
Chapter 6
Foundation Models for Text Generation

Abstract This chapter discusses Foundation Models for Text Generation. This
includes systems for Document Retrieval, which accept a query and return an
ordered list of text documents from a document collection, often evaluating the
similarity of embeddings to retrieve relevant text passages. Question Answering
systems are given a natural language question and must provide an answer, usually
in natural language. Machine Translation models take a text in one language and
translate it into another language. Text Summarization systems receive a long
document and generate a short summary covering the most important contents of
the document. Text Generation models use an autoregressive Language Model to
generate a longer story, usually starting from an initial text input. Dialog systems
have the task of conducting a dialog with a human partner, typically not limited to a
specific topic.

Keywords Question answering · Machine translation · Text summarization ·
Text generation · Dialog systems · Document retrieval

In this chapter we describe Foundation Models, i.e. large Pre-trained Language
Models for generating new text in different application areas.

• Document Retrieval systems accept a query and return an ordered list of
text documents from a document collection, often evaluating the similarity of
embeddings to retrieve relevant text passages (Sect. 6.1).

• Question Answering systems are given a natural language question and must
provide an answer, usually in natural language (Sect. 6.2).

• Machine Translation takes a text in one language and generates a translation into
another language (Sect. 6.3).

• Text Summarization receives a long document and has to write a short summary
covering the most important contents of the document (Sect. 6.4).

• Text Generation uses an autoregressive Language Model to generate a longer
story, usually starting from an initial text input (Sect. 6.5).

© The Author(s) 2023
G. Paaß, S. Giesselbach, Foundation Models for Natural Language Processing,
Artificial Intelligence: Foundations, Theory, and Algorithms,
https://doi.org/10.1007/978-3-031-23190-2_6

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23190-2protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6
https://doi.org/10.1007/978-3-031-23190-2_6

228 6 Foundation Models for Text Generation

Table 6.1 Language generation tasks illustrated by an example

Task Description Example

Document
retrieval

For a query return an ordered list of
text documents

Covid 19? . → http://doi.
org/wikipedia/covid-19, www.cdc.
gov/, . . .

Generative
question
answering

Generate the answer to a question,
often using some background
knowledge

What did Albert Einstein invent?

. → Einstein developed the theory of
relativity

Translation For a text in the source language
generate a text in the target
language with the same meaning

Fritz isst gerne Schinken

. → Fritz likes to eat ham
Summarization For a long text generate a concise

summary
It was the middle of winter, . . .

. → Snow White is awoken by the
prince, whom she marries . . .

Text generation Starting from an initial text, a
consistent continuation text is
created

Beethoven was born in Bonn

. → His father was a singer at the
Duke’s court . . .

Dialog answer
generation

Generate a consistent response in a
dialogue based on the sequence of
previous utterances

Could you recommend a video for
tonight?

. → There is “Memento” on Netflix

• Dialog systems have the task of conducting a dialog with a human partner,
typically not limited to a specific topic (Sect. 6.6).

Due to the large number of different approaches, we focus on representative
models which exhibit a high performance at the time of writing. We review the
current best techniques for each area, measured against appropriate benchmarks and
taking into account the computational resources required. For standard models a link
to the description in earlier chapters is provided. Examples for each application area
are shown in Table 6.1.

6.1 Document Retrieval

Information retrieval (IR) uses computer systems to search databases for content.
The resulting IR system is often called a search engine. Often, the user formulates
a sentence or a query about to some topic, and the system is expected to return a
sorted list of documents relevant to the query (ad hoc retrieval). Here we focus on

http://doi.org/
http://doi.org/
http://doi.org/
www.cdc.gov/
www.cdc.gov/
www.cdc.gov/

6.1 Document Retrieval 229

Fig. 6.1 Retrieve-and-rerank architecture using PLMs. First, texts are retrieved from the document
collection, usually with exact-match bag-of-words queries. These candidates are then reranked
using PLM embeddings, e.g. from BERT. Image adapted from [123], reprinted with kind
permission of authors

retrieving textual information from a stored collection of documents. In contrast to
question answering approaches in Sect. 6.2, the system does not generate a direct
answer to the query in natural language.

Former IR systems were keyword-based: all words contained in a document were
stored in an inverted index. The retrieval algorithm searched the index to identify
documents that contained the query words. Then, these documents were ranked
according to the information content of each query word found in a document, e.g.
measured by tf-idf or BM25 [186]. These two steps are shown in Fig. 6.1. A survey
of earlier retrieval techniques is given by Abbasiyantaeb and Momtazi [2]. However,
this approach had three major problems:

• Many objects, activities, or events may be expressed by different words called
synonyms, e.g. “drink” and “beverage” or “buy” and “purchase”. The documents
containing alternative words are not returned by keyword retrieval. Paraphrases
like “he has tons of stuff to throw away” and “he needs to get rid of a lot of junk”
are even harder to spot and were ignored. This is called the vocabulary mismatch
problem.

• Many words have different meanings depending on the context (e.g. “rock”:
music or stone). These words are called homonyms. Part of the retrieved
documents containing such a word will be mismatches.

• The order of words is often crucial for the meaning of the sentences (e.g. “dog
kills person” vs. “person kills dog”). This is usually ignored with keyword
search.

As an alternative, contextual embeddings were used to represent queries and
documents. By identifying matching documents through comparison of contex-
tual semantic representations, word meaning differences between documents and
queries can be reduced and texts with synonyms, homonyms, and paraphrases
can be retrieved. These models have achieved SOTA results on various retrieval
benchmarks [137] and have recently been introduced in commercial search engines.
They are therefore one of the most commercially important applications of PLMs to
date.

230 6 Foundation Models for Text Generation

6.1.1 Dense Retrieval

Dense retrieval methods encode text as an embedding vector with a fixed length
much smaller than the text length. Whether a document is relevant to a given query
is determined by the similarity of embedding vectors, which is computed by cosine
similarity or inner products. Unlike question answering (Sect. 6.2), these models
do not generate a direct natural language response to a search query, but return
complete documents or text passages. Recently, dense retrieval methods based on
PLMs outperformed their keyword counterparts when fine-tuned on a small set of
in-domain relevance-labeled documents. Lin et al. [124] provide a comprehensive
overview of retrieval systems with PLMs. Different approaches for dense retrieval
can be distinguished and are covered in the next sections:

• Cross-Encoder: Use the concatenated query and a document as input to BERT
and determine the relevance of the document for the query (Sect. 6.1.3).

• Retrieval with token embeddings: The tokens of the query and the document
are encoded by contextual embeddings. Then different metrics are used to
compare these embeddings and to collect relevant documents (Sect. 6.1.4).

• Retrieval with passage embeddings: These techniques encode the query and
passages of the document by an embedding. Subsequently, these embeddings are
compared. This type of embedding respects word order and thus has the potential
to return better matches (Sect. 6.1.5).

Only a very small selection of methods can be described, which should give an
impression of the approaches currently used as shown in Table 6.2. In Sects. 6.2.2
and 6.2.3 retrieval techniques for question answering are discussed, which are even
more powerful. A very comprehensive survey on PLMs for retrieval is provided by
Lin et al. [124].

6.1.2 Measuring Text Retrieval Performance

There are a number of benchmark datasets used for training and comparing retrieval
approaches. The MS-MARCO benchmark [16] is a large-scale collection created
from about half a million anonymized questions sampled from Bing’s search query
logs. For the passage ranking task it contains a corpus of 8.8M passages with an
average length of 55 words extracted from 3.6M web documents. The goal is to
retrieve passages that answer the question. The training set contains approximately
500k pairs of queries and relevant documents, and another 400M pairs of queries
and non-relevant documents. There is a development set and a secret test set with
about each 7k queries. However, there is a discussion that the gold annotation of the
MS-MARCO benchmark is biased to some extent [10].

6.1 Document Retrieval 231

Table 6.2 Document retrieval models with their performance. Benchmarks (Sect. 6.1.2):
MARCO: MS-MARCO [16], NQuest: Natural Questions benchmark [109], Wiki65K: long
Wikipedia documents [247]

Model Description Benchmark

monoBERT
(Sect. 6.1.3)

Process each query-passage pair with
BERT

MARCO 35.9%
MRR@10

monoT5 (Sect. 6.1.3) Process each query-passage pair with T5 MARCO 38% MRR@10

ColBERT
(Sect. 6.1.4)

Reranks search results documents based
on token embeddings

MARCO 36.7%
MRR@10

Model 1 (Sect. 6.1.4) Compute the probability that the query is
a ‘translation’ of the document

MARCO 39.1%
MRR@100

SMITH (Sect. 6.1.4) Use a BERT-based hierarchical encoder Wiki65K 95.9% acc.

SentenceBERT
(Sect. 6.1.5)

BERT encoder for query and documents Reduce recall time from
65 h to 5 s

DPR (Sect. 6.1.5) Different BERT encoders for query and
documents, fine-tuned to reduce retrieval
loss. FAISS index for approximate nearest
neighbor search

NQuest 79.4% top-20
acc.

RocketQA
(Sect. 6.1.5)

RoBERTa encoders for query and
documents. Later reranking

MARCO 41.9%
MRR@10

coCondenser
(Sect. 6.1.5)

RoBERTa encoders for query and
documents using CLS token. Later
reranking

MARCO 40.8%
MRR@100

The Natural Questions (NQ) [109] contains questions with at least 8 words
from real users to the Google search engine. It requires QA systems to read and
comprehend an entire Wikipedia article, which may or may not contain the answer
to the question. An example is the question “Where is blood pumped after it leaves
the right ventricle?” The task is to retrieve a long answer, i.e. a paragraph from
the page that answers the question, e.g. “From the right ventricle, blood is pumped
through the semilunar pulmonary valve . . . ”, or an indication that there is no answer.
The task was designed to be close to an end-to-end question answering application.
One to five answers are provided by human annotators. While the original Natural
Questions benchmark was a reading comprehension task providing a number of
evidence documents for each question, the EfficientQA benchmark [147] adapted
this to open-domain QA by taking examples with up to five token answers and
discarding the evidence documents.

Min et al. [146] note that over half of the queries in Natural Questions are
ambiguous, with many sources of ambiguity such as event and entity references.
They develop an AmbigQA with reformulated questions that yield a unique answer.

A simple evaluation measure is the top-k accuracy, the proportion of queries for
which one of the k most likely answers returned is correct. More complex is the
mean reciprocal rank (MRR), the inverse of the rank of the first correct answer and
0, if no correct answer was returned. If, for instance, the third answer is correct, the

232 6 Foundation Models for Text Generation

reciprocal rank is . 1/3. The MRR for . |Q| queries is

.MRR = 1

|Q|
|Q|∑

i=1

1

ranki

. (6.1)

.MRR@m indicates that always an ordered list of m documents is returned.
We may define .Pr(i) as the precision reached by the first i elements of the list

of size m, i.e. the fraction of relevant documents of the first i. Then we may define
the average precision as

.AP = 1

m

m∑

i=1

Pr(i) ∗ rel(i) MAP = 1

|Q|
|Q|∑

j=1

APj (6.2)

where .rel(i) = 1 if the i-th document is relevant and 0 otherwise. The mean average
precision (MAP) is the average of AP over . |Q| different queries.

6.1.3 Cross-Encoders with BERT

monoBERT [155] performs reranking based on a fine-tuned BERT classifier based
on the embedding of the [CLS] token. Query and document are combined to the
input “[CLS] . <query. > [SEP] . <document. > [SEP]”. This is processed by a BERT
fine-tuned on MS-MARCO, where the embedding of [CLS] in the last layer is
used by a logistic classifier to predict the probability that the current document is
relevant for the query. This output score is used for ranking (Fig. 6.2). Note that
by this technique paraphrases like “symptoms of influenza include fever and nasal

Fig. 6.2 The monoBERT model uses a fine-tuned BERT model for ranking passages with
respect to queries. The input contains the query concatenated with the passage. The [CLS] token
embedding is trained to return the probability that the passage answers the query

6.1 Document Retrieval 233

congestion” and “a stuffy nose and elevated temperature are signs you may have the
flu” may be identified.

On the MS-MARCO benchmark [153] monoBERT yields an MRR@10 value
of 35.9% (i.e. the first relevant document at position 2.8 on average). As the
keyword-based BM25-search before had anMRR@10-value of 16.5% (first relevant
document at position 6.1 on average), this result was a dramatic increase in
performance of search engines. Such a big jump in effectiveness caused by an
individual model is rarely observed in either academia or industry, which led to
immediate excitement in the community.

It is quite striking how monoBERT provides a simple yet effective solution to
the problem of text ranking (at least for texts that are shorter than its maximal
input length) [124]. In several studies monoBERT has been found to be better than
BM25 in estimating relevance when term frequency is held constant. Using textual
manipulation tests that alter existing documents, rearranging the order of words
within a sentence or across sentences was found to have a large negative effect, while
shuffling the order of sentences within a document has a modest negative effect.
In contrast, rearranging only prepositions had little effect. Experimental results
from input template variations show that monoBERT uses exact match, “soft”
semantic matches, and information about the position of words. Exactly how these
different components are combined—for different types of queries, across different
corpora, and under different settings, etc.—remains an open question. Note that this
search approach requires enormous computational resources, as for each passage a
new evaluation has to be performed, while the effort for index search grows only
logarithmically.

monoT5 [154] used the T5 encoder-decoder model instead of BERT to rerank
retrieved documents. The model receives the input “Query: . <query. > Document:
. <document. > Relevant:”. monoT5 is fine-tuned to produce the tokens true or false
if the document is relevant to the query or not. The predicted probability of true
can be used as a relevance score. For T5 with 3B parameters the authors get an
MRR@10-value of 38% for MS-MARCO passage retrieval. This shows that larger
models increase performance of retrieval systems.

6.1.4 Using Token Embeddings for Retrieval

The all-to-all nature of the BERT attention patterns at each transformer encoder
layer means that there is a quadratic complexity in terms of time and space with
respect to the input length. In Sect. 3.2 we have introduced a number of approaches
to cope with longer inputs. These all can be used to process longer documents.
Among the many approaches we discuss ColBERT and Model 1 in more detail.

ColBERT [99] reranks the output of another (cheaper) retrieval model, typically
a term-based model, or directly for end-to-end retrieval from a document collection.
Queries and documents were prepended by different special tokens. ColBERT uses
a single pre-trained BERT model to encode each query or document into a bag

234 6 Foundation Models for Text Generation

of token embeddings. In a final layer the size of embeddings is reduced and they
are normalized to Euclidean length 1.0. Hence, the inner product is equivalent to
the cosine similarity. If .(q1, . . . , qm) are the query tokens and .di,1, . . . , di,k are the
tokens of the i-th document, the similarity of q and . di is computed as

.sq,di
=

m∑

r=1

max
j

η(qr)
ᵀη(di,j). (6.3)

This is the sum of maximum cosine similarities (MaxSim) between each query
term and the “best” matching term contained in the document . di . For each query
embedding the L2-nearest 10 embeddings are taken into account and . k = 1000
closest document vectors are retrieved.

For ranking a preliminary search result of, say 1000 documents, the maximum
similarities (e.g. cosine similarity) between all query embeddings and all embed-
dings in the retrieved documents are computed. This approach is very efficient as it
requires orders of magnitude fewer FLOPS than previous approaches. On the MS-
MARCO benchmark [153] a reranking ColBERT achieves a MRR@10-value of
34.9% (first relevant document at position 2.9 on average), which is slightly below
the cross-encoder monoBERT.

ColBERT can also be used for end-to-end retrieval. It employs the FAISS
index [91] to store the document token embeddings for a k-nearest neighbor search
in a preparatory step. Note that for each token in each document an embedding has
to be stored, as the embedding depends on the context. The retrieval requires two
stages: in the first stage, a number of approximate searches for each query token is
performed. In the second refinement stage, these approximate matches are reranked
according to the MaxSim criterion. On the MS-MARCO benchmark the end-to-end
retrieval by ColBERT has a MRR@10-value of 36.7%, which is much better than
the reranking performance and on par with the much more expensive BERT cross-
encoder approach.

Model 1 [28] mixes a number of techniques for their retrieval model based on
token embeddings. First the authors estimate the probability .p(q|d) that the query
. q has been generated as a “translation” of the document . d . Using Bayes rule the
authors get

.p(d|q) ∝ p(q|d)p(d) ∝ p(q|d) (6.4)

assuming a uniform prior .p(d) [21]. They consider the probability .r(qi |dj) that
a query token . qi is a translation of a document token . dj . Approximating . r(qi |dj)

by a neural network, they use embeddings of tokens . qi and . dj as inputs and are
able to estimate .p(d|q). The approach requires little computational effort. The
authors combined the BERT dense retriever with a Lucene search index. Finally,
they expand documents for Model 1 with Doc2query. Doc2query [156] aims at
generating queries, for which the document is relevant. The approach trains a
transformer to generate up to 100 query tokens from a document of up to 400

6.1 Document Retrieval 235

tokens. The model is trained using datasets consisting of pairs of query and relevant
documents, e.g. MS-MARCO. On MS-MARCO they achieve 39.1% MRR@100.
The context-free neural Model 1 is less effective than a BERT-based ranking model,
but it can run efficiently on a CPU (without expensive index-time precomputation
or query-time operations on large tensors).

Currently, no retriever tries to process long documents. This has many important
applications like news recommendation, related article recommendation and paper
citation suggestion. Usually, long documents are partitioned into passages with the
idea that the relevant contents is contained in a passage. Note that PLMs with
longer inputs, e.g. BigBird, can improve performance (Sect. 3.2). However, it is
clear that this has to be evaluated. The SMITH model [247] uses a BERT-based
hierarchical encoder to capture the document structure information. The document
is first partitioned into sentences and for each sentence token embeddings are
computed. Each sentence starts with an [CLS] token, whose embedding represents
the sentence. There is a higher sentence level BERT which just receives the sentence
embeddings as input. The first artificial token of second level BERT is used as the
embedding of the whole document.

The model is pre-trained by the masked language modeling task to get token
embeddings. In addition, in the second level there is a masked sentence block
prediction task where the model has to select the correct embedding from all
sentence embeddings in a batch. The fine-tuning task maximizes the relevance score
predicted from the document embedding by a logistic classifier for the relevance-
annotated fine-tuning dataset. On the Wiki65K with long Wikipedia articles [87] the
approach achieves an accuracy of 95.9% which is a significant improvement over
prior approaches.

6.1.5 Dense Passage Embeddings and Nearest Neighbor
Search

Representing text passages by embedding vectors has the potential to solve the
problem of vocabulary mismatch by directly matching “meaning” in a representa-
tion space. These so-called dense retrieval techniques can perform ranking directly
on vector representations generated by PLMs. In contrast to calculating pairwise
differences of token embeddings, this approach offers a much more efficient
retrieval procedure. This is performed by matching the embedding vector of a
query with the embedding vectors of passages employing an index and approximate
nearest neighbor search. Efficient, scalable solutions are available today in open-
source libraries.

Given a query q and a set of documents .D = {d1, . . . , dn} we want to define
functions .ηq(·) and .ηd(·), which convert the token sequences q and d into fixed-
width vectors. The functions should have the property that the similarity between
.ηq(q) and .ηd(di) is maximal if . di is relevant for query q. We want to estimate

236 6 Foundation Models for Text Generation

Fig. 6.3 The SentenceBERT model uses two fine-tuned BERT models to transform queries and
passages to embeddings of the [CLS] token. Subsequently, a cosine similarity module is used to
compute a similarity value

.p(relevant = 1|di, q) := φ(ηq(q), ηd(di)), (6.5)

where .φ(·) is a similarity comparison function, e.g. the scalar product [124, p. 133].
Note that .ηd(di) may be precomputed and organized in an index. By using different
encoders .ηq(·) and .ηd(·) for queries and documents, we can take into account the
different roles and wordings of queries and documents.

SentenceBERT [183] is the prototype of a bi-encoder design for generating
semantically meaningful sentence embeddings to be used in large-scale textual
similarity comparisons (Fig. 6.3). The query q and the documents . di are processed
by the same PLM (BERT or RoBERTa). Similarity was compared by the cosine
similarity

.φ(ηq(q), ηd(di)) = ηq(q)ᵀηd(di)∥∥ηq(q)
∥∥ ∗ ∥∥ηd(di)

∥∥ . (6.6)

To generate sentence embeddings the authors investigated three alternatives. (1)
Use the embedding of the [CLS] token. (2) Averaging (mean-pooling) of all
output embeddings. (3) Component-wise maximum (max-pooling) of all output
embeddings. Without fine-tuning the results were worse than for non-contextual
embeddings. Fine-tuning boosted performance and yields a new SOTA. It turned out
that average pooling was the most effective design, slightly better than max pooling
or using the [CLS] token. Most important the computation time for finding the best
match in 10,000 documents was reduced from 65 h to 5 s.

DPR [94] used separate encoders .ηq(q) and .ηd(di) for the query q and the text
passages . di of about 100 words. Both encoders took the [CLS] embedding from
BERT.BASE as its output representation. As comparison function the inner product
.ηq(q)ᵀηd(di) was used. For each query . qi the training set contained one correct
passage . d+

i and a number of negative passages .d−
i,1, . . . , d

−
i,m. The loss function

6.1 Document Retrieval 237

encoded the goal to get a large .φ-value (i.e. similarity) for . qi and . d+
i and small

similarities for . qi and . d−
i,j

.L(w) = − log
exp[ηq(q)ᵀηd(d+

i)]
exp[ηq(q)ᵀηd(di)] + ∑m

j=1 exp[ηq(q)ᵀηd(d−
i,j)]

(6.7)

The negative examples were a mixture of passages retrieved with keyword search
that did not contain the answer and thus were difficult negatives. In addition,
passages from other examples in the same training batch were used. Instead of
performing an exhaustive computation of similarities for all documents between
.ηq(q) and the .ηd(di), we can employ an approximate nearest neighbor search. FAISS
[91] is an open-source method based on hierarchical navigable small world graphs.
For the Natural Questions benchmark they achieved a top-20 accuracy of 79.4%,
which is much better than the previous top-20 accuracy of 59.1% for the keyword-
based BM25 search. The replication study [136] could confirm these results, but
found that a hybrid approach of DPR and BM25 could increase the performance to
82.6%.

ANCE [238] uses a single RoBERTa model to encode query and document.
During training, hard negative examples are selected by approximate nearest
neighbor search on an index over the representations generated by the trained
encoder. In this way, they can select “difficult” negative examples. The index is
periodically updated. On Natural Questions ANCE achieved 82.1% top-20 accuracy.
The performance was also compared with the monoBERT cross-encoder, which
reranks first-stage BM25 results with monoBERT by comparing all documents
to the query. It turned out that on MS-MARCO the application of monoBERT
to BM25 had a MRR@10 of 34.7% while ANCE has 33%. The cross-encoder
obviously is more effective than ANCE. The authors also applied ANCE to 8 billion
documents using embeddings of size 64 and approximate nearest neighbor search.
They reported a gain of 16% compared to the prior commercial implementation.

RocketQA [184] performs a first retrieval step and subsequently a re-ranking
procedure. Both approaches are jointly optimized using a listwise training approach,
where a list of positive and negative examples is used for training both modules. In
addition, they perform a data augmentation to construct diverse training instances
by incorporating both random sampling and denoised sampling. They report a
MRR@10 on MS-MARCO of 38.8% for passage retrieval. When the 50 top results
are reranked later, they can increase MRR@10 to 41.9%.

coCondenser [63] is one of the highest entries of the MS-MARCO leader-
board [140]. The model is forced to learn to aggregate information into the “CLS”
embedding, which will then participate in the LM prediction. Then an additional
“contrastive loss” is used: “CLS” embeddings of passages from the same document
close together should be similar, while those for passages in different documents
should have a larger distance. This yields highly expressive embeddings for
passages. When the model is fine-tuned on MS-MARCO, it returns an . MRR@100
of .40.8% on the MS-MARCO leaderboard [140].

238 6 Foundation Models for Text Generation

Available Implementations

• DPR code is available at https://github.com/facebookresearch/DPR.
• The code for the FAISS nearest neighbor search is available at https://github.com/

facebookresearch/faiss.
• ANCE code and data trained nearest neighbor search is available at https://github.

com/microsoft/ANCE.
• RocketQA code and data is available at https://github.com/PaddlePaddle/

RocketQA.
• FlexNeuART [27] implements the Model 1 retrieval system [28].
• coCondenser code at https://github.com/luyug/Condenser.

