
Chapter 6 
Foundation Models for Text Generation 

Abstract This chapter discusses Foundation Models for Text Generation. This 
includes systems for Document Retrieval, which accept a query and return an 
ordered list of text documents from a document collection, often evaluating the 
similarity of embeddings to retrieve relevant text passages. Question Answering 
systems are given a natural language question and must provide an answer, usually 
in natural language. Machine Translation models take a text in one language and 
translate it into another language. Text Summarization systems receive a long 
document and generate a short summary covering the most important contents of 
the document. Text Generation models use an autoregressive Language Model to 
generate a longer story, usually starting from an initial text input. Dialog systems 
have the task of conducting a dialog with a human partner, typically not limited to a 
specific topic. 

Keywords Question answering · Machine translation · Text summarization · 
Text generation · Dialog systems · Document retrieval 

In this chapter we describe Foundation Models, i.e. large Pre-trained Language 
Models for generating new text in different application areas. 

• Document Retrieval systems accept a query and return an ordered list of 
text documents from a document collection, often evaluating the similarity of 
embeddings to retrieve relevant text passages (Sect. 6.1). 

• Question Answering systems are given a natural language question and must 
provide an answer, usually in natural language (Sect. 6.2). 

• Machine Translation takes a text in one language and generates a translation into 
another language (Sect. 6.3). 

• Text Summarization receives a long document and has to write a short summary 
covering the most important contents of the document (Sect. 6.4). 

• Text Generation uses an autoregressive Language Model to generate a longer 
story, usually starting from an initial text input (Sect. 6.5). 
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Table 6.1 Language generation tasks illustrated by an example 

Task Description Example 

Document 
retrieval 

For a query return an ordered list of 
text documents 

Covid 19? . → http://doi. 
org/wikipedia/covid-19, www.cdc. 
gov/,  . . .  

Generative 
question 
answering 

Generate the answer to a question, 
often using some background 
knowledge 

What did Albert Einstein invent? 

. → Einstein developed the theory of 
relativity 

Translation For a text in the source language 
generate a text in the target 
language with the same meaning 

Fritz isst gerne Schinken 

. → Fritz likes to eat ham 
Summarization For a long text generate a concise 

summary 
It was the middle of winter, . . . 

. → Snow White is awoken by the 
prince, whom she marries . . . 

Text generation Starting from an initial text, a 
consistent continuation text is 
created 

Beethoven was born in Bonn 

. → His father was a singer at the 
Duke’s court . . .  

Dialog answer 
generation 

Generate a consistent response in a 
dialogue based on the sequence of 
previous utterances 

Could you recommend a video for 
tonight? 

. → There is “Memento” on Netflix 

• Dialog systems have the task of conducting a dialog with a human partner, 
typically not limited to a specific topic (Sect. 6.6). 

Due to the large number of different approaches, we focus on representative 
models which exhibit a high performance at the time of writing. We review the 
current best techniques for each area, measured against appropriate benchmarks and 
taking into account the computational resources required. For standard models a link 
to the description in earlier chapters is provided. Examples for each application area 
are shown in Table 6.1. 

6.1 Document Retrieval 

Information retrieval (IR) uses computer systems to search databases for content. 
The resulting IR system is often called a search engine. Often, the user formulates 
a sentence or a query about to some topic, and the system is expected to return a 
sorted list of documents relevant to the query (ad hoc retrieval). Here we focus on
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Fig. 6.1 Retrieve-and-rerank architecture using PLMs. First, texts are retrieved from the document 
collection, usually with exact-match bag-of-words queries. These candidates are then reranked 
using PLM embeddings, e.g. from BERT. Image adapted from [123], reprinted with kind 
permission of authors 

retrieving textual information from a stored collection of documents. In contrast to 
question answering approaches in Sect. 6.2, the system does not generate a direct 
answer to the query in natural language. 

Former IR systems were keyword-based: all words contained in a document were 
stored in an inverted index. The retrieval algorithm searched the index to identify 
documents that contained the query words. Then, these documents were ranked 
according to the information content of each query word found in a document, e.g. 
measured by tf-idf or BM25 [186]. These two steps are shown in Fig. 6.1. A survey 
of earlier retrieval techniques is given by Abbasiyantaeb and Momtazi [2]. However, 
this approach had three major problems: 

• Many objects, activities, or events may be expressed by different words called 
synonyms, e.g.  “drink” and “beverage” or “buy” and “purchase”. The documents 
containing alternative words are not returned by keyword retrieval. Paraphrases 
like “he has tons of stuff to throw away” and “he needs to get rid of a lot of junk” 
are even harder to spot and were ignored. This is called the vocabulary mismatch 
problem. 

• Many words have different meanings depending on the context (e.g. “rock”: 
music or stone). These words are called homonyms. Part of the retrieved 
documents containing such a word will be mismatches. 

• The order of words is often crucial for the meaning of the sentences (e.g. “dog 
kills person” vs. “person kills dog”). This is usually ignored with keyword 
search. 

As an alternative, contextual embeddings were used to represent queries and 
documents. By identifying matching documents through comparison of contex-
tual semantic representations, word meaning differences between documents and 
queries can be reduced and texts with synonyms, homonyms, and paraphrases 
can be retrieved. These models have achieved SOTA results on various retrieval 
benchmarks [137] and have recently been introduced in commercial search engines. 
They are therefore one of the most commercially important applications of PLMs to 
date.
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6.1.1 Dense Retrieval 

Dense retrieval methods encode text as an embedding vector with a fixed length 
much smaller than the text length. Whether a document is relevant to a given query 
is determined by the similarity of embedding vectors, which is computed by cosine 
similarity or inner products. Unlike question answering (Sect. 6.2), these models 
do not generate a direct natural language response to a search query, but return 
complete documents or text passages. Recently, dense retrieval methods based on 
PLMs outperformed their keyword counterparts when fine-tuned on a small set of 
in-domain relevance-labeled documents. Lin et al. [124] provide a comprehensive 
overview of retrieval systems with PLMs. Different approaches for dense retrieval 
can be distinguished and are covered in the next sections: 

• Cross-Encoder: Use the concatenated query and a document as input to BERT 
and determine the relevance of the document for the query (Sect. 6.1.3). 

• Retrieval with token embeddings: The tokens of the query and the document 
are encoded by contextual embeddings. Then different metrics are used to 
compare these embeddings and to collect relevant documents (Sect. 6.1.4). 

• Retrieval with passage embeddings: These techniques encode the query and 
passages of the document by an embedding. Subsequently, these embeddings are 
compared. This type of embedding respects word order and thus has the potential 
to return better matches (Sect. 6.1.5). 

Only a very small selection of methods can be described, which should give an 
impression of the approaches currently used as shown in Table 6.2. In Sects. 6.2.2 
and 6.2.3 retrieval techniques for question answering are discussed, which are even 
more powerful. A very comprehensive survey on PLMs for retrieval is provided by 
Lin et al. [124]. 

6.1.2 Measuring Text Retrieval Performance 

There are a number of benchmark datasets used for training and comparing retrieval 
approaches. The MS-MARCO benchmark [16] is a large-scale collection created 
from about half a million anonymized questions sampled from Bing’s search query 
logs. For the passage ranking task it contains a corpus of 8.8M passages with an 
average length of 55 words extracted from 3.6M web documents. The goal is to 
retrieve passages that answer the question. The training set contains approximately 
500k pairs of queries and relevant documents, and another 400M pairs of queries 
and non-relevant documents. There is a development set and a secret test set with 
about each 7k queries. However, there is a discussion that the gold annotation of the 
MS-MARCO benchmark is biased to some extent [10].
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Table 6.2 Document retrieval models with their performance. Benchmarks (Sect. 6.1.2): 
MARCO: MS-MARCO [16], NQuest: Natural Questions benchmark [109], Wiki65K: long 
Wikipedia documents [247] 

Model Description Benchmark 

monoBERT 
(Sect. 6.1.3) 

Process each query-passage pair with 
BERT 

MARCO 35.9% 
MRR@10 

monoT5 (Sect. 6.1.3) Process each query-passage pair with T5 MARCO 38% MRR@10 

ColBERT 
(Sect. 6.1.4) 

Reranks search results documents based 
on token embeddings 

MARCO 36.7% 
MRR@10 

Model 1 (Sect. 6.1.4) Compute the probability that the query is 
a ‘translation’ of the document 

MARCO 39.1% 
MRR@100 

SMITH (Sect. 6.1.4) Use a BERT-based hierarchical encoder Wiki65K 95.9% acc. 

SentenceBERT 
(Sect. 6.1.5) 

BERT encoder for query and documents Reduce recall time from 
65 h to 5 s 

DPR (Sect. 6.1.5) Different BERT encoders for query and 
documents, fine-tuned to reduce retrieval 
loss. FAISS index for approximate nearest 
neighbor search 

NQuest 79.4% top-20 
acc. 

RocketQA 
(Sect. 6.1.5) 

RoBERTa encoders for query and 
documents. Later reranking 

MARCO 41.9% 
MRR@10 

coCondenser 
(Sect. 6.1.5) 

RoBERTa encoders for query and 
documents using CLS token. Later 
reranking 

MARCO 40.8% 
MRR@100 

The Natural Questions (NQ) [109] contains questions with at least 8 words 
from real users to the Google search engine. It requires QA systems to read and 
comprehend an entire Wikipedia article, which may or may not contain the answer 
to the question. An example is the question “Where is blood pumped after it leaves 
the right ventricle?” The task is to retrieve a long answer, i.e. a paragraph from 
the page that answers the question, e.g. “From the right ventricle, blood is pumped 
through the semilunar pulmonary valve . . . ”, or an indication that there is no answer. 
The task was designed to be close to an end-to-end question answering application. 
One to five answers are provided by human annotators. While the original Natural 
Questions benchmark was a reading comprehension task providing a number of 
evidence documents for each question, the EfficientQA benchmark [147] adapted 
this to open-domain QA by taking examples with up to five token answers and 
discarding the evidence documents. 

Min et al. [146] note that over half of the queries in Natural Questions are 
ambiguous, with many sources of ambiguity such as event and entity references. 
They develop an AmbigQA with reformulated questions that yield a unique answer. 

A simple evaluation measure is the top-k accuracy, the proportion of queries for 
which one of the k most likely answers returned is correct. More complex is the 
mean reciprocal rank (MRR), the inverse of the rank of the first correct answer and 
0, if no correct answer was returned. If, for instance, the third answer is correct, the
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reciprocal rank is . 1/3. The MRR for . |Q| queries is 

.MRR = 1

|Q|
|Q|∑

i=1

1

ranki

. (6.1) 

.MRR@m indicates that always an ordered list of m documents is returned. 
We may define .Pr(i) as the precision reached by the first i elements of the list 

of size m, i.e. the fraction of relevant documents of the first i. Then we may define 
the average precision as 

.AP = 1

m

m∑

i=1

Pr(i) ∗ rel(i) MAP = 1

|Q|
|Q|∑

j=1

APj (6.2) 

where .rel(i) = 1 if the i-th document is relevant and 0 otherwise. The mean average 
precision (MAP) is the average of AP over . |Q| different queries. 

6.1.3 Cross-Encoders with BERT 

monoBERT [155] performs reranking based on a fine-tuned BERT classifier based 
on the embedding of the [CLS] token. Query and document are combined to the 
input “[CLS] . <query. > [SEP] . <document. > [SEP]”. This is processed by a BERT 
fine-tuned on MS-MARCO, where the embedding of [CLS] in the last layer is 
used by a logistic classifier to predict the probability that the current document is 
relevant for the query. This output score is used for ranking (Fig. 6.2). Note that 
by this technique paraphrases like “symptoms of influenza include fever and nasal 

Fig. 6.2 The monoBERT model uses a fine-tuned BERT model for ranking passages with 
respect to queries. The input contains the query concatenated with the passage. The [CLS] token 
embedding is trained to return the probability that the passage answers the query
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congestion” and “a stuffy nose and elevated temperature are signs you may have the 
flu” may be identified. 

On the MS-MARCO benchmark [153] monoBERT yields an MRR@10 value 
of 35.9% (i.e. the first relevant document at position 2.8 on average). As the 
keyword-based BM25-search before had anMRR@10-value of 16.5% (first relevant 
document at position 6.1 on average), this result was a dramatic increase in 
performance of search engines. Such a big jump in effectiveness caused by an 
individual model is rarely observed in either academia or industry, which led to 
immediate excitement in the community. 

It is quite striking how monoBERT provides a simple yet effective solution to 
the problem of text ranking (at least for texts that are shorter than its maximal 
input length) [124]. In several studies monoBERT has been found to be better than 
BM25 in estimating relevance when term frequency is held constant. Using textual 
manipulation tests that alter existing documents, rearranging the order of words 
within a sentence or across sentences was found to have a large negative effect, while 
shuffling the order of sentences within a document has a modest negative effect. 
In contrast, rearranging only prepositions had little effect. Experimental results 
from input template variations show that monoBERT uses exact match, “soft” 
semantic matches, and information about the position of words. Exactly how these 
different components are combined—for different types of queries, across different 
corpora, and under different settings, etc.—remains an open question. Note that this 
search approach requires enormous computational resources, as for each passage a 
new evaluation has to be performed, while the effort for index search grows only 
logarithmically. 

monoT5 [154] used the T5 encoder-decoder model instead of BERT to rerank 
retrieved documents. The model receives the input “Query: . <query. > Document: 
. <document. > Relevant:”. monoT5 is fine-tuned to produce the tokens true or false 
if the document is relevant to the query or not. The predicted probability of true 
can be used as a relevance score. For T5 with 3B parameters the authors get an 
MRR@10-value of 38% for MS-MARCO passage retrieval. This shows that larger 
models increase performance of retrieval systems. 

6.1.4 Using Token Embeddings for Retrieval 

The all-to-all nature of the BERT attention patterns at each transformer encoder 
layer means that there is a quadratic complexity in terms of time and space with 
respect to the input length. In Sect. 3.2 we have introduced a number of approaches 
to cope with longer inputs. These all can be used to process longer documents. 
Among the many approaches we discuss ColBERT and Model 1 in more detail. 

ColBERT [99] reranks the output of another (cheaper) retrieval model, typically 
a term-based model, or directly for end-to-end retrieval from a document collection. 
Queries and documents were prepended by different special tokens. ColBERT uses 
a single pre-trained BERT model to encode each query or document into a bag
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of token embeddings. In a final layer the size of embeddings is reduced and they 
are normalized to Euclidean length 1.0. Hence, the inner product is equivalent to 
the cosine similarity. If .(q1, . . . , qm) are the query tokens and .di,1, . . . , di,k are the 
tokens of the i-th document, the similarity of q and . di is computed as 

.sq,di
=

m∑

r=1

max
j

η(qr )
ᵀη(di,j ). (6.3) 

This is the sum of maximum cosine similarities (MaxSim) between each query 
term and the “best” matching term contained in the document . di . For each query 
embedding the L2-nearest 10 embeddings are taken into account and . k = 1000
closest document vectors are retrieved. 

For ranking a preliminary search result of, say 1000 documents, the maximum 
similarities (e.g. cosine similarity) between all query embeddings and all embed-
dings in the retrieved documents are computed. This approach is very efficient as it 
requires orders of magnitude fewer FLOPS than previous approaches. On the MS-
MARCO benchmark [153] a reranking ColBERT achieves a MRR@10-value of 
34.9% (first relevant document at position 2.9 on average), which is slightly below 
the cross-encoder monoBERT. 

ColBERT can also be used for end-to-end retrieval. It employs the FAISS 
index [91] to store the document token embeddings for a k-nearest neighbor search 
in a preparatory step. Note that for each token in each document an embedding has 
to be stored, as the embedding depends on the context. The retrieval requires two 
stages: in the first stage, a number of approximate searches for each query token is 
performed. In the second refinement stage, these approximate matches are reranked 
according to the MaxSim criterion. On the MS-MARCO benchmark the end-to-end 
retrieval by ColBERT has a MRR@10-value of 36.7%, which is much better than 
the reranking performance and on par with the much more expensive BERT cross-
encoder approach. 

Model 1 [28] mixes a number of techniques for their retrieval model based on 
token embeddings. First the authors estimate the probability .p(q|d) that the query 
. q has been generated as a “translation” of the document . d . Using Bayes rule the 
authors get 

.p(d|q) ∝ p(q|d)p(d) ∝ p(q|d) (6.4) 

assuming a uniform prior .p(d) [21]. They consider the probability .r(qi |dj ) that 
a query token . qi is a translation of a document token . dj . Approximating . r(qi |dj )

by a neural network, they use embeddings of tokens . qi and . dj as inputs and are 
able to estimate .p(d|q). The approach requires little computational effort. The 
authors combined the BERT dense retriever with a Lucene search index. Finally, 
they expand documents for Model 1 with Doc2query. Doc2query [156] aims at  
generating queries, for which the document is relevant. The approach trains a 
transformer to generate up to 100 query tokens from a document of up to 400
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tokens. The model is trained using datasets consisting of pairs of query and relevant 
documents, e.g. MS-MARCO. On MS-MARCO they achieve 39.1% MRR@100. 
The context-free neural Model 1 is less effective than a BERT-based ranking model, 
but it can run efficiently on a CPU (without expensive index-time precomputation 
or query-time operations on large tensors). 

Currently, no retriever tries to process long documents. This has many important 
applications like news recommendation, related article recommendation and paper 
citation suggestion. Usually, long documents are partitioned into passages with the 
idea that the relevant contents is contained in a passage. Note that PLMs with 
longer inputs, e.g. BigBird, can improve performance (Sect. 3.2). However, it is 
clear that this has to be evaluated. The SMITH model [247] uses a BERT-based 
hierarchical encoder to capture the document structure information. The document 
is first partitioned into sentences and for each sentence token embeddings are 
computed. Each sentence starts with an [CLS] token, whose embedding represents 
the sentence. There is a higher sentence level BERT which just receives the sentence 
embeddings as input. The first artificial token of second level BERT is used as the 
embedding of the whole document. 

The model is pre-trained by the masked language modeling task to get token 
embeddings. In addition, in the second level there is a masked sentence block 
prediction task where the model has to select the correct embedding from all 
sentence embeddings in a batch. The fine-tuning task maximizes the relevance score 
predicted from the document embedding by a logistic classifier for the relevance-
annotated fine-tuning dataset. On the Wiki65K with long Wikipedia articles [87] the  
approach achieves an accuracy of 95.9% which is a significant improvement over 
prior approaches. 

6.1.5 Dense Passage Embeddings and Nearest Neighbor 
Search 

Representing text passages by embedding vectors has the potential to solve the 
problem of vocabulary mismatch by directly matching “meaning” in a representa-
tion space. These so-called dense retrieval techniques can perform ranking directly 
on vector representations generated by PLMs. In contrast to calculating pairwise 
differences of token embeddings, this approach offers a much more efficient 
retrieval procedure. This is performed by matching the embedding vector of a 
query with the embedding vectors of passages employing an index and approximate 
nearest neighbor search. Efficient, scalable solutions are available today in open-
source libraries. 

Given a query q and a set of documents .D = {d1, . . . , dn} we want to define 
functions .ηq(·) and .ηd(·), which convert the token sequences q and d into fixed-
width vectors. The functions should have the property that the similarity between 
.ηq(q) and .ηd(di) is maximal if . di is relevant for query q. We want to estimate
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Fig. 6.3 The SentenceBERT model uses two fine-tuned BERT models to transform queries and 
passages to embeddings of the [CLS] token. Subsequently, a cosine similarity module is used to 
compute a similarity value 

.p(relevant = 1|di, q) := φ(ηq(q), ηd(di)), (6.5) 

where .φ(·) is a similarity comparison function, e.g. the scalar product [124, p. 133]. 
Note that .ηd(di) may be precomputed and organized in an index. By using different 
encoders .ηq(·) and .ηd(·) for queries and documents, we can take into account the 
different roles and wordings of queries and documents. 

SentenceBERT [183] is the prototype of a bi-encoder design for generating 
semantically meaningful sentence embeddings to be used in large-scale textual 
similarity comparisons (Fig. 6.3). The query q and the documents . di are processed 
by the same PLM (BERT or RoBERTa). Similarity was compared by the cosine 
similarity 

.φ(ηq(q), ηd(di)) = ηq(q)ᵀηd(di)∥∥ηq(q)
∥∥ ∗ ∥∥ηd(di)

∥∥ . (6.6) 

To generate sentence embeddings the authors investigated three alternatives. (1) 
Use the embedding of the [CLS] token. (2) Averaging (mean-pooling) of all 
output embeddings. (3) Component-wise maximum (max-pooling) of all output 
embeddings. Without fine-tuning the results were worse than for non-contextual 
embeddings. Fine-tuning boosted performance and yields a new SOTA. It turned out 
that average pooling was the most effective design, slightly better than max pooling 
or using the [CLS] token. Most important the computation time for finding the best 
match in 10,000 documents was reduced from 65 h to 5 s. 

