 0) and g(2)(∆z = 0) for the three regimes in Figs.
5.1 and 5.2 respectively is due to these correlation plots being computed with different
bin sizes.

The temperature T3D
c considered to mark the onset of condensation in 3D is defined

in the thermodynamic limit where N → ∞ while density remains constant, and while
this approximation remains appropriate for systems with as few as 104 atoms, smaller
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systems require an adjustment of the critical temperature to [133]

T∗
3D ≈ T3D

C






1 − 0.7275 ∑i ωi

3N
1
3

(

∏i=x,y,z ωi

)
1
3






. (5.12)

Using this, we find that T∗
3D ≈ 0.63T3D

C for (c), while T∗
3D ≈ 0.74T3D

C for (b) and T∗
3D ≈

0.82T3D
C for (a). This lowering of the transition temperature accounts for the observation

in Fig. 5.2 that l
(corr)
x diverges away from l

(cl)
x at a temperature distinctly lower than T3D

c .

5.2 Summary

In this experiment, we have used Hanbury Brown-Twiss correlations to probe the
statistically-driven phenomenon of transverse condensation in an ultracold elongated
Bose gas. While the cloud was found to be almost completely coherent radially, the
longitudinal correlation behaviour remains incoherent for temperatures above the 1D
transition temperature, despite the temperature of the system being below the 3D tran-
sition temperature. It was also shown that the transverse behaviour of the cloud is well
described by ideal Bose gas theory, which diverges from the theory of classical Boltz-
mann gases at such low temperatures.

Following from the theme in Chapter 4, increasing the radial correlation length of a
quantum gas, which in this case exceeds the size of the cloud in two dimensions due to
a macroscopic occupation of the transverse ground state, has been seen to allow large
bunching amplitudes with minimal noise to be measured in the longitudinal direction.
Such systems will be useful for studies of atomic coherence tomography, in a similar vein
to that performed in optics [228]. Further studies could more thoroughly investigate the
different phases possible for ultracold gases, especially the variety of behaviours present
in lower dimensions, and could incorporate more rigorous tests of theory such as Yang-
Yang thermodynamics. Similarly, the approach of producing systems with remarkably
long correlation lengths in certain axes may also be applied to allow the measurement
of second-order correlations in 2D systems, which could be important for clarifying the
mechanism of the BKT crossover. The topic of correlation functions in systems with
novel dimensionality properties will extend to the next chapter of this thesis, where the
coherence of matter waves guided by an optical potential will be investigated.



Chapter 6

Macroscopic imaging of matter-wave

interference

In this chapter, several manifestations of matter-wave interference which are observable
at a macroscopic level will be explored. By imaging an atom laser onto a transmission
mask, a diffraction pattern can be formed in the far field on either of our spatially-
sensitive detectors. This provides the opportunity to not only determine first-order
coherence immediately from a single density profile, but to also derive information
about the density matrix of an atomic system by reconstructing its Wigner function.

Our vertically-aligned optical dipole trap also allows us to observe matter-wave in-
terference directly, by guiding atoms falling under gravity onto our detectors with sin-
gle atom resolution. The energy selectivity and collimation of atomic matter waves is
improved by controllably loading atoms with a small energy spread into the waveg-
uide via a form of evaporative cooling. The modal structure occupied by atoms in a
waveguide can be studied by either directly imaging the density profile, or by analysing
Hanbury Brown-Twiss bunching, where the correspondence between bunching and
macroscopically-visible speckle patterns is apparent. A unique feature of our experi-
mental setup is the ability to measure the transverse mode profile directly, as our de-
tectors are in the plane orthogonal to the wave guide. The ability to both control and
probe the modal structure of matter-wave guides is encouraging for a wide range of
applications, including the development of high-precision yet compact sensors, and the
generation of entanglement.

The experiments described in this chapter have been published in:

• R. G. Dall, S. S. Hodgman, A. G. Manning, and A. G. Truscott, “Observation of
the first excited transverse mode in guided matter waves,” Optics Letters 36, 1131
(2011).

• R. G. Dall, S. S. Hodgman, A. G. Manning, M. T. Johnsson, K. G. H. Baldwin,
and A. G. Truscott, “Observation of atomic speckle and Hanbury Brown-Twiss
correlations in guided matter waves,” Nature Communications 2, 291 (2011).
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6.1 Transverse interference profile of an atom laser incident on

transmission mask

While the coherence measurements undertaken in the previous chapters resulted in cor-
relations on a microscopic scale, matter-wave interference can also be observed directly
on a macroscopic scale. Striking fringe patterns were achieved in an early experiment
which demonstrated the interference of two Bose-Einstein condensates [187], and the
transverse coherence of a guided matter wave has been measured by diffracting atomic
beams on a transmission mask [190], where an atom laser produced a distinct inter-
ference pattern which was absent for a thermal beam. In an extension to the previous
result obtained in our lab which is described in Ref. [190], diffraction patterns of atom
lasers passing through a transmission mask have been measured, with the aim to ex-
tract the Wigner function of the quantum gas. The main difference between these two
experiments is that the present result outcouples atoms from a magnetic trap without
forming a waveguide, while the previous method guided atoms from an optical dipole
trap through the transmission mask. Although analysis on this new data is yet to be
completed, the images obtained also serve as an intuitive introduction to the concepts of
the experiment described in §6.2.4, which measure the second-order correlation function
of guided matter waves.

Experimental method

A BEC of ∼106 atoms is first prepared in the usual manner, however the balance of cur-
rents in the quadrupole and bias coils of our BiQUIC trap (see §3.1.2) are adiabatically
adjusted over 200 ms after having formed a condensate. This is to transform the trap
from the ‘cigar’ configuration1 to the ‘sagged’ configuration, with harmonic frequencies
of ωx = ωz ≈ ωy ≈ 80 Hz which results in a reduction in energy spread for the out-
coupled atoms. An atom laser is then formed by outcoupling atoms from the magnetic
trap with a one-second pulse of RF radiation to reduce Fourier broadening, and thus
obtain an approximately Gaussian atom laser density profile. In particular, atoms are
outcoupled from the outer shell of the Thomas Fermi profile of the condensate, which
minimises the momentum spread due to the reduction in mean-field interactions expe-
rienced (refer to §3.2.1). The transverse profile of such an atom laser is shown with the
transmission mask removed in Fig. 6.1.

The outcoupled atom laser falls 118 mm under gravity onto a Quantifoil R 2/2 holey
carbon film transmission mask, which is an array of 2 µm circular holes with 4 µm centre
spacing, supported by a grid of copper wires with a density of 200 wires per inch. The
size of the atom laser as it reaches the mask is around Rx = 0.5 mm and Ry = 1.1
mm, compared to the 2 mm radius of the Quantifoil. Images of the interference pattern
produced by diffraction of the atom laser are then recorded on both the phosphor screen
(Fig. 6.2) and delay-lined detector, located 669 mm and 852 mm from the trap centre
respectively.

In addition, the process was repeated with thermal atomic beams derived from fully
thermal clouds where T ≈ 2 µK, and for the coldest thermal atoms at T ≈ 600 nK from
a cloud containing a condensed fraction (refer to Fig. 3.6), which are shown in Fig. 6.3.
The diffraction patterns produced for thermal atoms have considerably worse fringe

1The ‘cigar’ configuration has ωx =ωz ≈500 Hz and ωy ≈50 Hz.
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Figure 6.1: The average of the atom laser profiles for five experimental iterations on
the MCP and phosphor detector with the Quantifoil removed. A Gaussian
fit to the profile gives radii of Rx =1.2 mm and Ry =2.6 mm.

Figure 6.2: Diffraction image for an atom laser passing through Quantifoil from the
average of 14 shots on the MCP and phosphor detector (left). The diffrac-
tion pattern in the left image extends to the edge of the 4 cm diameter
detector, which matches the size of the image. The inset shows the ad-
ditional high-frequency fringe pattern with 127 µm spacing present on
each diffraction order, due to the copper wire grid. On the right, data for
the same parameters is shown on the delay-line detector, with a colour
map which saturates the central interference modes but shows that these
modes extend to the edge of the 8 cm diameter detector.
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Figure 6.3: Diffraction images for around 20 shots of thermal atomic beams taken
with the delay-line detector, cropped to the central 4 cm square portion,
at 600 nK (left) and 2 µK (right). For the colder atoms, a central mode
and ring of first order diffraction modes can be resolved, while the hotter
atoms show no interference at all.

visibility than those for the atom laser.

Extraction of Wigner function

At the time of writing, data analysis is being performed by the group of Robert Scholten
at the University of Melbourne to extract the Wigner function of the atom laser from
the diffraction image shown in Fig. 6.2. The Wigner function W(r, p) is a quasi-
probability distribution which serves as a middle ground between a Schrödinger wave-
function, which cannot allow both position r and momentum p to be well defined
simultaneously, and a classical phase-space density distribution lacking uncertainty
[229, 230]. It was first developed by Wigner to account for quantum corrections to
classical statistical mechanics where connections between the two regimes are apparent
[231], such that for example the quantum-mechanical averages 〈r〉 =

˜

rW(r, p)dr dp

and 〈p〉=
˜

pW(r, p)dr dp can be obtained.
The Wigner function is also related to the density matrix ρ̂ and first-order correlation

function G(1)(r1, r2) through a Fourier transform [34, 232]

W(r, p) =
1

(2πh̄)3

ˆ

〈

r + r′ |ρ̂| r − r′
〉

e2ip·r′/h̄ dr′, (6.1)

G(1)(r1, r2) =

ˆ

e−ip·(r1−r2)/h̄W

(

p,
r1 + r2

2

)

dp. (6.2)

While quantum wavefunctions cannot be directly measured, the density matrix of an
ensemble is the most complete knowledge that can be obtained from a classical mixture
of states. In turn, the Wigner function, which reveals information about the density
matrix, also cannot be observed directly. However, it can be reconstructed from an
ensemble of measurements by tomographic analysis of quadrature operators, which are
linear combinations of position and momentum operators [233, 234].

Previous experiments have been able to extract the Wigner function for atomic sys-
tems. This was achieved for a thermal beam of metastable helium incident on a double-
slit [232], from which non-classical behaviour related to the interference of atoms in a
superposition of states was observed. Another experiment probed spin-squeezed states
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of a two-component BEC [235], where multi-particle entanglement was implied from
the Wigner function which was reconstructed by spin-noise tomography [236].

Our experiment has the distinct advantage of measuring the density distribution of
ultracold gases with single atom resolution, which may aid in improving the accuracy
of the Wigner function obtained. A connection with the results of previous chapters is
also present, where full quantum state tomography can in principle be achieved with
the measurement of higher-order correlation functions [104]. Furthermore, the Wigner
function reveals information important for quantum atom optics experiments measuring
effects such as correlations, squeezing and entanglement [237, 238], which may help
drive further discoveries in this active and fast developing field.

However, without further analysis being performed, the contrast in first-order cor-
relation function between the coherent atom laser and incoherent thermal beam is im-
mediately obvious from the diffraction pattern visibility. The coherence of the atom
laser extends essentially across its entire profile, and provides a high-contrast interfer-
ence pattern. Conversely, for thermal clouds the correlation length is of order the de
Broglie wavelength which is ∼1.1 µm for atoms at 600 nK and 0.62 µm at 2 µK, resulting
in the ‘washing out’ of the interference pattern from the 2 µm Quantifoil holes. This
distinction will be examined further in §6.2.4, where guided atom lasers are shown to
be second-order coherent, while Hanbury Brown-Twiss bunching of thermal atoms can
be observed directly from measured density distributions in a matter wave analogue to
optical speckle.

6.2 Modal structure of matter-wave guides

6.2.1 Wave guiding

Waveguides are commonly used to carry a variety of waves such as sound and elec-
tromagnetic radiation, and can be found in a range of everyday applications such as
loudspeakers and optical fibres. An important characteristic of wave guides is that they
typically support discrete modes of wave propagation, which is familiar in the context
of musical instruments. Waveguides are now ubiquitous with the use of optical fibres in
telecommunications, an important property of which being whether the fibre provides
either single-mode or multi-mode support. Analysis of individual higher-order modes
of propagation can be used to investigate the profile of waveguides [239], or to achieve
novel effects such as the slowing of light [240], improvements in strain sensing [241] and
gravitational wave detection [242]. Furthermore, entanglement can be generated be-
tween different spatial modes of a single laser beam [243], which significantly reduces
the complexity of developing multimode quantum communication systems.

Guiding of matter waves

Guiding can also be achieved with matter waves, by forming a confining potential on a
length scale similar to the de Broglie wavelength of the massive particles. Such poten-
tials for ultracold atoms can be produced in a variety of ways, such as with red-detuned
optical dipole laser beams, blue-detuned evanescent waves, magnetic fields, and hol-
low optical fibres. In particular, this allows for the miniaturisation and integration of
cold atom experiments on microchips, where macroscopic transport of clouds can be
achieved [190, 244–254]. The modes supported by a waveguide will depend on the form
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of the confining potential, where circularly-symmetric potentials will support Laguerre-
Gaussian transverse modes for sources with a Gaussian intensity profile, while elon-
gated guides which range from elliptical to rectangular have Hermite-Gaussian modes
[255]. These are both referred to as transverse electromagnetic modes (TEM) in an
optical context, while in the limit of a weakly-guiding potential which lacks a sharply-
changing potential these are sometimes referred to as linearly-polarised (LP) modes.
When a source is loaded into a waveguide, it can occupy either a single mode or a super-
position of modes, depending on the energy spread of the source and mode-matching
of the transfer.

Early experiments with cold thermal atoms were not able to achieve good mode se-
lectivity [245, 246, 250, 256, 257] due to the relatively large kinetic energy of the cloud
which results in a poor coupling of the gas to the guide. However, Bose-Einstein con-
densates can be guided with a large occupancy of the lowest energy mode [251, 258],
which has been achieved to 85% efficiency for alkali atoms [252, 253], and 65% for a
previous experiment in our lab with He* [190]. Waveguides also allow low-divergence
atom lasers with clean spatial profiles [190] and divergence consistent with the Heisen-
berg limit [259] to be produced, in comparison to freely propagating atom lasers with
expanding density profiles containing interference fringes due to effects such as mean-
field lensing and four-wave mixing [180, 260, 261]. Effects which degrade the profile of
atom lasers are especially pronounced for helium, given its low mass. Thus, similarly
to the commonly used method in optics, coupling to a waveguide can act as a filter to
isolate a single clean mode of propagation.

While the guiding of matter waves is still a relatively new field, applications are al-
ready being realised which take advantage of the ability to transport atoms over macro-
scopic distances, often in setups which attempt to counteract acceleration due to gravity
[262]. Such techniques are especially appealing for interferometers, which surpass the
sensitivity of their optical counterparts, in addition to enabling measurements of local
gravity fields [259, 263]. Matter-wave guiding may lead to improvements in the pre-
cision, interrogation time and possibly sensitivity of atom interferometers [179], while
miniaturised chip-based interferometers with magnetic field waveguides have already
demonstrated the ability to split, reflect and recombine condensates [264]. Important
components of interferometers such as Bragg reflection [265], beam splitting or switch-
ing [266], and guiding in a one-dimensional hollow-core photonic bandgap fibres [267]
have also been realised in optical waveguides, which may lead to quasi-continuous
sources of matter waves. Other studies have theoretically investigated important con-
siderations ranging from control of the mode quality and flux of guided matter waves
[268], to the determination of the longitudinal coherence length or even generation of
entanglement [269] with guided atom lasers.