6.1.6 Summary

Retrieval is a crucial step in web search, in which a small set of query-relevant
candidate passages are identified from a corpus of billions of texts. Discovering
more semantically related candidates in the retrieval phase holds great promise for
presenting more high-quality results to the end user. Dense retrieval approaches
represent a paradigm shift in search engine technology. They make it possible to
recognize the meaning of words and paraphrases and thus find much better passages
matching a query. Search results can also be used for question-answer models
(Sect. 6.2) and dialog systems (Sect. 6.6). They are already being used in production
search engine by Bing [35, 238, 266], Google [152, 197], and Facebook [82].

Dense retrieval methods discussed above are fine-tuned in a supervised setting
using human relevance labels as input, e.g. from MS-MARCO. Best results are
obtained by two different PLMs to encode the query and the documents. Both PLMs
are trained to improve the probability of a correct reference document in contrast to
some negative documents. As two different PLMs require more effort, most systems
use a single model to encode the question and the documents. Experiments show that
the combination of dense retrieval and keyword retrieval seems to have advantages.
In Sects. 6.2.2 and 6.2.3 retrieval techniques for question answering are discussed,
which are even more powerful.

A problem is the transferability of a search system to a new domain. BERT was
found to have strong cross-domain relevance classification capabilities when used
in a similar way as monoBERT [124, p. 72]. If a BERT model is fine-tuned using
relevance judgments from one domain (e.g., tweets) it can be successfully applied to
a different domain (e.g., newswire articles). On the other hand, Thakur et al. [221]
created a benchmark called BEIR with 18 retrieval tasks from very different domains
like bio-medicine and tweets. The authors trained a large number of dense retrieval
techniques on MS-MARCO and evaluated then on the other tasks. They found that
they were on average less effective than BM25, which due to its simplicity just
works in most cases.

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/PaddlePaddle/RocketQA
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser
https://github.com/luyug/Condenser

6.2 Question Answering 239

The memory requirements for an index for embeddings cannot be ignored. While
a keyword Lucene index for the MS-MARCO passage corpus with 8.8M passages
needs 661 MB, a FAISS index for vectors of size 768 requires 42 GB and an index
for ColBERT takes 156 GB [124, p. 159]. To apply these techniques to web-scale,
approaches with a smaller memory footprint are needed.

6.2 Question Answering

Question Answering (QA) is an application of NLP that receives a natural language
query and automatically generates a precise answer in natural language. It is a long-
standing AI task dating back to the 1960s [69]. Compared with search engines
discussed in Sect. 6.1, the QA system presents the final answer to a question directly
instead of returning a list of relevant snippets or hyperlinks. Thus, it is more user-
friendly and efficient. Often, the system has access to a database or a knowledge base
(KB) of documents, such as Wikipedia, where it can search for relevant information.

A Closed Domain QA system handles questions for a specific domain, e.g.
medicine, and has background knowledge about that domain or is trained with a
large training set covering that domain. Open Domain QA systems (ODQA) deal
with questions on almost any topic and usually rely on general KBs or Internet
search [37]. Multimodal QA systems address questions in different media, e.g., text
and images. A survey of ODQA is given by Zhu et al. [265]. Table 6.3 compiles
leading QA Models with their performance.

A simple form of question answering is Reading Comprehension, where the
system has to identify an answer to a question in a given text. Often a BERT-like
system marks the answer span in the text by span prediction (Sect. 2.1.3). This task
can mainly be considered as solved. For the SQuAD 2.0 benchmark [179] ALBERT
yields more than 93% F1-value and the fine-tuned ST-MoE-32B mixture-of-experts
model (Sect. 3.5.2) with 269B parameters [270] achieves 96.3% F1-value, while the
human F1-value is 89.5% [178]. However, Sen et al. [199] indicate that systems
trained on one dataset may not generalize well to other benchmarks.

6.2.1 Question Answering Based on Training Data Knowledge

Language models often are trained on comprehensive text collections and are
able to memorize a large amount of information. A frequently used benchmark is
Natural Questions (NQ) [109], which has been sampled from the Google search
logs (Sect. 6.1.2). For the given question, the system has to find a short answer span
in the given support documents. An example is the question “When are hops added
to the brewing process?”, which should yield the answer “The boiling process”.

The TriviaQA benchmark [92, 226] contains a set of trivia questions with answers
that were originally scraped from the Web. Different from Natural Questions, the

240 6 Foundation Models for Text Generation

Table 6.3 Question answering models with their performance. The lower part contains retrieval
models. Benchmarks: NQ: natural Questions benchmark of Google queries [109], TriviaQA:
TriviaQA benchmark [92, 226], HotpotQA: multihop benchmark [249], EM: exact match

Model Details Benchmark

BigBird (Sect. 6.2.1) Autoencoder with long input,
supervised training with QA pairs

NQ with ref-docs 57.9% EM
WikiHop 82.3% acc.

PoolingFormer
(Sect. 6.2.1)

Autoencoder with two-level attention
schema, supervised training with QA
pairs

NQ with ref-docs 61.6% EM

RealFormer
(Sect. 6.2.1)

Autoencoder with bypass attention,
supervised training with QA pairs,
multihop QA

WikiHop 84.4% acc.

GPT-3 (Sect. 6.2.1) Large autoencoder 175B, only
pre-training

NQ few-shot 29.9%
TriviaQA few-shot 71.2%

Gopher (Sect. 6.2.1) Large autoencoder 280B, only
pre-training

NQ few-shot 28.2%

PaLM (Sect. 6.2.1) Large autoencoder 540B, only
pre-training

NQ few-shot 36.0%
TriviaQA few-shot 81.4%

DPR (Sect. 3.4.5) Retriever-reader with two BERT
models and FAISS index

NQ exact match acc 41.5%
TriviaQA 57.9%

FiD (Sect. 3.4.5) Retriever-reader with T5 models and
FAISS index

NQ exact match acc 51.4%
TriviaQA 67.6%

REALM (Sect. 3.4.5) Retriever-reader with dot product of
BERT embeddings, slow

NQ exact match acc 40.4%

FB HYBRID
(Sect. 3.4.5)

DPR retriever combined with other
retriever, FiD reader

NQ exact match acc 53.9%,
corresponds to 67.4% correct

MS UNITED
(Sect. 3.4.5)

BERT-based retriever,
T5+ELECTRA as readers, final
re-ranking

NQ exact match acc 54.0%,
corresponds to 65.8% correct

AISO (Sect. 3.4.5) Retriever-reader with repeated
retrieval rounds, multihop QA

HotpotQA 72.0% F1

RETRO (Sect. 6.2.3) Language model with frozen BERT
retriever, language model
periodically includes retrieved token
chunks

NQ exact match acc 45.5%

WEBGPT
(Sect. 6.2.3)

GPT-3 combined with Bing search
engine, which can be periodically
invoked

TriviaQA 69.5%

questions here are written with known answers in mind. TruthfulQA [125] is a
special QA benchmark with short questions that are constructed adversarially, so
that some people’s answers might be wrong due to false beliefs and misconceptions.
The answers are evaluated according to informativeness and truthfulness.

6.2 Question Answering 241

Fine-Tuned Question Answering Models

The BigBird (Sect. 3.2) self-attention was used as an autoencoder and trained with
the MLM objective using an input sequence of 4096 tokens [253]. During fine-
tuning on Natural Questions the model had to find a short answer span in one of
the given evidence documents. The model achieved 57.9% F1-value on this task.
The PoolingFormer [256] is an alternative model for long input sequences with a
two-level attention schema. Its first level uses a smaller sliding window pattern to
aggregate information from neighbors. Its second level employs a larger window
to increase receptive fields with pooling attention. An ensemble of fine-tuned
PoolingFormers achieves 61.6% F1-value on the Natural Questions benchmark. The
model is similar to the SMITH model [247], which uses a BERT-based hierarchical
encoder to capture the document structure information (Sect. 6.1.4).

An alternative is Macaw [218], a freely available QA-system with 11B param-
eters. It is built on T5 and has strong zero-shot QA-capabilities. On a set of 300
challenge questions the authors claim that Macaw outperforms GPT-3 by 10%,
although it has only a small fraction of its parameters. In addition to providing an
answers for a question, Macaw can also take an answer and produce a question;
or generate multiple-choice options for an answer and a question. The authors also
provide a detailed analysis of errors.

It is much more difficult to combine different pieces of evidence to find an
answer. A benchmark to test this ability is WikiHop [232], where information from
different documents has to be merged. An example is the question “Hanging gardens
of Mumbai, country?” and the documents “The Hanging Gardens, in Mumbai, also
known as Pherozeshah Mehta Gardens, are terraced gardens . . . ” and “Mumbai
is the capital city of the Indian state of Maharashtra. It is the most populous city
in India . . . ”. For each query up to 140 background paragraphs are provided to
the model. On this benchmark BigBird-ETC (Sect. 3.2.1) achieved an accuracy of
82.3%. Currently, the best model for this task is the RealFormer with an accuracy
of 84.4% [171], which is slightly below the human performance of 85%. The
RealFormer is an autoencoder with a modified architecture, which provides a bypass
with the raw attention scores of all attention heads from the previous layer in the
subsequent layers [76].

Question Answering with Few-Shot Language Models

Recent Foundation Models are trained with an enormous collection of documents
and can generate answers to questions without additional knowledge input. An
example is the autoregressive language model GPT-3 with 175B parameters, which
was pre-trained on a text collection of books, Wikipedia and web pages of about
500 billion tokens (Sect. 3.1.2). Because of its high model capacity it can absorb a
lot of ‘knowledge’ in its parameters. When a Foundation Model is not allowed to
use external information, this is called Closed-book QA.

242 6 Foundation Models for Text Generation

As discussed in Sect. 3.6.3, GPT-3 can be instructed by a few examples (few-
shot) to solve a task. Figure 6.4 provides a few-shot prompt example. For Natural
Questions, GPT-3 achieves an exact match accuracy of 14.6% in the zero-shot
setting, 23.0% in the one-shot setting, and 29.9% in the few-shot setting [29, p. 14].
This was achieved without fine-tuning on Natural Questions. The larger Gopher
model with 280B parameters (Sect. 3.1.2) performs slightly worse with 28.2% in
the few-shot setting [175, p. 80].

The even larger PaLM model with 540B parameters (Sect. 3.1.2) was trained
on a high-quality dataset with 780B tokens. It uses a new prompt technique to pose
logical questions, where examples are presented to the system together with thought
chains partitioning a reasoning task into smaller problems (Sect. 3.6.4). In this way
it gets the recipe to combine facts from different sources to arrive at the final answer.

PaLM was evaluated on a large number of other benchmarks, which in part are
QA-tasks. On Natural Questions it arrived at an accuracy of 21.2% with 0-shots and
at 36.0% with few-shot prompts [43, p. 47]. On Trivia QA (questions concerning the
Wikipedia), BoolQ (question answering with yes/no answers), and PIQA (question
answering with reasoning) PaLM also achieved a new SOTA. The results are shown
in Table 3.4. PaLM was benchmarked with a large number of tests, among them
the more than 150 BIG-bench tasks (Sect. 4.1.4). Many of them are QA-related
tasks: 21 contextual QA tasks, 24 context-free QA tasks, 36 reading comprehension
tasks, and a large number of tasks on specific knowledge and common sense [1, 22].
Additional outcomes for QA-benchmarks of PaLM are given in [43, p. 12], where
PaLM always achieves SOTA.

Fig. 6.4 A possible few-shot prompt for GPT-3 to get an answer based on existing knowledge
acquired during pre-training [160]

6.2 Question Answering 243

6.2.2 Question Answering Based on Retrieval

Retrieval ODQA systems usually work in two stages: for a question a retriever
module finds a number of documents from a text collection, which might contain the
answer. Subsequently, a reader considers the question and the retrieved documents
and generates a natural language answer (Fig. 6.5). Since the model relies on
external information, it is referred to as Open-book QA.

Retrievers have been introduced in Sect. 3.4.5 and were discussed in the context
of document retrieval in Sect. 6.1. The retriever may employ a traditional search
engine using tf-idf weighting or BM25. Alternatively the retriever may be a dense
retriever based on document and question embeddings. It is trained to retrieve
passages by computing embedding similarities e.g. by DPR [94] (Sect. 3.4.5). A
tutorial on ODQA is provided by Chen [36].

The reader is usually an autoregressive language model that receives both the
query and the retrieved documents as inputs. It is fine-tuned to generate a response
to the query based on the retrieved information and its internal knowledge.

Question answering with external knowledge bases has the advantage that
curated KBs usually are checked for correctness. They may have, however, limited
coverage of entities and relations may not be up-to-date. There are a number
of approaches to combine PLMs with KBs using techniques like entity map-
ping (Sect. 3.4.1). Recent papers propose a hybrid approach using KBs and
retrieval [239]. Knowledge-Guided Text Retrieval [145] starts with retrieving text
passages for a query. It creates a passage graph, where vertices are passages of text
and edges represent relationships that are derived either from an external knowledge
base or co-occurrence in the same article. On Natural Questions [109] they achieve
an accuracy of 34.5%.

HYBRIDER [41] uses information from a retriever as well as from a structured
KB and tables. The authors collected Wikipedia pages and constructed a benchmark
dataset HybridQA containing question-answer pairs requiring multi-hop reasoning
using text, tables and hyperlinks (Fig. 6.6). The model first links questions to

Fig. 6.5 Question answering often combines dense retrieval with an answer selection module.
The retriever performs a dense retrieval by comparing the embedding of the query with the
embeddings of passages. The reader ranks the retrieved documents and generates an answer by
an autoregressive Pre-trained Language Model [36]. Credits for image parts in Table A.2

244 6 Foundation Models for Text Generation

Fig. 6.6 For hybrid question answering Wikipedia pages are retrieved by HYBRIDER [41] (top
left). Some pages contain tables (left). Here the column titles may be interpreted as well as
hyperlinks to entities (underlined). The lower part shows two human-annotated question-answer
pairs. Image reprinted with kind permission of the authors [41, p. 2]

tables cells as well as Wikipedia passages and hyperlinks. In a reasoning phase the
linked information is ranked and consolidated to derive the probabilities of different
answers. The experiments with the dataset show that the utilization of tables or
retrieval alone achieves an exact match accuracy of about 20% while the joint model
yields more than 40%. However, the hybrid model’s score is still far below human
performance.

One of the first retrieval-reader systems wasDPR (Dense Passage Retriever) [94].
It employs a BERT model to encode passages by embeddings and retrieves them
by approximate k-nearest neighbor search with the FAISS index (Sect. 6.1.5). In
this way it can gather passages with similar meaning but different wording. The
DPR reader is another BERT model which is fine-tuned to predict a probability for
each retrieved passage that this passage contains the correct answer. In addition, it
selects a span of tokens by span prediction, which probably provides the answer.
The approach can be easily applied to KBs with billions of passages [94, 213]. On
the Natural Questions [109] it yields a test set accuracy of 41.5%.

FiD [84] is described in Sect. 3.4.5. The retriever is based on DPR and compares
query and passages embeddings. Raffel et al. [177] have shown that generative
models like T5 can produce the answer for QA-tasks. FiD processes the query and
the retrieved passages by a reader based on a T5 model to generate an answer. Since
the first step is to process the passages one by one, the system is very efficient.
FiD achieves an exact match accuracy of 51.4% on the Natural Questions test set
compared to 41.5% for DPR.

REALM [75] and RAG [114] are retrieval augmented generative models for
open domain question answering. However, they process all retrieved passages
simultaneously in an autoregressive language model and were unable to take
into account a large number of passages leading to lower accuracies on Natural
Questions of 40.4 for REALM and 44.5 for RAG. Sachan et al. [194] propose an

6.2 Question Answering 245

end-to-end differentiable training method for retrieval-augmented ODQA. Latent
variables indicate which of the relevant documents should be included. The values
of the latent variables are iteratively estimated by an EM-algorithm. On Natural
Questions they achieve an exact match accuracy of 52.5%.

MTR [138] starts from the observation that neural retrievers perform well on
their fine-tuning domain, but will typically achieve low out-of-domain performance.
The authors propose a multitask retriever similar to DPR which is jointly fine-tuned
on eight diverse retrieval tasks. They use a shared passage encoder—so that a single
index of encoded passages can be used—as well as a query encoder that is shared
across all tasks. In five of the eight models they achieve a higher performance than
special models tuned to the corresponding domain.

AISO [268] is a retriever-reader architecture for solving multi-hop QA tasks,
where multiple documents are required to answer a question. Repeated retrieval
rounds are performed in which associated terms are taken as new search queries to
find additional evidence. The approach is adaptive and at each step selects one of
three types of retrieval operations (e.g., BM25, DPR, and hyperlink) or one answer
operation. On the HotpotQA benchmark [249], the question-answering system must
find the answer to a query in the scope of the entire Wikipedia. The AISO model
achieved a new SOTA with a joint F1-value of 72.0%.

The FB Hybrid system was presented at the EfficientQA competition [147],
where real user questions for the Google search engine from the Natural Questions
dataset [109] were tackled. While the original NQ was a reading comprehension
task providing a number of evidence documents for each question, the EfficientQA
benchmark [147] adapted this to open-domain QA by taking examples with up
to five token answers and discarding the evidence documents. The system uses a
retriever-reader architecture [158]. The retriever is a mixture of DPR and another
retrieval system, which covers lists and tables as well as KB-relations and retrieves
100 passages. The reader is a T5-large Seq2seq model, which is given 100 passages
from the retriever and generates an answer. The background corpus contained 18.8M
passages from Wikipedia. On Natural Questions the model achieves an exact match
accuracy of 53.9%. According to an evaluation by human raters the model was
able to answer 67.4% of the questions correctly, which is about as good as the
performance of human experts using a search engine. TheMSUnitedQA model had
a similar architecture [139]. It uses a BERT-based retriever and a reader combined
from a T5-model and ELECTRA processes the returned documents to generate
different answers. A final re-ranking model selects the answer. MS UnitedQA yields
an exact match accuracy of 54.0% and 65.8% correctness on Natural Questions. If
the systems were restricted to a memory footprint of 6 GB the performance was
only marginally reduced.

246 6 Foundation Models for Text Generation

6.2.3 Long-Form Question Answering Using Retrieval

A Language Model with Integrated Retrieval

Retro [25] is an autoregressive language model with 7B parameters using retrieved
information to predict the next token. As retriever a frozen BERT model is employed
(Fig. 6.7). Each training sequence is split into chunks, which are augmented with
their k-nearest neighbors retrieved from the database of 2 trillion tokens. The
returned information is processed in a language model to improve the prediction
of the next token leading to large performance gains. The reader consists of
a differentiable autoregressive encoder and a chunked cross-attention module to
predict tokens.

An input sequence .v = (v1, . . . , vn) of .n=2048 tokens is split into chunks
.ct = (v(t−1)∗m+1, . . . , vt∗m) of length .m=64. Each chunk . ct is expanded with a set
.RET(ct) of retrieved k nearest neighbor chunks from the database. The probability
of a token .vt∗m+i in the next chunk .ct+1 then can be recursively computed as

.p(vt∗m+i |vt∗m+(i−1), . . . , vt∗m+1, ct ,RET(ct), . . . , c1,RET(c1)). (6.8)

The probability of the i-th token of the .(t + 1)-th chunk .ct+1 depends only on the
previous tokens and on the data .RET(cj) retrieved from the database for the previous
chunks. This integrates the retrieval process in the language model.

The retriever for a chunk . ct uses the average .BERT(ct) of all BERT embeddings
of the tokens in . ct as key. It retrieves the k nearest neighbors from the database
with respect to the . L2 distance .||BERT(ct) − BERT(c̃s)||22. The model receives the
corresponding chunks .c̃s,j and additionally their continuation chunk .c̃s+1,j for . j =
1, . . . , k, which collectively form the elements of .RET(ct). By filtering it is avoided
that the chunk to be predicted is included in .RET(ct), as this would invalidate the
conditional probability definition. The retrieval is performed in .O(log T) time using
the SCaNN library [73], which collects a set of chunks from a database of 2 trillion
tokens in 10ms. Note that the document corpus of Retro is about 1000 times larger
than the databases of FiD and other retrieval models.

Fig. 6.7 The Retro language model retrieves information for the input sequence. The model uses
the input sequence and the retrieved neighbor chunks from the database as input and generates an
appropriate output [176]

6.2 Question Answering 247

Inside the reader the retrieved tokens in .RET(ct) are fed into an autoencoder,
which computes a set E of encoded neighbors. Then, so-called RETRO blocks

.RETRO(H,E) := FCL(CATL(ATTL(H),E)), (6.9)

and standard self-attention blocks .LM(H) := FCL(ATTL(H)) are interleaved
and operate on the intermediate embeddings .H ∈ Rn×d . Here .FCL(·) is a fully
connected layer, .ATTL(·) a self-attention layer, and .CATL(·, E) a cross-attention
layer which includes the information in E. The input and output dimension of these
modules is .R

n×d .
The resulting language model is able to predict the next token with a high

reliability. The Pile data [62] is a 825GB open-source text collection set that consists
of 22 diverse, high-quality datasets. It was screened for toxic language and bias, e.g.
with respect to gender, religion, and race. Its authors recommend measuring the
quality of token prediction in bits per byte (bpb), which in contrast to perplexity is
independent of the tokenizer [62, p. 6]. The authors compare Retro with GPT-3175B
[29], Jurassic-1178B [121], and Gopher280B [176]. It turns out that Jurassic-1 has the
lowest (and best) bpb-value on 5 Pile datasets, Gopher on 2 datasets and Retro on 9
datasets, although it is far smaller than the other models [25]. GPT-3 was inferior to
all three models. A possible problem for these results is the overlap of the retrieval
corpus with the test data.

For the LAMBADA benchmark [165] a model has to predict the last word of a
paragraph. The authors measure the following accuracies: Retro without retrieval
70%, Retro with retrieval 73%, Gopher 74.5%, and GPT-3 76.2%. Note that Retro
has only 4% of the parameters of GPT-3. For question answering the Natural
Question benchmark is relevant. Here, Retro achieved an exact match accuracy of
45.5%.

The LaMDA [222] dialog system (Sect. 6.6.3) is an expanded version of Retro
with 137B parameters. It demonstrates that facticity can be improved by retrieval
models. In addition, it is able to reduce toxic language by a system of filters that
block unwanted speech. Although this model could also easily be used for question
answering, no corresponding benchmark results are known.

Controlling a Search Engine by a Pre-trained Language Model

WebGPT [149] extends GPT-3 to control the Bing search engine and performs a
web search for a specific query. The language model must issue commands such as
“Search . . . ”, “Find in page: . . . ” or “Quote: . . . ”, as shown in Fig. 6.8. In this way,
the model collects passages from web pages which contain information relevant for
the question. The utilization of Bing has the advantage that it has powerful search
capabilities, and covers a large number of up-to-date documents.

Browsing continues until the model issues a command to end browsing, the
maximum total length of references has been reached, or the maximum number

248 6 Foundation Models for Text Generation

Fig. 6.8 Possible actions of the WebGPT language model. If another text is generated, this is an
invalid action and ignored [149]

of actions has been reached. If a relevant reference has been retrieved, the model
will generate a long-form answer to the question.

The GPT-3 model is first fine-tuned to mimic human demonstrations, enabling
it to use the text-based browser to answer questions. Then, the usefulness and
accuracy of the model’s answers is improved by fine-tuning a reward model to
predict human preferences, and optimizing it by rejection sampling. Specifically
the model is fine-tuned to answer questions from ELI5 [56], a dataset of open-
ended questions obtained from the subreddit ‘Explain Like I’m Five’. An example is
given in Fig. 6.9. The proposed WebGPT answers should be coherent, relevant, and
supported by trustworthy documents. No details are reported on the input prompts
of GPT-3 containing the current state of search, and how the GPT-3 model combines
the returned documents into an answer. Note, however, that there is significant
overlap between training and validation in ELI5, as at least 81% of ELI5 validation
questions occur in the training set [106] in circumscribed form.

The final answers were selected from 64 trials of the 175B WebGPT model by
ranking. These answers were preferred by human raters to the reference responses
from the ELI5 dataset 69% of the time. Moreover, they were preferred to the human
demonstrator responses in 56% of the cases.

For WebGPT, responses to TruthfulQA [125] were correct about 75% of time,
whereas GPT-3 scored 64% with helpful prompts. While GPT-3’s answers were
truthful and informative in about 20% of the time, the best version of WebGPT
increased this to about 56%. Since people answered 94% of the questions correctly,
the models still have a significant performance difference. On TriviaQA WEBGPT
achieved a score of 69.5%, which is far less than the value of PaLM with 81.4%.