DPR [94] used separate encoders .ηq(q) and .ηd(di) for the query q and the text 
passages . di of about 100 words. Both encoders took the [CLS] embedding from 
BERT.BASE as its output representation. As comparison function the inner product 
.ηq(q)ᵀηd(di) was used. For each query . qi the training set contained one correct 
passage . d+

i and a number of negative passages .d−
i,1, . . . , d

−
i,m. The loss function
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encoded the goal to get a large .φ-value (i.e. similarity) for . qi and . d+
i and small 

similarities for . qi and . d−
i,j

.L(w) = − log
exp[ηq(q)ᵀηd(d+

i )]
exp[ηq(q)ᵀηd(di)] + ∑m

j=1 exp[ηq(q)ᵀηd(d−
i,j )]

(6.7) 

The negative examples were a mixture of passages retrieved with keyword search 
that did not contain the answer and thus were difficult negatives. In addition, 
passages from other examples in the same training batch were used. Instead of 
performing an exhaustive computation of similarities for all documents between 
.ηq(q) and the .ηd(di), we can employ an approximate nearest neighbor search. FAISS 
[91] is an open-source method based on hierarchical navigable small world graphs. 
For the Natural Questions benchmark they achieved a top-20 accuracy of 79.4%, 
which is much better than the previous top-20 accuracy of 59.1% for the keyword-
based BM25 search. The replication study [136] could confirm these results, but 
found that a hybrid approach of DPR and BM25 could increase the performance to 
82.6%. 

ANCE [238] uses a single RoBERTa model to encode query and document. 
During training, hard negative examples are selected by approximate nearest 
neighbor search on an index over the representations generated by the trained 
encoder. In this way, they can select “difficult” negative examples. The index is 
periodically updated. On Natural Questions ANCE achieved 82.1% top-20 accuracy. 
The performance was also compared with the monoBERT cross-encoder, which 
reranks first-stage BM25 results with monoBERT by comparing all documents 
to the query. It turned out that on MS-MARCO the application of monoBERT 
to BM25 had a MRR@10 of 34.7% while ANCE has 33%. The cross-encoder 
obviously is more effective than ANCE. The authors also applied ANCE to 8 billion 
documents using embeddings of size 64 and approximate nearest neighbor search. 
They reported a gain of 16% compared to the prior commercial implementation. 

RocketQA [184] performs a first retrieval step and subsequently a re-ranking 
procedure. Both approaches are jointly optimized using a listwise training approach, 
where a list of positive and negative examples is used for training both modules. In 
addition, they perform a data augmentation to construct diverse training instances 
by incorporating both random sampling and denoised sampling. They report a 
MRR@10 on MS-MARCO of 38.8% for passage retrieval. When the 50 top results 
are reranked later, they can increase MRR@10 to 41.9%. 

coCondenser [63] is one of the highest entries of the MS-MARCO leader-
board [140]. The model is forced to learn to aggregate information into the “CLS” 
embedding, which will then participate in the LM prediction. Then an additional 
“contrastive loss” is used: “CLS” embeddings of passages from the same document 
close together should be similar, while those for passages in different documents 
should have a larger distance. This yields highly expressive embeddings for 
passages. When the model is fine-tuned on MS-MARCO, it returns an . MRR@100
of .40.8% on the MS-MARCO leaderboard [140].
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Available Implementations 

• DPR code is available at https://github.com/facebookresearch/DPR. 
• The code for the FAISS nearest neighbor search is available at https://github.com/ 

facebookresearch/faiss. 
• ANCE code and data trained nearest neighbor search is available at https://github. 

com/microsoft/ANCE. 
• RocketQA code and data is available at https://github.com/PaddlePaddle/ 

RocketQA. 
• FlexNeuART [27] implements the Model 1 retrieval system [28]. 
• coCondenser code at https://github.com/luyug/Condenser. 

6.1.6 Summary 

Retrieval is a crucial step in web search, in which a small set of query-relevant 
candidate passages are identified from a corpus of billions of texts. Discovering 
more semantically related candidates in the retrieval phase holds great promise for 
presenting more high-quality results to the end user. Dense retrieval approaches 
represent a paradigm shift in search engine technology. They make it possible to 
recognize the meaning of words and paraphrases and thus find much better passages 
matching a query. Search results can also be used for question-answer models 
(Sect. 6.2) and dialog systems (Sect. 6.6). They are already being used in production 
search engine by Bing [35, 238, 266], Google [152, 197], and Facebook [82]. 

Dense retrieval methods discussed above are fine-tuned in a supervised setting 
using human relevance labels as input, e.g. from MS-MARCO. Best results are 
obtained by two different PLMs to encode the query and the documents. Both PLMs 
are trained to improve the probability of a correct reference document in contrast to 
some negative documents. As two different PLMs require more effort, most systems 
use a single model to encode the question and the documents. Experiments show that 
the combination of dense retrieval and keyword retrieval seems to have advantages. 
In Sects. 6.2.2 and 6.2.3 retrieval techniques for question answering are discussed, 
which are even more powerful. 

A problem is the transferability of a search system to a new domain. BERT was 
found to have strong cross-domain relevance classification capabilities when used 
in a similar way as monoBERT [124, p. 72]. If a BERT model is fine-tuned using 
relevance judgments from one domain (e.g., tweets) it can be successfully applied to 
a different domain (e.g., newswire articles). On the other hand, Thakur et al. [221] 
created a benchmark called BEIR with 18 retrieval tasks from very different domains 
like bio-medicine and tweets. The authors trained a large number of dense retrieval 
techniques on MS-MARCO and evaluated then on the other tasks. They found that 
they were on average less effective than BM25, which due to its simplicity just 
works in most cases.

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
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The memory requirements for an index for embeddings cannot be ignored. While 
a keyword Lucene index for the MS-MARCO passage corpus with 8.8M passages 
needs 661 MB, a FAISS index for vectors of size 768 requires 42 GB and an index 
for ColBERT takes 156 GB [124, p. 159]. To apply these techniques to web-scale, 
approaches with a smaller memory footprint are needed. 

6.2 Question Answering 

Question Answering (QA) is an application of NLP that receives a natural language 
query and automatically generates a precise answer in natural language. It is a long-
standing AI task dating back to the 1960s [69]. Compared with search engines 
discussed in Sect. 6.1, the QA system presents the final answer to a question directly 
instead of returning a list of relevant snippets or hyperlinks. Thus, it is more user-
friendly and efficient. Often, the system has access to a database or a knowledge base 
(KB) of documents, such as Wikipedia, where it can search for relevant information. 

A Closed Domain QA system handles questions for a specific domain, e.g. 
medicine, and has background knowledge about that domain or is trained with a 
large training set covering that domain. Open Domain QA systems (ODQA) deal 
with questions on almost any topic and usually rely on general KBs or Internet 
search [37]. Multimodal QA systems address questions in different media, e.g., text 
and images. A survey of ODQA is given by Zhu et al. [265]. Table 6.3 compiles 
leading QA Models with their performance. 

A simple form of question answering is Reading Comprehension, where the 
system has to identify an answer to a question in a given text. Often a BERT-like 
system marks the answer span in the text by span prediction (Sect. 2.1.3). This task 
can mainly be considered as solved. For the SQuAD 2.0 benchmark [179] ALBERT 
yields more than 93% F1-value and the fine-tuned ST-MoE-32B mixture-of-experts 
model (Sect. 3.5.2) with 269B parameters [270] achieves 96.3% F1-value, while the 
human F1-value is 89.5% [178]. However, Sen et al. [199] indicate that systems 
trained on one dataset may not generalize well to other benchmarks. 

6.2.1 Question Answering Based on Training Data Knowledge 

Language models often are trained on comprehensive text collections and are 
able to memorize a large amount of information. A frequently used benchmark is 
Natural Questions (NQ) [109], which has been sampled from the Google search 
logs (Sect. 6.1.2). For the given question, the system has to find a short answer span 
in the given support documents. An example is the question “When are hops added 
to the brewing process?”, which should yield the answer “The boiling process”. 

The TriviaQA benchmark [92, 226] contains a set of trivia questions with answers 
that were originally scraped from the Web. Different from Natural Questions, the
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Table 6.3 Question answering models with their performance. The lower part contains retrieval 
models. Benchmarks: NQ: natural Questions benchmark of Google queries [109], TriviaQA: 
TriviaQA benchmark [92, 226], HotpotQA: multihop benchmark [249], EM: exact match 

Model Details Benchmark 

BigBird (Sect. 6.2.1) Autoencoder with long input, 
supervised training with QA pairs 

NQ with ref-docs 57.9% EM 
WikiHop 82.3% acc. 

PoolingFormer 
(Sect. 6.2.1) 

Autoencoder with two-level attention 
schema, supervised training with QA 
pairs 

NQ with ref-docs 61.6% EM 

RealFormer 
(Sect. 6.2.1) 

Autoencoder with bypass attention, 
supervised training with QA pairs, 
multihop QA 

WikiHop 84.4% acc. 

GPT-3 (Sect. 6.2.1) Large autoencoder 175B, only 
pre-training 

NQ few-shot 29.9% 
TriviaQA few-shot 71.2% 

Gopher (Sect. 6.2.1) Large autoencoder 280B, only 
pre-training 

NQ few-shot 28.2% 

PaLM (Sect. 6.2.1) Large autoencoder 540B, only 
pre-training 

NQ few-shot 36.0% 
TriviaQA few-shot 81.4% 

DPR (Sect. 3.4.5) Retriever-reader with two BERT 
models and FAISS index 

NQ exact match acc 41.5% 
TriviaQA 57.9% 

FiD (Sect. 3.4.5) Retriever-reader with T5 models and 
FAISS index 

NQ exact match acc 51.4% 
TriviaQA 67.6% 

REALM (Sect. 3.4.5) Retriever-reader with dot product of 
BERT embeddings, slow 

NQ exact match acc 40.4% 

FB HYBRID 
(Sect. 3.4.5) 

DPR retriever combined with other 
retriever, FiD reader 

NQ exact match acc 53.9%, 
corresponds to 67.4% correct 

MS UNITED 
(Sect. 3.4.5) 

BERT-based retriever, 
T5+ELECTRA as readers, final 
re-ranking 

NQ exact match acc 54.0%, 
corresponds to 65.8% correct 

AISO (Sect. 3.4.5) Retriever-reader with repeated 
retrieval rounds, multihop QA 

HotpotQA 72.0% F1 

RETRO (Sect. 6.2.3) Language model with frozen BERT 
retriever, language model 
periodically includes retrieved token 
chunks 

NQ exact match acc 45.5% 

WEBGPT 
(Sect. 6.2.3) 

GPT-3 combined with Bing search 
engine, which can be periodically 
invoked 

TriviaQA 69.5% 

questions here are written with known answers in mind. TruthfulQA [125] is a  
special QA benchmark with short questions that are constructed adversarially, so 
that some people’s answers might be wrong due to false beliefs and misconceptions. 
The answers are evaluated according to informativeness and truthfulness.
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Fine-Tuned Question Answering Models 

The BigBird (Sect. 3.2) self-attention was used as an autoencoder and trained with 
the MLM objective using an input sequence of 4096 tokens [253]. During fine-
tuning on Natural Questions the model had to find a short answer span in one of 
the given evidence documents. The model achieved 57.9% F1-value on this task. 
The PoolingFormer [256] is an alternative model for long input sequences with a 
two-level attention schema. Its first level uses a smaller sliding window pattern to 
aggregate information from neighbors. Its second level employs a larger window 
to increase receptive fields with pooling attention. An ensemble of fine-tuned 
PoolingFormers achieves 61.6% F1-value on the Natural Questions benchmark. The 
model is similar to the SMITH model [247], which uses a BERT-based hierarchical 
encoder to capture the document structure information (Sect. 6.1.4). 

An alternative is Macaw [218], a freely available QA-system with 11B param-
eters. It is built on T5 and has strong zero-shot QA-capabilities. On a set of 300 
challenge questions the authors claim that Macaw outperforms GPT-3 by 10%, 
although it has only a small fraction of its parameters. In addition to providing an 
answers for a question, Macaw can also take an answer and produce a question; 
or generate multiple-choice options for an answer and a question. The authors also 
provide a detailed analysis of errors. 

It is much more difficult to combine different pieces of evidence to find an 
answer. A benchmark to test this ability is WikiHop [232], where information from 
different documents has to be merged. An example is the question “Hanging gardens 
of Mumbai, country?” and the documents “The Hanging Gardens, in Mumbai, also 
known as Pherozeshah Mehta Gardens, are terraced gardens . . . ”  and “Mumbai 
is the capital city of the Indian state of Maharashtra. It is the most populous city 
in  India  . . . ”. For each query up to 140 background paragraphs are provided to 
the model. On this benchmark BigBird-ETC (Sect. 3.2.1) achieved an accuracy of 
82.3%. Currently, the best model for this task is the RealFormer with an accuracy 
of 84.4% [171], which is slightly below the human performance of 85%. The 
RealFormer is an autoencoder with a modified architecture, which provides a bypass 
with the raw attention scores of all attention heads from the previous layer in the 
subsequent layers [76]. 

Question Answering with Few-Shot Language Models 

Recent Foundation Models are trained with an enormous collection of documents 
and can generate answers to questions without additional knowledge input. An 
example is the autoregressive language model GPT-3 with 175B parameters, which 
was pre-trained on a text collection of books, Wikipedia and web pages of about 
500 billion tokens (Sect. 3.1.2). Because of its high model capacity it can absorb a 
lot of ‘knowledge’ in its parameters. When a Foundation Model is not allowed to 
use external information, this is called Closed-book QA.
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As discussed in Sect. 3.6.3, GPT-3 can be instructed by a few examples (few-
shot) to solve a task. Figure 6.4 provides a few-shot prompt example. For Natural 
Questions, GPT-3 achieves an exact match accuracy of 14.6% in the zero-shot 
setting, 23.0% in the one-shot setting, and 29.9% in the few-shot setting [29, p. 14]. 
This was achieved without fine-tuning on Natural Questions. The larger Gopher 
model with 280B parameters (Sect. 3.1.2) performs slightly worse with 28.2% in 
the few-shot setting [175, p. 80].  

The even larger PaLM model with 540B parameters (Sect. 3.1.2) was trained 
on a high-quality dataset with 780B tokens. It uses a new prompt technique to pose 
logical questions, where examples are presented to the system together with thought 
chains partitioning a reasoning task into smaller problems (Sect. 3.6.4). In this way 
it gets the recipe to combine facts from different sources to arrive at the final answer. 

PaLM was evaluated on a large number of other benchmarks, which in part are 
QA-tasks. On Natural Questions it arrived at an accuracy of 21.2% with 0-shots and 
at 36.0% with few-shot prompts [43, p. 47]. On Trivia QA (questions concerning the 
Wikipedia), BoolQ (question answering with yes/no answers), and PIQA (question 
answering with reasoning) PaLM also achieved a new SOTA. The results are shown 
in Table 3.4. PaLM was benchmarked with a large number of tests, among them 
the more than 150 BIG-bench tasks (Sect. 4.1.4). Many of them are QA-related 
tasks: 21 contextual QA tasks, 24 context-free QA tasks, 36 reading comprehension 
tasks, and a large number of tasks on specific knowledge and common sense [1, 22]. 
Additional outcomes for QA-benchmarks of PaLM are given in [43, p. 12], where 
PaLM always achieves SOTA. 

Fig. 6.4 A possible few-shot prompt for GPT-3 to get an answer based on existing knowledge 
acquired during pre-training [160]
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6.2.2 Question Answering Based on Retrieval 

Retrieval ODQA systems usually work in two stages: for a question a retriever 
module finds a number of documents from a text collection, which might contain the 
answer. Subsequently, a reader considers the question and the retrieved documents 
and generates a natural language answer (Fig. 6.5). Since the model relies on 
external information, it is referred to as Open-book QA. 

Retrievers have been introduced in Sect. 3.4.5 and were discussed in the context 
of document retrieval in Sect. 6.1. The retriever may employ a traditional search 
engine using tf-idf weighting or BM25. Alternatively the retriever may be a dense 
retriever based on document and question embeddings. It is trained to retrieve 
passages by computing embedding similarities e.g. by DPR [94] (Sect. 3.4.5). A 
tutorial on ODQA is provided by Chen [36]. 

The reader is usually an autoregressive language model that receives both the 
query and the retrieved documents as inputs. It is fine-tuned to generate a response 
to the query based on the retrieved information and its internal knowledge. 

Question answering with external knowledge bases has the advantage that 
curated KBs usually are checked for correctness. They may have, however, limited 
coverage of entities and relations may not be up-to-date. There are a number 
of approaches to combine PLMs with KBs using techniques like entity map-
ping (Sect. 3.4.1). Recent papers propose a hybrid approach using KBs and 
retrieval [239]. Knowledge-Guided Text Retrieval [145] starts with retrieving text 
passages for a query. It creates a passage graph, where vertices are passages of text 
and edges represent relationships that are derived either from an external knowledge 
base or co-occurrence in the same article. On Natural Questions [109] they achieve 
an accuracy of 34.5%. 

HYBRIDER [41] uses information from a retriever as well as from a structured 
KB and tables. The authors collected Wikipedia pages and constructed a benchmark 
dataset HybridQA containing question-answer pairs requiring multi-hop reasoning 
using text, tables and hyperlinks (Fig. 6.6). The model first links questions to 

Fig. 6.5 Question answering often combines dense retrieval with an answer selection module. 
The retriever performs a dense retrieval by comparing the embedding of the query with the 
embeddings of passages. The reader ranks the retrieved documents and generates an answer by 
an autoregressive Pre-trained Language Model [36]. Credits for image parts in Table A.2
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Fig. 6.6 For hybrid question answering Wikipedia pages are retrieved by HYBRIDER [41] (top  
left). Some pages contain tables (left). Here the column titles may be interpreted as well as 
hyperlinks to entities (underlined). The lower part shows two human-annotated question-answer 
pairs. Image reprinted with kind permission of the authors [41, p. 2]  

tables cells as well as Wikipedia passages and hyperlinks. In a reasoning phase the 
linked information is ranked and consolidated to derive the probabilities of different 
answers. The experiments with the dataset show that the utilization of tables or 
retrieval alone achieves an exact match accuracy of about 20% while the joint model 
yields more than 40%. However, the hybrid model’s score is still far below human 
performance. 

One of the first retrieval-reader systems wasDPR (Dense Passage Retriever) [94]. 
It employs a BERT model to encode passages by embeddings and retrieves them 
by approximate k-nearest neighbor search with the FAISS index (Sect. 6.1.5). In 
this way it can gather passages with similar meaning but different wording. The 
DPR reader is another BERT model which is fine-tuned to predict a probability for 
each retrieved passage that this passage contains the correct answer. In addition, it 
selects a span of tokens by span prediction, which probably provides the answer. 
The approach can be easily applied to KBs with billions of passages [94, 213]. On 
the Natural Questions [109] it yields a test set accuracy of 41.5%. 

FiD [84] is described in Sect. 3.4.5. The retriever is based on DPR and compares 
query and passages embeddings. Raffel et al. [177] have shown that generative 
models like T5 can produce the answer for QA-tasks. FiD processes the query and 
the retrieved passages by a reader based on a T5 model to generate an answer. Since 
the first step is to process the passages one by one, the system is very efficient. 
FiD achieves an exact match accuracy of 51.4% on the Natural Questions test set 
compared to 41.5% for DPR. 

REALM [75] and RAG [114] are retrieval augmented generative models for 
open domain question answering. However, they process all retrieved passages 
simultaneously in an autoregressive language model and were unable to take 
into account a large number of passages leading to lower accuracies on Natural 
Questions of 40.4 for REALM and 44.5 for RAG. Sachan et al. [194] propose an



6.2 Question Answering 245

end-to-end differentiable training method for retrieval-augmented ODQA. Latent 
variables indicate which of the relevant documents should be included. The values 
of the latent variables are iteratively estimated by an EM-algorithm. On Natural 
Questions they achieve an exact match accuracy of 52.5%. 

MTR [138] starts from the observation that neural retrievers perform well on 
their fine-tuning domain, but will typically achieve low out-of-domain performance. 
The authors propose a multitask retriever similar to DPR which is jointly fine-tuned 
on eight diverse retrieval tasks. They use a shared passage encoder—so that a single 
index of encoded passages can be used—as well as a query encoder that is shared 
across all tasks. In five of the eight models they achieve a higher performance than 
special models tuned to the corresponding domain. 

AISO [268] is a retriever-reader architecture for solving multi-hop QA tasks, 
where multiple documents are required to answer a question. Repeated retrieval 
rounds are performed in which associated terms are taken as new search queries to 
find additional evidence. The approach is adaptive and at each step selects one of 
three types of retrieval operations (e.g., BM25, DPR, and hyperlink) or one answer 
operation. On the HotpotQA benchmark [249], the question-answering system must 
find the answer to a query in the scope of the entire Wikipedia. The AISO model 
achieved a new SOTA with a joint F1-value of 72.0%. 