Of particular relevance to the experiments described in this chapter was the study
of the transverse coherence of an atom laser guided by a red-detuned optical dipole
potential performed previously in our lab [190], which is discussed in detail in the PhD
thesis of Sean Hodgman [270]. This result showed the transverse interference pattern of
matter waves guided vertically under gravity through a Quantifoil transmission mask
to demonstrate the contrast in first-order coherence between condensed and thermal
atoms, much like the result shown in §6.1. In addition, the modal occupancy of the guide
was determined from the transverse density profile of a guided atom laser with single
atom sensitivity, in contrast to many other experiments which image the longitudinal
density profile by absorption imaging [179], often with guides aligned perpendicular to
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gravity [258].
Optical wave guides formed by red-detuned dipole potentials are especially appeal-

ing due to the superior confinement strength, flexibility and mode profiles possible
compared to magnetic potentials [262, 271]. In addition, outcoupling from the trap to
the waveguide does not result in a change of state or interactions with large mean-field
potentials [179]. The experiments described in this section which investigate the excita-
tion of higher order modes in a guide, as well as probing the modal structure of guided
matter waves by measuring Hanbury Brown-Twiss bunching, extend naturally from the
work presented in [190]. Confirming that coherence is maintained during matter-wave
transmission is critical to demonstrate the applicability of guiding for interferometers,
while higher-order modes may prove to be beneficial for such sensors, or possibly may
enable entanglement to be generated in matter waves.

6.2.2 Experimental method for guiding matter waves in an optical dipole
potential

Each of the experiments described in the remainder of this chapter are based on the
following procedure. After cooling a cloud of atoms in the BiQUIC magnetic trap to just
above Tc ≈ 1 µK, atoms are loaded into a single optical dipole trap produced by a 1550
nm laser beam focused to a ∼20 µm spot, which is aligned vertically in the direction
of gravity (see §3.1.3). The transfer occurs with 60 mW of laser power, which produces
a trap with harmonic confinement frequencies

(

ωx, ωy, ωz

)

≈ 2π×(5900, 8000, 55) Hz
and ∼7 µK depth, and atoms condense into the dimple formed by the superposition of
the optical and magnetic traps2. The asymmetry of the trap ωx 6=ωy is the result of the
distortion of the beam by the acousto-optical modulator (AOM) which controls the beam
power entering the BEC chamber. The BiQUIC trap is then switched off, and around 104

atoms which remain in the mJ = 1 state required for magnetic trapping are held in the
dipole trap, and the combination of the magnetic field produced by the nullerometer
and other stray fields continue to suppress losses from Penning ionisation.

After reducing the optical power of the dipole trap by adjusting the AOM diffraction
efficiency, the most energetic portion of the cloud will leak out of the trap under gravity
in the z direction, as shown in Fig. 3.7. However, if the dipole beam is not switched
off and remains at an intensity only slightly less than that required to trap the atoms,
the outcoupled gas will still be confined in the x-y plane by the potential and is thus
guided to the detector below. The energy spread and mode occupancy of atoms released
from the trap into the waveguide can be manipulated by adjusting how the trap depth
is ramped between the capture power of 60 mW and the guiding power of ≈5 mW,
as described in Fig. 6.4. At 5 mW of laser power, a guiding potential with transverse
confinement

(

ωx, ωy

)

= 2π×(1700, 2300) Hz is produced, while the axial confinement
of ωz =2π×16 Hz is only just sufficient to hold the condensate while allowing thermal
atoms to escape the trap (for further details, see §3.2.2).

If condensed atoms are loaded into the waveguide adiabatically, only the lowest
mode of the potential should be populated, while higher-order modes can be excited
due to a small amount of heating occurring in the trap or non-adiabatic transfer, in ad-
dition to transfer of the thermal component of the gas. As the atoms fall under gravity
away from the trap centre, after about 20 ms the radial confinement also becomes too

2We find that the portion of the cloud loaded into a dimple trap is not strongly dependent on the initial
temperature in the magnetically trapped cloud, which may be above or below Tc.
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Figure 6.4: Intensity ramps of the dipole beam to load either a single-mode conden-
sate (blue) or multi-mode thermal cloud (red) into the waveguide. At time
t = 0, the magnetic trap is switched off, and the atoms are held for 100
ms to ensure that thermal equilibrium is reached. Evaporative cooling
occurs between 100 ms and 300 ms, where condensates are adiabatically
cooled into the ground state of the potential in the blue ramp, while a
non-adiabatic quench cooling step occurs for the thermal ramp at 300 ms.
After holding the cloud for another 100 ms to re-establish equilibrium,
atoms are loaded into the guide at t= 400 ms. A laser power of 5 mW is
required to retain the coldest (condensed) atoms in the trap, and conse-
quently the blue trace evaporatively cools to just about 5 mW to increase
the portion of the atom laser guided in the lowest energy mode, before
dropping to just below 5 mW at 400 ms to produce a guided atom laser.
On the other hand, the middle step of the red ramp between 300 ms and
400 ms determines the energy spread of thermal atoms loaded into the
guide, while the guiding process for times after 400 ms occurs at a trap
power just above 5 mW which continues to trap the condensate. Guided
thermal clouds will consequently not be at equilibrium, as they do not
include the low energy tail of the thermal distribution which is retained
along with the condensate.
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Figure 6.5: Atoms are released from the optical dipole trap at the focus of a red-
detuned laser beam and fall under gravity towards either the delay-line
detector (shown) or a phosphor screen (not shown) below. Atoms remain
guided by the optical potential for the first ∼20 ms of their time of flight
to the detector, which nevertheless results in a collimated beam even after
the long fall time to the detector (416 ms for the DLD, and 360 ms for the
phosphor screen).

weak to guide the atoms as the focused laser beam diverges, and the atoms expand bal-
listically. The atoms can then be imaged on either the phosphor screen or the delay-line
detector (DLD) to record the spatial density distribution of the cloud, while correlation
measurements require the use of the DLD to gain temporal information, which is illus-
trated in Fig. 6.5. A unique feature of our experimental setup is the ability to measure
the transverse density distribution with single atom counting, which enables the modal
structure to be investigated in the experiments described in the following sections, both
of which are based on the same optical waveguide setup.

6.2.3 Observation of the first excited mode of an atomic wave guide

Many matter-wave guiding experiments have concentrated on obtaining the largest pop-
ulation of the lowest energy mode by reducing the energy spread of atoms loaded into
the guide, as well as optimising the adiabaticity of the transfer. However, this approach
does not immediately carry over to allowing particular higher-order modes to be con-
trollably excited, due to difficulties in mode matching. Techniques analogous to those
typically used in optics such as varying the angle at which light is coupled to a fibre
[239] are similarly unsuitable. Atomic gases generally have a broad momentum dis-
tribution which makes it difficult to selectively excite waveguide modes with a cloud
at equilibrium, however this has been achieved here by loading a thermal portion of a
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Figure 6.6: False colour density distribution of guided atoms dominated by the dual-
lobed first excited mode of the guiding potential.

cloud which is not in equilibrium, but has an energy distribution which approximately
matches the energy of the first excited transverse mode of the guide.

The method to load a thermal distribution into an optical waveguide described in the
caption of Fig. 6.4 allowed the first excited mode of our slightly asymmetric waveguide
(with an aspect ratio of ωx/ωy = 0.74) to be predominantly loaded, which corresponds
to the TEM01 mode of an optical fibre. The nth-order of transverse TEM0n mode Ψn(x)

for guides with slightly weaker confinement in the x direction is given by [272]

Ψn(x) =

√

1
2nn!

(mωx

πh̄

)

e−
mωx x2

2h̄ Hn

(
√

mωx

h̄
x

)

, (6.3)

where Hn is the nth-order Hermite polynomial, and m is the atomic mass. The energy
spread of atoms loaded into the guide is set by the change in confinement potential
occurring during outcoupling step at 400 ms shown in Fig. 6.4, while sufficient trap
depth must be maintained after this to retain the lowest-order mode in the trap, as
otherwise this mode would dominate the distribution. This is conceptually similar to a
method of producing higher-order laser modes by attenuating the fundamental mode
of a cavity [273].

It was found that guiding the coldest possible thermal cloud at a thermal temper-
ature of around 100 nK allowed the largest occupation of the first excited mode in the
waveguide. The result of this is obvious from the density distribution recorded on the
DLD shown in Fig. 6.6, which clearly shows a dual-lobed profile reminiscent of the
TEM01 laser mode. As this image is the average of 2,000 experimental iterations, this
demonstrates the precision and repeatability of the procedure.

The integrated linear density profile can then be decomposed into a linear combi-
nation of the modes described by Eq. 6.3, by allowing the width of the lowest-order
(n = 0) mode and the occupancies of the lowest six modes to be free parameters in a
least-squares fit. The result of this is shown in Fig. 6.7, and the distribution of mode
populations (Fig. 6.8) confirms that the first excited n = 1 mode dominates the profile
with 47±2 % occupation, while the n = 0 and n = 2 modes each contribute about a
quarter of the mode occupation and modes 3≤n≤5 have negligible populations.

The transverse radius r of the guided cloud at the detector can be related to the
average mode occupancy 〈n〉 by the virial theorem for non-interacting atoms, where
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Figure 6.7: Decomposition of the measured linear density profile (black) into the low-
est six supported modes (Ψ0 to Ψ5).

Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5
0

10

20

30

40

50

60

TEM wavefunction Ψn

R
el

at
iv

e
M

od
e

O
cc

up
an

cy
%

Figure 6.8: Occupancies of the modes Ψ0 through to Ψ5 corresponding to the decom-
position seen in Fig. 6.7. Error bars correspond to the allowable range of
the free parameters in the least-squares fit.
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for fall time t between the trap and detector, where ωr ≈2π×50 Hz is the radial harmonic
potential experienced by the atoms as they exit the guide. Given the mode occupancies
measured in Fig. 6.8, an average mode occupancy of 〈n〉=1.13 is calculated, which is in
agreement with the ∼2 mm spot seen on the detector in Fig. 6.6.

In principle, the relative occupation of the Ψ1 mode could be improved further by
evaporating the cloud to a colder thermal temperature in the optical trap before loading
the guide. However, this would result in a smaller number of atoms being loaded into
the guide for each experimental iteration, and would therefore require a data set larger
than the 2,000 experimental realisations obtained here to perform an accurate modal
decomposition of the density distribution. Furthermore, the non-adiabatic transfer from
the trap to the guide will inevitably result in a range of modes being excited in the
waveguide. Nevertheless, this result represents the first instance of a single higher-order
mode dominating the distribution of a guided matter wave.

6.2.4 Measurement of Hanbury Brown-Twiss bunching in guided matter
waves

A key characteristic which determines the suitability of matter-wave guiding to appli-
cations such as interferometry is whether such sources can be guided coherently. The
previous experiment undertaken by the ANU group which demonstrated a 65% occu-
pancy of the lowest mode of a guided atom laser also produced a diffraction pattern
with 91% fringe visibility by imaging the guided atom laser onto a Quantifoil transmis-
sion mask [190, 270]. Conversely, a guided thermal beam did not produce a diffraction
pattern, demonstrating the contrast in coherence between the two sources. Here, this
result is extended to measure the second-order correlation function of guided matter
waves, which unlike first-order correlation measurements serves as an unambiguous
test of true quantum coherence (see §2.1.1 for more details).

As was discussed in §4.1.2, the amplitude of Hanbury Brown-Twiss bunching mea-
sured for a given data analysis bin size is related to how strongly particles interfere
within this set spatial volume, and therefore provides a test of the coherence of a source.
This was used to compare the bunching amplitude to the average modal occupancy
of atoms loaded into a waveguide. Furthermore, it was possible to directly observe
bunching due to the macroscopic speckle pattern captured in the density distribution of
guided thermal atoms.

Observation of macroscopically-visible Hanbury Brown-Twiss bunching

Optical speckle is a familiar effect which can be produced by scattering a laser beam off
a diffuse material to produce a fixed interference pattern [274]. Conversely, temporally-
varying speckle patterns can be produced from fluctuations in incoherent light sources
[275] as a result of the Hanbury Brown-Twiss effect. As was seen in §4.1.1, smaller
sources of incoherent bosons result in larger coherence lengths over which bunching
can be observed, while sources with a large spread in kinetic energy result in the mi-
croscopic correlations lengths usually measured for second-order correlation functions.
A variety of experiments discussed in Chapter 4 yielded correlation lengths of less than
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Figure 6.9: Individual experimental iterations of guided multi-mode thermal beams
(a) to (c) show a distinct speckle pattern, while the average of twenty shots
does not contain any visible interference (d). A single-mode guided atom
laser (e) results in a considerably smaller Gaussian profile which lacks
any resolvable interference. Each image is of a 3 mm by 3 mm section of
the phosphor screen.

one millimetre, which did not permit the direct observation of bunching in a measured
density distribution, while single-mode condensates do not exhibit Hanbury Brown-
Twiss bunching. On the other hand, an experiment which did result in a macroscopi-
cally large transverse correlation length (§4.5) was achieved with clouds without suffi-
cient density for this effect to be visible at the detector. However, the carefully controlled
energy spread of atoms loaded into the waveguide results in a relatively small number
of modes being occupied, which allowed the first macroscopic observation of Hanbury
Brown-Twiss bunching to be made in an atomic system.

The optimal experimental procedure for visualising atomic speckle was achieved
with a slight variation to the method described in §6.2.2. In this case, a dipole trap with
a 1/e diameter of 30 µm was used to guide around 105 thermal atoms in a waveguide
with confinement

(

ωx, ωy

)

=2π×(1075, 1500) Hz to the phosphor detector now situated
∼180 mm below the trap. As is always the case for guided thermal atoms from our
dipole trap, a sufficient trap depth was maintained to ensure that the condensed fraction
of the cloud was not outcoupled. The speckle pattern can only be observed on time
scales which are set by the correlation time tc in the direction of gravity, and taking a
photograph of the phosphor screen with an exposure time of order tc ∼ 100 ms allows
the speckle pattern to be captured.

The resulting random speckle pattern for several experimental iterations is shown in
Fig. 6.9 (a) to (c), while an average of twenty shots given in Fig. 6.9 (d) washes out the
pattern. For reference, an atom laser predominantly guided in the lowest mode of the
detector is also shown in Fig. 6.9 (e). The average mode occupancy is obtained from Eq.
6.4 in a similar manner to the experiment investigating the first excited mode of a waveg-
uide, and was found to be 〈n〉 ≈ 15. While guided matter waves populating too many
modes of the guide result in the speckle pattern washing out, enough different modes
must be present to carry the fluctuations which cause interfere to be macroscopically
visible.
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Figure 6.10: Longitudinal second-order correlation function for guided thermal mat-
ter waves with the lowest achievable average mode occupancy, resulting
in a maximum bunching amplitude of g(2)(∆t = 0) = 1.21. The error in
the data points is predominantly shot noise.

Correspondence between second-order correlations and average modal occupancy of

guided matter waves

To better quantify the Hanbury Brown-Twiss bunching present in guided matter waves,
second-order correlations were measured by imaging the atomic beams on the delay-
line detector using the experimental method described in §6.2.2. The modes occupied
by atoms is the waveguide can again be precisely controlled in the manner described in
Fig. 6.4, where the energy spread of thermal atoms loaded into the guide depends on
the depth of the evaporation step. Smaller evaporation steps lead to a larger spread in
the energy of atoms in the guide, and consequently this higher average transverse mode
occupancy results in a shorter correlation length and less pronounced bunching signal.
This was measured for a variety of different evaporation depths for thermal atoms, and
compared to a guided atom laser created by evaporating the trapped cloud to a pure
condensate, and then adiabatically transferring the condensate to the waveguide using
the procedure described in Fig. 6.4.

An example of the second-order correlation function measured in longitudinal time-
of-flight axis over ∼2,000 experimental iterations is shown in Fig. 6.10. This particular
data set has the lowest average mode occupancy possible for a thermal beam in our
experimental setup, with a transverse temperature of around 150 nK which resulted in
only the lowest three modes of the form of Eq. having significant occupations. For hotter
clouds which load atoms into a larger number of modes, the average mode occupancy
is derived from the size of the cloud at the detector from Eq. 6.4, where the discrepancy
between this method and a full modal decomposition was estimated to be around 10%.
The transverse correlation length was obtained by assuming that the cloud expands
ballistically after exiting the guide around 20 ms after being released from the trap,
which gave a correlation length of between 200 and 370 µm in the x-y plane of the
detector.