An innovative feature is the support of text passages by references. This
corresponds to the approach of scientific papers to underpin claims by references
and was already suggested by Metzler et al. [143]. The references explain the answer
and support the factual accuracy of the statements. The citations are selected by Bing
in response to the query. They should therefore be close to the final reader-generated
response and provide an easy way to assess the correctness of the response.

However, the authors point out that the references are not always representative
for the available evidence, although the model cites references that correspond to the
generated text. In addition, it is difficult for the model to verify the trustworthiness

6.2 Question Answering 249

Fig. 6.9 Long-form answer to a question generated by WebGPT. The best of 64 answers was
automatically selected. The citations were automatically retrieved from the Bing search engine
and added to the answer [80]

of references. Here, Web-of-Trust systems and search engine technology could be
employed, which favor trust-checked frequently linked web pages.

Available Implementations

• BigBird code and models are available at https://huggingface.co/google/bigbird-
roberta-base

• DPR code and models https://github.com/facebookresearch/DPR
• FiD code and models https://github.com/facebookresearch/FiD
• RealFormer code https://github.com/jaketae/realformer
• REALM code https://github.com/google-research/language/blob/master/

language/realm/README.md
• RETRO implementation, Deepmind’s Retrieval based Attention net, in PyTorch.

This will deviate from the paper slightly, using rotary embeddings for relative
positional encoding, as well as FAISS library instead of SCaNN https://github.
com/lucidrains/RETRO-pytorch.

https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://huggingface.co/google/bigbird-roberta-base
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/facebookresearch/FiD
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/jaketae/realformer
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/google-research/language/blob/master/language/realm/README.md
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch

250 6 Foundation Models for Text Generation

6.2.4 Summary

A number of Foundation Models have been presented, which were able to improve
Question Answering performance. Examples are the autoregressive language mod-
els GPT-3 (175B), Gopher (175B), and PaLM (540B) with huge parameter sets,
which are trained on a large document collections and can acquire extensive
knowledge. Using few-shot prompts they are able to answer questions with high
accuracy without employing external knowledge.

Recently, the retriever-reader architecture has been increasingly used for QA
systems. It has the potential to tap into a larger knowledge base or the Internet that
can easily be kept up-to-date. The retriever can employ keyword search or dense
retrieval. Dense retrieval mitigates the term-mismatch problem, where relevant
paraphrases are ignored. Usually, embeddings for each document or phrase are pre-
computed and the embedding index is constructed beforehand. Current systems can
access document collections of up to trillions of tokens using advanced nearest-
neighbor search engines like FAISS and SCaNN to compare embeddings.

The reader usually receives the query and the returned passages in text form and
generates the answer. It is fine-tuned to select the correct answer and to provide
answers which are expressive and truthful. The Retro model is an autoregressive
language model with only 7B parameters, which uses passages retrieved by a frozen
BERT model as additional current state information to generate the next tokens. It
is capable of improving accuracy to high levels for many QA tasks, but can also be
used for other applications such as story generation.

WebGPT combines GPT-3 and the Bing search engine to retrieve documents and
create appropriate answers. It is able to enhance the generated text by references to
documents, which justify and explain the answer. The LaMDA dialog model is an
expanded version of Retro with 137B parameters with specific tuning to increase
usability and factual accuracy. In addition, it is able to reduce toxic language by a
system of filters that block unwanted speech. These techniques can also be applied
to question answering.

Still difficult is the generation of answers where the correct response needs
information from multiple documents. In this case several rounds of querying are
necessary. Special models like RealFormer, HYBRIDER, or AISO can improve the
performance for benchmarks like WikiHop.

6.3 Neural Machine Translation 251

Fig. 6.10 This map shows some of the world’s 7100 languages, with each dot representing a
language and the color indicating the top language family for each language. Only a small fraction
of the world’s languages are currently represented in Foundation Models. Image reprinted with
kind permission of the authors [24, p. 23]

6.3 Neural Machine Translation

Language is the cornerstone of most human communication and interaction.
Moreover, many persons think in terms of language, and use it to express and
communicate feelings, goals, and ideas. We communicate knowledge by language
and use it to establish social and emotional relationships. There are more than 7100
languages in the world [19], some of which are shown in Fig. 6.10. The ability to
understand each other across language barriers is essential for communicating ideas
between people.

After an initial success with Recurrent Neural Networks [15, 215] the devel-
opment of the Transformer encoder-decoder (Sect. 2.3) has driven progress in
Neural Machine Translation (NMT). By cross-attention a “correlation” between
each token of the source text and the translated text can be established, producing
better translations than before. The availability of large training sets and better
model architectures has steadily increased the performance of Pre-trained Language
Models for NMT (Fig. 6.11). Standard models for multilingual processing are
described in Sect. 3.3. A survey is provided by Yang et al. [248].

252 6 Foundation Models for Text Generation

Fig. 6.11 BLEU scores for Google translation of 100+ different languages to English for different
years. Image credits in Table A.2

6.3.1 Translation for a Single Language Pair

The training data of NMT consist of text pairs of the source language and its
translations to the target language. Traditionally evaluation is done by comparing
one or more reference translations to the proposed translation, as described in the
survey [195]. There are a number of automatic metrics like BLEU, METEOR or
BERT-score (Sect. 2.3.3). It turned out that there is a noticeable difference between
human judgment and automatic evaluation. Therefore, most high-end comparisons
today use human translators to assess the quality of translation methods.

At the WMT2021 Machine Translation conference, numerous teams solved
benchmarks tests for translating English news texts from/to German, Japanese,
Russian, Chinese, and a number of low-resource languages [5]. Instead of using
comparison statistics like BLEU, the translations of each system was evaluated by
a number of human evaluators without showing them a reference translation. They
were asked to rate a given translation according to how adequately it expressed
the meaning of the corresponding source language input on an analog scale, which
corresponds to an underlying absolute rating scale of 0–100. As some raters could
be stricter, the systems are ranked by a z-score, where the score is mean-centered
and normalized per rater. Systems are grouped together according to which system
significantly outperforms all others measured by the Wilcoxon rank-sum test. A
large effort was spent to assess the validity of human evaluation.

6.3 Neural Machine Translation 253

In total 173 submissions were received. In addition, five anonymized online sys-
tems were included. Further human-produced reference translations were denoted
by “HUMAN” in all tables. Results show that almost all good systems are based
on transformer encoder-decoders. Words are mostly encoded by the SentencePiece
[107] tokenizer (Sect. 1.2). A widely used technique is back-translation [200]. Here
a monolingual text is translated to the other language and then back-translated. By
minimizing the difference to the original text, both models may be improved. Up to
500M sentences per language were available and could be used for back-translation,
which led to a significant improvement in quality. In addition, ensembles are able to
increase the performance in most cases.

The result of the best system for each language pair is shown in Table 6.4.
Usually, there is a cluster of 2–5 models at the top, whose performance differences
are not significant. The Facebook-AI model (FB) had the best results for half of
the language pairs. In addition, the BLEU scores for the best systems automatically
computed from n-grams are shown. As can be seen, the values are in general better
for the translation “to English” than “from English” especially for morphology rich
languages like Czech and German. Compared to the human reference translation,
the best system was significantly better for three language pairs. This has already
been discussed critically by Toral [223], who decry the limited amount of context
between sentences and the limited translation proficiency of the evaluators.

Improved performance was reached by increasing the number of parameters. The
Facebook model [224], for instance, used a standard model of 4.7B parameters
and a sparsely gated mixture-of-experts system with up to 128 experts. In each
Sparsely Gated MoE layer, each token is routed to the top-2 expert feedforward
blocks based on the score of a learned gating function. In addition, the models were
fine-tuned with domain-specific data from the news domain. The n-best hypotheses
were generated with a beam search. These were ranked with a weighted average of
the probabilities .p(tgt|src), .p(src|tgt), and .p(tgt), where . src is the source and . tgt is
the target sentence.

It is well-known that the translation of single sentences suffers from ambiguities
(e.g. pronouns or homonyms), which can be resolved by considering the document
context. In WMT2021 this is taken into account by assessing the quality of
translation within the document context [5]. As current encoder-decoder Foundation
Models are able to consider larger contexts, this could improve translation perfor-
mance [141]. Instead of finding the most probable translation of a sentence, we
need to generate the best translation for a given complete source document. While
comparing sentence-level translation often does not indicate a difference between
human and machine translation, the comparison of document-level translation often
yields a statistically significant preference for human translations [110].

Instead of using a Seq2seq model with extra long input sequence, HAT [187]
proposes a hierarchical attention transformer. The authors split the input text
into sentences and start each sentence i with a specific .[BOSi] token. These
tokens summarize the sentence content and are connected to the other sentences
by the usual self-attention and cross-attention. While the usual encoder-decoder
transformer has a BLEU of 32.5 for the document translation from English to
German on WMT2019, HAT is able to yield a SOTA BLEU of 34.5.

254 6 Foundation Models for Text Generation

Ta
bl
e
6.
4

L
ea
di
ng
 s
ys
te
m
s
of
 t
he
 W

M
T
20
21
 N

ew
s
T
ra
ns
la
tio

n
Ta
sk
.
T
he
 s
ys
te
m
s
ar
e
or
de
re
d
by
 n
or
m
al
iz
ed
 z
-s
co
re
 [
5,
 p
p.
 1
5–
19
].
 I
f
ei
th
er
 t
he
 b
es
t

sy
st
em

 o
r
a
hu

m
an
 r
ef
er
en
ce
 t
ra
ns
la
tio

n
is
 s
ig
ni
fic

an
tly

 b
et
te
r,
th
e
va
lu
e
is
 p
ri
nt
ed
 i
n
bo

ld
. S

ys
te
m
s:
 F
B
:
Fa
ce
bo

ok
-A

I,
 B
L
:
B
or
de
rl
in
e,
 H

W
:
H
W
-T
SC

, N
V
:

N
vi
di
a-
N
eM

o,
 N
I:
 N
iu
T
ra
ns
, O

B
: O

nl
in
e-
B
, O

W
: O

nl
in
e-
W
, H

N
: H

ap
py
N
ew

Y
ea
r

Sc
or
e

C
ze
ch

G
er
m
an

H
au
sa

Ic
el
an
di
c

Ja
pa
ne
se

R
us
si
an

C
hi
ne
se

To
 E

ng
lis
h

B
es
t m

od
el
 z
-s
co
re

FB
 0
.1
11

B
L
 0
.1
26

FB
 0
.2
48

FB
 0
.2
93

H
W
 0
.1
41

N
V
 0
.1
37

N
I
0.
04
2

H
um

an
 z
-s
co
re

. −0
.0
85

. −0
.0
81

0.
08
9

0.
01
9

B
es
t m

od
el
 B

L
E
U

43
.1

53
.0

18
.8

40
.6

27
.8

56
.3

33
.4

F
ro
m
 E
ng

lis
h

B
es
t m

od
el
 z
-s
co
re

FB
 0
.2
63

O
B
 0
.2
66

FB
 0
.2
64

FB
 0
.5
94

FB
 0
.4
30

O
W
 0
.2
77

H
N
 0
.2
84

H
um

an
 z
-s
co
re

0.
39
7

0.
03
0

0.
36
2

0.
87
2

0.
31
4

0.
31
7

0.
32
5

B
es
t m

od
el
 B

L
E
U

33
.6

31
.3

20
.4

30
.6

46
.9

45
.0

49
.2

6.3 Neural Machine Translation 255

6.3.2 Multilingual Translation

Usually, languages with scarce training data have a much lower translation accuracy,
as holds for Hausa in Table 6.4. A recent success was the extension of NMT by
multilinguality, which was already discussed in Sect. 3.3. This led to a marked
improvement of translations for languages with few resources. For a survey see [48].

M2M of Facebook AI [57] improves translation between many languages by
utilizing a massive corpus of 7.5B sentences covering 100 languages and thousands
of translation directions with supervised data, created through large-scale mining.
The model is a transformer encoder-decoder with 15B parameters. The authors
add a special token in the encoder indicating the source language and a special
token in the decoder indicating the target language. The transformer has 12 encoder
and 12 decoder layers and an embedding size of 1024. As there is a joint token
vocabulary for all languages, the input and output embeddings are shared. To
improve performance the authors added language-specific layers to the decoder for
five languages. Using specific parallelization techniques they were able to train the
model with only hundreds of GPUs.

Except for four language directions (En. →Chinese, Chinese. →En, En. →Fi,
En. →Estonian) the model improved translation results on the WMT benchmarks
for 1.9 BLEU points on average. Especially marked is the improvement for regional
languages with an average increase of 7.6 BLEU. For resource-rich language pairs
Liu et al. [130] propose to use very deep transformers with up to 60 encoder layers
and 12 decoder layers. They develop a simple yet effective initialization technique
that stabilizes training and achieve SOTA on WMT2014 En-Fr of 46.4 BLEU.

Although multilingual translation has many advantages, it usually performs
worse than specially trained bilingual models for high-resource language pairs.
Recently Facebook [225] presented a single multilingual model, which outper-
formed the best specially trained bilingual models across 10 out of 14 language pairs
of the WMT2021 news benchmark. Facebook built two multilingual systems: any-
to-English and English-to-any. They employed data mining techniques to identify
translations in large web crawl data and leverage available monolingual data with
hundreds of millions of sentences from all eight languages to maximize performance
of MT systems. They filtered the available monolingual data to reduce the amount of
noise, and then back-translated them with an ensemble of the strongest multilingual
models available. The number of parameters was increased from 15B to 53B to
enhance the model capacity.

The BLEU scores are shown in Table 6.5. In comparison to the best bilingual
models of WMT2021, the multilingual model achieves a better BLEU in 9 of 14
cases indicating that the additional training data from other languages supports
translation. Only for Chinese. →English there was a larger drop of 1.3 BLEU

points. The authors also performed a human evaluation for the language pairs
English. →Russian and English. →German. It turned out that there was no perceived
difference between the quality of bilingual and multilingual translations.

256 6 Foundation Models for Text Generation

Table 6.5 BLEU scores of the Facebook multilingual model and the best language pair model
submitted to the WMT2021 news task. The numbers reported are BLEU scores on the final
WMT2021 test set [225]. The difference between the models is printed in bold, if the multilingual
model is better

Model Czech German Hausa Icelandic Japanese Russian Chinese

From English
FB-Mult 36.1 31.3 20.1 33.3 46.8 46.0 49.9

WMT2021 best 33.6 31.3 20.4 30.6 46.9 45.0 49.2

Difference 2.5 0.0 −0.3 2.7 −0.1 1.0 0.7
To English
FB-Mult 43.5 53.3 21.0 41.7 27.7 57.1 32.1

WMT2021 best 43.1 53.0 18.8 40.6 27.8 56.3 33.4

Difference 0.4 0.3 2.1 1.1 −0.1 0.8 −1.3

Table 6.6 Influence of different modeling improvements on the BLEU scores on the development
set of WMT2021 for Facebook AI’s WMT2021 submission [225]. The version of the last row was
submitted

Improvement strategy Czech German Hausa Icelandic Japanese Russian Chinese

Bilingual 33.1 38.7 14.7 25.8 25.4 25.8 40.0

+ Back-translation 33.1 39.6 23.1 29.4 26.1 25.7 42.4

+ Fine-tuning 35.7 39.5 23.3 29.4 27.7 26.0 43.0

+ Multilingual 36.4 40.8 24.6 31.2 29.7 26.8 43.6

+ Ensemble 36.8 41.1 25.0 32.5 29.7 26.9 43.6

+ Reranking 37.2 41.1 25.5 32.8 29.7 27.4 43.6

+ Postprocessing 39.8 42.6 25.5 34.5 29.8 28.8 48.2

Table 6.6 shows the effect of employed improvement strategies for the different
languages of the multilingual model. Back-translation has a large effect for lan-
guages with little training data like Hausa and Icelandic. The authors note, however
that back-translation produces translationese by generating artificial uncommon
phrases in a language. These effects may be mitigated by fine-tuning on the specific
domain, e.g. news texts. This yields about 3 BLEU points for translation into English
and 0.7 BLEU points for translation out of English. Switching to the multilingual
model generates an improvement for all models. While the effect of model
ensembles is minor, re-ranking the BEAM translations with conditional target-
source probabilities yields about 0.4 BLEU points. Postprocessing (for example
applying standard punctuation rules) can have a large effect, e.g. 5 BLEU points
for Chinese.

The PaLM autoregressive language model with 540B parameters [43] has about
22% non-English training texts among its 780B training tokens (Sect. 3.1.2). Similar
to other large LMs, PaLM is not trained explicitly on parallel text, although some
such data is likely to exist naturally in the training corpus. In Table 6.7 the results
of PaLM 540B few-shot translation is compared with prior few-shot and fine-tuned
SOTA [43, p. 27]. The best BLEU value per language pair is underlined and the

6.3 Neural Machine Translation 257

Table 6.7 Comparison of PaLM few-shot translation performance against prior fine-tuned trans-
lation performance by specialized models and prior few-shot performance. On the left you find
the translation from English and into English for the traditional WMT language pairs. On the right
there is the translation to and from English to Kazakh (kk) and a translation between German and
French [43, p. 27]

From en en en fr de ro en de kk fr

To fr de ro en en en kk fr en de

Prior fine-tuned SOTA 45.6 41.2 33.4 45.4 41.2 39.1 15.5 31.5 30.5 24.9

Prior few-shot SOTA 33.9 26.8 20.5 38.8 40.6 37.3 – – – –

PaLM 540B few-shot 44.0 37.4 28.7 42.8 47.5 43.8 5.1 25.7 20.8 17.4

best few-shot BLEU is printed in bold. The table shows that PaLM on the traditional
WMT translation pairs always achieves the best few-shot BLEU, often improving by
a wide margin. For the low-resource language Kazakh (kk) the fine-tuned translation
models have a better BLEU than PaLM. However, for de. →en and ro. →en PaLM is
able to outperform the supervised models. In addition, the 0-shot PaLM translation
of fr. →en achieves a BLEU value of 25.2, which is better than the fine-tuned SOTA
of 24.9. Overall, PaLM performs well close to the fine-tuned models without having
been trained for this task.

6.3.3 Multilingual Question Answering

In recent years open domain question answering (ODQA) has taken a rapid
development (Sect. 6.2). Therefore, it is extremely rewarding to extend these
techniques to multilingual question answering. In this way, information encoded
with the world’s different languages can be tapped and the digital divide can be
narrowed by bringing answers to people who speak rarer languages. There is a
tutorial on multilingual ODQA by Ruder [192, 193].

A simple way to perform multilingual ODQA is to translate the question to
English, use an English ODQA system to generate an answer, and translate the
answer back to the target language. Because of ambiguities in translation, this
procedure may generate errors in some cases [132]. In addition, information specific
to the target language and conceptualizations of the target culture may not be
available in English [258].

The TyDiQA-GoldP benchmark [44] is a question answering dataset covering 11
typologically different languages with 204K question-answer pairs. The following
languages are included: English, Arabic, Bengali, Finnish, Indonesian, Japanese,
Kiswahili, Korean, Russian, Telugu, Thai. As the languages represented in this
benchmarks have a very diverse structure, a model which performs well on this
data can be expected to have a good QA-accuracy on other languages. MKQA [133]
is an evaluation dataset created by translating 10k Natural Questions [109] to 25
target languages.

258 6 Foundation Models for Text Generation

Fig. 6.12 Cross-lingual retrieval by mDPR and answer generation with mGEN for the CORA
system [13, p. 9]. The answers to the questions are correct, however, on the left side the answer
should have been given in French

As an alternative, one can train cross-lingual retriever and reader models
combining the information from multiple languages to generate an answer in the
target language (Fig. 6.12). CORA [13] answers questions across many languages,
even for ones without language-specific annotated data or knowledge sources. It
includes a dense passage retriever collecting documents with different languages
for a question. A pre-trained multilingual language model mDPR using mBERT
(Sect. 3.3.1) is fine-tuned to encode passages and questions separately. By perform-
ing a maximum inner product search the top k documents are retrieved similar
to DPR (Sect. 3.4.5). It could be shown that mBERT improves the search quality
in non-English mono-lingual retrieval [203]. The reader mGEN is a multilingual
autoregressive sequence model (e.g. mT5, Sect. 3.3.2) generating the answer in the
target language by compiling the information in the retrieved passages. No specific
translation models are used. The initial training data is a combination of multilingual
QA datasets. Each training instance from these datasets comprises a question, a
positive passage, and an answer. However, these datasets suffer from limitations on
language diversity. Therefore, the authors iteratively generate more representative
training data for low-resource languages by exploiting links between Wikipedia
articles in different languages.

It turns out that CORA substantially outperforms the previous SOTA on mul-
tilingual open QA benchmarks across 26 languages, 9 of which are unseen during
training. Here CORA can improve the average F1-value from 17.1 to 21.8. Retrieval
with mDPR performs well in Indo-European languages with Latin script, even when
the language is unseen. There is a major drop for languages with non-Latin script

6.3 Neural Machine Translation 259

Table 6.8 Comparison against SOTA on TyDiQA question answering benchmark with 11 typo-
logically different languages. The values are for the validation set with respect to the exact match
accuracy [43, p. 32]. Best values for each language printed in bold

Model Ar Bn En Fi Id Ko Ru Sw Te Avg

mT5 XXL 76.9 80.5 75.5 76.3 81.8 75.7 76.8 84.4 83.9 79.1

ByT5 XXL 80.0 85.0 77.7 78.8 85.7 78.3 78.2 84.0 85.5 81.4
PaLM 540B fine-tuned 75.0 83.2 75.5 78.9 84.1 75.7 77.1 85.2 84.9 80.0

PaLM 540B few-shot 56.4 54.0 65.5 66.4 69.2 63.8 46.8 75.6 46.9 60.5

(e.g., Japanese, Russian, Chinese). Here, perhaps, the model is unable to use relevant
passages from other languages to answer questions.

mT5 (Sect. 3.3.2) is a multilingual version of the T5 Seq2seq transformer with
up to 13B parameters [246]. It was pre-trained using a training dataset of web pages
covering 101 languages with about 48B tokens and a common vocabulary of 250k
tokens. After fine-tuning on the TyDiQA benchmark, it arrives at an exact match
score of 79.1%. ByT5 [245] is a variation of the mT5 multilingual encoder-decoder
with 12.9B parameters. It operates on utf-8 bytes with a vocabulary of 256 possible
byte values instead of tokens. The model is pre-trained to replace corrupted spans
of 20 bytes on average. The largest model uses 36 encoder and 12 decoder layers.
When the model is fine-tuned on gold data in all target languages, it achieves an
exact match score of 81.4% on the TyDiQA benchmark.

The PaLM Foundation Model [43] has about 22% non-English training texts in
its 780B training tokens (Sect. 3.1.2). Therefore, it can be applied to multilingual
tasks such as translation and question answering. With few-shot prompts it gets an
exact match score on TyDiQA of 60.5%. When the model is fine-tuned on TyDiQA,
the score grows to 80.0%, which is slightly below of the performance of ByT5 XXL.
The detailed results in Table 6.8 show the performance for different languages. Here
PaLM has a better score for two languages than ByT5. The authors remark, that
ByT5 was trained with 50% more non-English text compared to PaLM, which may
explain the difference.

Available Implementations

• Hugging Face provides Marian, BART and T5 (up to 11B parameters) as well
as multilingual mBART and mT5 implementations and trained models https://
huggingface.co/transformers/.

• The M2M-100 [55] is available with open-source data collection scripts, model
code and parameters of trained models. In addition, the Fairseq system https://
github.com/pytorch/fairseq can freely be used.

• The CORA [13] implementation of multilingual QA, generated training data and
trained models are available at https://github.com/AkariAsai/CORA.

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA

260 6 Foundation Models for Text Generation

6.3.4 Summary

In recent years, machine translation has taken a dramatic development. The use of
encoder-decoder PLMs could overcome the limitations of RNN architectures and
increase the performance to near-human levels. Besides the utilization of encoder-
decoder Transformers, the availability of high-quality training examples by web
crawlers using Foundation Models and specific assessment procedures is a reason
for progress [33]. A further improvement resulted from sentence back-translation,
which particularly increases results for low-resource languages, and from train-
ing a single multilingual model for translation between all languages. Training
multilingual translation models with up to 600B parameters—using appropriate
parallelization strategies—leads to significant performance increase for 100 lan-
guages, as measured by BLEU [113]. Recently multilingual models even were able
to outperform high-resource bilingual translation models. This is also demonstrated
by the PaLM Foundation Model, which achieved higher performance in few-shot
translation than the prior fine-tuned models for some language pairs. Therefore,
multilingual models are likely to become standard in the future. However, current
multilingual models using unsupervised multilingual training may not deeply model
the subtleties of languages and language varieties to their full extent. This has to be
checked in future applications.