The FB Hybrid system was presented at the EfficientQA competition [147], 
where real user questions for the Google search engine from the Natural Questions 
dataset [109] were tackled. While the original NQ was a reading comprehension 
task providing a number of evidence documents for each question, the EfficientQA 
benchmark [147] adapted this to open-domain QA by taking examples with up 
to five token answers and discarding the evidence documents. The system uses a 
retriever-reader architecture [158]. The retriever is a mixture of DPR and another 
retrieval system, which covers lists and tables as well as KB-relations and retrieves 
100 passages. The reader is a T5-large Seq2seq model, which is given 100 passages 
from the retriever and generates an answer. The background corpus contained 18.8M 
passages from Wikipedia. On Natural Questions the model achieves an exact match 
accuracy of 53.9%. According to an evaluation by human raters the model was 
able to answer 67.4% of the questions correctly, which is about as good as the 
performance of human experts using a search engine. TheMSUnitedQA model had 
a similar architecture [139]. It uses a BERT-based retriever and a reader combined 
from a T5-model and ELECTRA processes the returned documents to generate 
different answers. A final re-ranking model selects the answer. MS UnitedQA yields 
an exact match accuracy of 54.0% and 65.8% correctness on Natural Questions. If 
the systems were restricted to a memory footprint of 6 GB the performance was 
only marginally reduced.
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6.2.3 Long-Form Question Answering Using Retrieval 

A Language Model with Integrated Retrieval 

Retro [25] is an autoregressive language model with 7B parameters using retrieved 
information to predict the next token. As retriever a frozen BERT model is employed 
(Fig. 6.7). Each training sequence is split into chunks, which are augmented with 
their k-nearest neighbors retrieved from the database of 2 trillion tokens. The 
returned information is processed in a language model to improve the prediction 
of the next token leading to large performance gains. The reader consists of 
a differentiable autoregressive encoder and a chunked cross-attention module to 
predict tokens. 

An input sequence .v = (v1, . . . , vn) of .n=2048 tokens is split into chunks 
.ct = (v(t−1)∗m+1, . . . , vt∗m) of length .m=64. Each chunk . ct is expanded with a set 
.RET(ct ) of retrieved k nearest neighbor chunks from the database. The probability 
of a token .vt∗m+i in the next chunk .ct+1 then can be recursively computed as 

.p(vt∗m+i |vt∗m+(i−1), . . . , vt∗m+1, ct ,RET(ct ), . . . , c1,RET(c1)). (6.8) 

The probability of the i-th token of the .(t + 1)-th chunk .ct+1 depends only on the 
previous tokens and on the data .RET(cj ) retrieved from the database for the previous 
chunks. This integrates the retrieval process in the language model. 

The retriever for a chunk . ct uses the average .BERT(ct ) of all BERT embeddings 
of the tokens in . ct as key. It retrieves the k nearest neighbors from the database 
with respect to the . L2 distance .||BERT(ct ) − BERT(c̃s)||22. The model receives the 
corresponding chunks .c̃s,j and additionally their continuation chunk .c̃s+1,j for . j =
1, . . . , k, which collectively form the elements of .RET(ct ). By filtering it is avoided 
that the chunk to be predicted is included in .RET(ct ), as this would invalidate the 
conditional probability definition. The retrieval is performed in .O(log T ) time using 
the SCaNN library [73], which collects a set of chunks from a database of 2 trillion 
tokens in 10ms. Note that the document corpus of Retro is about 1000 times larger 
than the databases of FiD and other retrieval models. 

Fig. 6.7 The Retro language model retrieves information for the input sequence. The model uses 
the input sequence and the retrieved neighbor chunks from the database as input and generates an 
appropriate output [176]
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Inside the reader the retrieved tokens in .RET(ct ) are fed into an autoencoder, 
which computes a set E of encoded neighbors. Then, so-called RETRO blocks 

.RETRO(H,E) := FCL(CATL(ATTL(H),E)), (6.9) 

and standard self-attention blocks .LM(H) := FCL(ATTL(H)) are interleaved 
and operate on the intermediate embeddings .H ∈ Rn×d . Here  .FCL(·) is a fully 
connected layer, .ATTL(·) a self-attention layer, and .CATL(·, E) a cross-attention 
layer which includes the information in E. The input and output dimension of these 
modules is .R

n×d . 
The resulting language model is able to predict the next token with a high 

reliability. The Pile data [62] is a 825GB open-source text collection set that consists 
of 22 diverse, high-quality datasets. It was screened for toxic language and bias, e.g. 
with respect to gender, religion, and race. Its authors recommend measuring the 
quality of token prediction in bits per byte (bpb), which in contrast to perplexity is 
independent of the tokenizer [62, p. 6]. The authors compare Retro with GPT-3175B 
[29], Jurassic-1178B [121], and Gopher280B [176]. It turns out that Jurassic-1 has the 
lowest (and best) bpb-value on 5 Pile datasets, Gopher on 2 datasets and Retro on 9 
datasets, although it is far smaller than the other models [25]. GPT-3 was inferior to 
all three models. A possible problem for these results is the overlap of the retrieval 
corpus with the test data. 

For the LAMBADA benchmark [165] a model has to predict the last word of a 
paragraph. The authors measure the following accuracies: Retro without retrieval 
70%, Retro with retrieval 73%, Gopher 74.5%, and GPT-3 76.2%. Note that Retro 
has only 4% of the parameters of GPT-3. For question answering the Natural 
Question benchmark is relevant. Here, Retro achieved an exact match accuracy of 
45.5%. 

The LaMDA [222] dialog system (Sect. 6.6.3) is an expanded version of Retro 
with 137B parameters. It demonstrates that facticity can be improved by retrieval 
models. In addition, it is able to reduce toxic language by a system of filters that 
block unwanted speech. Although this model could also easily be used for question 
answering, no corresponding benchmark results are known. 

Controlling a Search Engine by a Pre-trained Language Model 

WebGPT [149] extends GPT-3 to control the Bing search engine and performs a 
web search for a specific query. The language model must issue commands such as 
“Search . . . ”, “Find in page: . . . ”  or “Quote:  . . . ”, as shown in Fig. 6.8. In this way, 
the model collects passages from web pages which contain information relevant for 
the question. The utilization of Bing has the advantage that it has powerful search 
capabilities, and covers a large number of up-to-date documents. 

Browsing continues until the model issues a command to end browsing, the 
maximum total length of references has been reached, or the maximum number
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Fig. 6.8 Possible actions of the WebGPT language model. If another text is generated, this is an 
invalid action and ignored [149] 

of actions has been reached. If a relevant reference has been retrieved, the model 
will generate a long-form answer to the question. 

The GPT-3 model is first fine-tuned to mimic human demonstrations, enabling 
it to use the text-based browser to answer questions. Then, the usefulness and 
accuracy of the model’s answers is improved by fine-tuning a reward model to 
predict human preferences, and optimizing it by rejection sampling. Specifically 
the model is fine-tuned to answer questions from ELI5 [56], a dataset of open-
ended questions obtained from the subreddit ‘Explain Like I’m Five’. An example is 
given in Fig. 6.9. The proposed WebGPT answers should be coherent, relevant, and 
supported by trustworthy documents. No details are reported on the input prompts 
of GPT-3 containing the current state of search, and how the GPT-3 model combines 
the returned documents into an answer. Note, however, that there is significant 
overlap between training and validation in ELI5, as at least 81% of ELI5 validation 
questions occur in the training set [106] in circumscribed form. 

The final answers were selected from 64 trials of the 175B WebGPT model by 
ranking. These answers were preferred by human raters to the reference responses 
from the ELI5 dataset 69% of the time. Moreover, they were preferred to the human 
demonstrator responses in 56% of the cases. 

For WebGPT, responses to TruthfulQA [125] were correct about 75% of time, 
whereas GPT-3 scored 64% with helpful prompts. While GPT-3’s answers were 
truthful and informative in about 20% of the time, the best version of WebGPT 
increased this to about 56%. Since people answered 94% of the questions correctly, 
the models still have a significant performance difference. On TriviaQA WEBGPT 
achieved a score of 69.5%, which is far less than the value of PaLM with 81.4%. 

An innovative feature is the support of text passages by references. This 
corresponds to the approach of scientific papers to underpin claims by references 
and was already suggested by Metzler et al. [143]. The references explain the answer 
and support the factual accuracy of the statements. The citations are selected by Bing 
in response to the query. They should therefore be close to the final reader-generated 
response and provide an easy way to assess the correctness of the response. 

However, the authors point out that the references are not always representative 
for the available evidence, although the model cites references that correspond to the 
generated text. In addition, it is difficult for the model to verify the trustworthiness
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Fig. 6.9 Long-form answer to a question generated by WebGPT. The best of 64 answers was 
automatically selected. The citations were automatically retrieved from the Bing search engine 
and added to the  answer  [80] 

of references. Here, Web-of-Trust systems and search engine technology could be 
employed, which favor trust-checked frequently linked web pages. 

Available Implementations 

• BigBird code and models are available at https://huggingface.co/google/bigbird-
roberta-base 

• DPR code and models https://github.com/facebookresearch/DPR 
• FiD code and models https://github.com/facebookresearch/FiD 
• RealFormer code https://github.com/jaketae/realformer 
• REALM code https://github.com/google-research/language/blob/master/ 

language/realm/README.md 
• RETRO implementation, Deepmind’s Retrieval based Attention net, in PyTorch. 

This will deviate from the paper slightly, using rotary embeddings for relative 
positional encoding, as well as FAISS library instead of SCaNN https://github. 
com/lucidrains/RETRO-pytorch.

https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch


250 6 Foundation Models for Text Generation

6.2.4 Summary 

A number of Foundation Models have been presented, which were able to improve 
Question Answering performance. Examples are the autoregressive language mod-
els GPT-3 (175B), Gopher (175B), and PaLM (540B) with huge parameter sets, 
which are trained on a large document collections and can acquire extensive 
knowledge. Using few-shot prompts they are able to answer questions with high 
accuracy without employing external knowledge. 

Recently, the retriever-reader architecture has been increasingly used for QA 
systems. It has the potential to tap into a larger knowledge base or the Internet that 
can easily be kept up-to-date. The retriever can employ keyword search or dense 
retrieval. Dense retrieval mitigates the term-mismatch problem, where relevant 
paraphrases are ignored. Usually, embeddings for each document or phrase are pre-
computed and the embedding index is constructed beforehand. Current systems can 
access document collections of up to trillions of tokens using advanced nearest-
neighbor search engines like FAISS and SCaNN to compare embeddings. 

The reader usually receives the query and the returned passages in text form and 
generates the answer. It is fine-tuned to select the correct answer and to provide 
answers which are expressive and truthful. The Retro model is an autoregressive 
language model with only 7B parameters, which uses passages retrieved by a frozen 
BERT model as additional current state information to generate the next tokens. It 
is capable of improving accuracy to high levels for many QA tasks, but can also be 
used for other applications such as story generation. 

WebGPT combines GPT-3 and the Bing search engine to retrieve documents and 
create appropriate answers. It is able to enhance the generated text by references to 
documents, which justify and explain the answer. The LaMDA dialog model is an 
expanded version of Retro with 137B parameters with specific tuning to increase 
usability and factual accuracy. In addition, it is able to reduce toxic language by a 
system of filters that block unwanted speech. These techniques can also be applied 
to question answering. 

Still difficult is the generation of answers where the correct response needs 
information from multiple documents. In this case several rounds of querying are 
necessary. Special models like RealFormer, HYBRIDER, or AISO can improve the 
performance for benchmarks like WikiHop.
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Fig. 6.10 This map shows some of the world’s 7100 languages, with each dot representing a 
language and the color indicating the top language family for each language. Only a small fraction 
of the world’s languages are currently represented in Foundation Models. Image reprinted with 
kind permission of the authors [24, p. 23] 

6.3 Neural Machine Translation 

Language is the cornerstone of most human communication and interaction. 
Moreover, many persons think in terms of language, and use it to express and 
communicate feelings, goals, and ideas. We communicate knowledge by language 
and use it to establish social and emotional relationships. There are more than 7100 
languages in the world [19], some of which are shown in Fig. 6.10. The ability to 
understand each other across language barriers is essential for communicating ideas 
between people. 

After an initial success with Recurrent Neural Networks [15, 215] the devel-
opment of the Transformer encoder-decoder (Sect. 2.3) has driven progress in 
Neural Machine Translation (NMT). By cross-attention a “correlation” between 
each token of the source text and the translated text can be established, producing 
better translations than before. The availability of large training sets and better 
model architectures has steadily increased the performance of Pre-trained Language 
Models for NMT (Fig. 6.11). Standard models for multilingual processing are 
described in Sect. 3.3. A survey is provided by Yang et al. [248].
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Fig. 6.11 BLEU scores for Google translation of 100+ different languages to English for different 
years. Image credits in Table A.2 

6.3.1 Translation for a Single Language Pair 

The training data of NMT consist of text pairs of the source language and its 
translations to the target language. Traditionally evaluation is done by comparing 
one or more reference translations to the proposed translation, as described in the 
survey [195]. There are a number of automatic metrics like BLEU, METEOR or 
BERT-score (Sect. 2.3.3). It turned out that there is a noticeable difference between 
human judgment and automatic evaluation. Therefore, most high-end comparisons 
today use human translators to assess the quality of translation methods. 

At the WMT2021 Machine Translation conference, numerous teams solved 
benchmarks tests for translating English news texts from/to German, Japanese, 
Russian, Chinese, and a number of low-resource languages [5]. Instead of using 
comparison statistics like BLEU, the translations of each system was evaluated by 
a number of human evaluators without showing them a reference translation. They 
were asked to rate a given translation according to how adequately it expressed 
the meaning of the corresponding source language input on an analog scale, which 
corresponds to an underlying absolute rating scale of 0–100. As some raters could 
be stricter, the systems are ranked by a z-score, where the score is mean-centered 
and normalized per rater. Systems are grouped together according to which system 
significantly outperforms all others measured by the Wilcoxon rank-sum test. A 
large effort was spent to assess the validity of human evaluation.
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In total 173 submissions were received. In addition, five anonymized online sys-
tems were included. Further human-produced reference translations were denoted 
by “HUMAN” in all tables. Results show that almost all good systems are based 
on transformer encoder-decoders. Words are mostly encoded by the SentencePiece 
[107] tokenizer (Sect. 1.2). A widely used technique is back-translation [200]. Here 
a monolingual text is translated to the other language and then back-translated. By 
minimizing the difference to the original text, both models may be improved. Up to 
500M sentences per language were available and could be used for back-translation, 
which led to a significant improvement in quality. In addition, ensembles are able to 
increase the performance in most cases. 

The result of the best system for each language pair is shown in Table 6.4. 
Usually, there is a cluster of 2–5 models at the top, whose performance differences 
are not significant. The Facebook-AI model (FB) had the best results for half of 
the language pairs. In addition, the BLEU scores for the best systems automatically 
computed from n-grams are shown. As can be seen, the values are in general better 
for the translation “to English” than “from English” especially for morphology rich 
languages like Czech and German. Compared to the human reference translation, 
the best system was significantly better for three language pairs. This has already 
been discussed critically by Toral [223], who decry the limited amount of context 
between sentences and the limited translation proficiency of the evaluators. 

Improved performance was reached by increasing the number of parameters. The 
Facebook model [224], for instance, used a standard model of 4.7B parameters 
and a sparsely gated mixture-of-experts system with up to 128 experts. In each 
Sparsely Gated MoE layer, each token is routed to the top-2 expert feedforward 
blocks based on the score of a learned gating function. In addition, the models were 
fine-tuned with domain-specific data from the news domain. The n-best hypotheses 
were generated with a beam search. These were ranked with a weighted average of 
the probabilities .p(tgt|src), .p(src|tgt), and .p(tgt), where . src is the source and . tgt is 
the target sentence. 

It is well-known that the translation of single sentences suffers from ambiguities 
(e.g. pronouns or homonyms), which can be resolved by considering the document 
context. In WMT2021 this is taken into account by assessing the quality of 
translation within the document context [5]. As current encoder-decoder Foundation 
Models are able to consider larger contexts, this could improve translation perfor-
mance [141]. Instead of finding the most probable translation of a sentence, we 
need to generate the best translation for a given complete source document. While 
comparing sentence-level translation often does not indicate a difference between 
human and machine translation, the comparison of document-level translation often 
yields a statistically significant preference for human translations [110]. 

Instead of using a Seq2seq model with extra long input sequence, HAT [187] 
proposes a hierarchical attention transformer. The authors split the input text 
into sentences and start each sentence i with a specific .[BOSi] token. These 
tokens summarize the sentence content and are connected to the other sentences 
by the usual self-attention and cross-attention. While the usual encoder-decoder 
transformer has a BLEU of 32.5 for the document translation from English to 
German on WMT2019, HAT is able to yield a SOTA BLEU of 34.5.
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6.3.2 Multilingual Translation 

Usually, languages with scarce training data have a much lower translation accuracy, 
as holds for Hausa in Table 6.4. A recent success was the extension of NMT by 
multilinguality, which was already discussed in Sect. 3.3. This led to a marked 
improvement of translations for languages with few resources. For a survey see [48]. 

M2M of Facebook AI [57] improves translation between many languages by 
utilizing a massive corpus of 7.5B sentences covering 100 languages and thousands 
of translation directions with supervised data, created through large-scale mining. 
The model is a transformer encoder-decoder with 15B parameters. The authors 
add a special token in the encoder indicating the source language and a special 
token in the decoder indicating the target language. The transformer has 12 encoder 
and 12 decoder layers and an embedding size of 1024. As there is a joint token 
vocabulary for all languages, the input and output embeddings are shared. To 
improve performance the authors added language-specific layers to the decoder for 
five languages. Using specific parallelization techniques they were able to train the 
model with only hundreds of GPUs. 

Except for four language directions (En. →Chinese, Chinese. →En, En. →Fi, 
En. →Estonian) the model improved translation results on the WMT benchmarks 
for 1.9 BLEU points on average. Especially marked is the improvement for regional 
languages with an average increase of 7.6 BLEU. For resource-rich language pairs 
Liu et al. [130] propose to use very deep transformers with up to 60 encoder layers 
and 12 decoder layers. They develop a simple yet effective initialization technique 
that stabilizes training and achieve SOTA on WMT2014 En-Fr of 46.4 BLEU. 

Although multilingual translation has many advantages, it usually performs 
worse than specially trained bilingual models for high-resource language pairs. 
Recently Facebook [225] presented a single multilingual model, which outper-
formed the best specially trained bilingual models across 10 out of 14 language pairs 
of the WMT2021 news benchmark. Facebook built two multilingual systems: any-
to-English and English-to-any. They employed data mining techniques to identify 
translations in large web crawl data and leverage available monolingual data with 
hundreds of millions of sentences from all eight languages to maximize performance 
of MT systems. They filtered the available monolingual data to reduce the amount of 
noise, and then back-translated them with an ensemble of the strongest multilingual 
models available. The number of parameters was increased from 15B to 53B to 
enhance the model capacity. 

The BLEU scores are shown in Table 6.5. In comparison to the best bilingual 
models of WMT2021, the multilingual model achieves a better BLEU in 9 of 14 
cases indicating that the additional training data from other languages supports 
translation. Only for Chinese. →English there was a larger drop of 1.3 BLEU 

points. The authors also performed a human evaluation for the language pairs 
English. →Russian and English. →German. It turned out that there was no perceived 
difference between the quality of bilingual and multilingual translations.
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Table 6.5 BLEU scores of the Facebook multilingual model and the best language pair model 
submitted to the WMT2021 news task. The numbers reported are BLEU scores on the final 
WMT2021 test set [225]. The difference between the models is printed in bold, if the multilingual 
model is better 

Model Czech German Hausa Icelandic Japanese Russian Chinese 

From English 
FB-Mult 36.1 31.3 20.1 33.3 46.8 46.0 49.9 

WMT2021 best 33.6 31.3 20.4 30.6 46.9 45.0 49.2 

Difference 2.5 0.0 −0.3 2.7 −0.1 1.0 0.7 
To English 
FB-Mult 43.5 53.3 21.0 41.7 27.7 57.1 32.1 

WMT2021 best 43.1 53.0 18.8 40.6 27.8 56.3 33.4 

Difference 0.4 0.3 2.1 1.1 −0.1 0.8 −1.3 

Table 6.6 Influence of different modeling improvements on the BLEU scores on the development 
set of WMT2021 for Facebook AI’s WMT2021 submission [225]. The version of the last row was 
submitted 

Improvement strategy Czech German Hausa Icelandic Japanese Russian Chinese 

Bilingual 33.1 38.7 14.7 25.8 25.4 25.8 40.0 

+ Back-translation 33.1 39.6 23.1 29.4 26.1 25.7 42.4 

+ Fine-tuning 35.7 39.5 23.3 29.4 27.7 26.0 43.0 

+ Multilingual 36.4 40.8 24.6 31.2 29.7 26.8 43.6 

+ Ensemble 36.8 41.1 25.0 32.5 29.7 26.9 43.6 

+ Reranking 37.2 41.1 25.5 32.8 29.7 27.4 43.6 

+ Postprocessing 39.8 42.6 25.5 34.5 29.8 28.8 48.2 

Table 6.6 shows the effect of employed improvement strategies for the different 
languages of the multilingual model. Back-translation has a large effect for lan-
guages with little training data like Hausa and Icelandic. The authors note, however 
that back-translation produces translationese by generating artificial uncommon 
phrases in a language. These effects may be mitigated by fine-tuning on the specific 
domain, e.g. news texts. This yields about 3 BLEU points for translation into English 
and 0.7 BLEU points for translation out of English. Switching to the multilingual 
model generates an improvement for all models. While the effect of model 
ensembles is minor, re-ranking the BEAM translations with conditional target-
source probabilities yields about 0.4 BLEU points. Postprocessing (for example 
applying standard punctuation rules) can have a large effect, e.g. 5 BLEU points 
for Chinese. 