The resulting change in peak bunching amplitude g(2)(∆t = 0) as a function of av-
erage mode occupancy 〈n〉 is shown in Fig. 6.11. Each point represents an individual
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Figure 6.11: Comparison of peak bunching amplitude g(2)(∆t = 0) with average
mode occupancy 〈n〉 for guided ultracold gases. The dashed line rep-
resents a theoretical model of the bunching expected for this system.
Thermal beams (red) which retain the condensed portion of the cloud in
the trap show stronger bunching at lower 〈n〉, while a guided atom laser
(blue) corresponds to a distribution which is dominated by the lowest-
order mode of the guide and shows no bunching, confirming that it is
second-order coherent. The error bars are the result of uncertainty in the
amplitude fitted to the forms of g(2)(∆t) and the fits which determine
the average mode occupancy.

correlation function computed for ∼2,000 experimental runs, where a decrease in mode
occupancy leads to a stronger bunching signal being measured due to the increase in cor-
relation length. The range of 〈n〉 in this plot corresponds to the range of energy spreads
possible, where the largest occupancy is the result of releasing the entire thermal por-
tion captured in the dipole trap into the guide without any evaporation. Although a
perfectly single-mode atom laser should result in 〈n〉=0, our atom laser has 〈n〉.1 due
to a combination of residual thermal atoms and a slightly non-adiabatic transfer into
the waveguide. However, the distinction between the guided atom laser and the coldest
possible thermal cloud is clear from the contrast in bunching amplitudes, even though
there is a relatively small change in spot size or equivalently average mode occupancy
between these first two points in Fig. 6.11. The theoretical curve3 is based on the theory
presented in §4.1.2.

6.3 Summary

Several different instances of macroscopically-observable matter-wave interference have
been investigated, which show great promise for future applications. If the Wigner
function can be extracted from an atom laser produced in our experiment, the informa-
tion derived from this may assist with subsequent measurements of a variety of exotic
quantum effects. The combination of accurate quantum state tomography and the high-
resolution single atom measurement capabilities of metastable helium would be highly

3This model was produced by Mattias Johnsson.
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conducive to future quantum atom optics experiments, including those concerned with
the generation of entanglement and testing of Bell’s theorem.

Characterising the coherence and modal support of guided matter waves is also valu-
able for the development of devices such as atom interferometers. Atom interferometry
is currently a particularly active area of research, and improvements which could be
achieved with the use of waveguides in either the precision of results obtained or the
compactness of the experimental apparatus would be welcome. Other imaging tech-
niques such as atom holography and ghost imaging may also benefit from the use of
wave guides. The selective excitation of higher-order guided matter-wave modes, which
was achieved to 47±2 % in the first excited mode, may lead to further advances in in-
terferometry or the generation of entanglement, analogously to similar results achieved
with light. Furthermore, the modal occupation of a waveguide has been probed with
Hanbury Brown-Twiss bunching, which provides a robust diagnostic of the coherence
of matter waves that cannot necessarily be obtained directly from a density image. Han-
bury Brown-Twiss bunching has also been observed directly from atomic speckle in a
density profile for guided matter waves with certain mode occupancies which facilitate
interference visible on a macroscopic scale.



Chapter 7

Towards Wheeler’s delayed choice

gedankenexperiment

Wheeler’s famous delayed choice gedankenexperiment (see §2.1.2 for background infor-
mation about this) represents an important treatment of the role of complementarity
in quantum mechanics. Although Wheeler devised this test in 1978 [108], it was not
until 2007 that a true experimental realisation of this was achieved for photons [21].
The main obstacle which restricted many previous experiments to only demonstrating
certain aspects of Wheeler’s experiment was the requirement to eliminate a variety of
‘loophole’-like conditions to ensure that no local realistic theory could explain the re-
sults of the experiment, in a similar manner to tests of Bell’s inequality. Two of the more
important conditions that are needed are a single-particle source, and a ‘delayed choice’
of experimental configuration which is both truly random, and relativistically separated
from the entry of the particle to the interferometer.

Experiments attempting to realise this gedankenexperiment with atoms face challenges
common with other investigations in atom optics. While reflection, splitting and single-
particle production and detection are possible for atomic sources, they are significantly
more difficult than what is regularly achieved for light. However, an advantage of
using ultracold atoms is that their velocity is insignificant compared to the speed of
light, which eliminates any relativistic ambiguity. In this chapter, the steps required
to accomplish Wheeler’s experiment for atoms are described, and some preliminary
results investigating the gedankenexperiment are presented which indicate that a complete
realisation is within reach.

An experiment described in this chapter is being prepared for the following publication:

• A. G. Manning, R. Khakimov, R. G. Dall, and A. G. Truscott, “A Source of Single
Metastable Atoms in the Nanokelvin Regime,” Physical Review Letters 113, 130403
(2014).

• A. G. Manning, R. Khakimov, R. G. Dall, and A. G. Truscott, “Wheeler’s Delayed
Choice Gedankenexperiment with a Single Atom,” under review (2014).
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7.1 Overview of proposed method to realise Wheeler’s experi-

ment with ultracold atoms

Before proceeding to a technical description of the experimental method, a brief con-
ceptual overview will be given here. The approach taken is based on the version of
Wheeler’s experiment shown in Fig. 7.1, which compares a particularly simple setup
for an experiment with photons (a) to an equivalent atomic experiment (b). In a similar
manner to the scheme shown in Fig. 2.2, a delayed choice is made as to whether to ‘close’
or leave ‘open’ an interferometer to determine whether interference is seen or not. In
either experimental setup, if information about the path taken by a photon (or atom) is
removed by the presence of a double slit (Fig. 2.2) or beamsplitter (Fig. 7.1) to ‘close’ the
interferometer, interference should be observed which is indicative of wave behaviour.
Conversely, the removal of the ‘mixing’ device which leaves the interferometer ‘open’
re-establishes information about which way the quanta went, and results in particle be-
haviour being seen. In the experiment with the double slit, this distinction exists in the
presence of either a fringe pattern or a pair of spatially localised spots, which is built up
over many experimental iterations with single photons. The experimental approach to
be undertaken relies on a phase φ being imposed upon one arm of the interferometer,
where the probability of measuring the quanta in either port (be it for the photodiodes
PD1 and PD2, or momentum modes |0〉 and |h̄krec〉) will be sin2 (φ) and cos2 (φ) respec-
tively for the ‘closed’ configuration of the interferometer. The dependence on φ is not
present for the ‘open’ configuration, where ideally the quanta should be measured in
either port 50% of the time.

To realise the atomic experiment shown in Fig. 7.1 (b), several considerations need
to be addressed. The experiment must be performed with only one atom present in the
interferometer at a time, to ensure that Bohr’s idea of complementarity is unambigu-
ously tested, which essentially requires a source of single trapped ultracold atoms to
be produced. This single ultracold atom must then be accurately and controllably split
and mirrored, which can be achieved with π/2 and π Bragg pulses respectively where
a momentum kick is imparted on the atom by a coherent two-photon scattering process.
The delayed choice of whether the second π/2 pulse is present to mix the arms of the
interferometer must be made in a random way relativistically separated from the entry
of the atom to the interferometer, to exclude justifications for the experimental result
which invoke Einstein’s argument of local reality. While this aspect of the experiment
is challenging for photons travelling at the speed of light, this is not so problematic
for atoms moving at speeds no greater than a few metres per second. Commercially
available quantum random number generators (QRNG) are capable of producing the
random choice on a microsecond time scale, which is sufficient for setting the interfer-
ometer configuration after the π pulse is applied by triggering a switch which transmits
or blocks the second π/2 pulse. The state of the switch can also be recorded so that the
two configurations can be distinguished after each experimental iteration.

Finally, measuring single atoms with sufficient spatial resolution to distinguish the
two momentum modes |0〉 and |h̄krec〉 can be achieved easily with our MCP and delay-
line detector (DLD). As the atoms fall though a 416 ms time of flight between the trap
and DLD, the two momentum modes will be separated by a distance of the order of
centimetres. At such a separation, the two modes are easily resolved on the DLD, which
also facilitates single atom counting. Wheeler’s experiment can thus be carried out over
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Figure 7.1: The idealised Mach-Zehnder interferometer version of Wheeler’s delayed
choice gedankenexperiment for photons (a) and atoms (b). For the exper-
iment with light, a single photon enters the interferometer on the first
beamsplitter (BS1), after which time a choice about the presence or re-
moval of the second beamsplitter (BS2) is made before the photon reaches
it. If BS2 is present, wave interference should be observed from a de-
pendence of the probability that the photon is measured on either pho-
todiode PD1 or PD2 on the angle of a λ/2 waveplate (φ). However, with
BS2 removed, the probability of measuring the photon on PD1 or PD2 is
independent of φ. The atomic experiment replicates this scheme with the
use of Bragg scattering pulses which provide either beam splitting with
a π/2 pulse, or mirroring with a π pulse, which transfer the probabil-
ity amplitude of a single atom between two momentum modes |0〉 and
|h̄krec〉. A phase relative φ between the two modes of the atomic wave-
function is imprinted with the first π/2 pulse, and after applying the π
pulse mirror, a decision is made whether to apply the second π/2 pulse
to mix the arms of the interferometer. After this process, the two momen-
tum modes separate during the time of flight to the delay-line detector
(DLD), where they arrive at two spatially and temporally separated loca-
tions. The probability of a count arriving in either location of the DLD
is then either dependent on the phase φ applied by the first beamsplit-
ting Bragg pulse if the second π/2 pulse is applied, or otherwise will be
independent of φ.
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many experimental iterations by measuring the probability of detecting atoms in either
spatial location on the DLD as a function of a relative phase φ set by the first π/2 Bragg
pulse, for interferometer configurations which are randomly toggled between ‘open’ and
‘closed’. In the following sections, the experimental procedure to satisfy each of these
requirements individually are discussed, before being combined for the acquisition of a
preliminary measurement of Wheeler’s experiment for massive particles.

7.2 Single-atom source

Among the most immediately obvious consequences of quantum theory is that sources
of light or atoms should be considered as being composed of discrete particles, and it is
common to invoke the notion of a single particle in theoretical treatments of quantum
processes. However, the experimental production of deterministically-delivered single
photons was certainly not trivial to achieve. Early experiments desiring single-photon
outputs were only capable of ensuring that a single photon is present in the experiment
on average, by simply reducing the intensity of the source. However, it was the in-
teraction of light with atoms which allowed true single-photon sources to be produced,
based on the emission of a photon as an excited atomic system relaxes back to its ground
state. Experimental setups which are able to trap single ultracold atoms have also been
developed recently, and are beginning to be used for fundamental studies which strive
towards the creation of quantum logic devices [276].

7.2.1 Single-photon sources

One of the earliest experiments which investigated the behaviour of individual photons
was a study by Taylor which produced an interference pattern in the same manner as
for Young’s experiments, except that there was typically only a single photon in the
experiment at a time [277]. While this was not performed with a true single-photon
source, it did indicate that wave behaviour persists even for single particles, and gave
one of the first hints of complementarity. The invention of the laser and subsequent the-
oretical work exploring quantum optics such as that of Glauber motivated the search for
single-photon sources, however it was not until 1974 that a true single photon source was
generated [278], and sources of single photons on demand took a further two decades to
be developed [279, 280]. The generation and detection of single photons is now routinely
achieved (a range of review publications are available for general information on this
topic such as Refs. [281–283]) with sources such as colour centres, quantum dots, single
atoms, single ions, single molecules, and atomic ensembles. Single photon sources can
emit in either a probabilistic manner, or more commonly are heralded where a pair of
photons are produced, where one photon is used to signal the presence of its twin.

As was seen in §2.1.1, number-squeezed sources of bosons such as Fock states were
shown by Glauber’s theory of quantum coherence to be highly non-classical, which
can be identified from a measurement of the second-order correlation function where
g(2)(∆t = 0) < 1, and in particular g(2)(0) = 0 for single-particle states. This was first
demonstrated by the measurement of fluorescence of individual atoms in a laser beam
[79], where the finite lifetime of spontaneous emission prevents multiple photons from
being scattered by an atom in an arbitrarily small interval. Later, true single-photon
sources have been used to confirm the result of Taylor’s single particle interference ex-
periment [111], and have been key to several experiments such as tests of Bell’s inequal-
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ity [19, 284]. Beyond fundamental tests, sources of single photons are also important for
the development of applications in quantum information such as cryptography.

7.2.2 Previous single-atom sources

While early experiments demonstrated the coupling of single atoms to optical cavities
[181, 285], single trapped atoms at ultracold temperatures where wavelike properties
will be easily observed are required to attempt Wheeler’s experiment. Single neutral
atoms have been captured from a MOT at the focus of very small volume dipole trap
[286], which resulted in non-classical second-order correlations where g(2)(∆t = 0)< 1
as expected. Single atoms have also been captured from a MOT and deterministically
transported over macroscopic distances with standing-wave dipole traps [287]. Further
experiments have loaded single atoms into arrays of optical traps [288–291] and in par-
ticular the lattice sites of a Mott insulator [57, 292], or have used light-assisted collisions
to isolate individual atoms by depleting a cloud initially containing a large number of
atoms [290, 293]. While the efficiency of loading single atoms in a trap is usually limited
to 50% due to depletion of the cloud occurring in a pairwise manner, a loading efficiency
of over 80% has been achieved with finely-tuned light-assisted collisions [294].

Recent experiments have cooled single atoms to the vibrational ground state of an
optical potential using Raman sideband cooling [295, 296], while a scheme has been pro-
posed to achieve this with electromagnetically-induced transparency in a cavity [297].
Studies of cavity quantum electrodynamics which couple single atoms to cavities have
also allowed single atoms to be entangled with single photons [298], and have observed
squeezed light emitted from a single atom [299]. Furthermore, the interface between
single trapped ultracold atoms and a photonic crystal cavity has been investigated in
the limit of strong coupling, to allow the cavity field to be probed at a resolution below
the diffraction limit [300].

7.2.3 Experimental method

A property unique to helium among the bosonic species which have been cooled to
quantum degeneracy is the large amount of internal energy stored in each atom. This
leads to the Penning ionisation process described in §2.5.2, where the collision of two
He* atoms results in ionisation and the loss of both atoms from the trap. While this is
normally suppressed for collisions between pairs of spin-aligned atoms where ∑ mJ 6=0
by spin polarisation with the application of an external magnetic field1 to allow the stan-
dard cooling and trapping processes to proceed, removal of this magnetic field provides
a mechanism by which trapped clouds can be attenuated to a single atom. As for many
of the single-atom experiments described above, a trap containing either one or zero
atoms can be produced, assuming that the one-body loss rate is negligible on this time
scale, by simply allowing Penning ionisation to proceed in a cloud initially containing a
large number of atoms.

The 1/e lifetime for condensed atoms in the mJ = 1 substate was measured to be
∼16 s for our optical trap2. Assuming that the overall decay of the trapped cloud is

1The atoms held in a magnetic trap will naturally be in the mJ =1 state, as atoms in the mJ =0 state will
not be trapped, while atoms in the mJ =−1 state will be ejected from the trap.

2The lifetime for mJ = 1 atoms in the BiQUIC trap is ∼40 s. That the lifetime of the cloud in the
optical dipole trap is considerably shorter than for the magnetic trap could be attributed to some form of
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not dominated by the one-body loss rate α, the lifetime for atoms in the mJ = 0 state
is expected to be several orders of magnitude smaller. This follows from the disparity
between the loss rate of collision pairs in that state of β(mJ =0, m′

J =0)=(6.6±0.4)×10−10

cm3/s [165] and the rate for spin polarised pairs of mJ = 1 atoms where β(1, 1) =

(2.9±2.0)×10−14 cm3s−1 [163, 164, 166]. If α can be considered to have a negligible effect
on the trap lifetime, the mJ =0 lifetime should be of order 16 s/[β(0, 0)/β(1, 1)]∼10−2 s,
as the density of Bose-Einstein condensates, and hence the effective volume in Eq. 2.52,
is only weakly dependent on number (refer to §2.3.1). In this case, allowing Penning
ionisation to proceed unabated allows the attenuation of the cloud to a single atom to
occur over an experimentally reasonable time span. The difference in loss rates will be
less pronounced if the one-body lifetime 1/α is indeed not negligible compared to the 16
s lifetime for the mJ =1 cloud. Note that the trap lifetime will in any case be considerably
shorter than the radiative lifetime of 7870 s for atoms in the 23S1 metastable state [153].