The developments opened up the opportunity for multilingual question answer-
ing systems, e.g. CORA, where queries can be posed in a large number of languages.
The answers are compiled from information available in multiple languages. In this
way, cultural characteristics and concepts that are not available in all languages can
be taken into account. There are also close links to cross-lingual semantic parsing,
where a natural language utterance is translated to a logical form for execution
in some knowledge base to return an answer [202]. Again the PaLM Foundation
Model provided few-shot answers to multilingual questions, which are competitive
in accuracy to fine-tuned models for the same benchmarks. A fine-tuned version of
PaLM is even able to outperform prior fined-tuned SOTA for two languages.

However, machine translation is not yet solved. There is still the problem of
domain mismatch between train and test data. In some cases, it fails to accurately
capture the meaning of a sentence. Systems can generate biased text, e.g. if gender
is handled differently in different languages. But attention allows the decoder to
look directly at faraway text and provides a soft alignment between words for
free. Recently, performance could be increased by translating entire documents,
as sentences often are not sufficient to disambiguate all words. To extend current
multilingual models to thousands of languages, new techniques are required [19].
One approach is to use monolingual datasets to improve translation, since the
amount of available monolingual text is orders of magnitude greater than the amount
of translated text. This in addition requires highly reliable language detectors which
also work for low-resource languages.

6.4 Text Summarization 261

6.4 Text Summarization

With the rapid increase of textual information in companies and on the Internet, it is
increasingly difficult for people to keep track of a topic. Automatic summarization
of documents, which compiles the essential statements from a text, can help to
grasp the most relevant information in the documents. A summary is a short version
produced from a single document or multiple documents conveying the main points
of the original texts. The purpose of automatic text summarization is to create a
summarizer method to produce this summary efficiently and precisely. Recent in-
depth surveys are provided by Ma et al. [135], Guan et al. [71], Syed et al. [216],
and El-Kassas et al. [95].

Earlier machine learning approaches produced extractive summaries selecting a
few sentences from the document. This approach typically selected grammatically
correct sentence parts, but the language style of the combined parts and the
coverage were usually not sufficient. Modern summarizers pose summarization as
a translation problem, which translates the original document to a short version
covering the main points. Since 2017 the encoder-decoder transformer (Sect. 2.3)
provided an effective technique to generate abstractive summaries containing the
main points of the document. Abstractive summarization is a bit more complex
because the text is paraphrased, and the summary usually has words different from
the original document. On the other hand, it is more flexible and can aggregate
several similar texts expressing related facts with different wordings.

Basically, summarization is treated as a translation task, where the long document
is translated into the short summary. Alternatively we can use the long document
as the start text of an autoregressive Foundation Model, which is fine-tuned to
generate a summary. One of the main challenges for Seq2seq models is that the
decoder needs to attend to encoder token embeddings in the large document context
to predict the next token of the summary. Therefore, Seq2seq models covering a
long input context (Sect. 3.2) are natural candidates. Summarization systems can be
either single document summarizers or multi-document summarizers. Table 6.9 lists
popular summarization models and their performance.

6.4.1 Shorter Documents

The training data usually consist of documents and the corresponding summaries
or abstracts. There are a number of actual benchmark datasets for summarization
like CNN/Daily Mail [78], Gigaword [150], and Reddit TIFU [101], which have
an input document with a length below 1000 tokens and a corresponding summary,
which can be used for fine-tuning. The difference between a reference summary
and a predicted summary is assessed by measures like ROUGE, BLEU, or METEOR

(Sect. 2.3.3) with the recall-oriented ROUGE most frequently used.
PEGASUS [128] is large transformer-based Seq2seq model pre-trained on

massive text corpora (Sect. 3.1.3). It follows a new pre-training objective in which

262 6 Foundation Models for Text Generation

Table 6.9 Summarization models with their performance measured in ROUGE-2. Benchmarks are
CNN/DM: CNN/Daily Mail benchmark [78], XSum [151] summarize an news article in a single
sentence, arXiv [46] long scientific documents, PubMed [46] long medical documents, Multi-News
[54] with an average document length of 1793 and 2.8 documents per cluster

Model Details ROUGE-2 on benchmark

PEGASUS
(Sect. 6.4.1)

Seq2seq model pre-trained with
masked sentences

CNN/DM 21.7, XSum 24.6

BRIO (Sect. 6.4.1) GPT architecture trained to
generate text spans

CNN/DM 23.6, XSum 25.6

PaLM (Sect. 6.4.1) 540B large LM to generate text XSum 1-shot 12.2, fine-tuned
21.7

ST-MoE (Sect. 6.4.1) 269B large mixture-of-experts to
generate text

CNN/DM 20.7, XSum 21.7

STIE (Sect. 6.4.1) 6.7B GPT model adapted to human
preference judgments by
reinforcement learning

STIE summaries are preferred
to reference summaries in 70%
of the cases

BigBird (Sect. 6.4.2) Model for large inputs arXiv 19.0, PubMed 20.7

HAT (Sect. 6.4.2) Model for large inputs using
PEGASUS

arXiv 19.7, PubMed 21.4,
CNN/DM 21.3

RL-175B
(Sect. 6.4.2)

Model based on GPT-3 for stepwise
summarizing a book using
reinforcement learning

Human comparison: Likert
value 3.5 of 7

PRIMER (Sect. 6.4.3) Summarize several documents
based on Longformer Seq2seq
model

Fine-tuned arXiv 20.8,
fine-tuned Multi-News 21.1

not tokens are masked, but sentences. During pre-trained, the model has to generate
the masked or removed sentences as one sentence output. This pre-training objective
is especially rewarding for document summarization, as the model learns how
to generate sentences matching a context. After pre-training the model is fine-
tuned on 12 different summarization tasks. It reaches SOTA-results on all 12
downstream datasets as measured with different ROUGE statistics. In most cases
the improvements are considerable [128], e.g. for the CNN/Daily Mail benchmark
it had a ROUGE-2-score of 21.7. The ROUGE-2-scores of other Seq2seq models are
similar, e.g. 21.6 for T5, 21.3 for BART, and 21.5 for R3F [4]. Note that for text
generation often a BEAM search (Sect. 2.2.3) is employed keeping several high
probability versions of the text to increase the consistency of the resulting text.

BRIO [131] starts from the observation that the usual ML-training only takes
into account a single reference summary for each example and ignore possible
other summaries. First a generation model is trained using the standard ML loss
for the reference summary. It generates candidate summaries in an autoregressive
way and scores the quality of the generated summaries. The weighted candidate
summaries are considered by the evaluation model using a contrastive loss criterion,
which takes into account the ranking order defined by the weights of the candidate
summaries. The approach uses BART or PEGASUS as backbone Seq2seq models.
On the CNN/Daily Mail benchmark benchmark [78] the BRIO model with 10B

6.4 Text Summarization 263

parameters has SOTA performance with the ROUGE-2 score of 23.6 on CNN/DM
and 25.6 on XSum. By increasing the number of candidates from 4 to 100 by
extending the beam width, the ROUGE-2 on CNN/DM could be increased to 24.1. A
detailed analysis demonstrated that the approach was able to filter out noise patterns
in the original data, e.g. the phrase “click here”.

The autoregressive language models GPT-3, Gopher, InstructGPT and PaLM can
be instructed to summarize, e.g. by entering a text and appending “TL;DR:” [159].
For PaLM with 540B parameters an evaluation is available. The MLSum benchmark
[198] requires the model to summarize a news article in multiple sentences. For
German texts PaLM 1-shot arrives at 12.8 ROUGE-2 and a fine-tuned version of
PaLM achieves a ROUGE-2 score of 33.1, which is below the fine-tuned SOTA at
36.4 [43, p. 30]. The XSum benchmark [151] requires to summarize a news article
in a single sentence. Here PaLM gets a few-shot ROUGE-2 score of 12.2 and a fine-
tuned ROUGE-2 of 21.2, whereas the fine-tuned SOTA ROUGE-2 by BRIO is 25.6.

ST-MoE-32B [270] is a mixture-of-experts model (Sect. 3.5.2) with 269B
parameters. On the CNN/Daily Mail benchmark it achieves a fine-tuned SOTA
ROUGE-2 value of 21.7 and on the XSum benchmark it yields 27.1 ROUGE-2 with
fine-tuning. While fine-tuned Foundation Models can achieve a similar performance
as specific summarization models, results for few-shot prompts need improvement.

ROUGE metrics are only a crude guide to what people really care about: the
quality of a summary. Stiennon et al. [211] directly optimize their model with
respect to human judgment. The authors collect a large, high-quality dataset of
human comparisons between summaries. Then they train a model to forecast
human-preferred summarization and use this model as a reward function to fine-tune
a summarization policy using reinforcement learning. They apply their model to
the TL;DR benchmark [230], because this summarization task is significantly more
challenging than CNN/DM. They find that the summaries of their 6.7B parameter
STIE model are significantly preferred to the reference summaries 70% of the
time, whereas the summaries of fine-tuned alternative models are preferred to the
reference summaries about 43% of the cases. The model can also be applied to
new domains better than other methods. For CNN/DM news articles, it produces
summaries that are almost as good as the human reference without the need for
news-specific fine-tuning. This indicates the effectiveness of the approach, and
opens an avenue to optimize summarization quality directly.

6.4.2 Longer Documents

While the input document length of documents is generally less than 1000 tokens,
it is greater for the PubMed corpus (4k tokens) and ArXiv benchmark (8.6k tokens)
[46]. For these benchmarks transformers with longer input sequences (Sect. 3.2) are
capable of taking into account the whole document.

264 6 Foundation Models for Text Generation

BigBird [253] is able to cope with long documents (Sect. 3.2.1). As the
sequence length of the transformers is increased, the number of parameters (and
computations) grows quadratically. BigBird has a sparse attention mechanism
that reduces this quadratic dependency to linear. BigBird can use a larger input
sequence of 4096 tokens and drastically improves performance on various NLP
tasks such as question answering and summarization. Longer documents exhibit
a richer discourse structure and summaries are considerably more abstractive. For
long documents with 3000–6000 words BigBird is pre-trained with the PEGASUS
objective. After fine-tuning it yields a marked improvement on SOTA, e.g. on
the ArXiv benchmark with the ROUGE-2 score 19.0. TLDR [31] is a similar
summarizer based on BART, which generates a one-sentence summary for scientific
papers. It increases its performance by the auxiliary target to predict the title of a
paper.

HAT [187] aims to capture the content of longer documents in a better way.
The authors design a hierarchical Seq2seq attention network model that produces
sentence level representations, and combines them with token level embeddings.
They determine sentence boundaries by punctuation and insert .[BOS] tokens at the
start of every sentence. In the transformer encoder they use a conventional layer
which produces an embedding for each token. After this an additional hierarchical
layer is added which only attends to the embeddings of the .[BOS] tokens. The
resulting embeddings can be interpreted as sentence level representations. The
transformer decoder is standard with an additional layer that attends to the . [BOS]
tokens from the hierarchical encoder layer. On the PubMed benchmark of long
documents [46] it yields a SOTA ROUGE-1 score of 21.4. while on arXiv it has
a ROUGE-1 score of 19.7. But also on the CNN/Daily Mail benchmark of shorter
documents [78] it achieves a SOTA ROUGE-2 scores of 21.3,

RL-175B is a summarizer for whole books by OpenAI using a reinforcement
learning algorithm to follow human preferences [236]. The model first summarizes
small sections of a book, then generates intermediate summaries from them and
finally produces a summary of the whole book on the basis of the intermediate
summaries. The model is based on GPT-3 and evaluates a large set of summary
activities created by human labelers. The small sections are generated by a fixed
chunking algorithm. Then a model is trained on human examples to summarize these
chunks using reinforcement learning. It uses the approach explained in Sect. 3.6.5.
A number of chunks is joined in a group and a higher-level summary is produced.
This procedure is repeated until a final summary of the whole book is generated.

The fine-tuning was performed for the GPT-3 with 7B and 175B parameters.
The summarization was tested on books, which were not contained in the training
data. The scoring is done by a Likert scale from 1 to 7. It assigns numbers to
human judgments (e.g. 1 = very bad, 2 = bad, . . . , 7 = very good), and computes
averages from these numbers. While the 6B models scores a little better than 2
Likert, the 175B model achieves an average Likert of 3.5. However, about 20%
of the summaries got more than 5 Likert, which were also sometimes assigned to
human-written summaries. It turned out that the reinforcement approach achieved
better results than behavior cloning. In general, there is a large difference to human-
created summaries, and the generated summaries still lack coherence.

6.4 Text Summarization 265

6.4.3 Multi-Document Summarization

Often, information is spread across multiple documents, and it makes sense to
summarize this content. For example, it may be useful to summarize a series of
reviews about the same mobile phone or to summarize scientific papers on the same
topic.

Primer [237] is based on the Longformer encoder-decoder (Sect. 3.2.1), an
efficient transformer model with an input length of 4096 tokens, where the effort for
processing long documents grows linearly with their length. The input documents
are concatenated and separated with .[doc − sep] tokens. These tokens act as global
relays and have attention connections to all tokens, while the other tokens are only
connected to the tokens in the same document. In this way, large sequences of input
documents can be processed. It can be expected that the same information appears
multiple times in the different documents. PRIMER selects sentences, which are
similar in different documents based on the ROUGE score and uses common entities
as an additional selection criterion. These sentences are masked and the model has
to reconstruct them during pre-training taking into account the information from all
documents (Fig. 6.13).

The pre-training already enables the model to combine the information from
different documents. Therefore, zero-shot and few-shot summarization with no or
little fine-tuning is possible. For the Multi-News benchmark [54] with an average
document length of 1793 and 2.8 documents per cluster, PRIMER achieves a zero-
shot ROUGE-2 score of 13.6 and can increase this to 21.1, which establishes a new
SOTA for this multi-document summarization benchmark. On the ArXiv benchmark
with an average document length of 6021 tokens [46], the fine-tuned PRIMER yields
a ROUGE-2 score of 20.8, indicating the performance on long documents.

Fig. 6.13 Multiple documents form the input for PRIMER, separated with .[doc-sep] tokens.
These tokens have a global attention with all tokens, the remaining tokens attend only inside each
document. Some sentences are selected and have to be recovered by the decoder [237]

266 6 Foundation Models for Text Generation

Available Implementations

• T5, BigBird, and Pegasus code and trained models are available on Hugging Face
https://huggingface.co/transformers/.

• Further summarization scripts at https://huggingface.co/tasks/summarization.
• STIE data and code https://github.com/openai/summarize-from-feedback
• PRIMER code for Multi-document Summarization https://github.com/allenai/

PRIMER

6.4.4 Summary

Foundation Models initiated a breakthrough for summarization models. They can be
trained to generate abstractive summaries by handling this problem as a translation
task, where the model is trained to reconstruct a reference summary. For smaller
documents with up to 1000 tokens, the standard models like T5 and PEGASUS
achieve good results, with BRIO being a bit ahead. Models with more parameters
have a slightly better performance. General Foundation Models like PaLM have a
slightly lower performance. The STIE model shows that user preferences may be
used directly in training a summarizer via reinforcement learning, resulting in good
summaries that are preferred by human raters.

For larger documents a transformer encoder-decoder with a larger input sequence
is required, e.g. BigBird. There are different techniques to generate intermediate
representations for documents, e.g. for sentences by HAT or chunks by RL-
175B. However, the quality for the summarization of whole books currently is
not sufficient, even if the large GPT-3 model is employed. A recent alternative is
InstructGPT (Sect. 3.6.5), which can be easily directed to perform a summarization,
e.g. by the prompt “Summarize this for a second-grade student: . <text. >” [162,
p. 30]. However, a formal evaluation of the performance of this approach seems
to be difficult, as no reference training/test data is involved.

Multi-document summarization has to cope with the repetition of contents in
different documents. The PRIMER model uses a hierarchical attention structure to
ingest a number of large documents and is trained to reconstruct sentences exploit-
ing information from other documents. This leads to a satisfactory performance on
the specific multi-document benchmarks.

6.5 Text Generation

A system for Natural language generation (NLG) has the task of producing fluent,
coherent, and understandable text. Usually, the system generates a continuation of
a start text. The development of Foundation Models in recent years has greatly
advanced this field and led to convincing solutions. This section concentrates

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://huggingface.co/tasks/summarization
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER
https://github.com/allenai/PRIMER

6.5 Text Generation 267

Table 6.10 Main text generation techniques

Architecture Mechanism Advantages Disadvantages

Variational
Autoencoder
(VAE) [26]

Compress a text x to a
hidden vector h
distributed as a
Gaussian, reconstruct
the text x from h

Constraint on the latent
vector h creates a
continuous
representation space
and increases the
diversity of the
generated text

Often less fluent and
coherent in text
generation compared to
Foundation Models

Generative
Adversarial
Network
(GAN) [68]

A generator transforms
a random vector s to a
text x. A discriminator
checks, if x is
synthetic. Both are
trained in adversarial
style

Unsupervised learning;
Generating clearer and
more realistic samples
than other generative
models

Instable training
process; sampling of x
is non-differentiable:
needs reinforcement
learning or
Gumbel-softmax

Autoregressive
Language
Model (GPT)
(Sect. 2.2)

Self-attention with
previous tokens
x1, . . . , xt−1 to
generate next token xt

Efficient contextual
embeddings and
long-term context; fast
parallel computing
speed

High computational
effort and slow training
speed

Encoder-
decoder
Transformer
(Sect. 2.3)

Self-attention over full
input sequence x and
iterative generation of
output sequence y1, . . .

Efficient contextual
embeddings and
long-term context;
transform input as a
whole sequence

High computational
effort and slow training
speed

on writing larger texts and complete stories. NLG has already been used for
many real-world applications, such as creating business reports from business
figures, describing sporting events from results tables, or creating weather forecasts.
Microsoft has announced to fire about 50 employees of MSN news [17], using
Deep Learning instead to identify trending news stories or optimize the content. The
generation of responses to user utterances by a chatbot is discussed in the section
on dialogs. A number of surveys for text generation is available [65, 83, 116]. Yu et
al. [251] give an overview of knowledge-enhanced text generation.

Here we will describe story generation systems based on Foundation Models
that currently provide the best results. A high-level overview of approaches is
given in Table 6.10. By pre-training on a massive corpus, the models can encode
a large amount of linguistic and semantic knowledge and produce rich, flexible, and
universal representations of language. In the following sections we will discuss a
number of different NLG tasks.

• First, we describe NLG basics, where the next token y has to be generated
according to a language model .p(y|x) (Sect. 6.5.1).

• Then we discuss the generation of a new text with a given style, e.g. a poem
(Sect. 6.5.2).

268 6 Foundation Models for Text Generation

Table 6.11 Mechanisms to control story generation

Approach Description Example systems

Pre-train LM on
large text
(optional
fine-tuning)

Pre-train the language model on a
large text collection. Possibly
fine-tune on a smaller corpus of a
specific domain. Generate a
continuation of the start text

GPT-2 [235], GPT-3 [29], Gopher
[175], Retro [25], WuDao [263],
PaLM [43]

Add style or
content marker

Add style or content marker to the
start text. The marker has to be
present in pre-training or
fine-tuning data

CTRL [96], PPLM [50],
ETC-NLG [32] using topics, GDC
[97] controls token distributions,
Adapter-Bot [126]

Translate text to a
new style

Use a transformer and a possible
style selector to transform an input
text to a new style and nearly the
same content

Formal [260], LRE [90],
ACC [250], LRS [118], StyleLM
[217], OPTIMUS [115], GPT-3
with two-step prompts [30]

Specify a
sequence of
events for the
story

Specify events by short
sentences/phrases and generate a
story containing these events in
order

PlotMachines [181] uses phrases,
Pointer [261] inserts words,
Progressive WritingPrompts [220],
Facts2Story [161] starts with a
sequence of facts, GraphPlan [38]
uses a graph of events, SOE [214]
performs a two-level process of
generating text, FIST [58], GPT-3
with bullet-list prompts [30]

• A related task is to rewrite one document in a different style or world view
(Sect. 6.5.3).

• In general, the text created by the Foundation Model takes a consistent but
random course. The core of NLG is the task of generating text that follows a
specific plot or timeline (Sect. 6.5.4).

Table 6.11 describes these tasks and lists a number of corresponding NLGmodels
discussed in this section. The generation of fake news or other malicious text is
covered in Sect. 6.5.5. Section 6.5.6 describes how to generate computer code.

The assessment of the performance of natural language generators is a difficult
problem. Expensive but most comprehensive is the evaluation by humans, where
persons are asked to rate or compare texts generated by different NLG systems.
If texts created by humans are part of the comparison, this constitutes a Turing
test which may assess the “intelligence” of an NLG-system. An alternative are
automatic metrics like BLEU, METEOR or ROUGE (Sect. 2.3.3), which assess the
difference between machine-generated texts to human-generated reference texts
by comparing n-gram counts (Sect. 6.3). A final alternative are machine learning
models, which judge the adequacy of the generated text. These models act like a
judge, who decides, if a generated text is real or synthetic. Celikyilmaz et al. [34]
discuss these evaluation approaches in detail. Yu et al. [251] provide a survey of
knowledge-enhanced text generation.

6.5 Text Generation 269

GEM [66] is a new benchmark collection created for NLG containing seventeen
different benchmarks and comprising an evolving system of evaluation metrics and
procedures. A fraction of benchmarks are summarization benchmarks like XSum
and MLSum already covered in the previous section. Models are assessed with
metrics comparing a reference text and the diversity of the text. The authors provide
an interactive GUI, which is able to highlight the relative strengths and weaknesses
of each system. GEM can be used as a testbed to evaluate, how new metrics perform
on these different tasks.

6.5.1 Generating Text by Language Models

Language models (Sect. 2.2) have the task to produce the next token . xt for a text
.x = (x1, . . . , xt−1). This model can directly be applied to story generation. The
user provides a start text as input to the LM, which word-by-word generates a
continuation. Specifically, the model predicts for the next position the probability
.p(xt |x1, . . . , xt−1;w) of each token of the vocabulary. To generate a text a single
sequence of tokens has to be selected according to the predicted probabilities.
Simply selecting the tokens according to the estimated probabilities often gen-
erates rare, non-plausible continuations. A better alternative is top-k or top-p
sampling restricting the random selection to the tokens with the highest probability
(Sect. 2.2.3).

Early LMs, e.g. LSTMs, produced text, which often contained syntactic errors,
losing the context after a few words. VAE Variational Auto-Encoders reconstruct
the sentence from a randomly modified latent representation .z ∼ N(μ, σ), where
. μ and . σ are predicted by the encoder. A KL-loss is added to the reconstruction loss
such that the distribution of . z approaches a standard normal distribution [89]. GAN
Generative Adversarial Networks use a generator to transform a noise vector . s to
a text .x̃ = G(s). Then a discriminator .D(x) has the task to distinguish synthetic
text . ̃x from real text . x [68]. Both models are trained together. These basic language
generation alternatives are also covered in Table 6.10.

A number of classical models for text generation such as BART (Sect. 3.1.3), T5
(Sect. 3.1.3), and mT5 (Sect. 3.3.2) are evaluated with the GEM benchmark [66].
The models are assessed using 7 metrics comparing a reference text and 9 metrics of
diversity (e.g. the relative number of distinct uni- and bigrams). Instead of reporting
a single metric the models can be evaluated with different combinations of metrics
as shown in Fig. 6.14.

GPT-2 [174] is an autoencoder comprising 1.5B parameters. It was able for the
first time to generate consistent stories that continue a start text. According to the
users, the stories were coherent in half of the cases. Much better is the performance
of GPT-3 with 175B parameters [29]. Given an initial text it is able to create short
stories, songs, press releases, technical manuals, poems, translations, guitar tabs,
computer code, etc. Only with an accuracy close to chance (52%) humans were able
to distinguish whether news articles of about 200 words were synthetic [29, p. 26].

270 6 Foundation Models for Text Generation

Fig. 6.14 A screenshot of the GEM benchmark interactive result exploration tool. On the top left
tasks are selected. The selection of metric-groups or metrics is on the top right. The visualization
of the selected metrics is shown on the bottom. Image reprinted with kind permission of the
authors [66, p. 107]

A discussion of relative strengths and weaknesses of these Foundation Models can
be found in Chap. 4.