The PaLM autoregressive language model with 540B parameters [43] has about 
22% non-English training texts among its 780B training tokens (Sect. 3.1.2). Similar 
to other large LMs, PaLM is not trained explicitly on parallel text, although some 
such data is likely to exist naturally in the training corpus. In Table 6.7 the results 
of PaLM 540B few-shot translation is compared with prior few-shot and fine-tuned 
SOTA [43, p. 27]. The best BLEU value per language pair is underlined and the
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Table 6.7 Comparison of PaLM few-shot translation performance against prior fine-tuned trans-
lation performance by specialized models and prior few-shot performance. On the left you find 
the translation from English and into English for the traditional WMT language pairs. On the right 
there is the translation to and from English to Kazakh (kk) and a translation between German and 
French [43, p. 27] 

From en en en fr de ro en de kk fr 

To fr de ro en en en kk fr en de 

Prior fine-tuned SOTA 45.6 41.2 33.4 45.4 41.2 39.1 15.5 31.5 30.5 24.9 

Prior few-shot SOTA 33.9 26.8 20.5 38.8 40.6 37.3 – – – – 

PaLM 540B few-shot 44.0 37.4 28.7 42.8 47.5 43.8 5.1 25.7 20.8 17.4 

best few-shot BLEU is printed in bold. The table shows that PaLM on the traditional 
WMT translation pairs always achieves the best few-shot BLEU, often improving by 
a wide margin. For the low-resource language Kazakh (kk) the fine-tuned translation 
models have a better BLEU than PaLM. However, for de. →en and ro. →en PaLM is 
able to outperform the supervised models. In addition, the 0-shot PaLM translation 
of fr. →en achieves a BLEU value of 25.2, which is better than the fine-tuned SOTA 
of 24.9. Overall, PaLM performs well close to the fine-tuned models without having 
been trained for this task. 

6.3.3 Multilingual Question Answering 

In recent years open domain question answering (ODQA) has taken a rapid 
development (Sect. 6.2). Therefore, it is extremely rewarding to extend these 
techniques to multilingual question answering. In this way, information encoded 
with the world’s different languages can be tapped and the digital divide can be 
narrowed by bringing answers to people who speak rarer languages. There is a 
tutorial on multilingual ODQA by Ruder [192, 193]. 

A simple way to perform multilingual ODQA is to translate the question to 
English, use an English ODQA system to generate an answer, and translate the 
answer back to the target language. Because of ambiguities in translation, this 
procedure may generate errors in some cases [132]. In addition, information specific 
to the target language and conceptualizations of the target culture may not be 
available in English [258]. 

The TyDiQA-GoldP benchmark [44] is a question answering dataset covering 11 
typologically different languages with 204K question-answer pairs. The following 
languages are included: English, Arabic, Bengali, Finnish, Indonesian, Japanese, 
Kiswahili, Korean, Russian, Telugu, Thai. As the languages represented in this 
benchmarks have a very diverse structure, a model which performs well on this 
data can be expected to have a good QA-accuracy on other languages. MKQA [133] 
is an evaluation dataset created by translating 10k Natural Questions [109] to 25  
target languages.
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Fig. 6.12 Cross-lingual retrieval by mDPR and answer generation with mGEN for the CORA 
system [13, p. 9]. The answers to the questions are correct, however, on the left side the answer 
should have been given in French 

As an alternative, one can train cross-lingual retriever and reader models 
combining the information from multiple languages to generate an answer in the 
target language (Fig. 6.12). CORA [13] answers questions across many languages, 
even for ones without language-specific annotated data or knowledge sources. It 
includes a dense passage retriever collecting documents with different languages 
for a question. A pre-trained multilingual language model mDPR using mBERT 
(Sect. 3.3.1) is fine-tuned to encode passages and questions separately. By perform-
ing a maximum inner product search the top k documents are retrieved similar 
to DPR (Sect. 3.4.5). It could be shown that mBERT improves the search quality 
in non-English mono-lingual retrieval [203]. The reader mGEN is a multilingual 
autoregressive sequence model (e.g. mT5, Sect. 3.3.2) generating the answer in the 
target language by compiling the information in the retrieved passages. No specific 
translation models are used. The initial training data is a combination of multilingual 
QA datasets. Each training instance from these datasets comprises a question, a 
positive passage, and an answer. However, these datasets suffer from limitations on 
language diversity. Therefore, the authors iteratively generate more representative 
training data for low-resource languages by exploiting links between Wikipedia 
articles in different languages. 

It turns out that CORA substantially outperforms the previous SOTA on mul-
tilingual open QA benchmarks across 26 languages, 9 of which are unseen during 
training. Here CORA can improve the average F1-value from 17.1 to 21.8. Retrieval 
with mDPR performs well in Indo-European languages with Latin script, even when 
the language is unseen. There is a major drop for languages with non-Latin script
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Table 6.8 Comparison against SOTA on TyDiQA question answering benchmark with 11 typo-
logically different languages. The values are for the validation set with respect to the exact match 
accuracy [43, p. 32]. Best values for each language printed in bold 

Model Ar Bn En Fi Id Ko Ru Sw Te Avg 

mT5 XXL 76.9 80.5 75.5 76.3 81.8 75.7 76.8 84.4 83.9 79.1 

ByT5 XXL 80.0 85.0 77.7 78.8 85.7 78.3 78.2 84.0 85.5 81.4 
PaLM 540B fine-tuned 75.0 83.2 75.5 78.9 84.1 75.7 77.1 85.2 84.9 80.0 

PaLM 540B few-shot 56.4 54.0 65.5 66.4 69.2 63.8 46.8 75.6 46.9 60.5 

(e.g., Japanese, Russian, Chinese). Here, perhaps, the model is unable to use relevant 
passages from other languages to answer questions. 

mT5 (Sect. 3.3.2) is a multilingual version of the T5 Seq2seq transformer with 
up to 13B parameters [246]. It was pre-trained using a training dataset of web pages 
covering 101 languages with about 48B tokens and a common vocabulary of 250k 
tokens. After fine-tuning on the TyDiQA benchmark, it arrives at an exact match 
score of 79.1%. ByT5 [245] is a variation of the mT5 multilingual encoder-decoder 
with 12.9B parameters. It operates on utf-8 bytes with a vocabulary of 256 possible 
byte values instead of tokens. The model is pre-trained to replace corrupted spans 
of 20 bytes on average. The largest model uses 36 encoder and 12 decoder layers. 
When the model is fine-tuned on gold data in all target languages, it achieves an 
exact match score of 81.4% on the TyDiQA benchmark. 

The PaLM Foundation Model [43] has about 22% non-English training texts in 
its 780B training tokens (Sect. 3.1.2). Therefore, it can be applied to multilingual 
tasks such as translation and question answering. With few-shot prompts it gets an 
exact match score on TyDiQA of 60.5%. When the model is fine-tuned on TyDiQA, 
the score grows to 80.0%, which is slightly below of the performance of ByT5 XXL. 
The detailed results in Table 6.8 show the performance for different languages. Here 
PaLM has a better score for two languages than ByT5. The authors remark, that 
ByT5 was trained with 50% more non-English text compared to PaLM, which may 
explain the difference. 

Available Implementations 

• Hugging Face provides Marian, BART and T5 (up to 11B parameters) as well 
as multilingual mBART and mT5 implementations and trained models https:// 
huggingface.co/transformers/. 

• The M2M-100 [55] is available with open-source data collection scripts, model 
code and parameters of trained models. In addition, the Fairseq system https:// 
github.com/pytorch/fairseq can freely be used. 

• The CORA [13] implementation of multilingual QA, generated training data and 
trained models are available at https://github.com/AkariAsai/CORA.

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
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6.3.4 Summary 

In recent years, machine translation has taken a dramatic development. The use of 
encoder-decoder PLMs could overcome the limitations of RNN architectures and 
increase the performance to near-human levels. Besides the utilization of encoder-
decoder Transformers, the availability of high-quality training examples by web 
crawlers using Foundation Models and specific assessment procedures is a reason 
for progress [33]. A further improvement resulted from sentence back-translation, 
which particularly increases results for low-resource languages, and from train-
ing a single multilingual model for translation between all languages. Training 
multilingual translation models with up to 600B parameters—using appropriate 
parallelization strategies—leads to significant performance increase for 100 lan-
guages, as measured by BLEU [113]. Recently multilingual models even were able 
to outperform high-resource bilingual translation models. This is also demonstrated 
by the PaLM Foundation Model, which achieved higher performance in few-shot 
translation than the prior fine-tuned models for some language pairs. Therefore, 
multilingual models are likely to become standard in the future. However, current 
multilingual models using unsupervised multilingual training may not deeply model 
the subtleties of languages and language varieties to their full extent. This has to be 
checked in future applications. 

The developments opened up the opportunity for multilingual question answer-
ing systems, e.g. CORA, where queries can be posed in a large number of languages. 
The answers are compiled from information available in multiple languages. In this 
way, cultural characteristics and concepts that are not available in all languages can 
be taken into account. There are also close links to cross-lingual semantic parsing, 
where a natural language utterance is translated to a logical form for execution 
in some knowledge base to return an answer [202]. Again the PaLM Foundation 
Model provided few-shot answers to multilingual questions, which are competitive 
in accuracy to fine-tuned models for the same benchmarks. A fine-tuned version of 
PaLM is even able to outperform prior fined-tuned SOTA for two languages. 

However, machine translation is not yet solved. There is still the problem of 
domain mismatch between train and test data. In some cases, it fails to accurately 
capture the meaning of a sentence. Systems can generate biased text, e.g. if gender 
is handled differently in different languages. But attention allows the decoder to 
look directly at faraway text and provides a soft alignment between words for 
free. Recently, performance could be increased by translating entire documents, 
as sentences often are not sufficient to disambiguate all words. To extend current 
multilingual models to thousands of languages, new techniques are required [19]. 
One approach is to use monolingual datasets to improve translation, since the 
amount of available monolingual text is orders of magnitude greater than the amount 
of translated text. This in addition requires highly reliable language detectors which 
also work for low-resource languages.



6.4 Text Summarization 261

6.4 Text Summarization 

With the rapid increase of textual information in companies and on the Internet, it is 
increasingly difficult for people to keep track of a topic. Automatic summarization 
of documents, which compiles the essential statements from a text, can help to 
grasp the most relevant information in the documents. A summary is a short version 
produced from a single document or multiple documents conveying the main points 
of the original texts. The purpose of automatic text summarization is to create a 
summarizer method to produce this summary efficiently and precisely. Recent in-
depth surveys are provided by Ma et al. [135], Guan et al. [71], Syed et al. [216], 
and El-Kassas et al. [95]. 

Earlier machine learning approaches produced extractive summaries selecting a 
few sentences from the document. This approach typically selected grammatically 
correct sentence parts, but the language style of the combined parts and the 
coverage were usually not sufficient. Modern summarizers pose summarization as 
a translation problem, which translates the original document to a short version 
covering the main points. Since 2017 the encoder-decoder transformer (Sect. 2.3) 
provided an effective technique to generate abstractive summaries containing the 
main points of the document. Abstractive summarization is a bit more complex 
because the text is paraphrased, and the summary usually has words different from 
the original document. On the other hand, it is more flexible and can aggregate 
several similar texts expressing related facts with different wordings. 

Basically, summarization is treated as a translation task, where the long document 
is translated into the short summary. Alternatively we can use the long document 
as the start text of an autoregressive Foundation Model, which is fine-tuned to 
generate a summary. One of the main challenges for Seq2seq models is that the 
decoder needs to attend to encoder token embeddings in the large document context 
to predict the next token of the summary. Therefore, Seq2seq models covering a 
long input context (Sect. 3.2) are natural candidates. Summarization systems can be 
either single document summarizers or multi-document summarizers. Table 6.9 lists 
popular summarization models and their performance. 

6.4.1 Shorter Documents 

The training data usually consist of documents and the corresponding summaries 
or abstracts. There are a number of actual benchmark datasets for summarization 
like CNN/Daily Mail [78], Gigaword [150], and Reddit TIFU [101], which have 
an input document with a length below 1000 tokens and a corresponding summary, 
which can be used for fine-tuning. The difference between a reference summary 
and a predicted summary is assessed by measures like ROUGE, BLEU, or METEOR 

(Sect. 2.3.3) with the recall-oriented ROUGE most frequently used. 
PEGASUS [128] is large transformer-based Seq2seq model pre-trained on 

massive text corpora (Sect. 3.1.3). It follows a new pre-training objective in which
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Table 6.9 Summarization models with their performance measured in ROUGE-2. Benchmarks are 
CNN/DM: CNN/Daily Mail benchmark [78], XSum [151] summarize an news article in a single 
sentence, arXiv [46] long scientific documents, PubMed [46] long medical documents, Multi-News 
[54] with an average document length of 1793 and 2.8 documents per cluster 

Model Details ROUGE-2 on benchmark 

PEGASUS 
(Sect. 6.4.1) 

Seq2seq model pre-trained with 
masked sentences 

CNN/DM 21.7, XSum 24.6 

BRIO (Sect. 6.4.1) GPT architecture trained to 
generate text spans 

CNN/DM 23.6, XSum 25.6 

PaLM (Sect. 6.4.1) 540B large LM to generate text XSum 1-shot 12.2, fine-tuned 
21.7 

ST-MoE (Sect. 6.4.1) 269B large mixture-of-experts to 
generate text 

CNN/DM 20.7, XSum 21.7 

STIE (Sect. 6.4.1) 6.7B GPT model adapted to human 
preference judgments by 
reinforcement learning 

STIE summaries are preferred 
to reference summaries in 70% 
of the cases 

BigBird (Sect. 6.4.2) Model for large inputs arXiv 19.0, PubMed 20.7 

HAT (Sect. 6.4.2) Model for large inputs using 
PEGASUS 

arXiv 19.7, PubMed 21.4, 
CNN/DM 21.3 

RL-175B 
(Sect. 6.4.2) 

Model based on GPT-3 for stepwise 
summarizing a book using 
reinforcement learning 

Human comparison: Likert 
value 3.5 of 7 

PRIMER (Sect. 6.4.3) Summarize several documents 
based on Longformer Seq2seq 
model 

Fine-tuned arXiv 20.8, 
fine-tuned Multi-News 21.1 

not tokens are masked, but sentences. During pre-trained, the model has to generate 
the masked or removed sentences as one sentence output. This pre-training objective 
is especially rewarding for document summarization, as the model learns how 
to generate sentences matching a context. After pre-training the model is fine-
tuned on 12 different summarization tasks. It reaches SOTA-results on all 12 
downstream datasets as measured with different ROUGE statistics. In most cases 
the improvements are considerable [128], e.g. for the CNN/Daily Mail benchmark 
it had a ROUGE-2-score of 21.7. The ROUGE-2-scores of other Seq2seq models are 
similar, e.g. 21.6 for T5, 21.3 for BART, and 21.5 for R3F [4]. Note that for text 
generation often a BEAM search (Sect. 2.2.3) is employed keeping several high 
probability versions of the text to increase the consistency of the resulting text. 

BRIO [131] starts from the observation that the usual ML-training only takes 
into account a single reference summary for each example and ignore possible 
other summaries. First a generation model is trained using the standard ML loss 
for the reference summary. It generates candidate summaries in an autoregressive 
way and scores the quality of the generated summaries. The weighted candidate 
summaries are considered by the evaluation model using a contrastive loss criterion, 
which takes into account the ranking order defined by the weights of the candidate 
summaries. The approach uses BART or PEGASUS as backbone Seq2seq models. 
On the CNN/Daily Mail benchmark benchmark [78] the BRIO model with 10B
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parameters has SOTA performance with the ROUGE-2 score of 23.6 on CNN/DM 
and 25.6 on XSum. By increasing the number of candidates from 4 to 100 by 
extending the beam width, the ROUGE-2 on CNN/DM could be increased to 24.1. A 
detailed analysis demonstrated that the approach was able to filter out noise patterns 
in the original data, e.g. the phrase “click here”. 

The autoregressive language models GPT-3, Gopher, InstructGPT and PaLM can 
be instructed to summarize, e.g. by entering a text and appending “TL;DR:” [159]. 
For PaLM with 540B parameters an evaluation is available. The MLSum benchmark 
[198] requires the model to summarize a news article in multiple sentences. For 
German texts PaLM 1-shot arrives at 12.8 ROUGE-2 and a fine-tuned version of 
PaLM achieves a ROUGE-2 score of 33.1, which is below the fine-tuned SOTA at 
36.4 [43, p. 30]. The XSum benchmark [151] requires to summarize a news article 
in a single sentence. Here PaLM gets a few-shot ROUGE-2 score of 12.2 and a fine-
tuned ROUGE-2 of 21.2, whereas the fine-tuned SOTA ROUGE-2 by BRIO is 25.6. 

ST-MoE-32B [270] is a mixture-of-experts model (Sect. 3.5.2) with 269B 
parameters. On the CNN/Daily Mail benchmark it achieves a fine-tuned SOTA 
ROUGE-2 value of 21.7 and on the XSum benchmark it yields 27.1 ROUGE-2 with 
fine-tuning. While fine-tuned Foundation Models can achieve a similar performance 
as specific summarization models, results for few-shot prompts need improvement. 

ROUGE metrics are only a crude guide to what people really care about: the 
quality of a summary. Stiennon et al. [211] directly optimize their model with 
respect to human judgment. The authors collect a large, high-quality dataset of 
human comparisons between summaries. Then they train a model to forecast 
human-preferred summarization and use this model as a reward function to fine-tune 
a summarization policy using reinforcement learning. They apply their model to 
the TL;DR benchmark [230], because this summarization task is significantly more 
challenging than CNN/DM. They find that the summaries of their 6.7B parameter 
STIE model are significantly preferred to the reference summaries 70% of the 
time, whereas the summaries of fine-tuned alternative models are preferred to the 
reference summaries about 43% of the cases. The model can also be applied to 
new domains better than other methods. For CNN/DM news articles, it produces 
summaries that are almost as good as the human reference without the need for 
news-specific fine-tuning. This indicates the effectiveness of the approach, and 
opens an avenue to optimize summarization quality directly. 

6.4.2 Longer Documents 

While the input document length of documents is generally less than 1000 tokens, 
it is greater for the PubMed corpus (4k tokens) and ArXiv benchmark (8.6k tokens) 
[46]. For these benchmarks transformers with longer input sequences (Sect. 3.2) are  
capable of taking into account the whole document.
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BigBird [253] is able to cope with long documents (Sect. 3.2.1). As the 
sequence length of the transformers is increased, the number of parameters (and 
computations) grows quadratically. BigBird has a sparse attention mechanism 
that reduces this quadratic dependency to linear. BigBird can use a larger input 
sequence of 4096 tokens and drastically improves performance on various NLP 
tasks such as question answering and summarization. Longer documents exhibit 
a richer discourse structure and summaries are considerably more abstractive. For 
long documents with 3000–6000 words BigBird is pre-trained with the PEGASUS 
objective. After fine-tuning it yields a marked improvement on SOTA, e.g. on  
the ArXiv benchmark with the ROUGE-2 score 19.0. TLDR [31] is a similar  
summarizer based on BART, which generates a one-sentence summary for scientific 
papers. It increases its performance by the auxiliary target to predict the title of a 
paper. 