As the Penning ionisation process will occur primarily for pairs of atoms in the
mJ = 0 state, the magnetic trap cannot be used to hold such atoms, and instead we
transferred the atoms into the vertically-aligned optical dipole trap3 (see §3.1.3) which
can hold any mJ magnetic substate. After evaporatively cooling ∼ 106 atoms to around
Tc in the BiQUIC trap, the proportion of current passing through the two pairs of coils in
the BiQUIC magnetic trap configuration was then ramped over 500 ms. This moved the
centre of the magnetic trap a few millimetres to become coincident with the middle of
the BEC chamber, as is shown with the ‘sagged’ configuration of the trap in Fig. 3.2. This
allowed greater optical access to the trapped cloud for both the dipole trapping beams
and the Bragg scattering laser beams which will be later used to create an interferometer.

About 104 atoms were then loaded into the vertically-aligned dipole trap which was
ramped up to maximum power over 200 ms to form a combined dimple trap, as has
been the procedure for many of the experiments in this thesis such as that in §4.5.
After switching off the magnetic trap, the power of the vertical beam was ramped
down over 100 ms to produce a trap with harmonic frequencies of

(

ωx, ωy, ωz

)

≈
2π×(1800, 1800, 12). The trap remained at this power for 2 s, where the trap depth is
smaller than the chemical potential of the condensate formed in this dimple trap (refer
to §3.1.3), which allowed most of the thermal component of the cloud to exit the trap.
This ensured that the cloud contains predominantly condensed atoms, with a higher
two-body collision rate than is possible for a thermal cloud. Throughout this process,
the nullerometer was used to produce a constant bias magnetic field of around 0.125
Gauss.

After ramping the trap back to its maximum power, the spin of these atoms, which
remain in the mJ = 1 magnetic substate after transfer to the optical trap, was then
flipped to the mJ = −1, 0 and 1 states. This was achieved with the application of 11
highly amplified bursts of Fourier-broadened RF radiation with 25 µs duration at a
frequency of ∼350 kHz, which corresponds to the Zeeman energy of the atoms in the

‘anomalous heating’, which appears to be a commonly encountered yet not currently understood problem
[176].

3Earlier attempts at this experiment, and the results presented in the following sections where Bragg
pulses are applied to the cloud, were performed with the dual beam dipole trap. However, the single
beam setup described here may result in improved trap stability due to the elimination of relative motion
between the two laser beams. Conversely, the dual beam trap results in a reduction in the anisotropy in
trapping frequencies, which allows a trap depth sufficient to hold the atoms to be achieved with a far lower
dipole beam power than for either beam separately. This means that the cloud will not expand rapidly
during the time of flight under gravity from the trap to the detectors below.
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Figure 7.2: Logarithm of the trap population, adjusted by an assumed quantum effi-
ciency of detection of 20%, of mJ = 0 atoms as a function of time held in
the trap. For times of less than 0.5 s (left), the two-body loss rate is dom-
inant, which fits to a 1/e lifetime of 9.5 ms, while for later times (right)
the single body loss rate becomes dominant and fits to a 1/e lifetime of
24.9 s. The error bars indicate statistical uncertainty, and the dashed line
shows the threshold below which no more than a single atom is present
in the trap on average.

bias magnetic field. As the dipole trap can hold atoms of any magnetic substate, a strong
linear magnetic field was applied by passing current through the bias pair of coils in the
BiQUIC trap to remove atoms in the mJ =±1 substates from the trap. The magnetic field
then remained on to prevent atoms in the mJ = 0 substate from undergoing a Majorana
flip back to the mJ = ±1 states. The trap was then ramped back down to a depth just
above the chemical potential of the condensate, and the cloud was held for a variety of
different durations of up to 20 seconds before being released by reducing the trap depth
further and allowing the cloud to fall under gravity to the delay-line detector below.

The number of counts was then recorded in the smallest possible spatial and tempo-
ral window which encapsulates the unattenuated cloud of 20 ms × 5 mm × 5 mm on the
detector, to reduce the effect of dark counts. The gain of the micro-channel plates was
adjusted by tuning the voltage applied to improve the signal-to-noise ratio measured
with this data, as although a higher gain increases the quantum efficiency of measuring
single atoms, it also increased the dark count rate. An optimal balance between these
factors was found at a gain of 2050 V, instead of the 2000 V typically used, although
the improvement seen was not significant. It is predicted that for a sufficiently long
hold time, a single atom should remain in 50% of experimental cycles, and no atoms
otherwise, depending on whether we start with an odd or even number of atoms in the
optical trap respectively.

A measurement of the trap lifetime for this Penning ionisation loss procedure is
shown in Fig. 7.2, where the atoms were held in the trap for different durations between
the spin flipping and trap switchoff. The bimodal nature of the trap loss is evident from
the two distinctly different loss rates occurring before and after hold times of ∼ 0.5 s,
where loss is dominated by binary collisions at earlier times with a 1/e lifetime of 9.5
ms, which subsides at later times as the population of the trapped cloud is reduced such
that the 1/e lifetime increase to 24.9 s.

The one- and two-body loss rates (α and β) for the cloud can be derived from the
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Figure 7.3: Probability of measuring N atoms in a given experimental iteration (not
adjusted for detection efficiency), obtained by holding the mJ = 0 atoms
in the trap for at least one second.

bimodal fit to the trap population as a function of time (Eq. 2.53) illustrated in Fig.
7.2. In this case, the two-body loss rate β is set to zero once the average count rate
drops below one atom per iteration (adjusted for detection efficiency) after a hold time
of 0.5 s. The biggest uncertainty in determining β is from accurately characterising the
trap volume V, which is assumed to take on a Thomas-Fermi density profile with radii
RTF given by Eq. 2.36, where for simplicity then chemical potential µ is assumed to be
a constant independent of atom number, as from Eq. 2.35 we see that µ ∝ N2/5 and
thus RTF ∝ N1/5. With this, we find that α = 0.0402 which corresponds to a one-body
lifetime of 1/α = 24.9 s, and we can estimate the value for the two-body loss rate to
be β(0, 0)≈ 1×10−9 cm3/s, which is within a factor of two of the result obtained from
previous measurements [165].

To determine whether a true single-atom source is being produced, a histogram of
the likelihood P(N) of N atoms being measured in a single shot averaged for hold times
of one second or more is shown in Fig. 7.3. While the count rate for the lifetime data in
Fig. 7.2 has been adjusted for the quantum efficiency of the delay-line detector, which is
estimated by a variety of other measurements to be 20%, this compensation has not been
applied to the P(N) data in Fig. 7.3. However, in both cases a background dark-count
rate of 0.00175 counts per shot has been subtracted. Although an ideal detector should
result in P(0) = P(1) = 0.5 and P(N > 1) = 0, the limited detector efficiency reduces the
average number of atoms measured such that P(1)≈0.1. This agrees well with the data
in Fig. 7.3, and while a pair of counts is measured in 0.27% of experimental cycles, the
rate of double counts corrected by compensating for the quantum efficiency is 1.35%,
such that P(1)/P(N > 1) ≈ 8 and thus the source is found to produce single atoms
predominantly but not exclusively.

As was mentioned previously, a clear characteristic of a non-classical Fock state of
particles is a sub-Poissonian correlation function where g(2)(0)<1. A distinct advantage
of assessing the single atom source in this way is that it allows us to quantify its fidelity
in a manner not limited by the quantum efficiency of the delay-line detector. A mea-
surement of this is shown in Fig. 7.4, where the form of the correlation function is now
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Figure 7.4: Second order correlation function g(2) measured for the single atom
source as a function of increment between experimental iterations.

not directly comparable with those presented in Chapter 4. In the present case, we are
simply concerned with how many particles are present in each experimental iteration,
as is indicated by the dependent axis used for the plot, which also eliminates any notion
of a ‘correlation time’. Instead, what this plot shows is that any pair of particles mea-
sured is more likely to occur by one particle being in each of two separate experimental
iterations, rather than both the particles occurring in the same iteration. While ideally
we should find that g(2)(0) = 0, which corresponds to P(N > 1) = 0 in Fig. 7.3, we find
that g(2)(0)≈0.37 which confirms that we have a strongly sub-Poissonian but imperfect
source of single atoms4.

In principle, this method should be robust against experimental drifts in temper-
ature and number, which can often be troublesome for data sets which are acquired
over the course of several weeks, as would be the case for Wheeler’s experiment. The
atoms produced by this method are very cold, and an ensemble of single atom measure-
ments has an energy spread which can be characterised by a thermal temperature of
around 10 nanokelvin, which is consistent with the energy spread of the trapped cloud
before attenuation. Assuming that this energy spread places an upper bound on the
‘temperature’ of the single-atom source, the large de Broglie wavelength of at least ∼
14 µm (compared to 0.027 µm for He* atoms in a 1 mK MOT) of these atoms at this
temperature confirms their suitability for measuring wave behaviour. This approach
also has the advantage of enabling experiments with single atoms to be performed with
atoms trapped in the same way as for large clouds, without resorting to the specialised
trapping geometries used in other single-atom experiments.

7.3 Atom interferometry

A fundamental tenet of atom optics is the interchangeable nature of matter and particles,
where a standing wave of light can be used to diffract atoms in the same way that a

4The stability of the dipole trap setup was further optimised after the submission of this thesis to obtain
a considerably improved single-atom source, where g(2)(0)=0. These results are available in Ref. [66].
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matter grating can diffract light. The interaction of atoms and light has been covered
previously in §2.2, where the scattering of individual photons was seen to apply a force
on an atom to manipulate its motion. In this section, the two-photon Bragg scattering
process will be discussed in the context of its application to the atom interferometry
required to realise the experimental setup shown in Fig. 7.1. More detail on this topic
can be found in the comprehensive overview of atom interferometry available in Ref.
[263].

7.3.1 Two-level atoms and Rabi oscillations

We will begin by considering a two-level atom, where monochromatic radiation can be
used to drive the atom between these two levels which we will denote |1〉 and |2〉. If
these two states have energies E1 = h̄ω1 and E2 = h̄ω2, then the atomic wavefunction
will take the general form ψ(r, t)= c1(t) |1〉 e−iω1t + c2(t) |2〉 e−iω2t, where normalisation
requires that |c1(t)|2 + |c2(t)|2 = 1 at all times. If light of angular frequency ωlaser is
incident on an atomic system with a resonant transition frequency ωatom = ω2 − ω1

which is initially in the state ψ(r, 0)= |1〉, then at a later time the population of the state
|2〉 will be [120]

|c2(t)|2 =

(

Ω

ΩR

)2

sin2
(

ΩRt

2

)

. (7.1)

The detuning of the laser from the atomic transition δ=ωlaser − ωatom results in a shift
in the frequency of the population oscillation from the natural Rabi frequency Ω to
the generalised Rabi frequency ΩR =

√
Ω2 + δ2. Resonant pulses (δ = 0) of different

durations result in Rabi oscillations of the atomic system, where in particular pulse
durations of tπ = π/Ω result in a complete population transfer between |1〉 and |2〉,
while a duration of tπ/2 =π/2Ω creates an equal superposition of the two states where
|c1(t)|2= |c2(t)|2=0.5.

7.3.2 Bragg and Raman scattering for three-level atoms

Although two-level atoms with transitions driven by a single laser beam results in mo-
mentum being transferred from the photon to the atom, and is the fundamental mecha-
nism of laser cooling, it does not allow the coherent transfer of atoms from one discrete
momentum mode to another. However, a two-photon scattering processes driven by
a pair of laser beams can facilitate this by having the atom absorb a photon from one
laser beam, and emit into the other beam, resulting in an impulse on the atom due to
momentum conservation. At the same time, angular momentum and energy must be
conserved for the transition between the two states |1〉 and |2〉, which can be achieved
with suitable beam polarisations and detuning between the two lasers. The atom can
either undergo Bragg scattering where |1〉 and |2〉 have the same internal state but dif-
ferent momentum and energy, or can also transfer between different internal states in a
process referred to as Raman scattering.

Although the two states |1〉 and |2〉 are typically different (or even the same) mag-
netic substates of a given electron configuration separated by a relatively small energy,
transitions between them can be driven optically via an intermediate state |3〉. This re-
quires a three-level atom such as that illustrated in Fig. 7.5 to be considered. A laser
with angular frequency ωL1 can be used to drive a transition between |1〉 and |3〉 by
the absorption of a photon, while another laser with angular frequency ωL2 can drive
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Figure 7.5: Two-photon Bragg or Raman transition between states |1〉 and |2〉 via an
intermediate state |3〉 which does not become populated.

the transition from |3〉 to |2〉 by stimulated emission. In particular, if the single pho-
ton detuning δ ≈ ωL1 − (E3 − E1) /h̄≈ωL2 − (E3 − E2) /h̄ is much larger than the than
the two-photon detunings δ12 = (ωL2 − ωL1)− (E2 − E1)/h̄, then the scattering process
couples the states |1〉 and |2〉, while any lasting population of the intermediate state
|3〉 is adiabatically eliminated. Furthermore, larger values of δ result in a reduction of
undesirable spontaneous emission [120].

Under these conditions, the Bragg or Raman scattering process essentially becomes
a two-level process with an effective detuning δeff =(Ω2

13 − Ω2
32)/4δ + δ12 and Rabi fre-

quency Ωeff = Ω13Ω32/2δ, where Ω13 is the Rabi frequency of the two-level transition
from |1〉 to |3〉, and similarly for Ω32 [301]. Two-photon scattering pulses are usually of a
short duration with large Fourier broadening so that transitions occur over a wide range
of atomic velocities. However, each two-photon process results in the same exchange of
energy and momentum between the atoms and light, and allows the population of the
two modes to oscillate in the same way as for the two-level atom. Atoms can also
undergo multiple two-photon scattering events which result in higher-order momen-
tum modes being populated, however the efficiency of scattering into high momentum
modes is highly dependent on the initial momentum spread of the cloud and the Rabi
frequency of the scattering beams [302, 303], and this phenomenon will be avoided in
our experiment.

7.3.3 Mach-Zehnder interferometers for atoms

Assuming that the Bragg or Raman two-photon scattering process only couples the
states |1〉 and |2〉, an interferometer can be formed which coherently transfers the pop-
ulation of these two states in a way which depends on an externally imposed phase.
The Mach-Zehnder interferometer shown in Fig. 7.1 can be created by a sequence of
three Bragg or Raman pulses. Assuming that the atoms start in the ψ(0) = |1〉 mode,
applying a resonant π/2 pulse of duration tπ/2 = π/2Ωeff and phase φBS1 creates an
equal superposition of the two momentum modes [301]

ψ =
1√
2

(

|1〉 − ie−iφBS1 |2〉
)

. (7.2)
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Some time T after applying this beamsplitting pulse, the two states acquire a phase
factor δT/2, such that

ψ =
1√
2

(

ei δT
2 |1〉 − ie−i( δT

2 +φBS1) |2〉
)

. (7.3)

A second π/2 pulse with phase φBS2 results in

ψ = iei δT
2

[

sin
(

δT

2

)

|1〉 − cos
(

δT

2
+

φBS1 − φBS2

2

)

|2〉
]

. (7.4)

Thus, the population of the modes oscillate after this sequences of pulses as

|c2|2 =
1
2
[1 + cos (δT + φBS1 − φBS2)] . (7.5)

The population of each mode |c2|2 and |c1|2 = 1 − |c2|2 essentially depend on two
variables, which are the phase picked up by the evolution of the atomic wavefunctions
δT, and the difference in phase between the two π/2 pulses φBS=φBS1 − φBS2. For many
applications for interferometers, especially those used for precision measurements of
quantities such as gravity, it is the former of these terms that is of interest, as this
will contain information about the quantity being measured. However, for the present
experiment this quantity is simply a constant, and it is the externally-applied phase
difference φBS which is of importance, as it is analogous to the λ/2 waveplate shown
for the optical experiment in Fig. 7.1. The addition of a π pulse of duration tπ =π/Ωeff

after the first beamsplitting pulse, to reflect the momentum two modes such that they
again overlap for the second π/2 pulse to form an atomic Mach-Zehnder interferometer,
simply results in a change in the evolution phase term δT and does not alter the result
of Eq. 7.5.