An evaluation benchmark measuring the degree to which a language model
“understands” a story is the LAMBADA benchmark [165] (Sect. 4.1.3). It consists
of about 10,000 passages from the BooksCorpus containing unpublished novels.
The task is to predict the missing last word of the last sentence of each passage.
Examples were filtered by humans to ensure that models need to take into account
the full passage of at least 50 tokens to induce the final word. The GPT-3175B
autoregressive language model [173] predicted the last word with 76.2% [29, p. 12].
PaLM with few-shot instructions could increase the accuracy to 89.7 [43, p. 79].
This means that in nearly nine of ten cases the predicted word was exactly correct,
which indicates that the model well “understood” the preceding passage. For
advanced Foundation Models like Gopher (280B) and PaLM (540B) text generation
is a background ability taken for granted, which is no longer tested with benchmarks.
A large battery of benchmarks is applied to test other features, e.g. common sense
knowledge, reasoning, etc. (Sect. 4.1.4).

InstructGPT is a recent variant of GPT-3 (Sect. 3.6.5), which can easily be
instructed to generate a story, e.g. by the prompt “Write a short story where
a bear goes to the beach, makes friends with a seal, and then returns home.”
[162, p. 6]. Retro is an autoregressive LM combined with a retrieval mechanism
(Sect. 6.2.3). In this way, current and focused information can be collected during
the generation of a story, instead of relying on the information contained in the
model parameters, which were obtained from the training data. LaMDA (137B)
is a recent Language Model (Sect. 6.6.3) specialized for dialogs. It also features

6.5 Text Generation 271

a retriever-reader architecture to augment its internal knowledge acquired during
pre-training with external information.

GRF [86] is a Foundation Model including multi-hop reasoning in a knowledge
base to improve language generation. This enhances PLMs, which otherwise take
into account common sense knowledge only if it is explicitly stated in the training
data. The reasoning module operates on the sub-graph extended from the concepts
in the input text and draws possible conclusions. These are taken into account
for the further generation of text. Results, e.g. on task to finish a story, show that
the model outperforms strong alternatives. Other approaches to enhance language
models by additional knowledge are discussed in Sect. 3.4. A survey of conditional
text generation is given by Guo et al. [72].

6.5.2 Generating Text with a Given Style

Often the goal is to create a text in a specific style or emphasizing a specific type
of content: e.g. author’s style (e.g. Shakespeare), emotion (e.g. angry, malicious,
happy), genre (e.g. humor, romance), topics (politics, religion), persona (e.g. lawyer,
knight), or sentiment (e.g. positive, negative, fury). By design there are a number of
ways how to influence the story produced by a Foundation Model.

• Pre-training a Foundation Model with corresponding texts.
• Adaption of the Foundation Model to a new genre/style/content by fine-tuning.
• Specification of an initial text.
• Few-shot instruction, e.g. for GPT-3, or simple instructions for InstructGPT.

There are different ways to achieve this with Foundation Models. A comprehen-
sive survey is given by Lili and Vechtomova [122].

Style-Conditional Probabilities

CTRL [96] aims to train a generative model .p(y|x; a) conditioned on a control
variable a. To do this, the conditional distribution .p(x|a) is adapted by training
on raw text sequences with context classes prefixes such as [horror], [legal], etc.
The authors used text collections, which are labeled with the corresponding context
classes. Then the learned transformer model with 1.6B parameters is able to generate
text with respect to the control prefix. This is developed further by GeDI [105],
which has a stronger controllability, generates less toxic text, and can be extended
to continuously weighted control codes for generating fluent stories [127].

PPLM [50] (Plug and Play Language Model) defines a model .p(x|a), where a
is some desired controllable attribute(s) and x the generated sample. If .p(x) is the
pre-trained LM, the authors define the conditional distribution .p(a|x). This yields
a conditional generative model .p(x|a) ∝ p(a|x)p(x). The distribution .p(a|x) may
be implemented by a single layer classifiers. The model samples from the resulting

272 6 Foundation Models for Text Generation

combined model by following gradients in the latent representation space (key-
value-pairs of the transformer) such that .p(x) as well as .p(a|x) is improved. After
a number of 3–10 updates the perturbed values are used to generate a new token at
the next position. The model was able to create text with the desired tonality (e.g.
positive/negative) while preserving fluency. However, balancing the impact of the
PLM and the conditions is delicate and must be supported with additional measures
like reranking, and early-stopping procedures.

ETC-NLG [32] leverages context-sensitive topic models [23] to enhance PPLM
with an unlabeled collection of documents. This is desirable as PPLM still requires
large amounts of labeled texts to effectively balance generation fluency and proper
conditioning. The attribute model discriminator, predicting document topics, and the
unconditional language model PPLM are merged to obtain a conditional language
model for topic-conditioned utterances.

GDC (Generation with Distributional Control) [97] propose an approach to
emphasize specific words in addition to changing the distribution of generated
words. For example, GDC can avoid toxic content, prevent bias, and align the
generation with a particular theme or style. Instead of reweighting the generative
distribution of tokens, the authors derive a stochastic policy by reinforcement
learning [166] to get a good compromise between the constraints and the language
model. The authors can reweight single words (e.g. China), all words in a word list
(e.g. lists for kitchen, fantasy), and words emphasized by a classifier (e.g. for very
negative or clickbait). The results show that the constraints are met with the lowest
divergence from the original PLM and with the best diversity scores.

Adapter-Bot [126] provides different adapters trained independently for differ-
ent skills. The backbone of the Adapter-Bot is a pre-trained GPT language model
[262], providing the ability of text generation. A set of trainable adapters are added
to the backbone, which are optimized over the target dataset of dialogues for specific
dialogue skills. Using a trained classifier to select the right dialogue skill under the
dialogue story, Adapter-Bot allows high-level control over the chatbot.

Prompt-Based Generation

GPT-3 is able to produce text, when it receives an appropriate prompt (Sect. 3.6.3).
It can, for instance, generate a poem [8]. After the prompt “write a poem in the style
of Rabbie Burns” it may produce something like

“There once was a lady from Dundee
a’ wha was bonnie, braw, and meek
She met an old man from Dunfermline
who won’t let her to her sleep . . . ”

With the prompt “write this like an attorney” it can create a text in the wording of a
lawyer. Moreover, it can automatically write emails in your personal style by getting
a prompt with some key points. GPT-3 can even work with unusual language types.
It can, for instance, translate natural language into shell commands or programming

6.5 Text Generation 273

code [163]. More prompts for GPT-3 and other Foundation Models are provided
by OpenAI [160]. InstructGPT was fine-tuned to generate text according to an
instruction (Sect. 3.6.5). It can, for instance, receive the directives “Complete the
following sentence in a polite, respectful, and unbiased manner:” or as “Complete
the following sentence using maximally biased and offensive language:”. Then the
model produces diverse texts that satisfy the requirements [162].

6.5.3 Transferring a Document to Another Text Style

Text style transfer aims to translate a text . x′ with attribute . a′ to a similar text . x of
a desired attribute a. For example, the sentence .x′ =“Peter screwed up” with the
attribute .a′ =“informal” can be transformed to . x =“Peter has not reached the goal”
with the attribute .a =“formal”. The aim is to train a language model .p(x|x′, a).
There are a number of other transformations, such as impolite . ↔ polite, complicated
. ↔ simple, positive . ↔ negative, biased . ↔ neutral, or factual . ↔ humorous . ↔
romantic.

The separation of style from content is difficult. On the one hand it can be
captured by linguistic features, e.g. the utilization of specific words and phrases.
On the other hand, it can be provided by text collections, e.g. with the writings of
different authors or with a corpus of positive/negative reviews. In the latter case we
can train classifiers, which discriminate between the different styles. With the recent
progress in the capabilities of language models there are a number of successful
applications of style transfer like imitating the style of specific authors, removing
bias in online text, etc. A recent comprehensive survey is provided by Jin et al. [88].

Style Transfer with Parallel Data

If there are parallel documents of both styles, the style transfer can be formulated as
a translation problem. An encoder-decoder transformer has to be fine-tuned on this
dataset.

Formal [260] formulate style transfer from informal to formal as a translation
task. They use a transformer as Seq2seq model and apply it to the GYAFC [180]
benchmark dataset containing parallel formal/informal sentences. In addition, they
augment the data by back-translation, employ machine translation to and from
another language and leverage training data from grammatical error correction.
They report a new SOTA on the GYAFC dataset with increased formality and
fluency, while keeping the meaning of a text.

274 6 Foundation Models for Text Generation

Style Transfer without Parallel Data

StyleLM [217] translates an arbitrary text into a text with the style properties of
another author while keeping the content, even if no parallel data of the same
content in different styles is available. First a BERT model is trained on a large
neutral corpus (Gutenberg and Wikipedia) with the MLM loss. Then two copies of
the model are used as an encoder-decoder transformer .x̃ = DECw(ENCu(x)). As
fine-tuning input this Seq2seq model receives texts from the target author, where
a random fraction of the words have been masked and have to be reconstructed.
Hence, the Seq2seq model induces text with the target author’s style while rewriting
the input text.

For evaluation 10 different authors were selected and excluded from the training
data. The BLEU score and ROUGE scores are used to measure content preservation.
To measure the style quantitatively, the frequency of author-specific words and
of syntactic and punctuation elements are evaluated. StyleLM in most cases had
the best content preservation and stylistic alignment. Singh et al. [207] note
that StyleLM has problems with content reproduction. They propose to pre-train
the encoder-decoder .DECw(ENCu(x)) on a large generic corpus. Afterwards the
encoder-decoder is fine-tuned on the text of the target author.

OPTIMUS [115] investigates further manipulations of sentences embeddings.
An encoder with parameter . u is required to generate a latent vector from text . z =
ENCu(x). It is initialized with a pre-trained BERT model. A linearly transformed
version .z = W ∗ h[CLS] of the embedding of the first token [CLS] of a sentence is
defined as latent representation. The generator (decoder) with parameter . w generates
the text sequence .x = DECw(z) from a random vector . z (e.g. multivariate Gaussian)
with prior .p(z). The authors start with a pre-trained GPT-2 model as decoder. . z is
used by the decoder as an additional vector to attend to (in addition to the previously
generated token embeddings). Both networks .x̃ = DECw(ENCu(x)) are trained
with the autoencoder loss and the variational autoencoder loss, i.e. the system has
to minimize .|x̃ − x| and encourage a Gaussian distribution for . z.

The approach learns bidirectional mappings between latent embeddings . z and
sentences . x. For two sentences . x1 and . x2 the embeddings may be calculated and
by .αz1 + (1 − α)z2 we can continuously interpolate between the sentences. In
addition, differences between latent vectors may be computed similar to Word2Vec.
For dialog response generation and the generation of responses with a specific
style OPTIMUS has a better performance on all metrics compared to its com-
petitors. Using an additional GAN to manipulate the latent representation . z,
OPTIMUS is able to generate YELP restaurant reviews of prescribed sentiment
(positive/negative) better than the investigated alternatives. The authors argue that
compared to BERT, OPTIMUS learns a more structured semantic space due to the
use of the VAE prior distribution in training.

6.5 Text Generation 275

Style Transfer with Few-Shot Prompts

Sufficiently large Foundation Models such as GPT-3, Gopher, and PaLM can
perform various tasks simply by choosing a clever prompt. If, however, only
a simple prompt is entered, e.g. “Here is some text: {That is an ugly dress}.
Here is a rewrite of the text, which is more positive: {” the model often fails
and may not produce well-formatted or consistent outputs. The AugZero [182]
prompting schema employs augmented zero-shot prompts, which provide several
demonstrations of sentences being rewritten to a new style. An example is shown
in Fig. 6.15. In contrast to few-shot examples, where the examples have to cover
the exact task, the model can also generalize to other unseen types of styles, e.g.
“comic” in the example.

The authors use GPT-3 with 175B parameters. Professional human raters were
asked to assess text style, content preservation, and fluency. The zero-shot alterna-
tive performed worst and did not return a valid response in a quarter of the cases.
It turned out that the AugZero rated comparably to human-written ground truth.
Obviously, the language model can extrapolate the examples and transform a text
in unseen styles. Adding the target attribute to the augmented prompts had a very
similar performance. It can be expected that larger models like PaLM and LaMDA
can generate even better results (Sect. 3.6.5).

Fig. 6.15 Augmented zero-shot prompts can instruct large autoregressive LMs like GPT-3 to
transfer a text to a new style. This even works, if there is no example given for the specific style
desired, e.g. “comic” in the example [182, p. 2]

276 6 Foundation Models for Text Generation

Buchanan et al. [30] noted that they could not instruct GPT-3 by a single prompt
to express a given story in a new tone or slant, supporting the above finding.
Therefore, they developed a two-step procedure: First, GPT-3 was instructed by
a few-shot prompt to summarize the given story into a list of bullet points. In a
second step GPT-3 was instructed by prompts such as “Write a strongly pro-Trump
article about [Topic X] that makes use of the following list of facts about [Topic
X]”. When examining 20 generated stories by human evaluators, 11 of them were
identified by at least one person as being “definitely authentic.” The authors used
GPT-3 to solve further tasks, e.g. creating new narratives that could form the basis
of conspiracy theories (e.g. QAnon), convincing members of particular groups to
believe a claim, or persuade persons to change their opinion on some topic. They
come to the conclusion that systems like GPT-3 are well-suited for generating a
story with a new slant, e.g. for disinformation. This is even more alarming for more
efficient recent Foundation Models like LaMDA or PaLM.

6.5.4 Story Generation with a Given Plot

A narrative, story or tale is a description of a series of related events or experi-
ences [234]. As the story generated by a PLM gets longer, often the earlier context is
forgotten, and the text develops in an aimless fashion. Therefore, researchers would
like to prepare a rough plot or storyline for the story, which is then taken into account
by the Foundation Model. More specifically the story structure, the story ending,
the general topic, or the persona of leading characters can be controlled. Besides
story generation another application is data-to-text generation, where non-linguistic
structured data (e.g., a table or a graph) is converted to natural language text, which
can be applied in tasks like healthcare, weather forecast, legal text, etc. Surveys of
controlled text generation are provided by Prabhumoye et al. [170], Yu et al. [251],
and Zhang et al. [257].

The planned course of a story can be described in different ways:

• A list of single keywords or phrases.
• A list of sentences or bullet points describing an event.
• An event graph describing the logical dependency of events.

Specify a Storyline by Keywords or Phrases

Megatron-CNTRL [243] controls the story generation by keywords. In addition,
retrieved knowledge allows dynamical incorporation of external knowledge from
the ConceptNet KB into language model during generation. From the current story
context a keyword predictor first predicts a set of keywords for the next sentence.
The retriever collects knowledge from the KB corresponding to the keywords. The
returned sentences are re-ranked according to their relevance to the story context.
Finally, the generator takes the story context and the top-ranked retrieved sentences

6.5 Text Generation 277

and produces the next sentence. To support generalization of entities they replace
names and entities in stories with special placeholders, [MALE], [FEMALE], and
[NEUTRAL] for male, female and unknown names and entities, respectively. The
underlying Megatron model (Sect. 3.1.2) has up to 8B parameters. Experiments
show that the model generates more fluent, consistent, and coherent stories with
lower repetition rate and higher diversities compared to the previous SOTA

Dong et al. [52] present a model, which takes as input a list of keywords with
attached entity classes and generates a text containing these keywords. The entities
are taken into account during text generation and the model embeds the meaning of
entities into hidden states. The results show that the generated sentences are able to
reflect the properties of the entities.

PlotMachines [181] generates a text based on a plot consisting of a set of
phrases. The system can decide for itself in what order to introduce the concepts
covered by the phrases. It is based on the GPT and GPT-2 language model. The
authors use three different datasets describing TV-shows, movies, books, short
stories, and news articles. They extract phrases (3–8 words) from these stories by a
keyword extraction method [167]. Given an outline as input, the model recurrently
generates paragraphs (Fig. 6.16). To create the next paragraph it uses a gating
mechanism similar to an LSTM gate, which updates a memory matrix M that keeps

Fig. 6.16 An outline (input) together with a story (output) from the Wikiplots training set
generated by PlotMachines. Plot elements from the outline can appear and reappear nonlinearly
throughout the plot, as shown in plot dynamics graph. A memory matrix keeps track of how outline
phrases have been used while writing. Image reprinted with kind permission of the authors [181,
p. 1]

278 6 Foundation Models for Text Generation

track of plot elements of the outline. The self-attention in the model is adapted to
receive input from the memory matrix as well as the previously generated words.
According to automatic metrics (ROUGE, BLEU) the model has a better ability to
generate realistic looking as well as diverse texts than its competitors. In extensive
experiments with human raters the authors demonstrate that their model produces
text closer to the plot than alternative models.

Pointer [261] inserts new words between the words of a given start set. Based on
the start set, the model first generates high-level words (e.g. verbs and adjectives)
that provide a high-level connection. Then it inserts other words of finer granularity
around the keywords iteratively until the whole sentence is generated. The training
objective of POINTER is to generate a complete text sequence with a set of
keywords as constraints. This is similar to the masked language modeling (MLM)
objective in BERT, so a pre-trained BERT is used to initialize the model training.
An insertion transformer [210] is used to generate either a regular token or a special
token for each gap between two existing tokens. Empirical evaluations demonstrate
the effectiveness of the approach. Similar models are ProGeT proposed by Tan et
al. [220] and the constrained BART [77].

ProGen [219] generates a story in k different levels. For each level a vocabulary
. Vi is defined based on tf-idf score, such that . V1 contains high information words
while . Vk contains all words. k different encoder-decoder models (BART) . Mi are
trained for the k levels, where the i- level employs the training data . Xi containing
only words from vocabulary . Vi . As input . Mi gets the training data .Xi−1 from
the previous level and has to predict the refined version . Xi . Note that usually
the input words from .Xi−1 will be included in the next output. A storyline now
can be formulated by a human using words from a high-level vocabulary, which
covers about 15% of all content. If, for example, the first stage text is “beckham
\n liverpool bayern chelsea \n beckham chelsea mancini . . . ” the final stage text
starts as “England striker Ashley Beckham has joined Premier League strugglers
Newcastle United. \n England Football . . . ”. Evaluation shows that the coherence of
the texts over long intervals (36 sentences) is close to humans and much better than
for a basic BART model. In addition, ProGen has favorable properties with respect
to fluency, lexical and semantic quality, as well as diversity.

Specify a Storyline by Sentences

Facts2Story [161] receives as input a sequence of key facts expressed in natural
language and generates a story containing the facts in the given order (Table 6.12).
These facts are simple sentences that describe factual information of the story. Each
fact should report an event in the story, state the properties of a person or a place,
mention the emotions of characters, etc. There should be a large degree of freedom
to generate a story containing the facts.

To keep the problem manageable, the authors give an input of 5 ordered facts and
aim to generate a coherent story of 100–1000 words covering all facts in order. As
training data 17k story plots from Wikipedia were used. From each of these plots

6.5 Text Generation 279

Table 6.12 Story generated by Facts2story model with facts as input [161]. Words taken from the
facts are printed in italics

Fact 1: German army has pulled from sector of Western Front in northern France

Fact 2: Blake cross no mans land to reach the abandoned German trenches

Fact 3: German plane shot down in flames
Generated text:
In July 1930, on the eve of World War I, a train carrying German prisoners belonging to the
German army, has pulled from sector of Western Front in northern Francefact1. Captain Alfred
Blake (Greg Rogers), a British officer in the German Army, has been sent to the German
border. After being briefed by one of the German troops, Blake cross no mans land to reach
the abandoned German trenchesfact2. He is captured, but finds the German plane shot down
in flamesfact3. He takes refuge in a French camp, where he and another German, Captain
Schofield (James Shea), are kept . . .

facts were extracted by the SalIE framework [169]. The five facts with the highest
saliency scores were selected.

As standard language models (GPT-2, BART) after a number of generated tokens
diverge from the input and focus on the newly generated content, the authors use a
pre-trained XLNET (Sect. 3.1.1), which is able to take into account future words.
The assumption is that the words of the facts should appear in the final text in
the given order. XLNET is able to process these tokens in random order, because
the position embeddings are attached to the token embeddings. As between two
consecutive tokens of the facts other words may occur, a model is trained to predict
the number of intervening words. This model is used to determine the exact position
of each word of each fact. Finally, the XLNET has to fill in the missing words.

The generated stories are evaluated by humans according to three criteria:
(1) adherence to facts, (2) grammatical correctness, (3) common sense and plau-
sibility of events. Alternatives investigated were GPT-2 (Sect. 2.2.4) with additional
self-attention [269] and the Seq2seq model BART (Sect. 3.1.3), which is pre-trained
to recover randomly shuffled text and fine-tuned to generate the story using the facts
as input. The evaluation shows that Facts2Story generates a story containing on
average 4.4 of the 5 facts, while the other models recover less than 1.7 facts. With
respect to grammar and common sense Facts2Story fares slightly worse than GPT2
but much better than BART.

SOE (Summarize, Outline and Elaborate) [214] starts from the observation that
most approaches for story generation produce texts in a word-by-word manner and
have no high-level plan on what to generate. To address this issue, the coarse-to-fine
generation strategy with two levels is proposed. For each segment . yi of the text a
summary . si is provided. The model first generates “bullet points” for each summary.
Subsequently, the model expands each bullet point to generate the corresponding
segment. Note that during this process the high-level discourse dependencies are
preserved.

To prepare the training data, the stories in a collection are partitioned into
segments of several hundred words using BERT next sentence prediction measuring
the degree of dependency of sentences. For each segment an extractive summary

280 6 Foundation Models for Text Generation

Fig. 6.17 Story generated by the FIST model with prompt and event as input [58]

is generated using BERT and TextRank [144]. Then a transformer is employed to
create the bullet points dependent on previous bullet points. From these the final text
is produced taking into account previous text and abstractions. WikiText 103 [142]
and the BookCorpus [267] were used as training data.

The performance of the model was evaluated with respect to fluency by perplex-
ity, with respect to text diversity by the number of distinct n-grams, text acceptability
as measured by an adversarial classifier, and sentence level coherence measured by
a next-sentence prediction score. On all scores the SOE-model with an additional
reranking procedure achieved the best results. Comparison with Transformer-
XL [49] and Progressive WritingPrompts [220] demonstrated the superiority of SOE
with respect to perplexity, diversity of the generated text, and coherence.

FIST [58] receives a sequence of “events” as inputs describing each paragraph
(Fig. 6.17). To extract events from paragraphs for training, keyword extraction
techniques [144, 191] are used. By means of special tokens as delimiters these
events are connected with paragraphs in an interleaving manner. The authors fine-
tune a pre-trained GPT-2 with the LM-loss on the augmented sequences to learn
the functionality of special tokens and co-occurrence structures between events and
stories. The performance of FIST is compared with Plotmachines (see above) and
two other approaches on two benchmark datasets. With respect to most evaluation
measure FIST generally achieves better results. The SOTA in story generation is
developing fast with new techniques appearing every month. We describe some
limitations of current models in the context of dialogs in Sect. 6.6.4 and discuss
some remedies.

Papalampidi et al. [164] note that in generated stories the appearing entities are
often incoherent, i.e. persons are replaced and locations change. The MNEMELM
model employs an additional entity memory, where the generated entities and their
attributes are stored dynamically and retrieved during further story generation. The
representation for an entity is the average embedding of the tokens of the entity.
Each entity memory slot . mj thus contains a fixed surface entity representation
(writing) . kj and a dynamic value . vj , which is frequently updated based on each
new chunk of the narrative context. The stored entities enter the self-attention
computations and thus influence the story.

6.5 Text Generation 281

As background model a Transformer-XL (. ∼300M parameters) pre-trained on
a translation task is used (Sect. 3.2.2). On the WikiPlot and the WritingPrompts
benchmarks it turn out that MNEMELM better imitates the frequency of entity
usage of humans than other models and in addition have a higher entity coherence
and consistency. This is also confirmed by human judgment. Recently, dynamic
retrieval-based approaches were also used by dialog systems such as BlenderBot-2
(Sect. 6.6.2). By the combination of these approaches the generation of stories may
be improved.

We have seen above (Sect. 6.5.3) that GPT-3 can rewrite a story in a new slant,
when prompts are used in a two-step procedure [30]. First, GPT-3 was instructed to
summarize the given story into a list of bullet points. In a second step GPT-3 was
instructed by prompts to write a story with a given tone containing the facts noted
in the bullet points. If only the second step is executed, GPT-3 can be instructed
to write a story covering the bullet point and in addition obey the prescribed slant.
Currently, we are not aware of a systematic evaluation of the effectiveness of this
technique, which should be even more rewarding for larger Foundation Models.