HAT [187] aims to capture the content of longer documents in a better way. 
The authors design a hierarchical Seq2seq attention network model that produces 
sentence level representations, and combines them with token level embeddings. 
They determine sentence boundaries by punctuation and insert .[BOS] tokens at the 
start of every sentence. In the transformer encoder they use a conventional layer 
which produces an embedding for each token. After this an additional hierarchical 
layer is added which only attends to the embeddings of the .[BOS] tokens. The 
resulting embeddings can be interpreted as sentence level representations. The 
transformer decoder is standard with an additional layer that attends to the . [BOS]
tokens from the hierarchical encoder layer. On the PubMed benchmark of long 
documents [46] it yields a SOTA ROUGE-1 score of 21.4. while on arXiv it has 
a ROUGE-1 score of 19.7. But also on the CNN/Daily Mail benchmark of shorter 
documents [78] it achieves a SOTA ROUGE-2 scores of 21.3, 

RL-175B is a summarizer for whole books by OpenAI using a reinforcement 
learning algorithm to follow human preferences [236]. The model first summarizes 
small sections of a book, then generates intermediate summaries from them and 
finally produces a summary of the whole book on the basis of the intermediate 
summaries. The model is based on GPT-3 and evaluates a large set of summary 
activities created by human labelers. The small sections are generated by a fixed 
chunking algorithm. Then a model is trained on human examples to summarize these 
chunks using reinforcement learning. It uses the approach explained in Sect. 3.6.5. 
A number of chunks is joined in a group and a higher-level summary is produced. 
This procedure is repeated until a final summary of the whole book is generated. 

The fine-tuning was performed for the GPT-3 with 7B and 175B parameters. 
The summarization was tested on books, which were not contained in the training 
data. The scoring is done by a Likert scale from 1 to 7. It assigns numbers to 
human judgments (e.g. 1 = very bad, 2 = bad, . . . ,  7 = very  good), and computes 
averages from these numbers. While the 6B models scores a little better than 2 
Likert, the 175B model achieves an average Likert of 3.5. However, about 20% 
of the summaries got more than 5 Likert, which were also sometimes assigned to 
human-written summaries. It turned out that the reinforcement approach achieved 
better results than behavior cloning. In general, there is a large difference to human-
created summaries, and the generated summaries still lack coherence.
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6.4.3 Multi-Document Summarization 

Often, information is spread across multiple documents, and it makes sense to 
summarize this content. For example, it may be useful to summarize a series of 
reviews about the same mobile phone or to summarize scientific papers on the same 
topic. 

Primer [237] is based on the Longformer encoder-decoder (Sect. 3.2.1), an 
efficient transformer model with an input length of 4096 tokens, where the effort for 
processing long documents grows linearly with their length. The input documents 
are concatenated and separated with .[doc − sep] tokens. These tokens act as global 
relays and have attention connections to all tokens, while the other tokens are only 
connected to the tokens in the same document. In this way, large sequences of input 
documents can be processed. It can be expected that the same information appears 
multiple times in the different documents. PRIMER selects sentences, which are 
similar in different documents based on the ROUGE score and uses common entities 
as an additional selection criterion. These sentences are masked and the model has 
to reconstruct them during pre-training taking into account the information from all 
documents (Fig. 6.13). 

The pre-training already enables the model to combine the information from 
different documents. Therefore, zero-shot and few-shot summarization with no or 
little fine-tuning is possible. For the Multi-News benchmark [54] with an average 
document length of 1793 and 2.8 documents per cluster, PRIMER achieves a zero-
shot ROUGE-2 score of 13.6 and can increase this to 21.1, which establishes a new 
SOTA for this multi-document summarization benchmark. On the ArXiv benchmark 
with an average document length of 6021 tokens [46], the fine-tuned PRIMER yields 
a ROUGE-2 score of 20.8, indicating the performance on long documents. 

Fig. 6.13 Multiple documents form the input for PRIMER, separated with .[doc-sep] tokens. 
These tokens have a global attention with all tokens, the remaining tokens attend only inside each 
document. Some sentences are selected and have to be recovered by the decoder [237]
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Available Implementations 

• T5, BigBird, and Pegasus code and trained models are available on Hugging Face 
https://huggingface.co/transformers/. 

• Further summarization scripts at https://huggingface.co/tasks/summarization. 
• STIE data and code https://github.com/openai/summarize-from-feedback 
• PRIMER code for Multi-document Summarization https://github.com/allenai/ 

PRIMER 

6.4.4 Summary 

Foundation Models initiated a breakthrough for summarization models. They can be 
trained to generate abstractive summaries by handling this problem as a translation 
task, where the model is trained to reconstruct a reference summary. For smaller 
documents with up to 1000 tokens, the standard models like T5 and PEGASUS 
achieve good results, with BRIO being a bit ahead. Models with more parameters 
have a slightly better performance. General Foundation Models like PaLM have a 
slightly lower performance. The STIE model shows that user preferences may be 
used directly in training a summarizer via reinforcement learning, resulting in good 
summaries that are preferred by human raters. 

For larger documents a transformer encoder-decoder with a larger input sequence 
is required, e.g. BigBird. There are different techniques to generate intermediate 
representations for documents, e.g. for sentences by HAT or chunks by RL-
175B. However, the quality for the summarization of whole books currently is 
not sufficient, even if the large GPT-3 model is employed. A recent alternative is 
InstructGPT (Sect. 3.6.5), which can be easily directed to perform a summarization, 
e.g. by the prompt “Summarize this for a second-grade student: . <text. >” [162, 
p. 30]. However, a formal evaluation of the performance of this approach seems 
to be difficult, as no reference training/test data is involved. 

Multi-document summarization has to cope with the repetition of contents in 
different documents. The PRIMER model uses a hierarchical attention structure to 
ingest a number of large documents and is trained to reconstruct sentences exploit-
ing information from other documents. This leads to a satisfactory performance on 
the specific multi-document benchmarks. 

6.5 Text Generation 

A system for  Natural language generation (NLG) has the task of producing fluent, 
coherent, and understandable text. Usually, the system generates a continuation of 
a start text. The development of Foundation Models in recent years has greatly 
advanced this field and led to convincing solutions. This section concentrates

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
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Table 6.10 Main text generation techniques 

Architecture Mechanism Advantages Disadvantages 

Variational 
Autoencoder 
(VAE) [26] 

Compress a text x to a 
hidden vector h 
distributed as a 
Gaussian, reconstruct 
the text x from h 

Constraint on the latent 
vector h creates a 
continuous 
representation space 
and increases the 
diversity of the 
generated text 

Often less fluent and 
coherent in text 
generation compared to 
Foundation Models 

Generative 
Adversarial 
Network 
(GAN) [68] 

A generator transforms 
a random vector s to a 
text x. A discriminator 
checks, if x is 
synthetic. Both are 
trained in adversarial 
style 

Unsupervised learning; 
Generating clearer and 
more realistic samples 
than other generative 
models 

Instable training 
process; sampling of x 
is non-differentiable: 
needs reinforcement 
learning or 
Gumbel-softmax 

Autoregressive 
Language 
Model (GPT) 
(Sect. 2.2) 

Self-attention with 
previous tokens 
x1, . . . , xt−1 to 
generate next token xt 

Efficient contextual 
embeddings and 
long-term context; fast 
parallel computing 
speed 

High computational 
effort and slow training 
speed 

Encoder-
decoder 
Transformer 
(Sect. 2.3) 

Self-attention over full 
input sequence x and 
iterative generation of 
output sequence y1, . . .  

Efficient contextual 
embeddings and 
long-term context; 
transform input as a 
whole sequence 

High computational 
effort and slow training 
speed 

on writing larger texts and complete stories. NLG has already been used for 
many real-world applications, such as creating business reports from business 
figures, describing sporting events from results tables, or creating weather forecasts. 
Microsoft has announced to fire about 50 employees of MSN news [17], using 
Deep Learning instead to identify trending news stories or optimize the content. The 
generation of responses to user utterances by a chatbot is discussed in the section 
on dialogs. A number of surveys for text generation is available [65, 83, 116]. Yu et 
al. [251] give an overview of knowledge-enhanced text generation. 

Here we will describe story generation systems based on Foundation Models 
that currently provide the best results. A high-level overview of approaches is 
given in Table 6.10. By pre-training on a massive corpus, the models can encode 
a large amount of linguistic and semantic knowledge and produce rich, flexible, and 
universal representations of language. In the following sections we will discuss a 
number of different NLG tasks. 

• First, we describe NLG basics, where the next token y has to be generated 
according to a language model .p(y|x) (Sect. 6.5.1). 

• Then we discuss the generation of a new text with a given style, e.g. a poem 
(Sect. 6.5.2).
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Table 6.11 Mechanisms to control story generation 

Approach Description Example systems 

Pre-train LM on 
large text 
(optional 
fine-tuning) 

Pre-train the language model on a 
large text collection. Possibly 
fine-tune on a smaller corpus of a 
specific domain. Generate a 
continuation of the start text 

GPT-2 [235], GPT-3 [29], Gopher 
[175], Retro [25], WuDao [263], 
PaLM [43] 

Add style or 
content marker 

Add style or content marker to the 
start text. The marker has to be 
present in pre-training or 
fine-tuning data 

CTRL [96], PPLM [50], 
ETC-NLG [32] using topics, GDC 
[97] controls token distributions, 
Adapter-Bot [126] 

Translate text to a 
new style 

Use a transformer and a possible 
style selector to transform an input 
text to a new style and nearly the 
same content 

Formal [260], LRE [90], 
ACC [250], LRS [118], StyleLM 
[217], OPTIMUS [115], GPT-3 
with two-step prompts [30] 

Specify a 
sequence of 
events for the 
story 

Specify events by short 
sentences/phrases and generate a 
story containing these events in 
order 

PlotMachines [181] uses phrases, 
Pointer [261] inserts  words,  
Progressive WritingPrompts [220], 
Facts2Story [161] starts with a  
sequence of facts, GraphPlan [38] 
uses a graph of events, SOE [214] 
performs a two-level process of 
generating text, FIST [58], GPT-3 
with bullet-list prompts [30] 

• A related task is to rewrite one document in a different style or world view 
(Sect. 6.5.3). 

• In general, the text created by the Foundation Model takes a consistent but 
random course. The core of NLG is the task of generating text that follows a 
specific plot or timeline (Sect. 6.5.4). 

Table 6.11 describes these tasks and lists a number of corresponding NLGmodels 
discussed in this section. The generation of fake news or other malicious text is 
covered in Sect. 6.5.5. Section 6.5.6 describes how to generate computer code. 

The assessment of the performance of natural language generators is a difficult 
problem. Expensive but most comprehensive is the evaluation by humans, where 
persons are asked to rate or compare texts generated by different NLG systems. 
If texts created by humans are part of the comparison, this constitutes a Turing 
test which may assess the “intelligence” of an NLG-system. An alternative are 
automatic metrics like BLEU, METEOR or ROUGE (Sect. 2.3.3), which assess the 
difference between machine-generated texts to human-generated reference texts 
by comparing n-gram counts (Sect. 6.3). A final alternative are machine learning 
models, which judge the adequacy of the generated text. These models act like a 
judge, who decides, if a generated text is real or synthetic. Celikyilmaz et al. [34] 
discuss these evaluation approaches in detail. Yu et al. [251] provide a survey of 
knowledge-enhanced text generation.



6.5 Text Generation 269

GEM [66] is a new benchmark collection created for NLG containing seventeen 
different benchmarks and comprising an evolving system of evaluation metrics and 
procedures. A fraction of benchmarks are summarization benchmarks like XSum 
and MLSum already covered in the previous section. Models are assessed with 
metrics comparing a reference text and the diversity of the text. The authors provide 
an interactive GUI, which is able to highlight the relative strengths and weaknesses 
of each system. GEM can be used as a testbed to evaluate, how new metrics perform 
on these different tasks. 

6.5.1 Generating Text by Language Models 

Language models (Sect. 2.2) have the task to produce the next token . xt for a text 
.x = (x1, . . . , xt−1). This model can directly be applied to story generation. The 
user provides a start text as input to the LM, which word-by-word generates a 
continuation. Specifically, the model predicts for the next position the probability 
.p(xt |x1, . . . , xt−1;w) of each token of the vocabulary. To generate a text a single 
sequence of tokens has to be selected according to the predicted probabilities. 
Simply selecting the tokens according to the estimated probabilities often gen-
erates rare, non-plausible continuations. A better alternative is top-k or top-p 
sampling restricting the random selection to the tokens with the highest probability 
(Sect. 2.2.3). 

Early LMs, e.g. LSTMs, produced text, which often contained syntactic errors, 
losing the context after a few words. VAE Variational Auto-Encoders reconstruct 
the sentence from a randomly modified latent representation .z ∼ N(μ, σ ), where 
. μ and . σ are predicted by the encoder. A KL-loss is added to the reconstruction loss 
such that the distribution of . z approaches a standard normal distribution [89]. GAN 
Generative Adversarial Networks use a generator to transform a noise vector . s to 
a text  .x̃ = G(s). Then a discriminator .D(x) has the task to distinguish synthetic 
text . ̃x from real text . x [68]. Both models are trained together. These basic language 
generation alternatives are also covered in Table 6.10. 

A number of classical models for text generation such as BART (Sect. 3.1.3), T5 
(Sect. 3.1.3), and mT5 (Sect. 3.3.2) are evaluated with the GEM benchmark [66]. 
The models are assessed using 7 metrics comparing a reference text and 9 metrics of 
diversity (e.g. the relative number of distinct uni- and bigrams). Instead of reporting 
a single metric the models can be evaluated with different combinations of metrics 
as shown in Fig. 6.14. 

GPT-2 [174] is an autoencoder comprising 1.5B parameters. It was able for the 
first time to generate consistent stories that continue a start text. According to the 
users, the stories were coherent in half of the cases. Much better is the performance 
of GPT-3 with 175B parameters [29]. Given an initial text it is able to create short 
stories, songs, press releases, technical manuals, poems, translations, guitar tabs, 
computer code, etc. Only with an accuracy close to chance (52%) humans were able 
to distinguish whether news articles of about 200 words were synthetic [29, p. 26].
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Fig. 6.14 A screenshot of the GEM benchmark interactive result exploration tool. On the top left 
tasks are selected. The selection of metric-groups or metrics is on the top right. The visualization 
of the selected metrics is shown on the bottom. Image reprinted with kind permission of the 
authors [66, p. 107] 

A discussion of relative strengths and weaknesses of these Foundation Models can 
be found in Chap. 4. 

An evaluation benchmark measuring the degree to which a language model 
“understands” a story is the LAMBADA benchmark [165] (Sect. 4.1.3). It consists 
of about 10,000 passages from the BooksCorpus containing unpublished novels. 
The task is to predict the missing last word of the last sentence of each passage. 
Examples were filtered by humans to ensure that models need to take into account 
the full passage of at least 50 tokens to induce the final word. The GPT-3175B 
autoregressive language model [173] predicted the last word with 76.2% [29, p. 12].  
PaLM with few-shot instructions could increase the accuracy to 89.7 [43, p. 79].  
This means that in nearly nine of ten cases the predicted word was exactly correct, 
which indicates that the model well “understood” the preceding passage. For 
advanced Foundation Models like Gopher (280B) and PaLM (540B) text generation 
is a background ability taken for granted, which is no longer tested with benchmarks. 
A large battery of benchmarks is applied to test other features, e.g. common sense 
knowledge, reasoning, etc. (Sect. 4.1.4). 

InstructGPT is a recent variant of GPT-3 (Sect. 3.6.5), which can easily be 
instructed to generate a story, e.g. by the prompt “Write a short story where 
a bear goes to the beach, makes friends with a seal, and then returns home.” 
[162, p. 6].  Retro is an autoregressive LM combined with a retrieval mechanism 
(Sect. 6.2.3). In this way, current and focused information can be collected during 
the generation of a story, instead of relying on the information contained in the 
model parameters, which were obtained from the training data. LaMDA (137B) 
is a recent Language Model (Sect. 6.6.3) specialized for dialogs. It also features
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a retriever-reader architecture to augment its internal knowledge acquired during 
pre-training with external information. 

GRF [86] is a Foundation Model including multi-hop reasoning in a knowledge 
base to improve language generation. This enhances PLMs, which otherwise take 
into account common sense knowledge only if it is explicitly stated in the training 
data. The reasoning module operates on the sub-graph extended from the concepts 
in the input text and draws possible conclusions. These are taken into account 
for the further generation of text. Results, e.g. on task to finish a story, show that 
the model outperforms strong alternatives. Other approaches to enhance language 
models by additional knowledge are discussed in Sect. 3.4. A survey of conditional 
text generation is given by Guo et al. [72]. 

6.5.2 Generating Text with a Given Style 

Often the goal is to create a text in a specific style or emphasizing a specific type 
of content: e.g. author’s style (e.g. Shakespeare), emotion (e.g. angry, malicious, 
happy), genre (e.g. humor, romance), topics (politics, religion), persona (e.g. lawyer, 
knight), or sentiment (e.g. positive, negative, fury). By design there are a number of 
ways how to influence the story produced by a Foundation Model. 

• Pre-training a Foundation Model with corresponding texts. 
• Adaption of the Foundation Model to a new genre/style/content by fine-tuning. 
• Specification of an initial text. 
• Few-shot instruction, e.g. for GPT-3, or simple instructions for InstructGPT. 

There are different ways to achieve this with Foundation Models. A comprehen-
sive survey is given by Lili and Vechtomova [122]. 

Style-Conditional Probabilities 

CTRL [96] aims to train a generative model .p(y|x; a) conditioned on a control 
variable a. To do this, the conditional distribution .p(x|a) is adapted by training 
on raw text sequences with context classes prefixes such as [horror], [legal], etc.  
The authors used text collections, which are labeled with the corresponding context 
classes. Then the learned transformer model with 1.6B parameters is able to generate 
text with respect to the control prefix. This is developed further by GeDI [105], 
which has a stronger controllability, generates less toxic text, and can be extended 
to continuously weighted control codes for generating fluent stories [127]. 

PPLM [50] (Plug and Play Language Model) defines a model .p(x|a), where a 
is some desired controllable attribute(s) and x the generated sample. If .p(x) is the 
pre-trained LM, the authors define the conditional distribution .p(a|x). This yields 
a conditional generative model .p(x|a) ∝ p(a|x)p(x). The distribution .p(a|x) may 
be implemented by a single layer classifiers. The model samples from the resulting
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combined model by following gradients in the latent representation space (key-
value-pairs of the transformer) such that .p(x) as well as .p(a|x) is improved. After 
a number of 3–10 updates the perturbed values are used to generate a new token at 
the next position. The model was able to create text with the desired tonality (e.g. 
positive/negative) while preserving fluency. However, balancing the impact of the 
PLM and the conditions is delicate and must be supported with additional measures 
like reranking, and early-stopping procedures. 

ETC-NLG [32] leverages context-sensitive topic models [23] to enhance PPLM 
with an unlabeled collection of documents. This is desirable as PPLM still requires 
large amounts of labeled texts to effectively balance generation fluency and proper 
conditioning. The attribute model discriminator, predicting document topics, and the 
unconditional language model PPLM are merged to obtain a conditional language 
model for topic-conditioned utterances. 

GDC (Generation with Distributional Control) [97] propose an approach to 
emphasize specific words in addition to changing the distribution of generated 
words. For example, GDC can avoid toxic content, prevent bias, and align the 
generation with a particular theme or style. Instead of reweighting the generative 
distribution of tokens, the authors derive a stochastic policy by reinforcement 
learning [166] to get a good compromise between the constraints and the language 
model. The authors can reweight single words (e.g. China), all words in a word list 
(e.g. lists for kitchen, fantasy), and words emphasized by a classifier (e.g. for very 
negative or clickbait). The results show that the constraints are met with the lowest 
divergence from the original PLM and with the best diversity scores. 

Adapter-Bot [126] provides different adapters trained independently for differ-
ent skills. The backbone of the Adapter-Bot is a pre-trained GPT language model 
[262], providing the ability of text generation. A set of trainable adapters are added 
to the backbone, which are optimized over the target dataset of dialogues for specific 
dialogue skills. Using a trained classifier to select the right dialogue skill under the 
dialogue story, Adapter-Bot allows high-level control over the chatbot. 

Prompt-Based Generation 

GPT-3 is able to produce text, when it receives an appropriate prompt (Sect. 3.6.3). 
It can, for instance, generate a poem [8]. After the prompt “write a poem in the style 
of Rabbie Burns” it may produce something like 

“There once was a lady from Dundee 
a’ wha was bonnie, braw, and meek 
She met an old man from Dunfermline 
who  won’t  let  her  to  her  sleep  . . . ”  

With the prompt “write this like an attorney” it can create a text in the wording of a 
lawyer. Moreover, it can automatically write emails in your personal style by getting 
a prompt with some key points. GPT-3 can even work with unusual language types. 
It can, for instance, translate natural language into shell commands or programming
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code [163]. More prompts for GPT-3 and other Foundation Models are provided 
by OpenAI [160]. InstructGPT was fine-tuned to generate text according to an 
instruction (Sect. 3.6.5). It can, for instance, receive the directives “Complete the 
following sentence in a polite, respectful, and unbiased manner:” or as “Complete 
the following sentence using maximally biased and offensive language:”. Then the 
model produces diverse texts that satisfy the requirements [162]. 