As the intensity, frequency and phase of the two Bragg/Raman beams are controlled
by diffraction with AOMs, the interferometer phase φBS can be set by the phase of the RF
signal used to drive each AOM, as is shown in Fig. 7.6. This requires that the duration,
phase and lag between the two RF signals is accurate and reproducible to within a
fraction of a period of the RF wave, which is of order 10 ns. The frequency difference δ f

between the two AOMs directly corresponds to the detuning between the beams. This
is set by the requirement of simultaneous energy and momentum conservation, where a
recoil in momentum prec= h̄krec due to the two-photon scattering process corresponds to
a recoil energy Erec= p2

rec/2m=hδ f . It is also worth noting that a closed Mach-Zehnder
interferometer can be formed without adjusting the frequency of the two beams for
each of the π and two π/2 pulses, as the momentum transferred to the atom results in
a Doppler shift for the laser beam which reverses the direction in which the momentum
transfer occurs for subsequent pulses.

7.3.4 Interferometry with metastable noble gases

Interferometry with ultracold metastable noble gases (general information about which
can be found in Refs. [152, 301]) has distinct advantages compared to more commonly
used alkali metals. Aside from the single atom counting capabilities of species such as
metastable helium and neon, the small mass of these atoms results in large de Broglie
wavelengths for a given temperature, which makes wave interference easier to observe,
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Figure 7.6: Cartoon representation of how phase is controlled in an atomic interfer-
ometer with the RF signal used to drive the AOM for each beam at fre-
quencies f and f − δ f respectively. A relative phase of φBS exists between
the initial phases of the first π/2 pulse, while the initial phase of each
other pulse is set to a constant value, which we choose to be zero.

and large recoil velocities for a given wavelength of scattered light which increases
the ‘open area’ of Mach-Zehnder-type interferometers. Early experiments which op-
tically pumped Ne* into a state with J =0 which is insensitive to electromagnetic fields
were able to explore a variety of interferometry effects, including the demonstration
of Young’s experiment with a double-slit aperture [304] and holography [305–308], in
addition to the previously discussed Hanbury Brown-Twiss demonstration [54].

Interferometry using Bragg or Raman transitions has also been achieved for He*,
in a number of experiments which have explored the collision of condensates. The
spontaneous four-wave mixing process, which is analogous to optical parametric down-
conversion5, can be induced by two-photon scattering which splits the cloud into two
momentum components which interact through s-wave collisions [310, 311]. The con-
servation of momentum and energy required for these s-wave collisions was shown to
result in number squeezing between modes with opposite momentum [185] and conse-
quently a violation of the Cauchy-Schwarz inequality for number correlations between
such modes [92]. These results are particularly important for the current quest for test-
ing Bell’s inequality with matter waves, as violation of the Cauchy-Schwarz inequality
is a prerequisite for entanglement.

7.3.5 Experimental method

Before attempting the full realisation of Wheeler’s experiment, we first characterised our
ability to create a Mach-Zehnder interferometer with momentum transfer from stimu-
lated Bragg scattering. As we saw in §7.2.3, the single atom source used in Wheeler’s
experiment will be in the |J=1, mJ =0〉 state, and it is advantageous for the two-photon
scattering process to return the atoms to this state, as it is insensitive to perturbations
from external magnetic fields. However, to characterise the interferometer we used large
clouds in the |1, 1〉 state, which is not only the state held by the magnetic trap but also
one which suppresses loss due to Penning ionisation, and will therefore allow accurate
preliminary measurements with large numbers of atoms to be obtained quickly.

We therefore applied Bragg transitions between the 23S1 and 23P2 manifolds, as is
shown in Fig. 7.7. Although transitions between the 23S1 and 23P0 manifolds contain
fewer levels which can be accidentally accessed by imperfect energy and polarisation

5This was studied in detail in Ref. [309].
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Figure 7.7: Energy level scheme for Bragg transitions in metastable helium between
|J, mJ〉 states in the 23S1 and 23P2 manifolds. This diagram only refers to
internal states, and the external states of the interferometer are not degen-
erate due to a difference in their kinetic energy, where the π1 transition
is driven by the beam of frequency f , while the π2 transition is driven
at f − δ f . Note that transitions from |1, 0〉↔ |2, 0〉 and |1, 1〉↔ |2, 1〉 can
each be driven individually with the same beam setup, depending on the
magnetic substate of the atoms scattered.

selectivity, the chosen manifolds allow calibration measurements to be taken easily for
large numbers of atoms. This is achieved by simply neglecting to transfer the atoms
into the |1, 0〉 state, while retaining the same settings for the Bragg beams, except for
the requirement to tune the beam duration or power to compensate for the different
transition strengths. As acquisition of data to explore Wheeler’s experiment will take
several weeks, this is an important step to characterise the interferometer and identify
and minimise long-term systematic experimental drifts. The detuning δ was set ∼16
GHz to the red of the transition at 1083.331 nm, as the transition from 23S1 → 23P1 is
only 2.3 GHz to the blue of the 23S1 → 23P2 transition, while the 23S1 → 23P0 transition
is a further 30 GHz to the blue (refer to Fig. 2.3).

Bragg beam setup

The geometry of the Bragg beam setup is shown in Fig. 7.8. As the atoms are nearly
at rest when the Bragg pulses are applied, and therefore experience no Doppler shift
with respect to the laser beams, they will preferentially absorb from the more energetic
‘bottom’ Bragg beam with wavevector k1, which drives the π1 transition (refer to Fig.
7.7). This laser beam is diffracted with an AOM which detunes the light by f =120 MHz.
The two-photon process is completed by stimulated emission into the other ‘top’ Bragg
beam with wavevector k2, which is detuned δ f less than 120 MHz, such that energy
conservation is satisfied by the atom gaining a kick in kinetic energy of Ekin = hδ f .
As the beams are not aligned symmetrically about the horizontal axis, the momentum
kick prec = h̄ (k1 − k2) will have components in both the horizontal (ŷ) and vertical (ẑ)
directions, such that the resulting momentum modes |0〉 and |h̄krec〉 will be separated in
both time and space at the detector.

As the two Bragg beams enter the BEC chamber through windows already occupied
with beams used for laser cooling in the second MOT, these cooling beams are reflected
into the chamber by mirrors attached to flipper mounts. This is so that the cooling
beams can be translated out of the way, and the Bragg beams can be reflected into the
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Figure 7.8: Experimental setup of the Bragg beams (related to the dipole trapping
beam setup in Fig. 3.5). Each Bragg beam is considerably larger than the
cloud held in the crossed dipole trap, to ensure that the light intensity is
uniform across the cloud. The polarisation of each Bragg beam is linear
in the ẑ direction, to match the bias field applied by the nullerometer.

chamber by stationary mirrors to reduce vibrations in these beams. The angle between
the two Bragg beams of 60◦ is also fixed by these windows, and was chosen so that the
momentum recoil prec was large enough to distinguish the two modes, yet not sufficient
to kick the atoms beyond the detector radius.

Throughout the entire experimental procedure, the nullerometer is used to not only
cancel magnetic field noise, but to also define a bias magnetic field at the optical trap
centre in the ẑ direction. As the transitions illustrated in Fig. 7.7 do not change the
magnetic substate of the atoms, each of these will be π transitions driven by linearly
polarised light which carries no angular momentum. The polarisation of each beam
is set to align with the magnetic field bias with a λ/2 waveplate. Also note that the
presence of this bias field lifts the degeneracy of the different mJ states for atoms held
in the optical trap.

The Bragg scattering laser light is provided by a 1 W ytterbium fibre laser operating
at 1083 nm. As the light output is far detuned from the 23S1 → 23P2 transition, it is not
locked to the transition and thus resulted in wavelength drifts of around 5%. The laser
power was found to drift by up to ∼15% over the time scale of typical experimental runs,
and therefore a slow feedback loop was implemented to correct this. A small amount
of light was picked off the laser beam and its power measured on a photodiode, which
was used to tune an attenuator which controls the RF power delivered to each AOM.
This setup reduced long term power drifts by at least 50%. While these specifications
are not ideal, they should not compromise our ability to demonstrate the distinction
between particle and wave behaviour if an interferometer with at least 50% contrast can
be produced.
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Conservation of energy and momentum

To determine the detuning δ f between the two Bragg beams, we need to ensure that
energy conservation is satisfied for a given recoil momentum. The recoil momentum
prec = h̄ |k1 − k2| is the result of absorbing a photon from one beam, and emitting into
the other beam. For an angle of 60◦ between the two beams, |k1 − k2|= k1,2 and thus

krec =
2π

λ
= 5.8 × 106 m−1, (7.6)

vrec =
h̄krec

m
= 0.092 ms−1, (7.7)

δ f =
Erec

h
=

mv2
rec

2h
= 42 kHz. (7.8)

The recoil velocity has components in the ŷ and ẑ direction of vy,rec =vrec cos (5π/12)=
2.4 cm−2 and vz,rec =vrec sin (5π/12)=8.9 cm−2 respectively. This results in a 1 cm spa-
tial separation and 9.3 ms temporal separation between the two momentum modes after
the time of flight to the DLD, which is sufficient for the two modes to be distinguished.

We can also estimate the time tπ required for a π pulse. First, recall that the natural
linewidth of the 23S1 and 23P2 transition is Γ=2π×1.6 MHz, and the saturation intensity
for the |1, 1〉 → |2, 2〉 transition is Isat = 167 µWcm−2 [152], from which the saturation
intensity for other transitions can be obtained with the relevant line strength [119]. For
3 mW beams with a 5 mm radius, the Rabi frequency for each individual transition is

Imax =
P

πr2 = 3.8 mWcm−2, (7.9)

Ω13,32 = Γ

√

Imax

2 × 2Isat
≈ 240 MHz. (7.10)

The extra factor of two in the Rabi frequencies is from the Clebsch-Gordan coefficient
for the |1, 1〉→ |2, 1〉 transition (see p. 54 of Ref. [119]). The |1, 0〉→ |2, 0〉 transition has
a coefficient of 1.5, which can be compensated for by tuning the laser beam intensity or
Bragg pulse duration so that the same experimental procedure can be used for either
transition. From this, we can find the effective two-level Rabi frequency and π time

Ωeff =
Ω13Ω32

2δ
≈ 290 kHz, (7.11)

tπ =
π

Ωeff
≈ 10.9 µs. (7.12)

It is also important to consider how many photons will be scattered spontaneously over
the duration of a π pulse, which will be [309]

Nsp ≈ Γ
Ω13Ω32

4δ2 tπ = 1.6 × 10−4. (7.13)

As Nsp≪1, the interaction between the atoms and laser light will be dominated by stim-
ulated Bragg scattering, and thus a significant a reduction of the efficiency of momentum
transfer operations which create the Mach-Zehnder interferometer is not experienced.
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Pulse train

Of crucial importance to our ability to create a Bragg interferometer is the generation
of a train of RF pulses in the style shown in Fig. 7.6 used to drive the AOMs which
manipulate the two Bragg beams. The amplitude, frequency and phase of these RF
pulses directly influences these parameters for the laser beams diffracted by the AOMs,
and therefore must be precisely controlled and stable over many experimental iterations.
While the absolute phase of the interferometer (set by the δT term in Eq. 7.5) is not of
importance, the two AOMs must also be phase locked to ensure that the relative phase
φBS is well defined.

We define the RF waveform with three pulses (a π/2, π, π/2 sequence) as an array
of voltages with 2 GSa/s resolution, and upload these waveforms to a two-channel
Agilent 81150A arbitrary wavefunction generator. These pulses will be at a frequency
of 120 MHz for the ‘bottom’ π1 beam, and 119.958 MHz for the ‘top’ π2 beam, the latter
of which incorporates the δ f = 42 kHz detuning determined by Eq. 7.8. The two RF
signals then pass through a separate RF switches and 2 W RF amplifiers to each of the
AOMs. The coaxial cables which carry this RF signal were made as short and as close
to equal length as possible to reduce systematic phase shifts between the two AOMs,
as the signal propagates at ∼108 ms−1 and thus a 10 cm mismatch results in a 1 ns lag
between the two channels. In addition, these cables were carefully shielded to eliminate
pickup from environmental noise sources.

An advantage of this approach is that the two channels of the signal generator are
inherently phase locked and respond to the same external trigger to initiate the pulse
train. While the absolute triggering time of the RF output is not of critical importance
(the delay between the trigger from the experimental control and the pulse is in any case
very small at around 40 ns), the relative lag between the two channels determines the
phase sensitivity of the interferometer. The pulses produced by the waveform generator
were measured by an oscilloscope with 1 GHz bandwidth to have a few percent jitter in
amplitude and phase, however the RF amplifiers introduce around 5% amplitude jitter
to the signal without distorting the wave phase.

Experimental procedure

The performance of the Bragg scattering process was first characterised with clouds
containing a large number of mJ = 1 atoms, in the same trap that will eventually be
used for the single mJ = 0 atoms when performing Wheeler’s experiment. This ex-
periment followed the same procedure as that in §7.2.3 to produce trapped clouds of
atoms, however for this and subsequent experiments a dual beam dipole trap was used.
In this case, the reduction in trap depth in the vertically-aligned trap after transfer
from the magnetic trap was compensated for by an increase in power for the horizontal
beam, such that the trap volume was much less elongated with trapping frequencies
of
(

ωx, ωy, ωz

)

= 2π×(500, 500, 300). The lower trapping strength in the x and y axes
resulted in a slower expansion of the condensed cloud during the time of flight to the
detector, which allowed us to more easily resolve the two momentum modes in that
plane. A lower momentum spread for the source resulting from smaller trapping fre-
quencies also improves the fidelity of Bragg scattering [303]. In addition, the stages to
transfer the spin, push the remaining mJ =±1 atoms away, and then hold atoms in the
trap for up to 20 seconds to attenuate the cloud were eliminated. Note that for this
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Figure 7.9: Rabi flopping of the population of the |0〉 mode for a single Bragg pulse
with maximum beam intensity. The circular points are experimental mea-
surements, and the sinusoidal fit line gives a transfer efficiency of 94.8%
and π time of tπ = 10.7 µs, after which time almost the entire cloud is
reflected into the |h̄krec〉 mode.

measurement the atoms remain in the mJ =1 magnetic substate, and the presence of the
bias magnetic field applied by the nullerometer to set the quantisation axis for the Bragg
beams restricts the Penning ionisation rate.

After allowing the resultant cloud contained in this manner to re-equilibrate in the
dual beam trap over 100 ms once the final confinement geometry is reached, both trap-
ping beams were switched off to allow the ∼ 103 atoms to fall under gravity to be
measured on the delay-line detector below. Around 2 ms after the atoms are released,
the arbitrary waveform generator was triggered to output the train of RF pulses used
to drive the two AOMs, which applied the Bragg pulses to the atomic cloud. Before
attempting a full Mach-Zehnder interferometer, a single pulse gated by RF switches was
used to map out the Rabi flopping between the |p=0〉 and |h̄krec〉 momentum modes
as a function of pulse duration. The portion of the cloud occupying these two modes
was determined from counting the number of atoms measured in the two physically
separated pulses measured on the DLD.

The result of this measurement is shown in Fig. 7.9. A sinusoidal oscillation of the
occupation of the |0〉 momentum mode is clearly seen as the duration of the Bragg pulse
changes, which fits to a transfer efficiency of 94.8% and a π time of tπ =10.7 µs. Similar
results were obtained for a variety of Bragg laser powers and single photon detunings δ,
which resulted in the π time scaling accordingly. The optimal population transfer was
found to occur for a relative beam detuning of δ f =42 kHz, as expected from Eq. 7.8.