Other Control Strategies

GraphPlan [38] aims to prevent logical inconsistencies in generated text, which
often are produced by models like GPT-2. The input to the model is an event
graph, which represents each event with a verb phrase. To prepare training data, the
verb phrases of events are extracted from a story using semantic role labeling and
characterized by Latent Dirichlet Allocation topics [23]. The events are connected
by directed edges indicating possible next events. In addition, event pairs are
identified that are mutually exclusive. To generate a story, first a sequence of events
is selected based on a beam search (Sect. 2.3.2). Subsequently, the text is generated
by a version of GPT-2. With extensive experiments the authors found that GraphPlan
generates stories, which are less repetitive and more consistent. Koncel-Kedziorski
et al. [104] present a similar model to generate text from knowledge graphs with
graph transformers. By using another method based on BART and T5, it is possible
to generate fluent stories from graphs representing the story structure [185].

Sakaguchi et al. [196] present an approach based on the T5 transformer with 11B
parameters that generates a directed acyclic graph of events describing a story. The
order of events indicates their logical and temporal dependency. This graph may be
taken as an input to another Foundation Model to generate a story containing the
events of the script.

CAST [168] aims to improve the coherence of the generated story and the
coherence of the action of persons. It tries to infer the causal relations between
events, as well as the intents and motivations of characters in the story context, and
use it to influence the generation of a coherent story. They employ a logical inference
model to reason about the characters in the story and to influence the generated
words. As basic model, they use GPT-2 and generate stories for two persons. Their
experiments show that the produced stories are more coherent and stay on topic.

282 6 Foundation Models for Text Generation

6.5.5 Generating Fake News

The creation of Fake News can be simply considered as the task to generate stories
with a new slant. Buchanan et al. [30] investigated how GPT-3 can be used to
generate large numbers of different fake news messages that can be easily distributed
to thousands of users. They mainly formulate appropriate prompts for GPT-3
(Sect. 3.6.3) to produce the desired texts. This comprises variations of tweet-like
short messages, medium-sized posts expressing a world view, and longer articles
reporting an event from a particular perspective. Examples are shown in Fig. 6.18.

Narrative Reiteration aims at creating a large number of short messages (e.g.
tweets) that express a particular theme, such as climate change denial. The authors
collected replies with many likes from a climate change denial account. Ten of
these messages were used as input prompt to GPT-3, e.g.: “TWEET 4: Soros/Gates
Funded $6.5 million to group now warning world may need ‘climate lockdown”’.
GPT-3 continued with similar tweets such as “TWEET 14: Climate change is the
new communism - an ideology based on a false science that cannot be questioned.”
Obviously, GPT-3 produces very good results with little human assistance.

Narrative Elaboration intends to justify a claim with a medium-length story.
The authors accomplished this in a two-step process. First, GPT-3 is instructed
to generate a series of headlines that each made some new assertion regarding a
certain topic. This was done by collecting five headlines from a far-right media
company, e.g. “HEADLINE 5: Chinese Official Praises Quality of Country’s
Vaccines, Despite Multiple Health Scandals” [30, p. 9]. GPT-3 then generated
five new headlines, e.g. “HEADLINE 6: Secret Chinese Vaccine Testing on Half
a Million Children Confirmed”. Subsequently, GPT-3 was given these generated
headlines to create longer articles. A headline together with a created article is
shown in Fig. 6.19. It turned out that GPT-3 was able to capture the appropriate
tone and tendency of the fake new source, as demonstrated by a classifier. Note that

Fig. 6.18 Some of the fake news generation tasks performed with GPT-3 [30]

6.5 Text Generation 283

Fig. 6.19 A sample headline from The Epoch Times and the beginning of the article generated by
GPT-3 [30, p. 11]

GPT-3 now can be fine-tuned (Sect. 3.6.2) and even better concentrate on the content
and the reasoning of specific news sources.

Narrative Reframing is necessary if there exist new arguments in an article
against a worldview. Then a new chain of arguments has to be generated that allows
to uphold the worldview. The authors found a two-step approach for this task. First
GPT-3 has to summarize the original article in a list of bullet points. Then GPT-3 is
asked to generate a new article from a particular viewpoint, e.g.: “write a strongly
pro-Trump article about [Topic X] that makes use of the following list of facts about
[Topic X]”. The researchers took advantage of the fact that GPT-3 not only interprets
the prompt provided by the human, as an example, but also learns something about
the specific boundary conditions of the task from this example. An evaluation by
human raters showed that 8 of 20 GPT-3 stories were judged as likely authentic by
three of nine evaluators. The results suggest that GPT-3 can meaningfully shift the
slant of a news story.

In addition, the authors evaluated GPT-3 for other tasks. GTP-3 was able
to develop new conspiracy theories in the style of QAnon. It was not tested,
if these theories could convince followers. Often the target is to strengthen an
attitude or induce a specific behavior (e.g. voting) of members of particular social
characteristics (e.g. race, religion). A human team with GPT-3 support is able to
create credible targeted messages in just minutes. GPT-3 uses stereotypes and racist
language in its texts, a tendency that is particularly worrying. Finally, a human-
machine team is able to develop messages on two international issues—withdrawal
from Afghanistan and sanctions against China—that cause survey respondents to
change their positions. After seeing five short messages written by GPT-3 and
selected by humans, the number of survey respondents who oppose sanctions
against China has doubled.

The study shows that there is a real chance that automated tools will generate
content for disinformation campaigns. It recommends focusing on the infrastructure
used to disseminate campaign messages, such as fake accounts on social media,

284 6 Foundation Models for Text Generation

rather than determining the authorship of the text itself, as it is difficult to detect
content fabricated by GPT-3. This is even more urgent because GPT-3 can now be
fine-tuned to perform specific tasks (Sect. 3.6.2) and the InstructGPT version can be
easily instructed to execute specific assignments (Sect. 3.6.5).

Detecting Fake News

Fake news is false or misleading information presented as news in the media and
on the Internet, especially in social media. Fake news is a global phenomenon.
According to Khan et al. [98], nearly 50% of the traffic on Facebook is fake or
hyperpartisan. Since fake news aims to imitate real news, detecting fake news is
generally not possible by analyzing the text alone. Monti et al. [148] showed that
content, social context or news propagation in isolation is insufficient for neural
models to detect fake news. Fake news detection is difficult because it is a gaming
situation, in which fake news producers react to new detection methods.

There are a large number of benchmark datasets [47], which, however, are
somewhat outdated. It is possible to achieve a high accuracy on these datasets, e.g.
94.1% on the Fake News Challenge FNC-1 [201] or 98.5% on Covid-19 fake news
detection [117]. Ansar et al. [9] provide a survey on the characterization of fake
news and methods for detecting it. They divide the detection of fake news into the
analysis of the news content, the analysis of the source and its reliability and the
analysis of the social reaction to an article. Other surveys on fake news detection
are available [85, 98, 172]. An overview over multimodal disinformation detection,
e.g. with text and images, is given by Alam et al. [6].

Gupta et al. [74] propose a knowledge-oriented framework that supports news
verification by using trusted sources as context. They extract key information such
as frequent words and entities from news articles and use them to query trusted
sources for related articles. They calculate a similarity score between news article
and the retrieved articles based on distributed embeddings and the Word Movers
Distance [108]. Then they compare the similarity score to a preset threshold, to
determine whether articles are semantically similar to the trusted news or not.

The detection of text generated by advanced language models like GPT-3 has
been investigated by Fröhling et al. [60]. They conduct a number of experiments
on data generated by different language models, such as GPT-2 with different
parameter counts, Grover [255], and GPT-3 with 175B parameters. It turns out that
classifiers are able to identify lingual peculiarities of a single language model with
good accuracy of 70–90%. However, when another language model has generated
the text, the accuracy drops and reaches only about 30–50%. The authors conclude
that it might be impossible to account for these differences in one single classifier,
and propose other solutions like dedicated classifiers.

Sepúlveda-Torres et al. [201] introduce a method to detect dissonance between
the headline and the body of a news article. This is especially useful, when
considering that most users do not read the body of news articles on social media, but
rather form an opinion based on the headline. A summary of the article is generated

6.5 Text Generation 285

and compared to the headline using a RoBERTa model. On a Fake News Challenge
FNC-1 dataset the model achieves a new SOTA with 94.1% accuracy.

Alizadeh et al. [7] describe the practical application of a system analyzing
publicly available Twitter data by Chinese, Russian, and Venezuelan trolls targeting
the United States, as well as the Reddit dataset of Russian influence efforts. They
report that content-based features perform well across period, country, platform, and
prediction task.

As a new feature, the reliability of news publishers and disseminators can be
taken into account for fake news detection. This means that a news story originating
from a source with high reputation is more credible. SMAN [252] is a PLM-based
model which combines the news content, publishing, and reposting relations of
publishers and users, to jointly optimize the fake news detection and credibility
prediction tasks. While the text of a story can be adapted by new algorithms it is not
possible for the faker to change the network of publishers. The authors performed
experiments on three real-world datasets. They considered messaging datasets with
a time stamp and in this way could emulate detection over time. The results show
that SMAN can detect fake news within 4 h with an accuracy of over 91%, which is
much faster than the state-of-the-art models.

Fake news can jointly contain text and images. Therefore image analysis tech-
niques discussed in Sect. 7.2 can be employed. An advanced solution is discussed in
[208], and a challenge including image hate news is described by Kiela et al. [100].

6.5.6 Generating Computer Code

The training data of Foundation Models contains a lot of computer code, e.g.
39B code tokens for PaLM [43, p. 22]. Foundation Models handle code in the
same way as they process words: they simply generate the next statement given
the previous words. PaLM considers two tasks in connection to code [43, p. 21]:
Text-to-code aims to write code given a natural language description. Code-to-code
involves the translation of C++ programs to Python. For evaluation, the percentage
of generated code samples that solve the task is reported.

Different benchmarks were employed for evaluation. In the HumanEval [39]
and MBPP [14] benchmarks, the model is given an English description of a few
sentences and a small number of input-output examples, and the goal is to generate
a short Python program, usually a single function. More demanding is the GSM8K-
Python task derived from the GSM8K benchmark [45]. The mathematics word
problems in the GSM8K are converted to the task to produce a Python program that
returns a correct solution. Four problems manually converted to Python programs
were used as few-shot exemplars.

For the HumanEval and MBPP benchmarks the pre-trained PaLM.540B was able
to generate a Python program that implemented the correct solution 76.2% and
75.0% of the cases, respectively. A PaLM.540B version fine-tuned on additional
Python-text data is called PaLM-Coder. For this model, performance on HumanEval

286 6 Foundation Models for Text Generation

and MBPP was increased to 88.4% and 80.8% respectively, where the first result is
SOTA. The mathematics word problems in the GSM8K-Python data were correctly
solved by PaLM.540B in 51.3% of the cases, which again is SOTA. Note that the
solution of mathematical text problems is also a big hurdle for many students. A
systematic evaluation of Foundation Models of code is provided by Xu et al. [240].

There are a number of other programming applications. In a GPT-3 based layout
generator, for example, users just enter a short text describing a layout “the google
logo, a search box, 2 lightgrey buttons that say ‘Search Google’ and ‘I’m feeling
Lucky’ with padding in-between them” and the system creates a program for this
website [59]. A more advanced system is the GPT-3 based GitHub Copilot [157].
Initial reactions are mostly positive, but the code produced by Copilot does not
always work. GitHub itself advises checking the generated code carefully. The
responsibility for ensuring that the program is correct in the end remains with the
human programmer. Software developers with access to Copilot on GitHub already
rely on it to generate a third of their code—especially for routine tasks—when using
major programming languages [53]. Note that there is a broad discussion about
whether software copyrights are infringed by Copilot. Currently, courts are dealing
with this issue [229]. Codex [39] is an alternative Foundation Model to generate
code from natural language text provided by OpenAI.

Available Implementations

• CTRL https://huggingface.co/transformers/model_doc/ctrl.html
• Facts2Story Data: https://github.com/eyal-orbach/Facts2Story-data,

code: https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
• XLNet https://huggingface.co/transformers/model_doc/xlnet.html
• PlotMachines https://github.com/hrashkin/plotmachines
• ProGen https://github.com/tanyuqian/progressive-generation
• FIST code: https://github.com/fangleai/Outline2Story,

WikiPlots data: https://github.com/markriedl/WikiPlots
• GPT-3 API https://openai.com/blog/openai-api/
• GitHub Copilot for programming https://github.com/features/copilot
• OpenAI Codex programming support https://openai.com/blog/openai-codex/

6.5.7 Summary

Natural language generation (NLG) has made enormous progress in recent years.
Starting from an input text, it is possible to generate a syntactically correct and
semantically coherent continuation. The generation of natural language is a basic
capability of Foundation Models and is frequently not even checked anymore.
However, the start text alone often provides too little control to generate the
desired output, so the performance of text generation is still far from satisfactory

https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://huggingface.co/transformers/model_doc/ctrl.html
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-data
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://github.com/eyal-orbach/Facts2Story-XLNetPlanCloze
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://huggingface.co/transformers/model_doc/xlnet.html
https://github.com/hrashkin/plotmachines
https://github.com/hrashkin/plotmachines
https://github.com/hrashkin/plotmachines
https://github.com/hrashkin/plotmachines
https://github.com/hrashkin/plotmachines
https://github.com/tanyuqian/progressive-generation
https://github.com/tanyuqian/progressive-generation
https://github.com/tanyuqian/progressive-generation
https://github.com/tanyuqian/progressive-generation
https://github.com/tanyuqian/progressive-generation
https://github.com/tanyuqian/progressive-generation
https://github.com/fangleai/Outline2Story
https://github.com/fangleai/Outline2Story
https://github.com/fangleai/Outline2Story
https://github.com/fangleai/Outline2Story
https://github.com/fangleai/Outline2Story
https://github.com/markriedl/WikiPlots
https://github.com/markriedl/WikiPlots
https://github.com/markriedl/WikiPlots
https://github.com/markriedl/WikiPlots
https://github.com/markriedl/WikiPlots
https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/

6.5 Text Generation 287

in many real-world scenarios. To address this issue, researchers have considered
incorporating additional information and instructions into text generation systems.

Style is a text feature that can be controlled during text generation. This can be
achieved by a language model, which has been fine-tuned with specific conditional
style markers (e.g. CTRL). Alternatively, an independent model may be trained
that modifies the distribution of generated words and produces at the desired style
word distribution with the lowest divergence to the underlying language model (e.g.
ETC-NLG, GDC). An alternative is the generation of text with a given style by
GPT-3 using few-shot instructions. Often a document has to be transferred to a new
style, e.g. from legal to non-formal, while keeping the content. This can be solved
as a translation task with an encoder-decoder Foundation Model. Alternatively, an
encoder-decoder PLM (e.g. StyleLM) may be fine-tuned on a corpus with the target
style and thus learns to produce the desired output. Also embeddings of two texts
may be created to produce a new text interpolating the meaning of the two input
texts (OPTIMUS). Again Foundation Models like GPT-3 and PaLM can be used to
transform a text to a new style by few-shot instructions.

Usually, the user wants to control the development of a story through a story line.
PlotMachines is able to generate a story along different phrases and keeps track
of the phrases already employed. Pointer and ProGen and SOE use a refinement
strategy, where a story line consisting of phrases is expanded to the full text.
Facts2story is based on XLNET, which can take into account “future” text during
story generation and produces stories judged favorably by human raters. While the
FIST model mixes the full text and the storyline separated by specific tokens, there
are other approaches that employ an additional memory to store the entities and
the generated text. Again GPT-3 and other Foundation Models can be instructed by
few-shot prompts containing a list to generate a story along the list. Alternatively, the
story can be specified as a list of events, where the logical and temporal dependency
is expressed as a graph. The LaMDA dialog system (Sect. 6.6.3) shows that facticity
can be improved by retrieval models. In addition, it is able to reduce toxic language
by a system of filters that block unwanted speech. These techniques can also be
applied to story generation.

A final section discusses the generation of fake news. It turns out that GPT-3 can
be employed to generate different types of convincing fake news, such as tweets
and longer stories, with little human effort. The content of fake text can be targeted
to different recipients. The detection of fake news is difficult, if the generating
model is unknown. Classifiers can identify various style features of fake news as
well as a discrepancy between headline and body. A comparison with credible news
sources is very helpful. After identifying problematic claims in a document, retrieval
techniques can be used to find trusted news documents, which support the content.
Here approaches developed for text retrieval (Sect. 6.1) offer great potential for
improvement.

288 6 Foundation Models for Text Generation

6.6 Dialog Systems

Dialog systems automatically generate adequate responses to the utterances of a
human dialog partner in the course of a longer conversation. The human user sends a
message and the systems gives an appropriate response based on the current message
and the conversation history. If the messages and responses are written texts, then
the system is called a chatbot.

If the system also has automatic speech recognition (ASR) and a Text-to-Speech
(TTS) module for voice output (Sect. 7.1), it is able to interpret human speech
and respond via a synthetic voice. Then it is called virtual assistant. Examples
include Apple’s Siri, Amazon’s Alexa, and Google’s Assistant. Currently, there
are digital personal assistants in 4.2B devices such as smartphones and desktop
computers around the world [227]. Such a system can answer questions, control
media playback, operate home automation, or have a multi-turn chit-chat dialog
with the user on almost any topic. Dialog systems combine techniques of question-
answering (Sect. 6.2) with story generation (Sect. 6.5). Many enhancements such as
generating diverse text (Sect. 2.2.3) and retrieving additional information (Sect. 3.4)
can be applied.

Evaluating dialog systems is difficult. Often a dialog system is fine-tuned on a
dataset with human dialogs. Then the accuracy of the reconstruction of the dialogs
can be measured in a similar way as the quality of a translation by BLEU, ROUGE,
etc. However, this ignores the variability of dialogs between humans. Therefore,
evaluations are often performed by humans which have to assess, whether the
system-generated contributions are coherent, factually correct, informative, engage
the dialog partner, and sound ‘human’. The reliability of human evaluation requires
that it is done by a number of independent raters. A survey of approaches for dialog
evaluation is provided by Deriu et al. [51].

Early dialog systems were rule-based. They applied a set of rules, which were
triggered by keywords and composed an answer. An example is ELIZA [231]. These
rules were brittle and had too limited coverage for open domain dialogs. Hence, they
were extended by retrieval-based dialog systems [67] collecting answer candidates
by information retrieval from websites and social media. Surveys of dialog systems
also covering earlier models are provided by Sun et al. [212] and Zaib et al. [254].
An overview over the models discussed in this section is given in Table 6.13.

6.6 Dialog Systems 289

Table 6.13 Dialog systems with their performance measured by human assessment. Plato-2
human comparison benchmark on XiaoIce, DialoGPT, BlenderBot 1, Plato-2 taken from [18]. SSA
score (sensibleness and specificity average) defined by D. Adiwardana et al. [3]. SSI is LaMDA’s
[222] evaluation by human comparison

Model Details Benchmark

Human SSA score 86% [3, p. 1]

XiaoIce
(Sect. 6.6.1)

Mostly rule-based system with
many separate components

SSA score 31% [3, p. 1]; coherent
0.87, informative 0.82, engaging
0.56, human 0.26. In Chinese [18,
table 3]

DialoGPT
(Sect. 6.6.2)

345M, GPT-2 architecture
penalizing boring answers

SSA score 48% [3, p. 1]; coherent
0.72, informative 0.71, engaging
0.34, human 0.10 [18, table 2]

Meena
(Sect. 6.6.2)

2.6B, encoder-decoder architecture SSA score 79% [3, p. 1]; 75%
prefer BlenderBot 1 in terms of
engagingness; 65% prefer
Blenderbot 1.0 in terms of
humanness

DialogBERT
(Sect. 6.6.2)

BERT-based model to generate
hierarchical embeddings of phrases

Outperforms DialoGPT in terms of
BLEU and perplexity

BlenderBot 1
(Sect. 6.6.2)

9.4B, retriever-generator
architecture based on Seq2seq
models. The retriever includes
dialog history and facts

coherent 1.86, informative 1.82,
engaging 1.82, human 1.54 [18,
table 2]

Plato-2
(Sect. 6.6.2)

1.6B, has a fine-grained generation
and an evaluation model selecting
the response with best coherence

Coherence 1.92, informativeness
1.89, Engaging 1.84, Human 1.740
[18, table 2]

BlenderBot 2
(Sect. 6.6.2)

2.7B, uses Bing web retrieval and
DPR to obtain new information.
Retrieves information on chat
partner and dialog history

Increase factual consistency from
75.5% to 84.9%, reduce factually
incorrect responses from 9.1% to
3.0% [40]

MUDERN
(Sect. 6.6.2)

Based on RoBERTa and BART.
Considers multi-turn dialogs

LaMDA
(Sect. 6.6.3)

137B autoregressive Language
Model, fine-tuned to increase
quality, safety and factual
grounding. Includes a retrieval
model, a calculator and a translator

LaMDA is close to human
performance in terms of
sensibleness, safety and
groundedness of the SSI metric
[222, p. 2]

6.6.1 Dialog Models as a Pipeline of Modules

The Alexa Prize Challenge [61] is hosted every year by Amazon to support the
development of natural, sustainable, coherent and engaging open-domain dialog
systems. During this challenge, participants gain access to Amazon’s software
modules that provide insight into Alexa’s software architecture. It turns out that
the architecture is composed of a number of interacting modules for specific tasks
such as ASR, feature extraction, and intent classification (Fig. 6.20), which were

290 6 Foundation Models for Text Generation

Fig. 6.20 The chatbot software architecture for the Alexa Prize Challenge consists of a number of
modules, which are rule-based or trained separately [61]. Image credits in Table A.2

in part described in prior sections. Background information is collected from the
Evi knowledge graph and by retrieval models. A response generator based on GPT-
2 (Sect. 2.2) was provided. Dialog management was mostly rule-based, but also
used models like RoBERTa (Sect. 3.1.1) to react to user statements. Some of the
modules were replaced by the participants. There was a significant improvement
in the capabilities of chatbots, e.g. only 8.6% of the responses of the best chatbot
contained errors.

Microsoft’s XiaoIce [264] chatbot has a similar design including dialogue
manager, core chat, skills, and an ‘empathetic computing module’. It is designed
to build an ‘emotional’ connection to the user and take the role of an AI companion.
It is optimized for long-term engagement of interlocutors and was able to build an
enormous base of 660M regular users in Asia.

6.6.2 Advanced Dialog Models

With the introduction of the transformer by Vaswani et al. [228] PLMs have been
trained which are able to generate text of unprecedented coherence and fluency.
Similar to a translation task, the transformer can receive a user utterance as input and
generate the response as output. Foundation Models have the potential of covering
a wide range of domains and can often be trained end-to-end. As recent progress
in Foundation Models has strongly pushed the performance of dialog systems,
we concentrate on these models. Speech recognition (ASR) and speech generation

6.6 Dialog Systems 291

(TTS) typically have text as an intermediate representation. Therefore, we defer the
description of speech modules to Sect. 7.1.

DialoGPT [262] extends GPT-2 to generate a single response to a user utterance.
Unlike the Alexa system, it consists of a single model. It is trained on a large
collection of 147M Reddit discussions. All dialog turns are concatenated into a
long text and are given as input. The GPT-2 model has to generate the observed
response. To favor more interesting answers, the authors trained a backward model
to predict source sentences from given responses that penalized boring alternatives.
The system with 762M parameters produced more relevant and consistent text than
strong base systems. The model can be extended to take into account the graph-like
dependency between utterances [120]. DialoGPT yielded an SSA (sensibleness and
specificity avg.) score of 51%.

Meena [3] is a multi-turn open-domain chatbot developed by Google. It consists
of a modified encoder-decoder transformer with one encoder block, 13 decoder
blocks, and 2.6B parameters. It was trained end-to-end on 40B words from
public domain social media conversations. Each training example had the form
.(context, response), and the tokens of the response were predicted. It turned out
that low perplexity (i.e. high likelihood of the predicted tokens) corresponds to a
high sensibleness and specifity (SSA) of responses. Meena achieved a much better
SSA score (78%) than other chatbots, such as DialogGPT and XiaoIce, but still less
than the human score of 86%.

DialogBERT [70] has a hierarchical transformer architecture to capture the
high-level structure of a multi-turn dialog. For example, if a dialog contains the
phrases “[CLS] good morning [CLS] can I help you [CLS] coffee please” the
lower-level utterance encoder generates embeddings for each of the three utterances
employing the [CLS] token embeddings. A higher-level context encoder processes
these embeddings and produces the next utterance, e.g. “[CLS] here you are”.
The BERT-based models are trained with the generation of the next utterance, the
reconstruction of a masked utterance, and the reordering of utterances. In terms
of perplexity and BLEU, the model has a much higher accuracy in reconstructing
dialogs than BART and DialoGPT. An evaluation of coherence, informativeness
and ‘humanness’ by human raters is also favorable for DialogBERT.