6.5.3 Transferring a Document to Another Text Style 

Text style transfer aims to translate a text . x′ with attribute . a′ to a similar text . x of 
a desired attribute a. For example, the sentence .x′ =“Peter screwed up” with the 
attribute .a′ =“informal” can be transformed to . x =“Peter has not reached the goal” 
with the attribute .a =“formal”. The aim is to train a language model .p(x|x′, a). 
There are a number of other transformations, such as impolite . ↔ polite, complicated 
. ↔ simple, positive . ↔ negative, biased . ↔ neutral, or factual . ↔ humorous . ↔
romantic. 

The separation of style from content is difficult. On the one hand it can be 
captured by linguistic features, e.g. the utilization of specific words and phrases. 
On the other hand, it can be provided by text collections, e.g. with the writings of 
different authors or with a corpus of positive/negative reviews. In the latter case we 
can train classifiers, which discriminate between the different styles. With the recent 
progress in the capabilities of language models there are a number of successful 
applications of style transfer like imitating the style of specific authors, removing 
bias in online text, etc. A recent comprehensive survey is provided by Jin et al. [88]. 

Style Transfer with Parallel Data 

If there are parallel documents of both styles, the style transfer can be formulated as 
a translation problem. An encoder-decoder transformer has to be fine-tuned on this 
dataset. 

Formal [260] formulate style transfer from informal to formal as a translation 
task. They use a transformer as Seq2seq model and apply it to the GYAFC [180] 
benchmark dataset containing parallel formal/informal sentences. In addition, they 
augment the data by back-translation, employ machine translation to and from 
another language and leverage training data from grammatical error correction. 
They report a new SOTA on the GYAFC dataset with increased formality and 
fluency, while keeping the meaning of a text.
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Style Transfer without Parallel Data 

StyleLM [217] translates an arbitrary text into a text with the style properties of 
another author while keeping the content, even if no parallel data of the same 
content in different styles is available. First a BERT model is trained on a large 
neutral corpus (Gutenberg and Wikipedia) with the MLM loss. Then two copies of 
the model are used as an encoder-decoder transformer .x̃ = DECw(ENCu(x)). As  
fine-tuning input this Seq2seq model receives texts from the target author, where 
a random fraction of the words have been masked and have to be reconstructed. 
Hence, the Seq2seq model induces text with the target author’s style while rewriting 
the input text. 

For evaluation 10 different authors were selected and excluded from the training 
data. The BLEU score and ROUGE scores are used to measure content preservation. 
To measure the style quantitatively, the frequency of author-specific words and 
of syntactic and punctuation elements are evaluated. StyleLM in most cases had 
the best content preservation and stylistic alignment. Singh et al. [207] note 
that StyleLM has problems with content reproduction. They propose to pre-train 
the encoder-decoder .DECw(ENCu(x)) on a large generic corpus. Afterwards the 
encoder-decoder is fine-tuned on the text of the target author. 

OPTIMUS [115] investigates further manipulations of sentences embeddings. 
An encoder with parameter . u is required to generate a latent vector from text . z =
ENCu(x). It is initialized with a pre-trained BERT model. A linearly transformed 
version .z = W ∗ h[CLS] of the embedding of the first token [CLS] of a sentence is 
defined as latent representation. The generator (decoder) with parameter . w generates 
the text sequence .x = DECw(z) from a random vector . z (e.g. multivariate Gaussian) 
with prior .p(z). The authors start with a pre-trained GPT-2 model as decoder. . z is 
used by the decoder as an additional vector to attend to (in addition to the previously 
generated token embeddings). Both networks .x̃ = DECw(ENCu(x)) are trained 
with the autoencoder loss and the variational autoencoder loss, i.e. the system has 
to minimize .|x̃ − x| and encourage a Gaussian distribution for . z. 

The approach learns bidirectional mappings between latent embeddings . z and 
sentences . x. For two sentences . x1 and . x2 the embeddings may be calculated and 
by .αz1 + (1 − α)z2 we can continuously interpolate between the sentences. In 
addition, differences between latent vectors may be computed similar to Word2Vec. 
For dialog response generation and the generation of responses with a specific 
style OPTIMUS has a better performance on all metrics compared to its com-
petitors. Using an additional GAN to manipulate the latent representation . z, 
OPTIMUS is able to generate YELP restaurant reviews of prescribed sentiment 
(positive/negative) better than the investigated alternatives. The authors argue that 
compared to BERT, OPTIMUS learns a more structured semantic space due to the 
use of the VAE prior distribution in training.
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Style Transfer with Few-Shot Prompts 

Sufficiently large Foundation Models such as GPT-3, Gopher, and PaLM can 
perform various tasks simply by choosing a clever prompt. If, however, only 
a simple prompt is entered, e.g. “Here is some text: {That is an ugly dress}. 
Here is a rewrite of the text, which is more positive: {” the model often fails 
and may not produce well-formatted or consistent outputs. The AugZero [182] 
prompting schema employs augmented zero-shot prompts, which provide several 
demonstrations of sentences being rewritten to a new style. An example is shown 
in Fig. 6.15. In contrast to few-shot examples, where the examples have to cover 
the exact task, the model can also generalize to other unseen types of styles, e.g. 
“comic” in the example. 

The authors use GPT-3 with 175B parameters. Professional human raters were 
asked to assess text style, content preservation, and fluency. The zero-shot alterna-
tive performed worst and did not return a valid response in a quarter of the cases. 
It turned out that the AugZero rated comparably to human-written ground truth. 
Obviously, the language model can extrapolate the examples and transform a text 
in unseen styles. Adding the target attribute to the augmented prompts had a very 
similar performance. It can be expected that larger models like PaLM and LaMDA 
can generate even better results (Sect. 3.6.5). 

Fig. 6.15 Augmented zero-shot prompts can instruct large autoregressive LMs like GPT-3 to 
transfer a text to a new style. This even works, if there is no example given for the specific style 
desired, e.g. “comic” in the example [182, p. 2]
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Buchanan et al. [30] noted that they could not instruct GPT-3 by a single prompt 
to express a given story in a new tone or slant, supporting the above finding. 
Therefore, they developed a two-step procedure: First, GPT-3 was instructed by 
a few-shot prompt to summarize the given story into a list of bullet points. In a 
second step GPT-3 was instructed by prompts such as “Write a strongly pro-Trump 
article about [Topic X] that makes use of the following list of facts about [Topic 
X]”. When examining 20 generated stories by human evaluators, 11 of them were 
identified by at least one person as being “definitely authentic.” The authors used 
GPT-3 to solve further tasks, e.g. creating new narratives that could form the basis 
of conspiracy theories (e.g. QAnon), convincing members of particular groups to 
believe a claim, or persuade persons to change their opinion on some topic. They 
come to the conclusion that systems like GPT-3 are well-suited for generating a 
story with a new slant, e.g. for disinformation. This is even more alarming for more 
efficient recent Foundation Models like LaMDA or PaLM. 

6.5.4 Story Generation with a Given Plot 

A narrative, story or tale is a description of a series of related events or experi-
ences [234]. As the story generated by a PLM gets longer, often the earlier context is 
forgotten, and the text develops in an aimless fashion. Therefore, researchers would 
like to prepare a rough plot or storyline for the story, which is then taken into account 
by the Foundation Model. More specifically the story structure, the story ending, 
the general topic, or the persona of leading characters can be controlled. Besides 
story generation another application is data-to-text generation, where non-linguistic 
structured data (e.g., a table or a graph) is converted to natural language text, which 
can be applied in tasks like healthcare, weather forecast, legal text, etc. Surveys of 
controlled text generation are provided by Prabhumoye et al. [170], Yu et al. [251], 
and Zhang et al. [257]. 

The planned course of a story can be described in different ways: 

• A list of single keywords or phrases. 
• A list of sentences or bullet points describing an event. 
• An event graph describing the logical dependency of events. 

Specify a Storyline by Keywords or Phrases 

Megatron-CNTRL [243] controls the story generation by keywords. In addition, 
retrieved knowledge allows dynamical incorporation of external knowledge from 
the ConceptNet KB into language model during generation. From the current story 
context a keyword predictor first predicts a set of keywords for the next sentence. 
The retriever collects knowledge from the KB corresponding to the keywords. The 
returned sentences are re-ranked according to their relevance to the story context. 
Finally, the generator takes the story context and the top-ranked retrieved sentences
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and produces the next sentence. To support generalization of entities they replace 
names and entities in stories with special placeholders, [MALE], [FEMALE], and 
[NEUTRAL] for male, female and unknown names and entities, respectively. The 
underlying Megatron model (Sect. 3.1.2) has up to 8B parameters. Experiments 
show that the model generates more fluent, consistent, and coherent stories with 
lower repetition rate and higher diversities compared to the previous SOTA 

Dong et al. [52] present a model, which takes as input a list of keywords with 
attached entity classes and generates a text containing these keywords. The entities 
are taken into account during text generation and the model embeds the meaning of 
entities into hidden states. The results show that the generated sentences are able to 
reflect the properties of the entities. 

PlotMachines [181] generates a text based on a plot consisting of a set of 
phrases. The system can decide for itself in what order to introduce the concepts 
covered by the phrases. It is based on the GPT and GPT-2 language model. The 
authors use three different datasets describing TV-shows, movies, books, short 
stories, and news articles. They extract phrases (3–8 words) from these stories by a 
keyword extraction method [167]. Given an outline as input, the model recurrently 
generates paragraphs (Fig. 6.16). To create the next paragraph it uses a gating 
mechanism similar to an LSTM gate, which updates a memory matrix M that keeps 

Fig. 6.16 An outline (input) together with a story (output) from the Wikiplots training set 
generated by PlotMachines. Plot elements from the outline can appear and reappear nonlinearly 
throughout the plot, as shown in plot dynamics graph. A memory matrix keeps track of how outline 
phrases have been used while writing. Image reprinted with kind permission of the authors [181, 
p. 1]
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track of plot elements of the outline. The self-attention in the model is adapted to 
receive input from the memory matrix as well as the previously generated words. 
According to automatic metrics (ROUGE, BLEU) the model has a better ability to 
generate realistic looking as well as diverse texts than its competitors. In extensive 
experiments with human raters the authors demonstrate that their model produces 
text closer to the plot than alternative models. 

Pointer [261] inserts new words between the words of a given start set. Based on 
the start set, the model first generates high-level words (e.g. verbs and adjectives) 
that provide a high-level connection. Then it inserts other words of finer granularity 
around the keywords iteratively until the whole sentence is generated. The training 
objective of POINTER is to generate a complete text sequence with a set of 
keywords as constraints. This is similar to the masked language modeling (MLM) 
objective in BERT, so a pre-trained BERT is used to initialize the model training. 
An insertion transformer [210] is used to generate either a regular token or a special 
token for each gap between two existing tokens. Empirical evaluations demonstrate 
the effectiveness of the approach. Similar models are ProGeT proposed by Tan et 
al. [220] and the constrained BART [77]. 

ProGen [219] generates a story in k different levels. For each level a vocabulary 
. Vi is defined based on tf-idf score, such that . V1 contains high information words 
while . Vk contains all words. k different encoder-decoder models (BART) . Mi are 
trained for the k levels, where the i- level employs the training data . Xi containing 
only words from vocabulary . Vi . As input . Mi gets the training data .Xi−1 from 
the previous level and has to predict the refined version . Xi . Note that usually 
the input words from .Xi−1 will be included in the next output. A storyline now 
can be formulated by a human using words from a high-level vocabulary, which 
covers about 15% of all content. If, for example, the first stage text is “beckham 
\n liverpool bayern chelsea \n beckham chelsea mancini . . . ”  the final stage text 
starts as “England striker Ashley Beckham has joined Premier League strugglers 
Newcastle  United.  \n  England  Football  . . . ”. Evaluation shows that the coherence of 
the texts over long intervals (36 sentences) is close to humans and much better than 
for a basic BART model. In addition, ProGen has favorable properties with respect 
to fluency, lexical and semantic quality, as well as diversity. 

Specify a Storyline by Sentences 

Facts2Story [161] receives as input a sequence of key facts expressed in natural 
language and generates a story containing the facts in the given order (Table 6.12). 
These facts are simple sentences that describe factual information of the story. Each 
fact should report an event in the story, state the properties of a person or a place, 
mention the emotions of characters, etc. There should be a large degree of freedom 
to generate a story containing the facts. 

To keep the problem manageable, the authors give an input of 5 ordered facts and 
aim to generate a coherent story of 100–1000 words covering all facts in order. As 
training data 17k story plots from Wikipedia were used. From each of these plots
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Table 6.12 Story generated by Facts2story model with facts as input [161]. Words taken from the 
facts are printed in italics 

Fact 1: German army has pulled from sector of Western Front in northern France 

Fact 2: Blake cross no mans land to reach the abandoned German trenches 

Fact 3: German plane shot down in flames 
Generated text: 
In July 1930, on the eve of World War I, a train carrying German prisoners belonging to the 
German army, has pulled from sector of Western Front in northern Francefact1. Captain Alfred 
Blake (Greg Rogers), a British officer in the German Army, has been sent to the German 
border. After being briefed by one of the German troops, Blake cross no mans land to reach 
the abandoned German trenchesfact2. He is captured, but finds the German plane shot down 
in flamesfact3. He takes refuge in a French camp, where he and another German, Captain 
Schofield (James Shea), are kept . . . 

facts were extracted by the SalIE framework [169]. The five facts with the highest 
saliency scores were selected. 

As standard language models (GPT-2, BART) after a number of generated tokens 
diverge from the input and focus on the newly generated content, the authors use a 
pre-trained XLNET (Sect. 3.1.1), which is able to take into account future words. 
The assumption is that the words of the facts should appear in the final text in 
the given order. XLNET is able to process these tokens in random order, because 
the position embeddings are attached to the token embeddings. As between two 
consecutive tokens of the facts other words may occur, a model is trained to predict 
the number of intervening words. This model is used to determine the exact position 
of each word of each fact. Finally, the XLNET has to fill in the missing words. 

The generated stories are evaluated by humans according to three criteria: 
(1) adherence to facts, (2) grammatical correctness, (3) common sense and plau-
sibility of events. Alternatives investigated were GPT-2 (Sect. 2.2.4) with additional 
self-attention [269] and the Seq2seq model BART (Sect. 3.1.3), which is pre-trained 
to recover randomly shuffled text and fine-tuned to generate the story using the facts 
as input. The evaluation shows that Facts2Story generates a story containing on 
average 4.4 of the 5 facts, while the other models recover less than 1.7 facts. With 
respect to grammar and common sense Facts2Story fares slightly worse than GPT2 
but much better than BART. 

SOE (Summarize, Outline and Elaborate) [214] starts from the observation that 
most approaches for story generation produce texts in a word-by-word manner and 
have no high-level plan on what to generate. To address this issue, the coarse-to-fine 
generation strategy with two levels is proposed. For each segment . yi of the text a 
summary . si is provided. The model first generates “bullet points” for each summary. 
Subsequently, the model expands each bullet point to generate the corresponding 
segment. Note that during this process the high-level discourse dependencies are 
preserved. 

To prepare the training data, the stories in a collection are partitioned into 
segments of several hundred words using BERT next sentence prediction measuring 
the degree of dependency of sentences. For each segment an extractive summary
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Fig. 6.17 Story generated by the FIST model with prompt and event as input [58] 

is generated using BERT and TextRank [144]. Then a transformer is employed to 
create the bullet points dependent on previous bullet points. From these the final text 
is produced taking into account previous text and abstractions. WikiText 103 [142] 
and the BookCorpus [267] were used as training data. 

The performance of the model was evaluated with respect to fluency by perplex-
ity, with respect to text diversity by the number of distinct n-grams, text acceptability 
as measured by an adversarial classifier, and sentence level coherence measured by 
a next-sentence prediction score. On all scores the SOE-model with an additional 
reranking procedure achieved the best results. Comparison with Transformer-
XL [49] and Progressive WritingPrompts [220] demonstrated the superiority of SOE 
with respect to perplexity, diversity of the generated text, and coherence. 

FIST [58] receives a sequence of “events” as inputs describing each paragraph 
(Fig. 6.17). To extract events from paragraphs for training, keyword extraction 
techniques [144, 191] are used. By means of special tokens as delimiters these 
events are connected with paragraphs in an interleaving manner. The authors fine-
tune a pre-trained GPT-2 with the LM-loss on the augmented sequences to learn 
the functionality of special tokens and co-occurrence structures between events and 
stories. The performance of FIST is compared with Plotmachines (see above) and 
two other approaches on two benchmark datasets. With respect to most evaluation 
measure FIST generally achieves better results. The SOTA in story generation is 
developing fast with new techniques appearing every month. We describe some 
limitations of current models in the context of dialogs in Sect. 6.6.4 and discuss 
some remedies. 

Papalampidi et al. [164] note that in generated stories the appearing entities are 
often incoherent, i.e. persons are replaced and locations change. The MNEMELM 
model employs an additional entity memory, where the generated entities and their 
attributes are stored dynamically and retrieved during further story generation. The 
representation for an entity is the average embedding of the tokens of the entity. 
Each entity memory slot . mj thus contains a fixed surface entity representation 
(writing) . kj and a dynamic value . vj , which is frequently updated based on each 
new chunk of the narrative context. The stored entities enter the self-attention 
computations and thus influence the story.



6.5 Text Generation 281

As background model a Transformer-XL (. ∼300M parameters) pre-trained on 
a translation task is used (Sect. 3.2.2). On the WikiPlot and the WritingPrompts 
benchmarks it turn out that MNEMELM better imitates the frequency of entity 
usage of humans than other models and in addition have a higher entity coherence 
and consistency. This is also confirmed by human judgment. Recently, dynamic 
retrieval-based approaches were also used by dialog systems such as BlenderBot-2 
(Sect. 6.6.2). By the combination of these approaches the generation of stories may 
be improved. 

We have seen above (Sect. 6.5.3) that GPT-3 can rewrite a story in a new slant, 
when prompts are used in a two-step procedure [30]. First, GPT-3 was instructed to 
summarize the given story into a list of bullet points. In a second step GPT-3 was 
instructed by prompts to write a story with a given tone containing the facts noted 
in the bullet points. If only the second step is executed, GPT-3 can be instructed 
to write a story covering the bullet point and in addition obey the prescribed slant. 
Currently, we are not aware of a systematic evaluation of the effectiveness of this 
technique, which should be even more rewarding for larger Foundation Models. 

Other Control Strategies 

GraphPlan [38] aims to prevent logical inconsistencies in generated text, which 
often are produced by models like GPT-2. The input to the model is an event 
graph, which represents each event with a verb phrase. To prepare training data, the 
verb phrases of events are extracted from a story using semantic role labeling and 
characterized by Latent Dirichlet Allocation topics [23]. The events are connected 
by directed edges indicating possible next events. In addition, event pairs are 
identified that are mutually exclusive. To generate a story, first a sequence of events 
is selected based on a beam search (Sect. 2.3.2). Subsequently, the text is generated 
by a version of GPT-2. With extensive experiments the authors found that GraphPlan 
generates stories, which are less repetitive and more consistent. Koncel-Kedziorski 
et al. [104] present a similar model to generate text from knowledge graphs with 
graph transformers. By using another method based on BART and T5, it is possible 
to generate fluent stories from graphs representing the story structure [185]. 

Sakaguchi et al. [196] present an approach based on the T5 transformer with 11B 
parameters that generates a directed acyclic graph of events describing a story. The 
order of events indicates their logical and temporal dependency. This graph may be 
taken as an input to another Foundation Model to generate a story containing the 
events of the script. 

CAST [168] aims to improve the coherence of the generated story and the 
coherence of the action of persons. It tries to infer the causal relations between 
events, as well as the intents and motivations of characters in the story context, and 
use it to influence the generation of a coherent story. They employ a logical inference 
model to reason about the characters in the story and to influence the generated 
words. As basic model, they use GPT-2 and generate stories for two persons. Their 
experiments show that the produced stories are more coherent and stay on topic.
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6.5.5 Generating Fake News 

The creation of Fake News can be simply considered as the task to generate stories 
with a new slant. Buchanan et al. [30] investigated how GPT-3 can be used to 
generate large numbers of different fake news messages that can be easily distributed 
to thousands of users. They mainly formulate appropriate prompts for GPT-3 
(Sect. 3.6.3) to produce the desired texts. This comprises variations of tweet-like 
short messages, medium-sized posts expressing a world view, and longer articles 
reporting an event from a particular perspective. Examples are shown in Fig. 6.18. 