The full Mach-Zehnder interferometer can then be realised by applying the full se-
quence of three Bragg pulses to the atoms. In this case, it was found that halving the
intensity of the two Bragg beams to double the π time to ≈22 µs, achieved by altering
the RF power delivered to the AOMs, resulted in an increase in interference visibility.
Thus, a first 11 µs π/2 pulse, followed by a 30 µs flight time, then the π pulse, another
30 µs pause and then the final π/2 pulse results in the population transferring between
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Figure 7.10: Transfer of population for the three-pulse Mach-Zehnder interferometer
between the |0〉 and |h̄krec〉 momentum modes arriving on the detector at
10 ms and 19 ms respectively, as a function of the interferometer phase
φBS. Note that a small portion of the cloud undergoes multiple two-
photon scattering processes, or scatters in the opposite direction to the
majority of the atoms, and arrive with momentum |−h̄krec〉 at 1 ms or
|2h̄krec〉 at 28 ms.

the two momentum modes as shown in Fig. 7.10 for a sequence of different externally
applied phases φBS. As is also the case for the single-pulse Rabi flopping measurement,
the two pulses are separated on the DLD by around 1 cm in the x-y plane, causing
a small amount of overlap in that plane, but are also clearly distinguished by a 9 ms
separation in flight time, as expected from the recoil velocity of the two-photon scatter-
ing process. A very small portion of the cloud is seen to scatter into other momentum
modes such as |−h̄krec〉 and |2h̄krec〉, and these higher-order modes will be ignored for
the following experiments.

The result of mapping out the population transfer over a full range of external phases
is shown in Fig. 7.11. The expected form for this is |c0 (φBS)|2=0.5 sin (πφ − 0.5π) + 0.5,
due to the presence of a constant phase offset which is set to δT = 0.5π. A sinusoidal
fit to the population is in good agreement with the expected form at |c0 (φBS)|2 =

0.425 sin (0.954πφBS − 0.502π) + 0.510, and gives an interferometer contrast of 85%
which should be sufficient for realising Wheeler’s experiment. If the second π/2 pulse
used to recombine the two momentum modes is not present, the average population of
the |0〉 mode was found to be 0.491.

7.3.6 Discussion

Each of the controllable experimental parameters, such as the effective Rabi frequency
and time of flight before and between the Bragg pulses, were optimised to achieve the
best possible interferometer visibility. Allowing the atoms to expand for more than a
few milliseconds after trap switch-off severely diminished the transfer efficiency, as did
long times of flight between successive Bragg pulses. Higher Rabi frequencies resulting
in shorter π times generally gave better fringe contrast for the interferometer, at the cost
of a greater sensitivity to errors or drifts in the Bragg beams which result in greater
proportional errors in Ωeff. It was found that a single pulse Rabi flopping contrast
of 88% was obtained for tπ = 44 µs, compared to 93% for tπ = 25 µs and 98% for
tπ = 10 µs, where greater Fourier broadening for shorter pulses may have ensured that
a larger velocity range within the cloud is scattered, as the finite momentum width
of the cloud reduces the efficiency of Bragg scattering [303]. Also, a lower effective
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Figure 7.11: Population transfer for an interferometer with different externally-
applied phases φBS, derived from a sequence of measurements of the
type shown in Fig. 7.10. The experimental points fit to a sinusoidal
function |c0 (φBS)|2=0.425 sin (0.954πφBS − 0.5021π) + 0.510.

Rabi frequency and consequently larger π time is known to result in a reduction of
Bragg mirror fidelity [303]. The π time of 22 µs was chosen as the optimal compromise
between these competing factors. The two-photon detuning δ was chosen to be large at
16 GHz to reduce the sensitivity of Ωeff to long-term drifts in laser wavelength output,
in addition to reducing the spontaneous scattering rate.

The results obtained, particularly that shown in Fig. 7.11, indicate that the Bragg
interferometer should be capable of facilitating a measurement of Wheeler’s experiment
in its current configuration. On the time scale of this measurement of a few hours, the
effective Rabi frequency did not change significantly for the chosen experimental param-
eters, which is important considering that the true realisation of Wheeler’s experiment
will require several weeks of data acquisition. The value of |c0 (π/2)|2, which should
be 0.5, was measured to match this average value and fluctuate by less than 10% RMS
or about ±20% peak to peak over a 12 hour experimental run, where this measurement
was subject to an error of about 10% due to shot noise.

7.4 Wheeler’s delayed choice gedankenexperiment

7.4.1 Proposed experimental method

The basic premise of the full realisation of Wheeler’s experiment is to apply the full
Mach-Zehnder interferometer sequence of Bragg pulses to a single atom, where a deci-
sion of whether to switch the second π/2 pulse to recombine the two momentum modes
is made randomly after the first two Bragg pulses are applied. As it will take several
weeks to acquire enough data to fully map out the dependence of |c0|2 on φBS for single
atoms, we will begin by simply repeating the interferometry experiment described in the
previous section, but with the addition of a random delayed choice of the interferometer
configuration. This will allow us to assess the suitability of this proposed experimental
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method for attempting to realise the idealised version of Wheeler’s experiment.
As before, clouds of ∼103 atoms in the mJ = 1 state are released from the crossed

dipole trap, and the train of Bragg pulses is initiated 2 ms after trap switch-off. The ran-
dom choice of interferometer configuration is made 17 µs after the π pulse, by retrieving
a random bit from a commercially available id Quantique Quantis OEM quantum ran-
dom number generator6 (QRNG). This device produces a truly random stream of binary
digits as a NIM logic signal at an average bandwidth of 4 MHz. The random choice is
then obtained by triggering a digital latch to store the value of the NIM signal as a
TTL logic level. This TTL signal is used to set whether an RF switch in line with the
drive signal to the AOMs is to transmit the second π/2 Bragg pulse, which determines
whether the interferometer is in the open or closed configuration for each experimental
cycle. As the average period of the QRNG bit generation (250 ns), delay between the
latch being triggered and storing the random bit (50 ns), and rise time of the switch (6
ns) are all much shorter than the interval between the random choice and application
of the first (69 µs) or second (13 µs) π/2 pulses, the choice is both ‘delayed’ after and
relativistically separated from the first pulse, yet will be implemented well before the
second pulse.

The atoms are measured on the DLD as before, however the configuration of the
interferometer is also recorded by the delay-line electronics so that the result of the
random choice for each experimental iteration can be recovered. The TTL signal from
the digital latch is sent to a pulse generator, where a high level results in a sequence
of NIM pulses being registered on a channel of the time to digital converter not used
for the delay-line wires (see §3.3.3), while a low level does not generate such pulses.
Thus, during the data analysis process undertaken using the files written to our data
acquisition PC, the presence of these pulses identifies the interferometer configuration
for each shot.

The result of this delayed choice interferometer for clouds with a large number of
atoms is shown in Fig. 7.12. The experimental data for the interferometer in the closed
configuration fits to a sinusoidal form of |c0 (φBS)|2 = 0.332 sin (1.031πφ − 0.4500π) +

0.508, which is quite similar to the form seen in Fig. 7.11 as expected. In this case, the
fringe contrast is now 66.4%, where a reduction in contrast from the previous measure-
ment of 85% could be attributed to long-term drifts in the power and frequency of the
Bragg laser. When the second π/2 pulse is absent, a constant |c0 (φBS)|2 = 0.5 is ex-
pected, however a small yet systematic phase dependence is observed. This anomalous
effect could also be the result of changes in the Bragg beams which alter the π time, such
that the 22 µs pulse applied no longer acts as a perfect mirror, and similarly for the 11 µs
beamsplitting pulse. Other possible causes of this include leakage of RF signal through
the switch, or imperfect synchronisation between the RF signals for the two AOMs.

In any case, while this result does not perfectly match the form expected for when the
mixing π/2 pulse is not present, it still displays an unmistakable contrast between the
two interferometer configurations. We will therefore apply the same process to single
atoms in an attempt to realise Wheeler’s experiment. This is based on the aforemen-
tioned procedure for large clouds of mJ =1 atoms, however incorporates a spin-flipping
operation and subsequent holding of mJ = 0 atoms the trap for 20 seconds to attenuate
the cloud to a single atom, as described earlier in §7.2. The population of atoms in each

6Technical information about this device can be found at ❤tt♣✿✴✴✇✇✇✳✐❞q✉❛♥t✐q✉❡✳❝♦♠✴❝♦♠♣♦♥❡♥t✴

❝♦♥t❡♥t✴❛rt✐❝❧❡✳❤t♠❧❄✐❞❂✾.

http://www.idquantique.com/component/content/article.html?id=9
http://www.idquantique.com/component/content/article.html?id=9
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Figure 7.12: Delayed choice interferometer experiment with large atomic clouds. Red
circles are for the interferometer in the open configuration, the average
of which is 0.487. The blue squares are for a closed interferometer, which
fits to the form |c0 (φBS)|2=0.332 sin (1.031πφ − 0.4500π) + 0.508.

arm of the interferometer is measured by counting the atoms detected in a 2.4 mm by 2.4
mm window in the x-y plane, and a 6 ms interval around each momentum mode arriv-
ing on the DLD. From this, the average dark count rate is removed, which corresponds
to around 20% of the rate of genuine counts in that window.

The data taken by the time of writing, shown in Fig. 7.13, is clearly not a conclusive
result due to a considerable presence of both systematic and statistical errors. This ex-
periment was undertaken with a previous generation of our single-atom source, which
resulted in an average count rate of only 0.04 atoms per iteration with considerably
poorer long-term stability than the newer method described in §7.2.3. Each point on
the plot corresponds to data taken over the course of between one and two days, which
allows long-term drifts in the laser to accumulate and alter the interferometer perfor-
mance. Furthermore, the small number of counts and relatively large error due to dark
counts contribute to the large amount of scatter seen in the data, especially for the open
configuration. However, fits to the form of the data for the two interferometer configura-
tions are not inconsistent with those measured for the mJ = 1 atoms, which encourages
the notion that acquiring a larger data set after having further reduced drifts in the
Bragg beams and implementing the new optical trap setup may yet lead to a positive
result.

7.5 Summary and future directions

The results presented in this chapter indicate that a full realisation of Wheeler’s famous
gedankenexperiment should soon be possible. While this experiment is currently being
undertaken, there are some technical problems currently being addressed which should
improve the measurement presented in Fig. 7.13. The stability of the dipole traps has
recently been optimised by replacing the AOM units, while further improvements to
stabilise the power and frequency of the Bragg laser are also being considered, including
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Figure 7.13: Preliminary data for Wheeler’s delayed choice gedankenexperiment. Red
circles for the open interferometer configuration have an average value
of 0.5436, while the blue squares for closed interferometers fit to the
form |c0 (φBS)|2 = 0.325 sin (0.972πφ − 0.501π) + 0.576. The error bars
correspond to shot noise.

the addition of noise-eaters to stabilise the beam power, and an increase in the detuning
of the beams. Another substantial improvement to this experiment would be to replace
the use of the Agilent arbitrary wavefunction generator with a low-noise direct digital
synthesis (DDS) signal generator. This allows analogue sinusoidal waveforms to be
generated from digital signals which are programmed on a PC or field-programmable
gate array, with fast phase and frequency switching at high resolution and with low
noise. The RF source for each of the two AOMs can be synchronised to the same master
clock to ensure a well-controlled relative phase relationship.

At the time of writing, a dual channel Analog Devices AD9910 DDS setup is being
prepared to provide the three RF Bragg pulses. While the sample rate of 1 GSa/s is
not an improvement over the Agilent function generator, the jitter specifications for the
DDS are considerably better than those quoted for the Agilent device of 1 ns peak-to-
peak, which is ∼10% of the RF period. Good quality reference clocks, from which the
analogue signal are produced, typically have RMS jitter of less than 35 ps over long-term
usage7. While other sources of jitter such as truncation due to the finite word size of
the digital signal and a lack of signal oversampling with respect to the master clock can
also be introduced, similar setups have achieved phase stability of less than 400 ps jitter
between the two channels [312], which is ideal for interferometry applications. Further
improvements could conceivably be achieved with a more thorough filtering of the RF
signal to remove spurious frequency components, however the AOMs themselves act as
narrow-band filters which isolate the desired driving frequency.

In conclusion, this proposed method strives towards the goal of observing exciting
new phenomena with massive particles, and shows that the capabilities of experiments
in quantum atom optics are quickly catching up to their photonic counterparts. This

7See ❤tt♣✿✴✴✇✇✇✳❛♥❛❧♦❣✳❝♦♠✴❧✐❜r❛r②✴❛♥❛❧♦❣❉✐❛❧♦❣✉❡✴❛r❝❤✐✈❡s✴✸✽✲✵✽✴❞❞s✳♣❞❢ for general infor-
mation about direct digital synthesisers.

http://www.analog.com/library/analogDialogue/archives/38-08/dds.pdf
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also gives the opportunity to explore and exploit the unique features of atomic species
when undertaking fundamental tests of quantum mechanics, and to confirm the appli-
cability of key quantum concepts to particles with mass and internal structure. Once
this experiment has been completed8, novel extensions such as quantum eraser schemes
could be considered, which further widens the scope of matter-wave experiments, and
may provide insights into the possibility of other long sought after experiments such as
tests of Bell’s inequality with massive particles.

8In the months following the submission of this thesis, work continued on this experiment which im-
proved the stability of the single-atom source considerably and allowed a data set to be collected which
conclusively demonstrated the anticipated result of Wheeler’s experiment, consistent with the conclusions
suggested by the data shown in Fig. 7.13. The results of this are contained in an article currently under
review.



Chapter 8

Conclusion

The field of quantum atom optics has progressed rapidly since the first experimental
realisation of Bose-Einstein condensation in a dilute atomic gas, such that it is now
catching up to the state-of-the-art of quantum optics experiments with light. Recent
experiments have not only sought to demonstrate that the same quantum-mechanical
processes which occur for photons are also applicable to quantum gases, but have also
broken new ground to incorporate rather than ignore the internal structure and external
interactions unique to atomic samples. While the intrinsic difficulty of the manipulation
and detection of atomic clouds can be challenging, especially considering the relative
simplicity and maturity of similar experiments with light, it provides the opportunity
to investigate a rich variety of novel phenomena for massive particles. Therefore, the
development of techniques to improve our ability to perform fundamental tests of quan-
tum mechanics with atomic gases, and the subsequent application of these techniques
to investigate new systems, have been the two main objectives of this thesis.

8.1 Summary of the work presented in this thesis

The results presented in this thesis clearly highlight the unique advantages of our use
of ultracold metastable helium to investigate different aspects of quantum atom optics.
In particular, much of the experimental apparatus was designed specifically to enable
novel correlation measurements to be performed, where the stability and flexibility of
the trap configuration, the detector setup, and the large time of flight between trap
and detector result in high signal-to-noise correlation measurements with single atom
counting. This allowed the variety of experiments detailed in Chapter 4 to be performed
which investigate fundamental properties of quantum correlations in ultracold Bose
gases. The coherence of a pulsed atom laser was compared to that of a truly thermal
atomic source for the first time, and it was found that outcoupling atoms from a Bose-
Einstein condensate with RF radiation does not result in the loss of coherence for such
a source. Using this pulsed RF method, long-range temporal third-order correlations
were measured in an atomic sample, which demonstrated that the bunching observed
for thermal atoms is consistent with Wick’s theorem, while condensates were confirmed
to be coherent to third order.