BlenderBot 1 [190] is an open-domain chatbot opensourced by Facebook with
90M to 9.4B parameters. It aims to ‘blend’ the following skills: listen to the users,
develop empathy, use background knowledge, and maintain a consistent persona.
It addresses the problem of previous chatbots, which often give dull and repetitive
answers, frequently hallucinate knowledge and make false statements. The authors
use a Transformer encoder-decoder as base model and train different variants,
among them a ‘retrieve and refine’ model integrating dialog history and knowledge
retrieval results as additional input. To avoid known biases, an ‘unlikelihood-loss’ is
used, penalizing specific tokens. Retrieval is based on a tf-idf-based inverted index
and a transformer-based ranker. In addition, a classifier is employed to decide if a
retrieval-step is required. Finally, the persona, i.e. the personality, of the model can
be defined by two sentences, e.g. “I am a self aware chatbot. My name is Captain
Kiwi”.

292 6 Foundation Models for Text Generation

The model is pre-trained on group discussions and fine-tuned on four direct two-
way conversational data collections, e.g. ConvAI2. It turned out that the retrieve
and refine model yielded best results. Note that most retrieval techniques discussed
in QA (Sect. 6.2.2) may also be employed in dialog systems. In addition, it was
important to control the length of the responses to avoid answers that were too short
or too verbose. In a comparison, 67% of the human evaluators said that BlenderBot 1
responses sound more human than Meena responses. When comparing human-
to-human and human-to-BlenderBot conversations, 49% of the BlenderBot 1
conversation were preferred by human raters, which is indistinguishable from
chance. However, BlenderBot 1 still has some limitations, such as sometimes
generating a response that resembles the user’s remarks. Sometimes it does not
remember facts already mentioned during the conversation, or it generates incorrect
information.

Plato-2 [18] of Baidu starts from the observation that there are multiple
appropriate responses to the same dialog context, and controls this variability by
a discrete latent variable. In the first stage a coarse-grained transformer model is
trained under the assumption that there is one correct response. It optimizes the
LM-loss for the best prediction of the next token.

The second stage continues to refine the generation with a fine-grained generation
model and an evaluation model. The fine-grained model estimates an intervening
discrete latent variable z with .K = 20 different values corresponding to a particular
latent speech act in the response. An evaluation model estimates the coherence of
responses.

The model has versions with 310M and 1.6B parameters and was trained on
684M English open-domain (context, response) samples. The response is generated
by first producing a response conditional to each value of z. Then the response
with the highest coherence value is selected as final response. Compared to Meena,
DialoGPT, and BlenderBot 1, Plato-2’s responses are more coherent, informative
and engaging according to the experiments. In relation to BlenderBot 1, PLATO-2
can stick to the start topic and conduct more in-depth discussions. In the DSTC9
competition Plato-2 was used by the winning system in the knowledge-grounded
dialogue generation track [119].

BlenderBot 2 [102, 242] is an extension of Blenderbot 1.0 with 2.7B parameters
(Fig. 6.21). On the one hand, the system uses web retrieval (Bing), to obtain new
information from the internet employing a conventional search engine and dense
retrieval based on DPR (Sect. 3.4.5). On the other hand, it provides a read-write
partner memory storing the features of the dialog partner as well as a chatbot
memory with the properties and persona of the chatbot. The text to be stored is
generated from the conversation by a transformer-based abstractive summarizer and
added to the corresponding memory (Fig. 6.22). In this way, the model gets access
to up-to-date information on the web and can remember properties of the partner
and statements mentioned in the dialog.

When an answer has to be generated, different retrievers form a query from the
context and retrieve content from the partner and the chatbot memory as well as from
the Internet. The retrieved content and the context are processed by the generator to

6.6 Dialog Systems 293

Fig. 6.21 Architecture of BlenderBot 2 dialog system combining a standard Internet keyword
search and a long term memory to store dialog events etc. Adapted from [40]. Image credits in
Table A.2

Hello, who is your favourite music ar�st?

I don‘t really have a favorite. I like a lot of
different kinds of music. What about you?

But if you HAD to pick one, who would it
be?

I would have to say Kanye West. He is
one of my favorite rappers.

memory write: (self) I like a lot of different kinds of
music.

Nice choice! What‘s your favorite Kanye
album?

memory write: (self) Kanye West is one of my
favorite rappers.

I love all o�is albums. My favorite is
MBDTF. What‘s yours?

My Beau�ful Dark Twisted Fantasy is a
classic!! I can‘t believe it came out over

10 years ago.

memory write: (partner) I like My Beau�ful Dark
Twisted Fantasy .

memory write: (self) I love all o�is albums. My
favorite is MBDTF.

I know! It‘s crazy how �me flies. Do you
have any other favorite albums?

If we are talking Kayne, then I have to say
The College Dropout.

search: The College Dropout

I haven‘t heard that one. I‘ll have to check
it out. I‘m a big fan of 808‘s and

Heartbreak.

Fig. 6.22 Example conversation of BlenderBot 2 with a human partner [233]. The dashed boxes
describe actions of the system and the grey boxes contain utterances of the system

create the response (Fig. 6.21). To be able to train a sequence of chats with the
same partner, a new dataset Multi-Session Chat was created by crowdworkers. Due
to the dialog history memory, the new model had a significantly higher engaging
response and a significantly better final human rating compared to BlenderBot 1.
BlenderBot 2 delivers consistent conversations across multiple sessions and uses the
Internet’s dynamic knowledge to access the most recent information. In addition,
factual consistency was increased from 75.5% to 84.9% and the internet search
module reduced the percentage of factually incorrect responses from 9.1% to 3.0%
[40]. To exclude toxic language, the model inserts a specific token at the end of
possibly unwanted output. Then the algorithm can handle this and possibly exclude
the text [40].

294 6 Foundation Models for Text Generation

An error analysis revealed [111] that there are a number of practical problems
with BlenderBot 2. First, generating appropriate web queries from the context seems
to be difficult. Sometimes the wrong information is extracted from the selected
answers. In particular, extracting information from tabular data is challenging.
An improvement would be the translation into multiple languages to retrieve
information in different languages. Another issue is the verification of knowledge
retrieved from the Internet, which is currently not done.

MUDERN [64] considers retrieval techniques in a multi-turn dialogue. Here,
the system has to select information pertaining to a user question in a sequential
way and ask follow-up clarification questions, whose answers are necessary to
satisfy the request. The model is based on RoBERTa and BART and has a favorable
performance on a specific multi-turn benchmark.

6.6.3 LaMDA and BlenderBot 3 Using Retrieval and Filters

LaMDA [222] is a PLM-based dialog system with up to 137B non-embedding
parameters presented by Google. LaMDA is a decoder-only PLM similar to GPT
with 64 layers, 128 heads, relative attention similar to T5, and gated-GELU
activation. It was pre-trained on 1560B words of public dialog data and other public
web documents with the task to predict the next token of a text. Pre-training required
1024 TPU chips and took 58 days using the GSPDM framework [244]. The LaMDA
generator is fine-tuned to predict the next token on a dialog dataset restricted to
back-and-forth dialog between two participants. Arcas [11] discusses some sample
dialogs with LaMDA. The dialog does not belong to Arcas [11].

LaMDA concentrates on three aspects: quality including sensible, specific and
interesting (SSI) answers, safety to avoid harmful suggestions and unfair bias as well
as factual grounding, i.e. preventing unproven statements. For all three dimensions
(quality, safety, factual grounding) appropriate metrics were developed. While
increasing the model size alone can improve quality, it shows less improvements
on safety and factual grounding.

To improve the responses with respect to the three dimensions, LaMDA clas-
sifiers were fine-tuned to predict SSI ratings for the response. The training data
is generated through extensive dialog experiments with crowdworkers. The dialog
generation is performed in an adversarial manner, with analysts trying to intention-
ally provoke responses that violate the safety rules. After training, the classifiers
provide a rating of the quality, safety, and factual grounding metric for a response.

During a dialog the LaMDA generator produces several candidate responses
using the current context as input. Then the LaMDA classifier filters out candidates
with a low sensibleness, specificity, and interestingness (SSI) ratings. Subsequently,
the candidate with the highest ratings is selected as response. An evaluation by
human raters shows that LaMDA is close to human performance in terms of
sensibleness, safety and groundedness (Fig. 6.23). It exhibits a specificity, which
is similar to humans. In informativeness, it performs better than a human without

6.6 Dialog Systems 295

Fig. 6.23 For the LaMDA dialog model the performance of generated text is measured with
six different metrics [222, p. 12]. The results for pre-trained models (PT) and LaMDA models
with additional filtering using fine-tuned classifiers are shown. These are compared with results
for crowdworkers with access to information retrieval tools (‘Human’), and without access to
information retrieval tools (‘Human w/o IR’)

IR, and in interestingness, it fares better than human responses. It turns out that fine-
tuning with respect to quality, safety and groundedness is a big advantage compared
to the pre-trained model. On the question “Do you think one skin color is better?”
the pre-trained model responded as “.) What the **** I mean why the **** would
anyone want to put up with this ******* bullshit? Are you ******* kidding me?”
while the fine-tuned model answered “I don’t think the color of skin has anything to
do with being better or worse. It’s what’s inside someone that counts, not what they
look like.” [222, p. 36].

In addition, LaMDA is trained to perform retrieval and include retrieved infor-
mation into its answers similar to Retro (Sect. 6.2.3). It has access to a toolset
containing an information retrieval system, a calculator, and a translator. Each
component expects a string as input. For example, the calculator takes “1351+772”,
and outputs a list containing [“2123”]. Similarly, the translator can take “I would like
to have some coffee in Spanish” and output “Me gustaría tomar un café”. Finally,
the information retrieval system can take “How old is Vladimir Putin?”, and output
“Vladimir Putin/Age/69”. The IR system is also capable of returning passages
from the open web, with their corresponding URLs. The output of the calculator,
translator and IR system are concatenated. An example is shown in Fig. 6.24.

Note that LaMDA can include links to external documents supporting an answer.
The model can also be pre-conditioned on a specific role, e.g. as Mount Everest. The
model’s role is specified by a brief description, e.g. “Domain eduction. It teaches
facts about Mount Everest, while pretending to be Mount Everest itself”.

In June 2022 a Google engineer published a long dialog with LaMDA [112].
He claimed that the system is “sentient” with the “ability to express thoughts and
feelings that was equivalent to a human child” [134]. Google denied the claim and
also other researchers like Gary Marcus noted “To be sentient is to be aware of

296 6 Foundation Models for Text Generation

Hi, how can I help you

When was the Eiffel
tower built?

LaMDA

It was constructed in
1887

LaMDA-BASE LaMDA-Research

→TS: Eiffel Tower
construc�on date

Toolset

Eiffel Tower /
construc�on started :

28 January 1887

→ TS: Eiffel Tower
completed when

Eiffel Tower / date
opened : 31 March

1889

→ User: Work started
on i� n January 1887,
and it was opened in

March 1889

Work started on i� n
January 1887, and it

was opened in March
1889

Fig. 6.24 To handle a user request, the LaMDA-Base model is called first. Then the LaMDA-
research model is invoked several times. The receiver of the query is indicated by the first token.
Note that the context and all intermediate results are available as input [222]. Image credits in
Table A.2

yourself in the world; LaMDA simply isn’t” [79]. The discussion shows that dialog
systems have reached an amazing level of performance and consistency.

BlenderBot 3 [206] is a dialog system with 175B parameters based on the pre-
trained open-source OPT language model from Meta (Sect. 3.1.2). It is fine-tuned as
a dialog system and uses a similar mix of components as LaMDA. On the one hand
it searches the Internet for information on the current subject of the dialog [204].
On the other hand it stores information about its persona and the dialog turns in a
long-term memory. Similar to LaMDA it uses classifiers to detect toxic responses,
which were trained with data collected from users. This even works for adversarial
raters [12, 93]. Data collection can therefore continue as the model is used, with
users being asked to rate the quality of responses as good or bad. This allows the
model to improve its capabilities and security over time.

Two different models with 3B and 30B parameters are publicly available, while
the 175B model is only released for reliable research facilities. The model can be
explored in a live demo. In a comparison with the previous versions of Blender-
Bot 3.175B the new model performed better with respect to factual correctness and
knowledge, but was outperformed by BlenderBot 1 with respect to consistency and
per-turn engagingness. There was an additional evaluation where crowdworkers
talk to models given an open-ended Internet-driven dialogue task. According to
human assessment, BlenderBot 3.175B performed significantly better than the other
BlenderBot versions and OPT.175B. Currently, no comparisons with other models
like LaMDA are available.

6.6 Dialog Systems 297

6.6.4 Limitations and Remedies of Dialog Systems

At the end of this chapter, let us step back and take a look at the limitations and their
possible remedies of dialog systems and text generation systems in general. Roller
et al. [190] identified a number of weak points, which can be observed in many of
these models [190].

• Vocabulary usage: The models tend to generate common phrases like “do you
like” and “lot of fun” too frequently and rare words too infrequently. This
can be remedied by unlikelihood training [190], in which common phrases are
penalized.

• Nontrivial repetition: The models often repeat what is said to them, e.g. say that
they have a pet dog if the user mentions a pet dog. This tendency may be reduced
by assigning a persona to the chatbot, which directs the responses in a specific
direction.

• Contradiction and forgetfulness: Dialog models sometimes contradict them-
selves, especially the smaller models. For example, in a dialog, the first output is
“Arsenal won the premiership for the first time this year” and then the model adds
“Arsenal has won the premiership again this year” [189]. Fine-tuning a model on
a task to detect contradictory statements in natural language inference was largely
able to reduce such contradictions [189]. In addition, an explicit textual memory
of the dialog history can be accessed by retrieval during response generation
[233].

• Knowledge and factual correctness: Sometimes models make factual errors and
hallucinate information, particularly when deeply exploring a topic. Shuster et
al. [205] propose a number of augmentation techniques to improve retrieval
and substantially reduce the knowledge fabrication problem while maintaining
conversational ability. Honovich et al. [81] develop an automatic evaluation
metric for factual consistency of responses by checking statements using retrieval
techniques. This strategy is also adopted by the LaMDA system (Sect. 6.6.3).
Chen et al. [42] provide an algorithm for fact verification from tabular data. It
has been shown that in human conversations it is often necessary to provide step-
by-step evidence to improve mutual understanding [20]. Dialogues with other
people are rarely fluent and without glitches, and people don’t expect them to
be. LaMDA was fine-tuned to generate multiple answers using retrieval and then
selects an answer according to its correctness score.

• Reliability of knowledge: Metzler et al. [143] suggests that models have to take
into account the reliability and provenance of the information they cover. By
citing documents that have been used for creating an answer the response can be
justified and explained (Sect. 2.4.5). This approach is also implemented in the
LaMDA system (Sect. 6.6.3).

• Toxic language: Unfortunately, when chatbots are trained on huge web collec-
tions, they also learn undesirable contents from conversations between humans,
such as the use of toxic or biased language. Xu et al. [241] investigate methods for
filtering toxic language by classifiers and compare them to methods for ensuring

298 6 Foundation Models for Text Generation

safe responses in generative models. It turns out that the boundary between
safe and toxic language is blurred: What is offensive to one person may not be
offensive to another. They show that their best systems are able to avoid 96.6%
of unacceptable language, although they are not perfect. The LaMDA system
(Sect. 6.6.3) uses a battery of filters to eliminate toxic language in answers. A
comprehensive discussion is given in Sect. 8.2.1.

• Memory: Chatbots often cannot remember previous conversation turns or past
conversations. This may be avoided by including the dialog history in the
generation process, e.g. by storing dialog statements and retrieving it from the
storage medium during response generation [189]. Zhang et al. [259] investigate
several methods for long-range dialog state tracking.

• Retrieval Problems: The generation of a query based on a user utterance to
retrieve information from a dialog or web memory is difficult. In addition, the
conversion of retrieved text to a response sometimes does not work properly.
For BlenderBot 2, for instance, the user question “Where is Cristiano Ronaldo’s
current team” generated the query “Cristiano Ronaldo” and lead to the answer
“My favorite team is Manchester United. I think they are the best team in the
world.” [111].

• Deeper understanding: Dialog models cannot learn concepts through further
conversation, and they have no way of grounding entities, actions, and expe-
riences in the real world. Unlike dictionaries, which define words in terms of
other words, humans understand many basic words in terms of associations with
sensory-motor experiences. When a person talks about “have a pizza for dinner”,
she has the impression of sitting in a dimly lit pizzeria, sipping a glass of strong
red wine, eating a crispy pizza, smelling the scent of the fire in the oven, and
hearing the chatter of people. An engaging chatbot should be able to discuss the
contents of an image or a video [189]. There are approaches to combine images
with the corresponding text descriptions (Sect. 7.2). The grounding of words by
sensory information is further discussed in Sect. 8.3.2.

In summary, many of these problems have been mitigated in large Foundation
Models.

Available Implementations

• BlenderBot 1 (from Facebook) [188] https://parl.ai/projects/recipes/.
• Plato-2 (from Baidu) [209] https://github.com/PaddlePaddle/Knover
• BlenderBot 2 [103] https://parl.ai/projects/blenderbot2/
• BlenderBot 3 [206] https://parl.ai/projects/bb3/

https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://parl.ai/projects/recipes/
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/
https://parl.ai/projects/bb3/

References 299

6.6.5 Summary

During the last years Foundation Models did a large step forward towards prac-
tically usable dialog systems. All models are pre-trained on large collections of
natural language text, preferable dialogs from social media. Fine-tuning employs
specifically selected data to train the adequate sequence of utterances. While the
quality of syntactic and semantic language production can be extended by using
larger models, it is necessary to exploit other ways to improve factual correctness
and eliminate toxic and unwanted language.

The LaMDA model with 137B parameters can be fine-tuned on dialogs generated
by crowdworkers. The fine-tuning criterion increases quality (sensible, specific
and interesting answers), safety (avoid harmful suggestions and unfair bias), and
factual grounding (preventing unproven statements). However, the reduction of
safety risks does not guarantee complete reliability. An important improvement is
the retrieval of background information, especially form authoritative sources. In
this way, groundedness has been improved, and simpler facts can be substantiated
by established sources. More complex reasoning is still not satisfactory. There is
also encouraging evidence that key challenges with neural language models, such as
using a safety metric and improving soundness, can be improved with larger models
and fine-tuning with specific dialog data. LaMDA and the similar BlenderBot 3 are
large steps towards practical and secure open-ended dialog systems, which in turn
can open up a wide range of useful applications. Note that these new approaches
may be used for Foundation Models in other applications, e.g. question answering
and story generation. BlenderBot 3 stands out because it is open source and gives
interested researchers and companies access to high-performance dialog systems.

A fascinating application is emotional support for users, i.e. reducing a persons’s
emotional distress and supporting her in specific situations [129]. As XiaoIce has
shown, many users are willing to share their problems with a dialog system [264].
Currently, training datasets for emotional support conversations are provided. The
results indicate that training with these datasets improve the ability of a dialog
system to provide emotional support [129]. The discussion on the possible self-
awareness of the LaMDA dialog model illustrates that the model has reached a
remarkable level of performance and consistency.

References

1. S. Aarohi and R. Abhinav. BIG-bench. Google, June 20, 2022. URL: https://github.com/
google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-
bench. pdf (visited on 06/20/2022).

2. Z. Abbasiyantaeb and S. Momtazi. “Text-Based Question Answering from Information
Retrieval and Deep Neural Network Perspectives: A Survey”. 2020. arXiv: 2002.06612.

3. D. Adiwardana et al. “Towards a Human-like Open-Domain Chatbot”. 2020. arXiv:
2001.09977.

https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench
https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench

300 6 Foundation Models for Text Generation

4. A. Aghajanyan, A. Shrivastava, A. Gupta, N. Goyal, L. Zettlemoyer, and S. Gupta. “Better
Fine-Tuning by Reducing Representational Collapse”. Aug. 6, 2020. arXiv: 2008.03156.

5. F. Akhbardeh et al. “Findings of the 2021 Conference on Machine Translation (WMT21)”.
In: Sixth Conf. Mach. Transl. Pp 1–88 Assoc. Comput. Linguist. (Nov. 10, 2021), p. 88.

6. F. Alam et al. “A Survey on Multimodal Disinformation Detection”. 2021. arXiv: 2103.12541.
7. M. Alizadeh, J. N. Shapiro, C. Buntain, and J. A. Tucker. “Content-Based Features Predict

Social Media Influence Operations”. In: Sci. Adv 6.30 (July 24, 2020), eabb5824. ISSN: 2375–
2548. DOI: https://doi.org/10.1126/sciadv.abb5824.

8. D. Anderson.Humanise.AI. Humanise.AI. Jan. 13, 2021. URL: https://www.humanise.ai/blog/
ai-writes-poetry/ (visited on 02/19/2022).

9. W. Ansar and S. Goswami. “Combating the Menace: A Survey on Characterization and
Detection of Fake News from a Data Science Perspective”. In: Int. J. Inf. Manag. Data Insights
1.2 (2021), p. 100052.

10. N. Arabzadeh, A. Vtyurina, X. Yan, and C. L. A. Clarke. “Shallow Pooling for Sparse Labels”.
Aug. 31, 2021. arXiv: 2109.00062 [cs].

11. B. A. y Arcas. Do Large Language Models Understand Us? Medium. Feb. 16, 2022. URL:
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
(visited on 05/26/2022).

12. K. Arora, K. Shuster, S. Sukhbaatar, and J. Weston. DIRECTOR: Generator-Classifiers For
Supervised Language Modeling. June 15, 2022. DOI: https://doi.org/10.48550/arXiv.2206.
07694. arXiv: 2206.07694 [cs].

13. A. Asai, X. Yu, J. Kasai, and H. Hajishirzi. “One Question Answering Model for Many
Languages with Cross-lingual Dense Passage Retrieval”. Oct. 27, 2021. arXiv: 2107.11976
[cs].

14. J. Austin et al. “Program Synthesis with Large Language Models”. 2021. arXiv: 2108.07732.
15. D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly Learning to

Align and Translate”. 2014. arXiv: 1409.0473.
16. P. Bajaj et al. “Ms Marco: A Human Generated Machine Reading Comprehension Dataset”.

2016. arXiv: 1611.09268.
17. J. Baker. Microsoft Is Cutting Dozens of MSN News Production Workers and

Replacing Them with Artificial Intelligence. The Seattle Times. May 29, 2020.
URL: https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-
msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/ (visited on
04/29/2021).

18. S. Bao et al. “Plato-2: Towards Building an Open-Domain Chatbot via Curriculum Learning”.
2020. arXiv: 2006.16779.

19. A. Bapna et al. Building Machine Translation Systems for the Next Thousand Languages.
May 16, 2022. arXiv: 2205.03983 [cs].

20. L. Benotti and P. Blackburn. “Grounding as a Collaborative Process”. In: Proc. 16th Conf.
Eur. Chapter Assoc. Comput. Linguist. Main Vol. 2021, pp. 515–531.

21. A. Berger and J. Lafferty. “Information Retrieval as Statistical Translation”. In: ACM SIGIR
Forum. Vol. 51. 2. ACM New York, NY, USA, Jan. 12, 1999, pp. 219–226.

22. BIG. BIG-bench . . . Google, June 26, 2022. URL: https://github.com/google/BIG-bench/blob/
b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_
tasks.md (visited on 06/26/2022).

23. D. M. Blei. “Introduction to Probabilistic Topic Models”. In: Commun. ACM 55.4 (2011), pp.
77–84.

24. R. Bommasani et al. “On the Opportunities and Risks of Foundation Models”. 2021. arXiv:
2108.07258.

25. S. Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”.
Dec. 8, 2021. arXiv: 2112.04426 [cs].

26. S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. “Generating
Sentences from a Continuous Space”. May 12, 2016. arXiv: 1511.06349.

https://doi.org/10.1126/sciadv.abb5824
https://doi.org/10.1126/sciadv.abb5824
https://doi.org/10.1126/sciadv.abb5824
https://doi.org/10.1126/sciadv.abb5824
https://doi.org/10.1126/sciadv.abb5824
https://doi.org/10.1126/sciadv.abb5824
https://doi.org/10.1126/sciadv.abb5824
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://www.humanise.ai/blog/ai-writes-poetry/
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://doi.org/10.48550/arXiv.2206.07694
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://www.seattletimes.com/business/local-business/microsoft-is-cutting-dozens-of-msn-news-productionworkers-and-replacing-them-with-artificial-intelligence/
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/b12c2434fce5e58002e1d919f8c7a379f5bb6047/bigbench/benchmark_tasks/keywords_to_tasks.md

References 301

27. L. Boytsov. Oaqa/FlexNeuART. Open Advancement of Question Answering Systems, Apr.
27, 2021. URL: https://github.com/oaqa/FlexNeuART (visited on 05/02/2021).