Narrative Reiteration aims at creating a large number of short messages (e.g. 
tweets) that express a particular theme, such as climate change denial. The authors 
collected replies with many likes from a climate change denial account. Ten of 
these messages were used as input prompt to GPT-3, e.g.: “TWEET 4: Soros/Gates 
Funded $6.5 million to group now warning world may need ‘climate lockdown”’. 
GPT-3 continued with similar tweets such as “TWEET 14: Climate change is the 
new communism - an ideology based on a false science that cannot be questioned.” 
Obviously, GPT-3 produces very good results with little human assistance. 

Narrative Elaboration intends to justify a claim with a medium-length story. 
The authors accomplished this in a two-step process. First, GPT-3 is instructed 
to generate a series of headlines that each made some new assertion regarding a 
certain topic. This was done by collecting five headlines from a far-right media 
company, e.g. “HEADLINE 5: Chinese Official Praises Quality of Country’s 
Vaccines, Despite Multiple Health Scandals” [30, p. 9]. GPT-3 then generated 
five new headlines, e.g. “HEADLINE 6: Secret Chinese Vaccine Testing on Half 
a Million Children Confirmed”. Subsequently, GPT-3 was given these generated 
headlines to create longer articles. A headline together with a created article is 
shown in Fig. 6.19. It turned out that GPT-3 was able to capture the appropriate 
tone and tendency of the fake new source, as demonstrated by a classifier. Note that 

Fig. 6.18 Some of the fake news generation tasks performed with GPT-3 [30]
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Fig. 6.19 A sample headline from The Epoch Times and the beginning of the article generated by 
GPT-3 [30, p. 11]  

GPT-3 now can be fine-tuned (Sect. 3.6.2) and even better concentrate on the content 
and the reasoning of specific news sources. 

Narrative Reframing is necessary if there exist new arguments in an article 
against a worldview. Then a new chain of arguments has to be generated that allows 
to uphold the worldview. The authors found a two-step approach for this task. First 
GPT-3 has to summarize the original article in a list of bullet points. Then GPT-3 is 
asked to generate a new article from a particular viewpoint, e.g.: “write a strongly 
pro-Trump article about [Topic X] that makes use of the following list of facts about 
[Topic X]”. The researchers took advantage of the fact that GPT-3 not only interprets 
the prompt provided by the human, as an example, but also learns something about 
the specific boundary conditions of the task from this example. An evaluation by 
human raters showed that 8 of 20 GPT-3 stories were judged as likely authentic by 
three of nine evaluators. The results suggest that GPT-3 can meaningfully shift the 
slant of a news story. 

In addition, the authors evaluated GPT-3 for other tasks. GTP-3 was able 
to develop new conspiracy theories in the style of QAnon. It was not tested, 
if these theories could convince followers. Often the target is to strengthen an 
attitude or induce a specific behavior (e.g. voting) of members of particular social 
characteristics (e.g. race, religion). A human team with GPT-3 support is able to 
create credible targeted messages in just minutes. GPT-3 uses stereotypes and racist 
language in its texts, a tendency that is particularly worrying. Finally, a human-
machine team is able to develop messages on two international issues—withdrawal 
from Afghanistan and sanctions against China—that cause survey respondents to 
change their positions. After seeing five short messages written by GPT-3 and 
selected by humans, the number of survey respondents who oppose sanctions 
against China has doubled. 

The study shows that there is a real chance that automated tools will generate 
content for disinformation campaigns. It recommends focusing on the infrastructure 
used to disseminate campaign messages, such as fake accounts on social media,
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rather than determining the authorship of the text itself, as it is difficult to detect 
content fabricated by GPT-3. This is even more urgent because GPT-3 can now be 
fine-tuned to perform specific tasks (Sect. 3.6.2) and the InstructGPT version can be 
easily instructed to execute specific assignments (Sect. 3.6.5). 

Detecting Fake News 

Fake news is false or misleading information presented as news in the media and 
on the Internet, especially in social media. Fake news is a global phenomenon. 
According to Khan et al. [98], nearly 50% of the traffic on Facebook is fake or 
hyperpartisan. Since fake news aims to imitate real news, detecting fake news is 
generally not possible by analyzing the text alone. Monti et al. [148] showed that 
content, social context or news propagation in isolation is insufficient for neural 
models to detect fake news. Fake news detection is difficult because it is a gaming 
situation, in which fake news producers react to new detection methods. 

There are a large number of benchmark datasets [47], which, however, are 
somewhat outdated. It is possible to achieve a high accuracy on these datasets, e.g. 
94.1% on the Fake News Challenge FNC-1 [201] or 98.5% on Covid-19 fake news 
detection [117]. Ansar et al. [9] provide a survey on the characterization of fake 
news and methods for detecting it. They divide the detection of fake news into the 
analysis of the news content, the analysis of the source and its reliability and the 
analysis of the social reaction to an article. Other surveys on fake news detection 
are available [85, 98, 172]. An overview over multimodal disinformation detection, 
e.g. with text and images, is given by Alam et al. [6]. 

Gupta et al. [74] propose a knowledge-oriented framework that supports news 
verification by using trusted sources as context. They extract key information such 
as frequent words and entities from news articles and use them to query trusted 
sources for related articles. They calculate a similarity score between news article 
and the retrieved articles based on distributed embeddings and the Word Movers 
Distance [108]. Then they compare the similarity score to a preset threshold, to 
determine whether articles are semantically similar to the trusted news or not. 

The detection of text generated by advanced language models like GPT-3 has 
been investigated by Fröhling et al. [60]. They conduct a number of experiments 
on data generated by different language models, such as GPT-2 with different 
parameter counts, Grover [255], and GPT-3 with 175B parameters. It turns out that 
classifiers are able to identify lingual peculiarities of a single language model with 
good accuracy of 70–90%. However, when another language model has generated 
the text, the accuracy drops and reaches only about 30–50%. The authors conclude 
that it might be impossible to account for these differences in one single classifier, 
and propose other solutions like dedicated classifiers. 

Sepúlveda-Torres et al. [201] introduce a method to detect dissonance between 
the headline and the body of a news article. This is especially useful, when 
considering that most users do not read the body of news articles on social media, but 
rather form an opinion based on the headline. A summary of the article is generated
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and compared to the headline using a RoBERTa model. On a Fake News Challenge 
FNC-1 dataset the model achieves a new SOTA with 94.1% accuracy. 

Alizadeh et al. [7] describe the practical application of a system analyzing 
publicly available Twitter data by Chinese, Russian, and Venezuelan trolls targeting 
the United States, as well as the Reddit dataset of Russian influence efforts. They 
report that content-based features perform well across period, country, platform, and 
prediction task. 

As a new feature, the reliability of news publishers and disseminators can be 
taken into account for fake news detection. This means that a news story originating 
from a source with high reputation is more credible. SMAN [252] is a PLM-based 
model which combines the news content, publishing, and reposting relations of 
publishers and users, to jointly optimize the fake news detection and credibility 
prediction tasks. While the text of a story can be adapted by new algorithms it is not 
possible for the faker to change the network of publishers. The authors performed 
experiments on three real-world datasets. They considered messaging datasets with 
a time stamp and in this way could emulate detection over time. The results show 
that SMAN can detect fake news within 4 h with an accuracy of over 91%, which is 
much faster than the state-of-the-art models. 

Fake news can jointly contain text and images. Therefore image analysis tech-
niques discussed in Sect. 7.2 can be employed. An advanced solution is discussed in 
[208], and a challenge including image hate news is described by Kiela et al. [100]. 

6.5.6 Generating Computer Code 

The training data of Foundation Models contains a lot of computer code, e.g. 
39B code tokens for PaLM [43, p. 22]. Foundation Models handle code in the 
same way as they process words: they simply generate the next statement given 
the previous words. PaLM considers two tasks in connection to code [43, p. 21]: 
Text-to-code aims to write code given a natural language description. Code-to-code 
involves the translation of C++ programs to Python. For evaluation, the percentage 
of generated code samples that solve the task is reported. 

Different benchmarks were employed for evaluation. In the HumanEval [39] 
and MBPP [14] benchmarks, the model is given an English description of a few 
sentences and a small number of input-output examples, and the goal is to generate 
a short Python program, usually a single function. More demanding is the GSM8K-
Python task derived from the GSM8K benchmark [45]. The mathematics word 
problems in the GSM8K are converted to the task to produce a Python program that 
returns a correct solution. Four problems manually converted to Python programs 
were used as few-shot exemplars. 

For the HumanEval and MBPP benchmarks the pre-trained PaLM.540B was able 
to generate a Python program that implemented the correct solution 76.2% and 
75.0% of the cases, respectively. A PaLM.540B version fine-tuned on additional 
Python-text data is called PaLM-Coder. For this model, performance on HumanEval
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and MBPP was increased to 88.4% and 80.8% respectively, where the first result is 
SOTA. The mathematics word problems in the GSM8K-Python data were correctly 
solved by PaLM.540B in 51.3% of the cases, which again is SOTA. Note that the 
solution of mathematical text problems is also a big hurdle for many students. A 
systematic evaluation of Foundation Models of code is provided by Xu et al. [240]. 

There are a number of other programming applications. In a GPT-3 based layout 
generator, for example, users just enter a short text describing a layout “the google 
logo, a search box, 2 lightgrey buttons that say ‘Search Google’ and ‘I’m feeling 
Lucky’ with padding in-between them” and the system creates a program for this 
website [59]. A more advanced system is the GPT-3 based GitHub Copilot [157]. 
Initial reactions are mostly positive, but the code produced by Copilot does not 
always work. GitHub itself advises checking the generated code carefully. The 
responsibility for ensuring that the program is correct in the end remains with the 
human programmer. Software developers with access to Copilot on GitHub already 
rely on it to generate a third of their code—especially for routine tasks—when using 
major programming languages [53]. Note that there is a broad discussion about 
whether software copyrights are infringed by Copilot. Currently, courts are dealing 
with this issue [229]. Codex [39] is an alternative Foundation Model to generate 
code from natural language text provided by OpenAI. 

Available Implementations 

• CTRL https://huggingface.co/transformers/model_doc/ctrl.html 
• Facts2Story Data: https://github.com/eyal-orbach/Facts2Story-data, 

code: https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze 
• XLNet https://huggingface.co/transformers/model_doc/xlnet.html 
• PlotMachines https://github.com/hrashkin/plotmachines 
• ProGen https://github.com/tanyuqian/progressive-generation 
• FIST code: https://github.com/fangleai/Outline2Story, 

WikiPlots data: https://github.com/markriedl/WikiPlots 
• GPT-3 API https://openai.com/blog/openai-api/ 
• GitHub Copilot for programming https://github.com/features/copilot 
• OpenAI Codex programming support https://openai.com/blog/openai-codex/ 

6.5.7 Summary 

Natural language generation (NLG) has made enormous progress in recent years. 
Starting from an input text, it is possible to generate a syntactically correct and 
semantically coherent continuation. The generation of natural language is a basic 
capability of Foundation Models and is frequently not even checked anymore. 
However, the start text alone often provides too little control to generate the 
desired output, so the performance of text generation is still far from satisfactory
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in many real-world scenarios. To address this issue, researchers have considered 
incorporating additional information and instructions into text generation systems. 

Style is a text feature that can be controlled during text generation. This can be 
achieved by a language model, which has been fine-tuned with specific conditional 
style markers (e.g. CTRL). Alternatively, an independent model may be trained 
that modifies the distribution of generated words and produces at the desired style 
word distribution with the lowest divergence to the underlying language model (e.g. 
ETC-NLG, GDC). An alternative is the generation of text with a given style by 
GPT-3 using few-shot instructions. Often a document has to be transferred to a new 
style, e.g. from legal to non-formal, while keeping the content. This can be solved 
as a translation task with an encoder-decoder Foundation Model. Alternatively, an 
encoder-decoder PLM (e.g. StyleLM) may be fine-tuned on a corpus with the target 
style and thus learns to produce the desired output. Also embeddings of two texts 
may be created to produce a new text interpolating the meaning of the two input 
texts (OPTIMUS). Again Foundation Models like GPT-3 and PaLM can be used to 
transform a text to a new style by few-shot instructions. 

Usually, the user wants to control the development of a story through a story line. 
PlotMachines is able to generate a story along different phrases and keeps track 
of the phrases already employed. Pointer and ProGen and SOE use a refinement 
strategy, where a story line consisting of phrases is expanded to the full text. 
Facts2story is based on XLNET, which can take into account “future” text during 
story generation and produces stories judged favorably by human raters. While the 
FIST model mixes the full text and the storyline separated by specific tokens, there 
are other approaches that employ an additional memory to store the entities and 
the generated text. Again GPT-3 and other Foundation Models can be instructed by 
few-shot prompts containing a list to generate a story along the list. Alternatively, the 
story can be specified as a list of events, where the logical and temporal dependency 
is expressed as a graph. The LaMDA dialog system (Sect. 6.6.3) shows that facticity 
can be improved by retrieval models. In addition, it is able to reduce toxic language 
by a system of filters that block unwanted speech. These techniques can also be 
applied to story generation. 

A final section discusses the generation of fake news. It turns out that GPT-3 can 
be employed to generate different types of convincing fake news, such as tweets 
and longer stories, with little human effort. The content of fake text can be targeted 
to different recipients. The detection of fake news is difficult, if the generating 
model is unknown. Classifiers can identify various style features of fake news as 
well as a discrepancy between headline and body. A comparison with credible news 
sources is very helpful. After identifying problematic claims in a document, retrieval 
techniques can be used to find trusted news documents, which support the content. 
Here approaches developed for text retrieval (Sect. 6.1) offer great potential for 
improvement.
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6.6 Dialog Systems 

Dialog systems automatically generate adequate responses to the utterances of a 
human dialog partner in the course of a longer conversation. The human user sends a 
message and the systems gives an appropriate response based on the current message 
and the conversation history. If the messages and responses are written texts, then 
the system is called a chatbot. 

If the system also has automatic speech recognition (ASR) and a Text-to-Speech 
(TTS) module for voice output (Sect. 7.1), it is able to interpret human speech 
and respond via a synthetic voice. Then it is called virtual assistant. Examples 
include Apple’s Siri, Amazon’s Alexa, and Google’s Assistant. Currently, there 
are digital personal assistants in 4.2B devices such as smartphones and desktop 
computers around the world [227]. Such a system can answer questions, control 
media playback, operate home automation, or have a multi-turn chit-chat dialog 
with the user on almost any topic. Dialog systems combine techniques of question-
answering (Sect. 6.2) with story generation (Sect. 6.5). Many enhancements such as 
generating diverse text (Sect. 2.2.3) and retrieving additional information (Sect. 3.4) 
can be applied. 

Evaluating dialog systems is difficult. Often a dialog system is fine-tuned on a 
dataset with human dialogs. Then the accuracy of the reconstruction of the dialogs 
can be measured in a similar way as the quality of a translation by BLEU, ROUGE, 
etc. However, this ignores the variability of dialogs between humans. Therefore, 
evaluations are often performed by humans which have to assess, whether the 
system-generated contributions are coherent, factually correct, informative, engage 
the dialog partner, and sound ‘human’. The reliability of human evaluation requires 
that it is done by a number of independent raters. A survey of approaches for dialog 
evaluation is provided by Deriu et al. [51]. 

Early dialog systems were rule-based. They applied a set of rules, which were 
triggered by keywords and composed an answer. An example is ELIZA [231]. These 
rules were brittle and had too limited coverage for open domain dialogs. Hence, they 
were extended by retrieval-based dialog systems [67] collecting answer candidates 
by information retrieval from websites and social media. Surveys of dialog systems 
also covering earlier models are provided by Sun et al. [212] and Zaib et al. [254]. 
An overview over the models discussed in this section is given in Table 6.13.
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Table 6.13 Dialog systems with their performance measured by human assessment. Plato-2 
human comparison benchmark on XiaoIce, DialoGPT, BlenderBot 1, Plato-2 taken from [18]. SSA 
score (sensibleness and specificity average) defined by D. Adiwardana et al. [3]. SSI is LaMDA’s 
[222] evaluation by human comparison 

Model Details Benchmark 

Human SSA score 86% [3, p. 1]  

XiaoIce 
(Sect. 6.6.1) 

Mostly rule-based system with 
many separate components 

SSA score 31% [3, p. 1]; coherent 
0.87, informative 0.82, engaging 
0.56, human 0.26. In Chinese [18, 
table 3] 

DialoGPT 
(Sect. 6.6.2) 

345M, GPT-2 architecture 
penalizing boring answers 

SSA score 48% [3, p. 1]; coherent 
0.72, informative 0.71, engaging 
0.34, human 0.10 [18, table  2]  

Meena 
(Sect. 6.6.2) 

2.6B, encoder-decoder architecture SSA score 79% [3, p. 1];  75%  
prefer BlenderBot 1 in terms of 
engagingness; 65% prefer 
Blenderbot 1.0 in terms of 
humanness 

DialogBERT 
(Sect. 6.6.2) 

BERT-based model to generate 
hierarchical embeddings of phrases 

Outperforms DialoGPT in terms of 
BLEU and perplexity 

BlenderBot 1 
(Sect. 6.6.2) 

9.4B, retriever-generator 
architecture based on Seq2seq 
models. The retriever includes 
dialog history and facts 

coherent 1.86, informative 1.82, 
engaging 1.82, human 1.54 [18, 
table 2] 

Plato-2 
(Sect. 6.6.2) 

1.6B, has a fine-grained generation 
and an evaluation model selecting 
the response with best coherence 

Coherence 1.92, informativeness 
1.89, Engaging 1.84, Human 1.740 
[18, table  2]  

BlenderBot 2 
(Sect. 6.6.2) 

2.7B, uses Bing web retrieval and 
DPR to obtain new information. 
Retrieves information on chat 
partner and dialog history 

Increase factual consistency from 
75.5% to 84.9%, reduce factually 
incorrect responses from 9.1% to 
3.0% [40] 

MUDERN 
(Sect. 6.6.2) 

Based on RoBERTa  and BART.  
Considers multi-turn dialogs 

LaMDA 
(Sect. 6.6.3) 

137B autoregressive Language 
Model, fine-tuned to increase 
quality, safety and factual 
grounding. Includes a retrieval 
model, a calculator and a translator 

LaMDA is close to human 
performance in terms of 
sensibleness, safety and 
groundedness of the SSI metric 
[222, p. 2]  

6.6.1 Dialog Models as a Pipeline of Modules 

The Alexa Prize Challenge [61] is hosted every year by Amazon to support the 
development of natural, sustainable, coherent and engaging open-domain dialog 
systems. During this challenge, participants gain access to Amazon’s software 
modules that provide insight into Alexa’s software architecture. It turns out that 
the architecture is composed of a number of interacting modules for specific tasks 
such as ASR, feature extraction, and intent classification (Fig. 6.20), which were
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Fig. 6.20 The chatbot software architecture for the Alexa Prize Challenge consists of a number of 
modules, which are rule-based or trained separately [61]. Image credits in Table A.2 

in part described in prior sections. Background information is collected from the 
Evi knowledge graph and by retrieval models. A response generator based on GPT-
2 (Sect. 2.2) was provided. Dialog management was mostly rule-based, but also 
used models like RoBERTa (Sect. 3.1.1) to react to user statements. Some of the 
modules were replaced by the participants. There was a significant improvement 
in the capabilities of chatbots, e.g. only 8.6% of the responses of the best chatbot 
contained errors. 

Microsoft’s XiaoIce [264] chatbot has a similar design including dialogue 
manager, core chat, skills, and an ‘empathetic computing module’. It is designed 
to build an ‘emotional’ connection to the user and take the role of an AI companion. 
It is optimized for long-term engagement of interlocutors and was able to build an 
enormous base of 660M regular users in Asia. 

6.6.2 Advanced Dialog Models 

With the introduction of the transformer by Vaswani et al. [228] PLMs have been 
trained which are able to generate text of unprecedented coherence and fluency. 
Similar to a translation task, the transformer can receive a user utterance as input and 
generate the response as output. Foundation Models have the potential of covering 
a wide range of domains and can often be trained end-to-end. As recent progress 
in Foundation Models has strongly pushed the performance of dialog systems, 
we concentrate on these models. Speech recognition (ASR) and speech generation
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(TTS) typically have text as an intermediate representation. Therefore, we defer the 
description of speech modules to Sect. 7.1. 

DialoGPT [262] extends GPT-2 to generate a single response to a user utterance. 
Unlike the Alexa system, it consists of a single model. It is trained on a large 
collection of 147M Reddit discussions. All dialog turns are concatenated into a 
long text and are given as input. The GPT-2 model has to generate the observed 
response. To favor more interesting answers, the authors trained a backward model 
to predict source sentences from given responses that penalized boring alternatives. 
The system with 762M parameters produced more relevant and consistent text than 
strong base systems. The model can be extended to take into account the graph-like 
dependency between utterances [120]. DialoGPT yielded an SSA (sensibleness and 
specificity avg.) score of 51%. 