Another experiment measured significantly improved second- and third-order
bunching contrast by cooling thermal clouds to an order of magnitude colder temper-
ature than our previous experiments, resulting in a correlation length which exceeded
the spatial resolution of the detector and thus enabled bunching to be measured in the
spatial plane of the detector. Finally, loading atoms into an optical dipole trap allowed
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us to create an atomic source with a correlation length which exceeded the radial size
of the cloud, such that axial correlations from second- to sixth-order could be measured
for the first time, and with nearly perfect contrast. These studies have provided the
most rigorous test yet to confirm the suitability of Glauber’s theory of quantum co-
herence for atomic gases, and the applicability of Wick’s theorem to such correlation
function measurements. Furthermore, correlation measurements were used in Chapter
5 to show that this elongated system had undergone the degeneracy-driven transition
to transverse condensation, where the population of the transverse ground state of the
system was saturated, while the cloud remained incoherent in the longitudinal axis with
a behaviour in the broad crossover between the ideal Bose gas and weakly-interacting
quasicondensate regimes.

External potentials can be applied to quantum gases to facilitate macroscopic imag-
ing of matter-wave interference. The modal structure of an optical waveguide was in-
vestigated in Chapter 6, both via direct imaging of the longitudinal density profile of the
guided atomic source, and with the measurement of Hanbury Brown-Twiss bunching
which is directly related to the macroscopically-visible speckle pattern observed in the
gas. The average modal occupancy, as well as the most predominantly occupied mode
of the waveguide, can be manipulated by precisely controlling the depth of our optical
dipole trap. This allowed us to demonstrate that sources occupying a large number of
modes result in a poorly resolved bunching signal which improves as a result of bet-
ter energy selectivity with a smaller but still multimode occupation, while single-mode
guided atom lasers were found to be coherent.

A full realisation of Wheeler’s delayed choice gedankenexperiment should soon be
possible with the procedure described in Chapter 7. The individual steps of the experi-
ment such as the single atom source and Bragg interferometer have been developed, and
preliminary measurements for the complete experiment indicate that a conclusive result
should be obtained once a few technical problems are solved. A successful realisation of
this experiment would be an important result in quantum atom optics, and would add
further evidence to support the assertion that our current understanding of quantum
phenomena such as complementarity is correct.

8.2 Future directions

The experiments described in this thesis have developed new techniques which allow
ultracold gases to be manipulated and probed, and many of the procedures could be
extended to explore new phenomena, in addition to the completion of several as-yet in-
complete investigations. It would be interesting to further pursue the aim of extracting
the Wigner function from the diffraction pattern produced by our atom laser, and ex-
tend this to a study of quantum state tomography. Correlated pair production by atomic
four-wave mixing could lead to the observation of a rich variety of different phenom-
ena, and would enable quantum atom optical analogues of quantum optics experiments
which rely on pairs of photons produced by parametric down-conversion. The flexibil-
ity in trap geometries for optical dipole potentials, in addition to the freedom to apply
either Bragg or Raman scattering to the quantum gas, could be pivotal to some of the
experiments discussed below.

Further work to solve technical issues with our experimental setup should first be
undertaken to strive towards completion of Wheeler’s experiment. In particular, the
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performance of the single atom source should be improved, which could be achieved by
reducing trap instability, while an increase to the quantum efficiency of the delay-line
detector may be possible by fine-tuning the detector electronics and MCP gain. Produc-
ing a reliable single-atom source could enable other investigations, such as an accurate
measurement of the quantum efficiency of our different single-atom detectors, or even a
single-atom realisation of Young’s experiment. Furthermore, reducing long-term drifts
and short-term instability in the Bragg interferometer will improve the interference vis-
ibility of the ‘closed’ configuration of the experimental setup. By addressing these con-
siderations, not only could the Wheeler experiment be completed1, but other similar
experiments could be considered.

Among the potential novel investigations which could naturally follow from the
setup for the Wheeler experiment would be an observation of the Hong-Ou-Mandel
effect [33] with an atomic source. This effect describes the phenomena where pairs of
indistinguishable and strongly correlated particles enter a 50:50 beamsplitter, such that
when one particle is incident on each port of the beamsplitter, both particles always
exit from the same port, despite each particle individually having a 50% probability of
exiting via either port. While parametric down-conversion is used to produce a source
of correlated photon pairs, and analogous effect can be achieved for ultracold atoms
with four-wave mixing collisions, which can be induced by Bragg scattering [313]. In
the spontaneous regime, an s-wave scattering halo of correlated atom pairs is produced,
which can be mirrored and recombined with further Bragg pulses. Cross correlations
between opposite momentum modes should reveal a reduced likelihood of one particle
exiting each port in accordance with the Hong-Ou-Mandel effect.

Quantum entanglement is a fascinating non-classical result of quantum theory which
has stimulated a considerable amount of theoretical and experimental work. Recently,
several experiments have tested Bell’s theorem for photons while closing each of the
so-called ‘loopholes’ such as fair sampling and local communication in different ex-
perimental realisations, although no single experiment was able to close each loophole
simultaneously [314]. One of the long-standing objectives of quantum atom optics is
to confirm that macroscopic entanglement can be observed with massive particles. To
date, several of the pre-requisites of a quantitative test of Bell’s theorem have been
satisfied, where sub-Poissonian statistics [225], spin squeezing [315] and inseparable
quantum states [315, 316] have been demonstrated. However, tests of the EPR entan-
glement criterion, which can be defined for imperfectly entangled systems [317], and
Bell’s inequality are yet to be conclusive. Furthermore, other avenues to tests of macro-
scopic or mesoscopic quantum behaviour for ultracold gases are being developed, such
as the investigation of Leggett-Garg inequalities [318] and weak quantum measurements
[319, 320].

Extensions of the Hong-Ou-Mandel effect in principle allow tests of Bell’s inequal-
ity to be performed [321], while Rarity and Tapster proposed a related scheme to test
Bell’s inequality by measuring phase and momentum [83] as opposed to the majority of
experiments which measure spin quadratures. In the Rarity and Tapster scheme, coinci-
dences between pairs of photons created by parametric down-conversion are measured
as a function of an externally applied phase to one arm of the interferometer which
allows a violation of the CHSH inequality [322], which is suitable for a test of Bell’s the-

1Further work conducted after the submission of this thesis by the ANU group has addressed these
issues and allowed this experiment to be completed.
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orem, to be observed. An atomic analogue of the Rarity and Tapster scheme has been
devised for atoms [214], in which four-wave mixing provides the correlated atom pairs,
and Bragg scattering applies the required mirror and beamsplitter operations as with
the Wheeler and Hong-Ou-Mandel experiments. The controllable external phase dif-
ference between the arms of the interferometer can be applied by a variety of methods,
such as the application of a red- or blue-detuned dipole potential, or possibly a magnetic
field gradient. An appealing aspect of this proposed method is that the measurement of
cross correlations is not limited by detection efficiency, making this experiment suitable
for our metastable helium apparatus despite the relatively low quantum efficiency of
our detectors which prevents us from implementing other procedures subject to the fair
sampling loophole [313].

Several other pathways towards testing Bell’s theorem with ultracold gases have been
proposed which may also be suitable for our apparatus. Entanglement can be generated
by four-wave mixing [323, 324] or other short-range state-dependent interactions [325]
in a periodic potential, or by superradiant scattering [326]. Theoretical studies have
also investigated the possibility of detecting continuous-variable entanglement with-
out the need for a coherent local oscillator [327], which can be a severe limitation for
atomic experiments as a coherent BEC would inevitably subject to interactions and con-
sequently a relatively short dephasing time. Another class of experiments which may
allow entanglement to be investigated with ultracold gases is ghost imaging [328, 329],
where images can be extracted from one arm of an interferometer, despite the object
to be imaged being present in a different arm. Ghost imaging is intricately linked to
the Hanbury-Brown Twiss effect [330], where correlations between the signal and idler
arms of the interferometer are used to extract an image of the object, and entanglement
between particles in the two arms can be probed by an EPR condition on the spread
in position and momentum for the image produced [331]. Interestingly, higher-order
correlations for incoherent sources can also improve the visibility of ghost imaging [84].

Ghost imaging is also possible for ultracold atoms, however the trap geometry,
atomic spin state, number and correlation length of atoms in the cloud and outcoupling
procedure must be carefully controlled to optimise the imaging resolution. Also, some
form of magnetic or optical lensing must be implemented to create images in either
real or momentum space without introducing distortion or aberrations. Ghost imag-
ing with momentum-entangled atoms created via four-wave mixing in a Bose-Einstein
condensate has been explored theoretically in Ref. [332], which shows that a test of
entanglement is possible for such a procedure despite challenges such as pair identifi-
cation and limited detector resolution. However, each of these experiments appear to be
more technically difficult to implement and more dependent on detector performance
than the Rarity and Tapster method, which suggests that the latter may be most suitable
for our experimental setup.

Aside from investigations of quantum entanglement, a considerable range of other
topics may possibly be investigated with ultracold metastable helium. Our dual-
beam dipole trap may be suitable for forming a controllable two-dimensional poten-
tial, and gases of such dimensionality display a rich variety of novel behaviour, such
as the proliferation [138] and pairing [333] of vortices. The onset of the Berezin-
skii–Kosterlitz–Thouless (BKT) transition [136, 137] can also be identified with a change
in the correlation length of a 2D gas. Other phenomena such as quantum turbulence
and vortex tangling [334], the transfer of energy between different length scales via the
Kolmogorov spectrum [335], and probing analogues of Hawking radiation by nonlocal
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density correlations in a BEC [336] could be investigated with ultracold gases.
The formation of a condensate from a thermal gas could also be probed, where a di-

rect comparison of the portion of the cloud with suppressed density fluctuations (that is,
the (quasi)condensate fraction) with a measurement of Hanbury Brown-Twiss bunching
could be made. This would also shed light on the nature of this phase transition, as to
whether the growth of the condensate occurs by nucleation or the coalescence of mul-
tiple quasicondensates via the Kibble-Zurek mechanism to establish long-range order.
Initial experimental studies of this with our system described in Ref. [270] were not able
to accurately map the change in coherence across the phase transition, due to imperfect
trap stability which distorted the correlation functions measured, while computational
modelling by a stochastic projected GPE c-field method [337] did not expect a delay
between the suppression of density fluctuations and the onset of long-range order to be
observed. However, inducing a phase transition for a small number of atoms in a highly
stable and symmetric dual-beam dipole trap may be able to test this conclusively, by
slowing the condensate growth rate and eliminating the effect of an elongated trap ge-
ometry. Similarly, investigating the critical behaviour of this phase transition by probing
the length scale over which fluctuations occur could also allow the real-time formation
of long-range order to be observed [132].

By developing techniques to create, manipulate and characterise ultracold gases
in a variety of trapping geometries which display macroscopic wave interference, the
work described in this thesis will hopefully enable the aforementioned experiments to
be undertaken, in addition to other novel experiments which broaden the horizons of
quantum atom optics. In particular, the use of metastable helium will be especially ad-
vantageous for the measurement of high-contrast quantum correlation functions which
are key to several of the proposed investigations. These studies are important to not
only confirm that ultracold gases behaves according to our understanding of quantum
mechanics, but to also strive towards the realisation of quantum simulators and the
development of exciting new technologies such as atomtronics.
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Appendix

A.1 Wick’s theorem

A derivation of the generalised Wick’s theorem for boson operators [338] will be given
here, as a precursor to the decomposition of higher-order correlation functions in terms
of first-order functions. Wick’s theorem [77] was originally derived to simplify the calcu-
lation of transition probabilities using the S-matrices developed by Feynman [339] and
Dyson [340] to describe the scattering of positrons. This theorem essentially amounts to
the ability to simplify 2n-point correlation functions as a sum of all possible products
of irreducible two-point moments of the distribution. It was later found to be useful
for a wide range of applications in quantum field theory, where it can be applied to
simplify either path integrals of Gaussian functions, or products of boson or fermion
operators [341]. As such, it can be arrived at by a number of different approaches, in-
cluding the successive differentiation of integrals of Gaussian probability distributions
[342]. However, here we will summarise the approach of Gaudin [338, 343] to simplify
higher-order correlation functions for thermal averages of boson operators, which is of
particular relevance to the experiments described in Chapter 4 of this thesis.

If we have bosonic creation or annihilation operators Ψ̂1, Ψ̂2, . . . which correspond
to the states of a harmonic oscillator with a Hamiltonian H0 = ∑j h̄ωj â

†
j âj, the density

operator for a Boltzmann distribution at thermal equilibrium at temperature T is

ρ̂ =
e−H0/kBT

tr {e−H0/kBT} , (A.1)

where tr
{

Ô
}

denotes the trace of the operator Ô. We will use the following theorem
(Thm. 9, §3.3 [343]) which states that for a thermal average 〈. . .〉0 of any function f

(

â, â†
)

of creation and annihilation operators â† and â, we can write
〈

f
(

â, â†
)〉

0
≡
(

1 − e−λ
)

tr
{

f
(

â, â†
)

e−λâ† â
}

, (A.2)

where λ is a parameter and the average number of bosons is n̄=
(

eλ − 1
)−1

. Applying
this to Eq. A.1 gives

〈ρ̂〉0 = ∏
j

(

1 − e−λj

)

e−λj â
†
j âj , λj =

h̄ωj

kBT
. (A.3)

To simplify the thermal average of a product of boson operators, we first note that

〈

Ψ̂1Ψ̂2 . . . Ψ̂2n

〉

0 ≡ tr
{

Ψ̂1Ψ̂2 . . . Ψ̂2ne−H0/kBT
}

tr {e−H0/kBT} . (A.4)

where we recall that
〈

Ô
〉

= tr
{

ρ̂Ô
}

and that the trace of a trace is equivalent to a trace.
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For the n=1 case, we first want to show that

〈

Ψ̂1Ψ̂2
〉

0 ≡ tr
{

Ψ̂1Ψ̂2e−H0/kBT
}

tr {e−H0/kBT} =

[

Ψ̂1, Ψ̂2
]

1 − e±λj
. (A.5)

For bosonic operators with [âi, â†
j ]= δij, the only non-zero combinations for the terms in

Eq. A.5 will be if Ψ̂1 = âj and Ψ̂2 = â†
j , or Ψ̂1 = â†

j and Ψ̂2 = âj, as
〈

Ψ̂1Ψ̂2
〉

0 = 0 if Ψ̂1 and

Ψ̂2 are both annihilation or creation operators, or if they are for different modes in the
field.