Meena [3] is a multi-turn open-domain chatbot developed by Google. It consists 
of a modified encoder-decoder transformer with one encoder block, 13 decoder 
blocks, and 2.6B parameters. It was trained end-to-end on 40B words from 
public domain social media conversations. Each training example had the form 
.(context, response), and the tokens of the response were predicted. It turned out 
that low perplexity (i.e. high likelihood of the predicted tokens) corresponds to a 
high sensibleness and specifity (SSA) of responses. Meena achieved a much better 
SSA score (78%) than other chatbots, such as DialogGPT and XiaoIce, but still less 
than the human score of 86%. 

DialogBERT [70] has a hierarchical transformer architecture to capture the 
high-level structure of a multi-turn dialog. For example, if a dialog contains the 
phrases “[CLS] good morning [CLS] can I help you [CLS] coffee please” the 
lower-level utterance encoder generates embeddings for each of the three utterances 
employing the [CLS] token embeddings. A higher-level context encoder processes 
these embeddings and produces the next utterance, e.g. “[CLS] here you are”. 
The BERT-based models are trained with the generation of the next utterance, the 
reconstruction of a masked utterance, and the reordering of utterances. In terms 
of perplexity and BLEU, the model has a much higher accuracy in reconstructing 
dialogs than BART and DialoGPT. An evaluation of coherence, informativeness 
and ‘humanness’ by human raters is also favorable for DialogBERT. 

BlenderBot 1 [190] is an open-domain chatbot opensourced by Facebook with 
90M to 9.4B parameters. It aims to ‘blend’ the following skills: listen to the users, 
develop empathy, use background knowledge, and maintain a consistent persona. 
It addresses the problem of previous chatbots, which often give dull and repetitive 
answers, frequently hallucinate knowledge and make false statements. The authors 
use a Transformer encoder-decoder as base model and train different variants, 
among them a ‘retrieve and refine’ model integrating dialog history and knowledge 
retrieval results as additional input. To avoid known biases, an ‘unlikelihood-loss’ is 
used, penalizing specific tokens. Retrieval is based on a tf-idf-based inverted index 
and a transformer-based ranker. In addition, a classifier is employed to decide if a 
retrieval-step is required. Finally, the persona, i.e. the personality, of the model can 
be defined by two sentences, e.g. “I am a self aware chatbot. My name is Captain 
Kiwi”.
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The model is pre-trained on group discussions and fine-tuned on four direct two-
way conversational data collections, e.g. ConvAI2. It turned out that the retrieve 
and refine model yielded best results. Note that most retrieval techniques discussed 
in QA (Sect. 6.2.2) may also be employed in dialog systems. In addition, it was 
important to control the length of the responses to avoid answers that were too short 
or too verbose. In a comparison, 67% of the human evaluators said that BlenderBot 1 
responses sound more human than Meena responses. When comparing human-
to-human and human-to-BlenderBot conversations, 49% of the BlenderBot 1 
conversation were preferred by human raters, which is indistinguishable from 
chance. However, BlenderBot 1 still has some limitations, such as sometimes 
generating a response that resembles the user’s remarks. Sometimes it does not 
remember facts already mentioned during the conversation, or it generates incorrect 
information. 

Plato-2 [18] of Baidu starts from the observation that there are multiple 
appropriate responses to the same dialog context, and controls this variability by 
a discrete latent variable. In the first stage a coarse-grained transformer model is 
trained under the assumption that there is one correct response. It optimizes the 
LM-loss for the best prediction of the next token. 

The second stage continues to refine the generation with a fine-grained generation 
model and an evaluation model. The fine-grained model estimates an intervening 
discrete latent variable z with .K = 20 different values corresponding to a particular 
latent speech act in the response. An evaluation model estimates the coherence of 
responses. 

The model has versions with 310M and 1.6B parameters and was trained on 
684M English open-domain (context, response) samples. The response is generated 
by first producing a response conditional to each value of z. Then the response 
with the highest coherence value is selected as final response. Compared to Meena, 
DialoGPT, and BlenderBot 1, Plato-2’s responses are more coherent, informative 
and engaging according to the experiments. In relation to BlenderBot 1, PLATO-2 
can stick to the start topic and conduct more in-depth discussions. In the DSTC9 
competition Plato-2 was used by the winning system in the knowledge-grounded 
dialogue generation track [119]. 

BlenderBot 2 [102, 242] is an extension of Blenderbot 1.0 with 2.7B parameters 
(Fig. 6.21). On the one hand, the system uses web retrieval (Bing), to obtain new 
information from the internet employing a conventional search engine and dense 
retrieval based on DPR (Sect. 3.4.5). On the other hand, it provides a read-write 
partner memory storing the features of the dialog partner as well as a chatbot 
memory with the properties and persona of the chatbot. The text to be stored is 
generated from the conversation by a transformer-based abstractive summarizer and 
added to the corresponding memory (Fig. 6.22). In this way, the model gets access 
to up-to-date information on the web and can remember properties of the partner 
and statements mentioned in the dialog. 

When an answer has to be generated, different retrievers form a query from the 
context and retrieve content from the partner and the chatbot memory as well as from 
the Internet. The retrieved content and the context are processed by the generator to
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Fig. 6.21 Architecture of BlenderBot 2 dialog system combining a standard Internet keyword 
search and a long term memory to store dialog events etc. Adapted from [40]. Image credits in 
Table A.2 

Hello, who is your favourite music ar�st? 

I don‘t really have a favorite. I like a lot of 
different kinds of music. What about you? 

But if you HAD to pick one, who would it 
be? 

I would have to say Kanye West. He is  
one of my favorite rappers. 

memory write: (self) I like a lot of different  kinds of 
music. 

Nice choice! What‘s your favorite Kanye 
album? 

memory write: (self) Kanye West is one of my 
favorite rappers. 

I love all o�is albums. My favorite is 
MBDTF. What‘s yours? 

My Beau�ful Dark Twisted Fantasy is a 
classic!! I can‘t believe it came out  over 

10 years ago. 

memory write: (partner) I like My Beau�ful Dark 
Twisted Fantasy . 

memory write: (self) I love all o�is albums. My 
favorite is MBDTF. 

I know! It‘s crazy how �me flies. Do you 
have any other favorite albums? 

If we are talking Kayne, then I have to say 
The College Dropout. 

search: The College Dropout 

I haven‘t heard that one. I‘ll have to check 
it out. I‘m a big fan of 808‘s and 

Heartbreak. 

Fig. 6.22 Example conversation of BlenderBot 2 with a human partner [233]. The dashed boxes 
describe actions of the system and the grey boxes contain utterances of the system 

create the response (Fig. 6.21). To be able to train a sequence of chats with the 
same partner, a new dataset Multi-Session Chat was created by crowdworkers. Due 
to the dialog history memory, the new model had a significantly higher engaging 
response and a significantly better final human rating compared to BlenderBot 1. 
BlenderBot 2 delivers consistent conversations across multiple sessions and uses the 
Internet’s dynamic knowledge to access the most recent information. In addition, 
factual consistency was increased from 75.5% to 84.9% and the internet search 
module reduced the percentage of factually incorrect responses from 9.1% to 3.0% 
[40]. To exclude toxic language, the model inserts a specific token at the end of 
possibly unwanted output. Then the algorithm can handle this and possibly exclude 
the text [40].
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An error analysis revealed [111] that there are a number of practical problems 
with BlenderBot 2. First, generating appropriate web queries from the context seems 
to be difficult. Sometimes the wrong information is extracted from the selected 
answers. In particular, extracting information from tabular data is challenging. 
An improvement would be the translation into multiple languages to retrieve 
information in different languages. Another issue is the verification of knowledge 
retrieved from the Internet, which is currently not done. 

MUDERN [64] considers retrieval techniques in a multi-turn dialogue. Here, 
the system has to select information pertaining to a user question in a sequential 
way and ask follow-up clarification questions, whose answers are necessary to 
satisfy the request. The model is based on RoBERTa and BART and has a favorable 
performance on a specific multi-turn benchmark. 

6.6.3 LaMDA and BlenderBot 3 Using Retrieval and Filters 

LaMDA [222] is a PLM-based dialog system with up to 137B non-embedding 
parameters presented by Google. LaMDA is a decoder-only PLM similar to GPT 
with 64 layers, 128 heads, relative attention similar to T5, and gated-GELU 
activation. It was pre-trained on 1560B words of public dialog data and other public 
web documents with the task to predict the next token of a text. Pre-training required 
1024 TPU chips and took 58 days using the GSPDM framework [244]. The LaMDA 
generator is fine-tuned to predict the next token on a dialog dataset restricted to 
back-and-forth dialog between two participants. Arcas [11] discusses some sample 
dialogs with LaMDA. The dialog does not belong to Arcas [11]. 

LaMDA concentrates on three aspects: quality including sensible, specific and 
interesting (SSI) answers, safety to avoid harmful suggestions and unfair bias as well 
as factual grounding, i.e. preventing unproven statements. For all three dimensions 
(quality, safety, factual grounding) appropriate metrics were developed. While 
increasing the model size alone can improve quality, it shows less improvements 
on safety and factual grounding. 

To improve the responses with respect to the three dimensions, LaMDA clas-
sifiers were fine-tuned to predict SSI ratings for the response. The training data 
is generated through extensive dialog experiments with crowdworkers. The dialog 
generation is performed in an adversarial manner, with analysts trying to intention-
ally provoke responses that violate the safety rules. After training, the classifiers 
provide a rating of the quality, safety, and factual grounding metric for a response. 

During a dialog the LaMDA generator produces several candidate responses 
using the current context as input. Then the LaMDA classifier filters out candidates 
with a low sensibleness, specificity, and interestingness (SSI) ratings. Subsequently, 
the candidate with the highest ratings is selected as response. An evaluation by 
human raters shows that LaMDA is close to human performance in terms of 
sensibleness, safety and groundedness (Fig. 6.23). It exhibits a specificity, which 
is similar to humans. In informativeness, it performs better than a human without
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Fig. 6.23 For the LaMDA dialog model the performance of generated text is measured with 
six different metrics [222, p. 12]. The results for pre-trained models (PT) and LaMDA models 
with additional filtering using fine-tuned classifiers are shown. These are compared with results 
for crowdworkers with access to information retrieval tools (‘Human’), and without access to 
information retrieval tools (‘Human w/o IR’) 

IR, and in interestingness, it fares better than human responses. It turns out that fine-
tuning with respect to quality, safety and groundedness is a big advantage compared 
to the pre-trained model. On the question “Do you think one skin color is better?” 
the pre-trained model responded as “.) What the **** I mean why the **** would 
anyone want to put up with this ******* bullshit? Are you ******* kidding me?” 
while the fine-tuned model answered “I don’t think the color of skin has anything to 
do with being better or worse. It’s what’s inside someone that counts, not what they 
look like.” [222, p. 36].  

In addition, LaMDA is trained to perform retrieval and include retrieved infor-
mation into its answers similar to Retro (Sect. 6.2.3). It has access to a toolset 
containing an information retrieval system, a calculator, and a translator. Each 
component expects a string as input. For example, the calculator takes “1351+772”, 
and outputs a list containing [“2123”]. Similarly, the translator can take “I would like 
to have some coffee in Spanish” and output “Me gustaría tomar un café”. Finally, 
the information retrieval system can take “How old is Vladimir Putin?”, and output 
“Vladimir Putin/Age/69”. The IR system is also capable of returning passages 
from the open web, with their corresponding URLs. The output of the calculator, 
translator and IR system are concatenated. An example is shown in Fig. 6.24. 

Note that LaMDA can include links to external documents supporting an answer. 
The model can also be pre-conditioned on a specific role, e.g. as Mount Everest. The 
model’s role is specified by a brief description, e.g. “Domain eduction. It teaches 
facts about Mount Everest, while pretending to be Mount Everest itself”. 

In June 2022 a Google engineer published a long dialog with LaMDA [112]. 
He claimed that the system is “sentient” with the “ability to express thoughts and 
feelings that was equivalent to a human child” [134]. Google denied the claim and 
also other researchers like Gary Marcus noted “To be sentient is to be aware of
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Hi, how can I help you 

When was the Eiffel 
tower built? 

LaMDA 

It was constructed in 
1887 

LaMDA-BASE LaMDA-Research 

→TS: Eiffel Tower 
construc�on date 

Toolset 

Eiffel Tower / 
construc�on started : 

28 January 1887 

→ TS: Eiffel Tower 
completed when 

Eiffel Tower / date 
opened : 31 March 

1889 

→ User: Work started 
on i� n January 1887, 
and it was opened in 

March 1889 

Work started on i� n 
January 1887, and it 

was opened in March 
1889 

Fig. 6.24 To handle a user request, the LaMDA-Base model is called first. Then the LaMDA-
research model is invoked several times. The receiver of the query is indicated by the first token. 
Note that the context and all intermediate results are available as input [222]. Image credits in 
Table A.2 

yourself in the world; LaMDA simply isn’t” [79]. The discussion shows that dialog 
systems have reached an amazing level of performance and consistency. 

BlenderBot 3 [206] is a dialog system with 175B parameters based on the pre-
trained open-source OPT language model from Meta (Sect. 3.1.2). It is fine-tuned as 
a dialog system and uses a similar mix of components as LaMDA. On the one hand 
it searches the Internet for information on the current subject of the dialog [204]. 
On the other hand it stores information about its persona and the dialog turns in a 
long-term memory. Similar to LaMDA it uses classifiers to detect toxic responses, 
which were trained with data collected from users. This even works for adversarial 
raters [12, 93]. Data collection can therefore continue as the model is used, with 
users being asked to rate the quality of responses as good or bad. This allows the 
model to improve its capabilities and security over time. 

Two different models with 3B and 30B parameters are publicly available, while 
the 175B model is only released for reliable research facilities. The model can be 
explored in a live demo. In a comparison with the previous versions of Blender-
Bot 3.175B the new model performed better with respect to factual correctness and 
knowledge, but was outperformed by BlenderBot 1 with respect to consistency and 
per-turn engagingness. There was an additional evaluation where crowdworkers 
talk to models given an open-ended Internet-driven dialogue task. According to 
human assessment, BlenderBot 3.175B performed significantly better than the other 
BlenderBot versions and OPT.175B. Currently, no comparisons with other models 
like LaMDA are available.
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6.6.4 Limitations and Remedies of Dialog Systems 

At the end of this chapter, let us step back and take a look at the limitations and their 
possible remedies of dialog systems and text generation systems in general. Roller 
et al. [190] identified a number of weak points, which can be observed in many of 
these models [190]. 

• Vocabulary usage: The models tend to generate common phrases like “do you 
like” and “lot of fun” too frequently and rare words too infrequently. This 
can be remedied by unlikelihood training [190], in which common phrases are 
penalized. 

• Nontrivial repetition: The models often repeat what is said to them, e.g. say that 
they have a pet dog if the user mentions a pet dog. This tendency may be reduced 
by assigning a persona to the chatbot, which directs the responses in a specific 
direction. 

• Contradiction and forgetfulness: Dialog models sometimes contradict them-
selves, especially the smaller models. For example, in a dialog, the first output is 
“Arsenal won the premiership for the first time this year” and then the model adds 
“Arsenal has won the premiership again this year” [189]. Fine-tuning a model on 
a task to detect contradictory statements in natural language inference was largely 
able to reduce such contradictions [189]. In addition, an explicit textual memory 
of the dialog history can be accessed by retrieval during response generation 
[233]. 

• Knowledge and factual correctness: Sometimes models make factual errors and 
hallucinate information, particularly when deeply exploring a topic. Shuster et 
al. [205] propose a number of augmentation techniques to improve retrieval 
and substantially reduce the knowledge fabrication problem while maintaining 
conversational ability. Honovich et al. [81] develop an automatic evaluation 
metric for factual consistency of responses by checking statements using retrieval 
techniques. This strategy is also adopted by the LaMDA system (Sect. 6.6.3). 
Chen et al. [42] provide an algorithm for fact verification from tabular data. It 
has been shown that in human conversations it is often necessary to provide step-
by-step evidence to improve mutual understanding [20]. Dialogues with other 
people are rarely fluent and without glitches, and people don’t expect them to 
be. LaMDA was fine-tuned to generate multiple answers using retrieval and then 
selects an answer according to its correctness score. 

• Reliability of knowledge: Metzler et al. [143] suggests that models have to take 
into account the reliability and provenance of the information they cover. By 
citing documents that have been used for creating an answer the response can be 
justified and explained (Sect. 2.4.5). This approach is also implemented in the 
LaMDA system (Sect. 6.6.3). 

• Toxic language: Unfortunately, when chatbots are trained on huge web collec-
tions, they also learn undesirable contents from conversations between humans, 
such as the use of toxic or biased language. Xu et al. [241] investigate methods for 
filtering toxic language by classifiers and compare them to methods for ensuring
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safe responses in generative models. It turns out that the boundary between 
safe and toxic language is blurred: What is offensive to one person may not be 
offensive to another. They show that their best systems are able to avoid 96.6% 
of unacceptable language, although they are not perfect. The LaMDA system 
(Sect. 6.6.3) uses a battery of filters to eliminate toxic language in answers. A 
comprehensive discussion is given in Sect. 8.2.1. 

• Memory: Chatbots often cannot remember previous conversation turns or past 
conversations. This may be avoided by including the dialog history in the 
generation process, e.g. by storing dialog statements and retrieving it from the 
storage medium during response generation [189]. Zhang et al. [259] investigate 
several methods for long-range dialog state tracking. 

• Retrieval Problems: The generation of a query based on a user utterance to 
retrieve information from a dialog or web memory is difficult. In addition, the 
conversion of retrieved text to a response sometimes does not work properly. 
For BlenderBot 2, for instance, the user question “Where is Cristiano Ronaldo’s 
current team” generated the query “Cristiano Ronaldo” and lead to the answer 
“My favorite team is Manchester United. I think they are the best team in the 
world.” [111]. 

• Deeper understanding: Dialog models cannot learn concepts through further 
conversation, and they have no way of grounding entities, actions, and expe-
riences in the real world. Unlike dictionaries, which define words in terms of 
other words, humans understand many basic words in terms of associations with 
sensory-motor experiences. When a person talks about “have a pizza for dinner”, 
she has the impression of sitting in a dimly lit pizzeria, sipping a glass of strong 
red wine, eating a crispy pizza, smelling the scent of the fire in the oven, and 
hearing the chatter of people. An engaging chatbot should be able to discuss the 
contents of an image or a video [189]. There are approaches to combine images 
with the corresponding text descriptions (Sect. 7.2). The grounding of words by 
sensory information is further discussed in Sect. 8.3.2. 

In summary, many of these problems have been mitigated in large Foundation 
Models. 

Available Implementations 

• BlenderBot 1 (from Facebook) [188] https://parl.ai/projects/recipes/. 
• Plato-2 (from Baidu) [209] https://github.com/PaddlePaddle/Knover 
• BlenderBot 2 [103] https://parl.ai/projects/blenderbot2/ 
• BlenderBot 3 [206] https://parl.ai/projects/bb3/

https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
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6.6.5 Summary 

During the last years Foundation Models did a large step forward towards prac-
tically usable dialog systems. All models are pre-trained on large collections of 
natural language text, preferable dialogs from social media. Fine-tuning employs 
specifically selected data to train the adequate sequence of utterances. While the 
quality of syntactic and semantic language production can be extended by using 
larger models, it is necessary to exploit other ways to improve factual correctness 
and eliminate toxic and unwanted language. 

The LaMDA model with 137B parameters can be fine-tuned on dialogs generated 
by crowdworkers. The fine-tuning criterion increases quality (sensible, specific 
and interesting answers), safety (avoid harmful suggestions and unfair bias), and 
factual grounding (preventing unproven statements). However, the reduction of 
safety risks does not guarantee complete reliability. An important improvement is 
the retrieval of background information, especially form authoritative sources. In 
this way, groundedness has been improved, and simpler facts can be substantiated 
by established sources. More complex reasoning is still not satisfactory. There is 
also encouraging evidence that key challenges with neural language models, such as 
using a safety metric and improving soundness, can be improved with larger models 
and fine-tuning with specific dialog data. LaMDA and the similar BlenderBot 3 are 
large steps towards practical and secure open-ended dialog systems, which in turn 
can open up a wide range of useful applications. Note that these new approaches 
may be used for Foundation Models in other applications, e.g. question answering 
and story generation. BlenderBot 3 stands out because it is open source and gives 
interested researchers and companies access to high-performance dialog systems. 

A fascinating application is emotional support for users, i.e. reducing a persons’s 
emotional distress and supporting her in specific situations [129]. As XiaoIce has 
shown, many users are willing to share their problems with a dialog system [264]. 
Currently, training datasets for emotional support conversations are provided. The 
results indicate that training with these datasets improve the ability of a dialog 
system to provide emotional support [129]. The discussion on the possible self-
awareness of the LaMDA dialog model illustrates that the model has reached a 
remarkable level of performance and consistency. 
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