If we take Ψ̂1= â†
j and Ψ̂2= âj, then

〈

â†
j âj

〉

0
= n̄ =

1
eλj − 1

=

[

â†
j , âj

]

1 − eλj
. (A.6)

Otherwise, if Ψ̂1= âj and Ψ̂2= â†
j , then

〈

âj â
†
j

〉

0
= 1 +

〈

â†
j âj

〉

0
=

eλj − 1 + 1
eλj − 1

=
1

1 − e−λj
=

[

âj, â†
j

]

1 − e−λj
. (A.7)

So, in general we can write this in the compact form

〈

Ψ̂1Ψ̂2
〉

0 =

[

Ψ̂1, Ψ̂2
]

1 − e±λj
,

{

+λj for Ψ̂1 = â†
j

−λj for Ψ̂1 = âj

. (A.8)

Moving on to the n = 2 case, and recalling that for non-commuting operators
[u, vw]= [u, v]w + v [u, w] and thus

[

Ψ̂1, Ψ̂2Ψ̂3Ψ̂4
]

= Ψ̂1Ψ̂2Ψ̂3Ψ̂4 − Ψ̂2Ψ̂3Ψ̂4Ψ̂1, (A.9)

we want to evaluate

〈

Ψ̂2Ψ̂3Ψ̂4Ψ̂1
〉

0 =
tr
{

Ψ̂2Ψ̂3Ψ̂4Ψ̂1e−H0/kBT
}

tr {e−H0/kBT} ,

=
tr
{

Ψ̂2Ψ̂3Ψ̂4e−H0/kBTeH0/kBTΨ̂1e−H0/kBT
}

tr {e−H0/kBT} . (A.10)

Using Thm. 5 from §3.3 of Ref. [343], we have

eλâ† â â†e−λâ† â = eλ â†, (A.11)

e−λâ† â âe−λâ† â = e−λ â, (A.12)

and thus

eH0/kBTΨ̂1e−H0/kBT = Ψ̂1e±λj ,

{

+λj for Ψ̂1 = â†
j

−λj for Ψ̂1 = âj

. (A.13)
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Applying Eq. A.13 to Eq. A.10 gives

〈

Ψ̂2Ψ̂3Ψ̂4Ψ̂1
〉

0 =
tr
{

Ψ̂2Ψ̂3Ψ̂4e−H0/kBTΨ̂1
}

e±λj

tr {e−H0/kBT} ,

=
tr
{

Ψ̂1Ψ̂2Ψ̂3Ψ̂4e−H0/kBT
}

e±λj

tr {e−H0/kBT} , (cyclic trace)

= e±λj
〈

Ψ̂1Ψ̂2Ψ̂3Ψ̂4
〉

0 . (A.14)

Finding the thermal average of Eq. A.9 given the result of Eq. A.14 allows us to simplify
the n=2 case to

〈[

Ψ̂1, Ψ̂2Ψ̂3Ψ̂4
]〉

0 =
〈

Ψ̂1Ψ̂2Ψ̂3Ψ̂4
〉

0 −
〈

Ψ̂2Ψ̂3Ψ̂4Ψ̂1
〉

0 ,

∴
(

1 − e±λj

)

〈

Ψ̂1Ψ̂2Ψ̂3Ψ̂4
〉

0 =
〈[

Ψ̂1, Ψ̂2
]

Ψ̂3Ψ̂4 +
[

Ψ̂1, Ψ̂3
]

Ψ̂2Ψ̂4 +
[

Ψ̂1, Ψ̂4
]

Ψ̂2Ψ̂3
〉

0 ,

∴
〈

Ψ̂1Ψ̂2Ψ̂3Ψ̂4
〉

0 =
1

1 − e±λj

{

[
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Ψ̂3Ψ̂4
〉

0

+
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] 〈

Ψ̂2Ψ̂4
〉

0 +
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Ψ̂1, Ψ̂4
] 〈

Ψ̂2Ψ̂3
〉

0

}

. (A.15)

Plugging in the result of Eq. A.8 then simplifies this to the desired form

〈

Ψ̂1Ψ̂2Ψ̂3Ψ̂4
〉

0 =
〈

Ψ̂1Ψ̂2
〉

0

〈

Ψ̂3Ψ̂4
〉

0 +
〈

Ψ̂1Ψ̂3
〉

0

〈

Ψ̂2Ψ̂4
〉

0 +
〈

Ψ̂1Ψ̂4
〉

0

〈

Ψ̂2Ψ̂3
〉

0 . (A.16)

This process can be reapplied repeatedly to decompose higher-order correlation func-
tions, which take the general form

〈

Ψ̂1 . . . Ψ̂2n

〉

0 =
〈

Ψ̂1Ψ̂2
〉

0

〈

Ψ̂3Ψ̂4
〉

0 . . .
〈

Ψ̂2n−1Ψ̂2n

〉

0 + permutations. (A.17)

A.2 Decomposition of higher-order correlation functions using

Wick’s theorem

We can now apply Wick’s theorem to the quantum correlation functions defined by
Glauber which were discussed in §2.1.1. Following from the theory for Bose gases in
Ref. [186], we can consider operators of the form

Ψ̂†(r) = ∑
j

ψ∗
j (r)â†

j , (A.18)

where â†
j creates particle in state |ψj〉, and thus Ψ̂†(r) creates a particle at position r.

The Hermitian conjugates of these quantities correspond to annihilation operations. We
wish to decompose correlation functions related to the type defined in Eq. 2.17, which
for first- through third-orders are

G(1)(r1, r2) =
〈

Ψ̂†(r1)Ψ̂(r2)
〉

, (A.19)

G
(2)
dens(r1, r2) =

〈

Ψ̂†(r1)Ψ̂(r1)Ψ̂
†(r2)Ψ̂(r2)

〉

, (A.20)

G
(3)
dens(r1, r2, r3) =

〈

Ψ̂†(r1)Ψ̂(r1)Ψ̂
†(r2)Ψ̂(r2)Ψ̂

†(r3)Ψ̂(r3)
〉

, (A.21)
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and so on for higher orders. The density of the atomic cloud is given by ρ(r) =
〈

Ψ̂†(r)Ψ̂(r)
〉

. Note, however, that these are not strictly equivalent to Glauber’s defi-
nition in Eq. 2.17, as the operators are not normally ordered2, but represent the density
correlations for n ≥ 2 which are explicitly measured in our experimental data, as is
demonstrated in Eq. 2.22.

A.2.1 Second-order density correlation function

First, we will consider how the second-order density correlation function can be ex-
pressed in terms of G(1)(r1, r2). Writing the first two functions out in full, we have

G(1)(r1, r2) =

〈(

∑
j

ψ∗
j (r1)â†

j

)(

∑
k

ψk(r2)âk

)〉

,

= ∑
j,k

ψ∗
j (r1)ψk(r2)

〈

â†
j âk

〉

, (A.22)

G
(2)
dens(r1, r2) = ∑

i,j,k,l
ψ∗

i (r1)ψj(r2)ψ
∗
k (r1)ψl(r2)

〈

â†
i âj â

†
k âl

〉

. (A.23)

As the wavefunctions ψj(r) are simply scalar functions, we will concentrate on the boson
operators âj and â†

j , which obey the usual commutation relationships [â†
i , â†

j ]= [âi, âj] = 0
and [âi, â†

j ] = δij. Applying Wick’s theorem (Eq. A.16) to the correlation function of the
boson operators results in

〈

â†
i âj â

†
k âl

〉

=
〈

â†
i

(

â†
k âj + δjk

)

âl

〉

,

=
〈

â†
i â†

k âj âl

〉

+ δjk

〈

â†
i âl

〉

,

(using Wick’s theorem) =
✘

✘
✘
✘
✘
✘
✘✿0〈

â†
i â†

k

〉

〈

âj âl

〉

+
〈

â†
i âj

〉 〈

â†
k âl

〉

+
〈

â†
i âl

〉 〈

â†
k âj

〉

+ δjk

〈

â†
i âl

〉

,

(keep pairs with same index) = δij

〈

â†
i âj

〉

δkl

〈

â†
k âl

〉

+ δil

〈

â†
i âl

〉

δkj

〈

â†
k âj

〉

+ δjk

〈

â†
i âl

〉

,

=
〈

â†
i âi

〉 〈

â†
k âk

〉

(

δijδkl + δilδkj

)

+ δjkδil

〈

â†
i âi

〉

. (A.24)

Thus, the full form for the second-order density correlation function is

G
(2)
dens(r1, r2) = ∑

i,j,k,l
ψ∗

i (r1)ψj(r2)ψ
∗
k (r1)ψml(r2)

(〈

â†
i âi

〉 〈

â†
k âk

〉

(

δijδkl + δilδkj

)

+ δjkδil

〈

â†
i âi

〉)

,

= ∑
i,k

ψ∗
i (r1)ψ∗

k (r2)
〈

â†
i âi

〉 [

ψi (r1)ψk (r2)
〈

â†
k âk

〉

+ ψk (r1)ψi (r2)
〈

â†
k âk

〉

+ ψk (r1)ψi (r2)
]

,

= G(1)(r1, r1)G
(1)(r2, r2) + G(1)(r1, r2)G

(1)(r2, r1) + G(1)(r1, r2)∑
k

ψ∗
k (r2)ψk(r1),

=ρ (r1) ρ (r2) +
∣

∣

∣
G(1)(r1, r2)

∣

∣

∣

2
+
✘

✘
✘

✘
✘

✘
✘
✘✘✿

0
ρ (r1) δ (r1 − r2), (A.25)

where we use the fact that G(1)(r1, r2) = G(1)(r2, r1)
∗. Also, the last ‘shot noise’ term

is insignificant compared to the other terms for a high temperature thermal distribu-
tion [186], and consequently G

(2)
dens(r1, r2) = G(2)(r1, r2) in this limit. This can then be

2This requires all the creation operators to be ordered to the left of all the annihilation operators.
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normalised to

g(2)(r1, r2) =
G(2)(r1, r2)

ρ (r1) ρ (r2)
= 1 +

∣

∣

∣
G(1)(r1, r2)

∣

∣

∣

2

ρ (r1) ρ (r2)
, (A.26)

which is the form quoted in Eq. 2.23.

It can be shown, however, that the ‘shot noise’ term does become important if T∼Tc,
where a significant occupation of the ground state such that ρ (r)→ρ0 (r) leads to [186]

G(2)(r1, r2) = ρ (r1) ρ (r2) +
∣

∣

∣
G(1)(r1, r2)

∣

∣

∣

2
− ρ0 (r1) ρ0 (r2) ,

g(2)(r1, r2) = 1 +

∣

∣

∣
G(1)(r1, r2)

∣

∣

∣

2

ρ0 (r1) ρ0 (r2)
− ρ0 (r1) ρ0 (r2)

ρ0 (r1) ρ0 (r2)
= 1. (A.27)

This is the familiar result for Bose-Einstein condensates that g(n)(r1, . . . , rn) = 1 for a
coherent state.

A.2.2 Third-order density correlation function

We can now extend this to the third-order correlation function

G
(3)
dens(r1, r2, r3) = ∑

i,j,k,l,m,p
ψ∗

i (r1)ψj(r1)ψ
∗
k (r2)ψl(r2)ψ

∗
m(r3)ψp(r3)

〈

â†
i âj â

†
k âl â

†
m âp

〉

. (A.28)

As before, we can rearrange the bosonic operators

〈

â†
i âj â

†
k âl â

†
m âp

〉

=
〈

â†
i

(

â†
k âj + δjk

) (

â†
m âl + δml

)

âp

〉

,

=
〈

â†
i â†

k

(

â†
m âj + δjm

)

âl âp

〉

+ δlm

〈

â†
i â†

k âj âp

〉

+ δjk

〈

â†
i â†

m âl âp

〉

+ δjkδlm

〈

â†
i âp

〉

,

=
〈

â†
i â†

k â†
m âj âl âp

〉

+ δjm

〈

â†
i â†

k âl âp

〉

+ δlm

〈

â†
i â†

k âj âp

〉

+ δjk

〈

â†
i â†

m âl âp

〉

+ δjkδlm

〈

â†
i âp

〉

. (A.29)

Applying Wick’s theorem,

〈

â†
i âj â

†
k âl â

†
m âp

〉

=
〈

â†
i âj

〉 (〈

â†
k âl

〉 〈

â†
m âp

〉

+
〈

â†
k âp

〉 〈

â†
m âl

〉)

+
〈

â†
i âl

〉 (〈

â†
k âj

〉 〈

â†
m âp

〉

+
〈

â†
k âp

〉 〈

â†
m âj

〉)

+
〈

â†
i âp

〉 (〈

â†
k âj

〉 〈

â†
m âl

〉

+
〈

â†
k âl

〉 〈

â†
m âj

〉)

+ δjm

(〈

â†
i âl

〉 〈

â†
k âp

〉

+
〈

â†
i âp

〉 〈

â†
k âl

〉)

+ δlm

(〈

â†
i âj

〉 〈

â†
k âp

〉

+
〈

â†
i âp

〉 〈

â†
k âl

〉)

+ δjk

(〈

â†
i âl

〉 〈

â†
m âp

〉

+
〈

â†
i âp

〉 〈

â†
m âl

〉)

+ δjkδlm

〈

â†
i âp

〉

, (A.30)

From here, we can recognise that terms of the form
〈

â†
i âj

〉

= δij

〈

â†
i âi

〉

, and we can
throw away any terms which do not contain the product of three first-order moments
(i.e. retain only the first two lines of Eq. A.30) which is again equivalent to equating
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〈

â†
i âj â

†
k âl â

†
m âp

〉

=
〈

â†
i â†

k â†
m âj âl âp

〉

, to arrive at

G(3)(r1, r2, r3) = G(1) (r1, r1) G(1) (r2, r2) G(1) (r3, r3) + G(1) (r1, r1) G(1) (r2, r3) G(1) (r3, r2)

+ G(1) (r1, r2) G(1) (r2, r1) G(1) (r3, r3) + G(1) (r2, r1) G(1) (r2, r3) G(1) (r3, r1)

+ G(1) (r1, r3) G(1) (r2, r1) G(1) (r3, r2) + G(1) (r1, r3) G(1) (r2, r2) G(1) (r3, r1) ,

= ρ (r1) ρ (r2) ρ (r3) + ρ (r1)
∣

∣

∣
G(1) (r2, r3)

∣

∣

∣

2
+ ρ (r3)

∣

∣

∣
G(1) (r1, r2)

∣

∣

∣

2
+ ρ (r2)

∣

∣

∣
G(1) (r1, r3)

∣

∣

∣

2

+ G(1) (r1, r3) G(1) (r2, r1) G(1) (r3, r2) + G(1) (r2, r1) G(1) (r2, r3) G(1) (r3, r1) .
(A.31)

This normalises to the form given in Eq. 2.24, which is

g(3)(r1, r2, r3) = 1 +

∣

∣

∣
G(1) (r2, r3)

∣

∣

∣

2

ρ (r2) ρ (r3)
+

∣

∣

∣
G(1) (r1, r3)

∣

∣

∣

2

ρ (r1) ρ (r3)
+

∣

∣

∣
G(1) (r1, r2)

∣

∣

∣

2

ρ (r1) ρ (r2)

+
2ℜ
{

G(1) (r1, r3) G(1) (r2, r1) G(1) (r3, r2)
}

ρ (r1) ρ (r2) ρ (r3)
. (A.32)

The maximum value of this function is g(3)(0, 0, 0) = 6, which is consistent with
g(n)(0, . . . , 0)= n! as expected. Finally, we can write this in terms of second- and third-
order terms only, as is investigated in §4.4, which results in

g(3)(r1, r2, r3) =
2ℜ
{

G(1) (r1, r3) G(1) (r2, r1) G(1) (r3, r2)
}

ρ (r1) ρ (r2) ρ (r3)

+ g(2)(r1, r2) + g(2)(r1, r3) + g(2)(r2, r3)− 2. (A.33)

A.2.3 Fourth-order density correlation function

Applying this same procedure to the fourth-order correlation function gives

g(4) (r1, r2, r3, r4) = 1

+
6 terms

∑
i<j

∣

∣

∣
G(1)

(

ri, rj

)

∣

∣

∣

2

ρ (ri) ρ
(

rj

) ,

+
3 terms

∑
i<j,l<m

∣

∣

∣
G(1)

(

ri, rj

)

G(1) (rl , rm)
∣

∣

∣

2

ρ (ri) ρ
(

rj

)

ρ (rl) ρ (rm)
,

+
4 terms

∑
i 6=j 6=l

2ℜ
{

G(1)
(

ri, rj

)

G(1)
(

rj, rl

)

G(1) (rl , ri)
}

ρ (ri) ρ
(

rj

)

ρ (rl)
,

+
6 terms

∑
i 6=j 6=l 6=m

G(1)
(

ri, rj

)

G(1)
(

rj, rl

)

G(1) (rl , rm) G(1) (rm, ri)

ρ (ri) ρ
(

rj

)

ρ (rl) ρ (rm)
. (A.34)
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Note that g(4) (0, 0, 0, 0) = 24 = 4! is again satisfied. This can be rewritten in a form
suitable for density correlation measurements as

g(4) (r1, r2, r3, r4) =
6 terms

∑
i 6=j 6=l 6=m

G(1)
(

ri, rj

)

G(1)
(

rj, rl

)

G(1) (rl , rm) G(1) (rm, ri)

ρ (ri) ρ
(

rj

)

ρ (rl) ρ (rm)

+
3 terms

∑
i<j,l<m

∣

∣

∣
G(1)

(

ri, rj

)

G(1) (rl , rm)
∣

∣

∣

2

ρ (ri) ρ
(

rj

)

ρ (rl) ρ (rm)

+
4 terms

∑
i<j<l

g(3)(ri, rj, rl)

−
6 terms

∑
i<j

g(2)(ri, rj)

− 3. (A.35)

Functions for order n≥5 will follow in a similar fashion, each with n! terms.
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