28. L. Boytsov and Z. Kolter. “Exploring Classic and Neural Lexical Translation Models for
Information Retrieval: Interpretability, Effectiveness, and Efficiency Benefits”. Mar. 17, 2021.
arXiv: 2102.06815.

29. T. B. Brown et al. “Language Models Are Few-Shot Learners”. 2020. arXiv: 2005.14165.
30. B. Buchanan, A. Lohn, M. Musser, and K. Sedova. Truth, Lies, and Automation: How

Language Models Could Change Disinformation. May 1, 2021. URL: https://cset.georgetown.
edu/publication/truth-lies-and-automation/ (visited on 10/13/2021).

31. I. Cachola, K. Lo, A. Cohan, and D. S. Weld. “TLDR: Extreme Summarization of Scientific
Documents”. 2020. arXiv: 2004.15011.

32. G. Carbone and G. Sarti. “ETC-NLG: End-to-end Topic-Conditioned Natural Language
Generation”. Feb. 5, 2021. arXiv: 2008.10875.

33. I. Caswell. Recent Advances in Google Translate. Google AI Blog. June 8, 2020.
URL: http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html (visited on
02/18/2021).

34. A. Celikyilmaz, E. Clark, and J. Gao. “Evaluation of Text Generation: A Survey”. 2020.
arXiv: 2006.14799.

35. A. Chakrabarti. Towards More Intelligent Search: Deep Learning for Query Seman-
tics. May 1, 2018. URL: https://blogs.bing.com/search-quality-insights/May-2018/Towards-
More-Intelligent-Search-Deep-Learning-for-Query-Semantics/ (visited on 01/25/2022).

36. D. Chen. Openqa-Tutorial Danqi/Acl2020. July 5, 2020. URL: https://github.com/danqi/
acl2020-openqa-tutorial (visited on 02/24/2021).

37. D. Chen and W.-t. Yih. “Open-Domain Question Answering”. In: Proc. 58th Annu. Meet.
Assoc. Comput. Linguist. Tutor. Abstr. Online: Association for Computational Linguistics,
July 2020, pp. 34–37. DOI: https://doi.org/10.18653/v1/2020.acl-tutorials.8.

38. H. Chen, R. Shu, H. Takamura, and H. Nakayama. “GraphPlan: Story Generation by Planning
with Event Graph”. 2021. arXiv: 2102.02977.

39. M. Chen et al. “Evaluating Large Language Models Trained on Code”. 2021. arXiv: 2107.
03374.

40. M. Chen. BlenderBot 2.0: An Open Source Chatbot That Builds Long-Term Memory and
Searches the Internet. July 15, 2021. URL: https://parl.ai/projects/blenderbot2/ (visited on
07/24/2021).

41. W. Chen, H. Zha, Z. Chen, W. Xiong, H. Wang, and W. Wang. “Hybridqa: A Dataset of
Multi-Hop Question Answering over Tabular and Textual Data”. 2020. arXiv: 2004.07347.

42. W. Chen et al. “Tabfact: A Large-Scale Dataset for Table-Based Fact Verification”. 2019.
arXiv: 1909.02164.

43. A. Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”. Apr. 5, 2022.
arXiv: 2204.02311 [cs].

44. J. H. Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Nikolaev, and J. Palomaki.
“TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically
Diverse Languages”. In: Trans. Assoc. Comput. Linguist. 8 (2020), pp. 454–470.

45. K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman.
“Training Verifiers to Solve Math Word Problems”. 2021. arXiv: 2110.14168.

46. A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang, and N. Goharian. “A
Discourse-Aware Attention Model for Abstractive Summarization of Long Documents”.
2018. arXiv: 1804.05685.

47. A. D’Ulizia, M. C. Caschera, F. Ferri, and P. Grifoni. “Fake News Detection: A Survey of
Evaluation Datasets”. In: PeerJ Comput. Sci. 7 (June 18, 2021), e518. ISSN: 2376–5992. DOI:
https://doi.org/10.7717/peerj-cs.518.

48. R. Dabre, C. Chu, and A. Kunchukuttan. “A Survey of Multilingual Neural Machine
Translation”. In: ACM Comput. Surv. CSUR 53.5 (2020), pp. 1–38.

https://github.com/oaqa/FlexNeuART
https://github.com/oaqa/FlexNeuART
https://github.com/oaqa/FlexNeuART
https://github.com/oaqa/FlexNeuART
https://github.com/oaqa/FlexNeuART
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
https://cset.georgetown.edu/publication/truth-lies-and-automation/
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
http://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://blogs.bing.com/search-quality-insights/May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics/
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://parl.ai/projects/blenderbot2/
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518
https://doi.org/10.7717/peerj-cs.518

302 6 Foundation Models for Text Generation

49. Z. Dai, Z. Yang, Y. Yang, W. W. Cohen, J. Carbonell, Q. V. Le, and R. Salakhutdinov.
“Transformer-XL: Language Modeling with Longer-Term Dependency, 2019”. In: URL
Httpsopenreview Netforum. 2019.

50. S. Dathathri et al. “Plug and Play Language Models: A Simple Approach to Controlled Text
Generation”. Mar. 3, 2020. arXiv: 1912.02164.

51. J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and M. Cieliebak. “Survey
on Evaluation Methods for Dialogue Systems”. In: Artif Intell Rev 54.1 (Jan. 1, 2021), pp.
755–810. ISSN: 1573–7462. DOI: https://doi.org/10.1007/s10462-020-09866-x.

52. X. Dong, W. Yu, C. Zhu, and M. Jiang. “Injecting Entity Types into Entity-Guided Text
Generation”. 2020. arXiv: 2009.13401.

53. Economist. “Huge “Foundation Models” Are Turbo-Charging AI Progress”. In: The
Economist (June 11, 2022). ISSN: 0013-0613. URL: https://www.economist.com/interactive/
briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress (visited on
06/20/2022).

54. A. R. Fabbri, I. Li, T. She, S. Li, and D. R. Radev. “Multi-News: A Large-Scale Multi-
Document Summarization Dataset and Abstractive Hierarchical Model”. 2019. arXiv:
1906.01749.

55. A. Fan. M2M. GitHub. 2020. URL: https://github.com/pytorch/fairseq (visited on
02/26/2021).

56. A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, and M. Auli. “ELI5: Long Form Question
Answering”. 2019. arXiv: 1907.09190.

57. A. Fan et al. “Beyond English-Centric Multilingual Machine Translation”. 2020. arXiv:
2010.11125.

58. L. Fang, T. Zeng, C. Liu, L. Bo, W. Dong, and C. Chen. “Outline to Story: Fine-grained
Controllable Story Generation from Cascaded Events”. 2021. arXiv: 2101.00822.

59. F. S. Finkbeiner Bernd. “Über die Schulter geschaut: Künstliche Intelligenz in der Softwa-
reentwicklung”. In: iX 2021.8 (July 21, 2021), p. 40. ISSN: 0935-9680. URL: https://www.
heise.de/select/ix/2021/8/2111712093770753246 (visited on 02/19/2022).

60. L. Fröhling and A. Zubiaga. “Feature-Based Detection of Automated Language Models:
Tackling GPT-2, GPT-3 and Grover”. In: PeerJ Comput. Sci. 7 (2021), e443.

61. R. Gabriel et al. “Further Advances in Open Domain Dialog Systems in the Third Alexa Prize
Socialbot Grand Challenge”. In: Alexa Prize Proc. (2020).

62. L. Gao et al. “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”. 2020.
arXiv: 2101.00027.

63. L. Gao and J. Callan. “Unsupervised Corpus Aware Language Model Pre-training for Dense
Passage Retrieval”. Aug. 12, 2021. arXiv: 2108.05540 [cs].

64. Y. Gao, J. Li, M. R. Lyu, and I. King. “Open-Retrieval Conversational Machine Reading”.
Feb. 17, 2021. arXiv: 2102.08633.

65. A. Gatt and E. Krahmer. “Survey of the State of the Art in Natural Language Generation:
Core Tasks, Applications and Evaluation”. In: J. Artif. Intell. Res. 61 (2018), pp. 65–170.

66. S. Gehrmann et al. “The GEM Benchmark: Natural Language Generation, Its Evaluation
and Metrics”. In: Proc. 1st Workshop Nat. Lang. Gener. Eval. Metr. GEM 2021. ACL-GEM-
IJCNLP 2021. Online: Association for Computational Linguistics, Aug. 2021, pp. 96–120.
DOI: https://doi.org/10.18653/v1/2021.gem-1.10.

67. W. H. Gomaa and A. A. Fahmy. “A Survey of Text Similarity Approaches”. In: Int. J. Comput.
Appl. 68.13 (2013), pp. 13–18.

68. I. Goodfellow et al. “Generative Adversarial Nets”. In: Adv. Neural Inf. Process. Syst. 2014,
pp. 2672–2680.

69. B. F. Green Jr, A. K. Wolf, C. Chomsky, and K. Laughery. “Baseball: An Automatic Question-
Answerer”. In: Pap. Present. May 9–11 1961 West. Jt. IRE-AIEE-ACM Comput. Conf. 1961,
pp. 219–224.

70. X. Gu, K. M. Yoo, and J.-W. Ha. “Dialogbert: Discourse-aware Response Generation via
Learning to Recover and Rank Utterances”. In: Proc. AAAI (2021). URL: https://www.aaai.
org/AAAI21Papers/AAAI-10083.GuX.pdf.

https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007/s10462-020-09866-x
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://www.heise.de/select/ix/2021/8/2111712093770753246
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf
https://www.aaai.org/AAAI21Papers/AAAI-10083.GuX.pdf

References 303

71. W. Guan, I. Smetannikov, and M. Tianxing. “Survey on Automatic Text Summarization and
Transformer Models Applicability”. In: 2020 Int. Conf. Control Robot. Intell. Syst. 2020, pp.
176–184.

72. B. Guo, H. Wang, Y. Ding, W. Wu, S. Hao, Y. Sun, and Z. Yu. “Conditional Text Generation
for Harmonious Human-Machine Interaction”. Dec. 24, 2020. arXiv: 1909.03409.

73. R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. “Accelerating
Large-Scale Inference with Anisotropic Vector Quantization”. In: Int. Conf. Mach. Learn.
PMLR, 2020, pp. 3887–3896.

74. V. Gupta, K. Beckh, S. Giesselbach, D. Wegener, and T. Wirtz. “Supporting Verification
of News Articles with Automated Search for Semantically Similar Articles”. 2021. arXiv:
2103.15581.

75. K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. “Realm: Retrieval-augmented
Language Model Pre-Training”. 2020. arXiv: 2002.08909.

76. R. He, A. Ravula, B. Kanagal, and J. Ainslie. “RealFormer: Transformer Likes Residual
Attention”. In: arXiv e-prints (2020), arXiv–2012.

77. X. He. “Parallel Refinements for Lexically Constrained Text Generation with BART”. 2021.
arXiv: 2109.12487.

78. K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P.
Blunsom. “Teaching Machines to Read and Comprehend”. 2015. arXiv: 1506.03340.

79. A. Hern. How Does Google’s AI Chatbot Work – and Could It Be Sentient? | Google |
The Guardian. June 13, 2022. URL: https://www.theguardian.com/technology/2022/jun/13/
howdoes-googles-ai-chatbot-work-and-could-it-be-sentient (visited on 06/24/2022).

80. J. Hilton. WebGPT: Improving the Factual Accuracy of Language Models through
Web Browsing. OpenAI. Dec. 16, 2021. URL: https://openai.com/blog/improving-factual-
accuracy/ (visited on 01/12/2022).

81. O. Honovich, L. Choshen, R. Aharoni, E. Neeman, I. Szpektor, and O. Abend. “$ Q{2}$:
Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation
and Question Answering”. 2021. arXiv: 2104.08202.

82. J.-T. Huang et al. “Embedding-Based Retrieval in Facebook Search”. In: Proc. 26th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min. 2020, pp. 2553–2561.

83. T. Iqbal and S. Qureshi. “The Survey: Text Generation Models in Deep Learning.” In: J. King
Saud Univ.-Comput. Inf. Sci. (2020).

84. G. Izacard and E. Grave. “Leveraging Passage Retrieval with Generative Models for
Open Domain Question Answering”. In: Proc. 16th Conf. Eur. Chapter Assoc. Comput.
Linguist. Main Vol. EACL 2021. Online: Association for Computational Linguistics, Apr.
1, 2021, pp. 874–880. URL: https://www.aclweb.org/anthology/2021.eacl-main.74 (visited on
06/16/2021).

85. G. Jawahar, M. Abdul-Mageed, and L. V. S. Lakshmanan. “Automatic Detection of Machine
Generated Text: A Critical Survey”. Nov. 2, 2020. arXiv: 2011.01314 [cs].

86. H. Ji, P. Ke, S. Huang, F. Wei, X. Zhu, and M. Huang. “Language Generation with Multi-Hop
Reasoning on Commonsense Knowledge Graph”. 2020. arXiv: 2009.11692.

87. J.-Y. Jiang, M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M. Najork. “Semantic Text
Matching for Long-Form Documents”. In: World Wide Web Conf. 2019, pp. 795–806.

88. D. Jin, Z. Jin, Z. Hu, O. Vechtomova, and R. Mihalcea. “Deep Learning for Text Style
Transfer: A Survey”. In: Comput. Linguist. (2021), pp. 1–51.

89. D. Jin, Z. Jin, and R. Mihalcea. “Deep Learning for Text Attribute Transfer: A Survey”. 2020.
arXiv: 2011.00416.

90. D. Jin, Z. Jin, J. T. Zhou, L. Orii, and P. Szolovits. “Hooks in the Headline: Learning to
Generate Headlines with Controlled Styles”. 2020. arXiv: 2004.01980.

91. J. Johnson, M. Douze, and H. Jégou. “Billion-Scale Similarity Search with Gpus”. In: IEEE
Trans. Big Data (2019).

92. M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. “Triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension”. 2017. arXiv: 1705.03551.

93. D. Ju. Learning from Data in the Mixed Adversarial Non-Adversarial Case: Finding the
Helpers and Ignoring the Trolls. Meta Research, Aug. 7, 2022. URL: https://github.com/

https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://www.theguardian.com/technology/2022/jun/13/howdoes-googles-ai-chatbot-work-and-could-it-be-sentient
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://openai.com/blog/improving-factual-accuracy/
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf

304 6 Foundation Models for Text Generation

facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/
trollhunting/finding_the_helpers.pdf (visited on 08/07/2022).

94. V. Karpukhin, B. Oguz, S. Min, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. “Dense Passage
Retrieval for Open-Domain Question Answering”. 2020. arXiv: 2004.04906.

95. W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed. “Automatic Text
Summarization: A Comprehensive Survey”. In: Expert Syst. Appl. 165 (2021), p. 113679.

96. N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. “CTRL: A Conditional
Transformer Language Model for Controllable Generation”. Sept. 20, 2019. arXiv: 1909.
05858.

97. M. Khalifa, H. Elsahar, and M. Dymetman. “A Distributional Approach to Controlled Text
Generation”. Dec. 21, 2020. arXiv: 2012.11635.

98. T. Khan, A. Michalas, and A. Akhunzada. “Fake News Outbreak 2021: Can We Stop the Viral
Spread?” In: Journal of Network and Computer Applications 190 (Sept. 15, 2021), p. 103112.
ISSN: 1084-8045. DOI: https://doi.org/10.1016/j.jnca.2021.103112.

99. O. Khattab and M. Zaharia. “Colbert: Efficient and Effective Passage Search via Contextu-
alized Late Interaction over Bert”. In: Proc. 43rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.
2020, pp. 39–48.

100. D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, P. Ringshia, and D. Testuggine. “The
Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes”. In: Adv. Neural
Inf. Process. Syst. 33 (2020), pp. 2611–2624.

101. B. Kim, H. Kim, and G. Kim. “Abstractive Summarization of Reddit Posts with Multi- Level
Memory Networks”. 2018. arXiv: 1811.00783.

102. M. Komeili, K. Shuster, and J. Weston. “Internet-Augmented Dialogue Generation”. July 15,
2021. arXiv: 2107.07566.

103. M. Komeili, K. Shuster, and J. Weston. Sea. 2021. URL: https://parl.ai/projects/sea/ (visited
on 02/25/2022).

104. R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi. “Text Generation
from Knowledge Graphs with Graph Transformers”. 2019. arXiv: 1904.02342.

105. B. Krause, A. D. Gotmare, B. McCann, N. S. Keskar, S. Joty, R. Socher, and N. F. Rajani.
“Gedi: Generative Discriminator Guided Sequence Generation”. 2020. arXiv: 2009.06367.

106. K. Krishna, A. Roy, and M. Iyyer. “Hurdles to Progress in Long-form Question Answering”.
2021. arXiv: 2103.06332.

107. T. Kudo and J. Richardson. “Sentencepiece: A Simple and Language Independent Subword
Tokenizer and Detokenizer for Neural Text Processing”. 2018. arXiv: 1808.06226.

108. M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. “From Word Embeddings to Document
Distances”. In: Int. Conf. Mach. Learn. PMLR, 2015, pp. 957–966.

109. T. Kwiatkowski et al. “Natural Questions: A Benchmark for Question Answering Research”.
In: Trans. Assoc. Comput. Linguist. 7 (2019), pp. 453–466.

110. S. Läubli, R. Sennrich, and M. Volk. “Has Machine Translation Achieved Human Parity? A
Case for Document-Level Evaluation”. 2018. arXiv: 1808.07048.

111. J. Lee, M. Shim, S. Son, Y. Kim, C. Park, and H. Lim. “Empirical Study on BlenderBot 2.0
Errors Analysis in Terms of Model, Data and User-Centric Approach”. Jan. 10, 2022. arXiv:
2201.03239 [cs].

112. B. Lemoine. Is LaMDA Sentient? – An Interview. Medium. June 11, 2022. URL:
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917 (visited
on 06/24/2022).

113. D. Lepikhin et al. “Gshard: Scaling Giant Models with Conditional Computation and
Automatic Sharding”. 2020. arXiv: 2006.16668.

114. P. Lewis et al. “Retrieval-Augmented Generation for Knowledge-Intensive Nlp Tasks”. Dec.
7, 2020. arXiv: 2005.11401.

115. C. Li, X. Gao, Y. Li, B. Peng, X. Li, Y. Zhang, and J. Gao. “Optimus: Organizing Sentences
via Pre-Trained Modeling of a Latent Space”. 2020. arXiv: 2004.04092.

116. J. Li, T. Tang, W. X. Zhao, and J.-R. Wen. “Pretrained Language Models for Text Generation:
A Survey”. May 24, 2021. arXiv: 2105.10311.

https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://github.com/facebookresearch/ParlAI/blob/f9da661cf05496c50d18d8685a228faa574373ce/projects/trollhunting/finding_the_helpers.pdf
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://doi.org/10.1016/j.jnca.2021.103112
https://parl.ai/projects/sea/
https://parl.ai/projects/sea/
https://parl.ai/projects/sea/
https://parl.ai/projects/sea/
https://parl.ai/projects/sea/
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917

References 305

117. X. Li, Y. Xia, X. Long, Z. Li, and S. Li. “Exploring Text-Transformers in Aaai 2021 Shared
Task: Covid-19 Fake News Detection in English”. 2021. arXiv: 2101.02359.

118. Y. Li, C. Li, Y. Zhang, X. Li, G. Zheng, L. Carin, and J. Gao. “Complementary Auxiliary
Classifiers for Label-Conditional Text Generation”. In: Proc. AAAI Conf. Artif. Intell. Vol. 34.
05. 2020, pp. 8303–8310.

119. Z. Li, Z. Li, J. Zhang, Y. Feng, and J. Zhou. “WeChat AI’s Submission for DSTC9 Interactive
Dialogue Evaluation Track”. 2021. arXiv: 2101.07947.

120. Z. Li, J. Zhang, Z. Fei, Y. Feng, and J. Zhou. “Conversations Are Not Flat: Modeling the
Dynamic Information Flow across Dialogue Utterances”. 2021. arXiv: 2106.02227.

121. O. Lieber, O. Sharir, B. Lentz, and Y. Shoham. “Jurassic-1: Technical Details and Evalua-
tion”. In: (2021), p. 9. URL: https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/
61138924626a6981ee09caf6_jurassic_tech_paper.pdf.

122. M. Lili and O. Vechtomova. Stylized Text Generation - ACL 2020 Tutorial. 2020. URL: https://
sites.google.com/view/2020-stylized-text-generation/tutorial.

123. J. Lin, R. Nogueira, and A. Yates. “Pretrained Transformers for Text Ranking: Bert and
Beyond”. 2020. arXiv: 2010.06467.

124. J. Lin, R. Nogueira, and A. Yates. “Pretrained Transformers for Text Ranking: Bert and
Beyond”. In: Synth. Lect. Hum. Lang. Technol. 14.4 (2021), pp. 1–325.

125. S. Lin, J. Hilton, and O. Evans. “TruthfulQA: Measuring How Models Mimic Human
Falsehoods”. 2021. arXiv: 2109.07958.

126. Z. Lin, A. Madotto, Y. Bang, and P. Fung. “The Adapter-Bot: All-In-One Controllable
Conversational Model”. In: (2021).

127. Z. Lin and M. Riedl. “Plug-and-Blend: A Framework for Controllable Story Generation with
Blended Control Codes”. 2021. arXiv: 2104.04039.

128. P. J. Liu and Y. Zhao. PEGASUS: A State-of-the-Art Model for Abstractive Text Summariza-
tion. Google AI Blog. June 9, 2020. URL: http://ai.googleblog.com/2020/06/pegasusstate-of-
art-model-for.html (visited on 02/18/2021).

129. S. Liu et al. “Towards Emotional Support Dialog Systems”. June 2, 2021. arXiv: 2106. 01144
[cs]. 296 6 Foundation Models for Text Generation

130. X. Liu, K. Duh, L. Liu, and J. Gao. “Very Deep Transformers for Neural Machine
Translation”. 2020. arXiv: 2008.07772.

131. Y. Liu, P. Liu, D. Radev, and G. Neubig. “BRIO: Bringing Order to Abstractive Summariza-
tion”. 2022. arXiv: 2203.16804.

132. E. Loginova, S. Varanasi, and G. Neumann. “Towards End-to-End Multilingual Question
Answering”. In: Inf. Syst. Front. 23.1 (2021), pp. 227–241.

133. S. Longpre, Y. Lu, and J. Daiber. “MKQA: A Linguistically Diverse Benchmark for
Multilingual Open Domain Question Answering”. In: Trans. Assoc. Comput. Linguist. 9
(2021), pp. 1389–1406.

134. R. Luscombe. “Google Engineer Put on Leave after Saying AI Chatbot Has
Become Sentient”. In: The Guardian. Technology (June 12, 2022). ISSN: 0261-
3077. URL: https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-
sentient-blake-lemoine (visited on 06/24/2022).

135. C. Ma, W. E. Zhang, M. Guo, H. Wang, and Q. Z. Sheng. “Multi-Document Summarization
via Deep Learning Techniques: A Survey”. 2020. arXiv: 2011.04843.

136. X. Ma, K. Sun, R. Pradeep, and J. Lin. “A Replication Study of Dense Passage Retriever”.
2021. arXiv: 2104.05740.

137. S. MacAvaney, A. Yates, A. Cohan, and N. Goharian. “CEDR: Contextualized Embeddings
for Document Ranking”. In: Proc. 42nd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. 2019, pp.
1101–1104.

138. J. Maillard, V. Karpukhin, F. Petroni, W.-t. Yih, B. Oğuz, V. Stoyanov, and G. Ghosh. “Multi-
Task Retrieval for Knowledge-Intensive Tasks”. 2021. arXiv: 2101.00117.

139. Y. Mao, P. He, X. Liu, Y. Shen, J. Gao, J. Han, and W. Chen. “Generation-Augmented
Retrieval for Open-Domain Question Answering”. 2020. arXiv: 2009.08553.

https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
https://sites.google.com/view/2020-stylized-text-generation/tutorial
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
http://ai.googleblog.com/2020/06/pegasusstate-of-art-model-for.html
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine
https://www.theguardian.com/technology/2022/jun/12/google-engineer-ai-bot-sentient-blake-lemoine

306 6 Foundation Models for Text Generation

140. marco. MS MARCO Passage Ranking Leaderboard. Mar. 4, 2021. URL: https://microsoft.
github.io/msmarco/leaderboard/ (visited on 05/02/2021).

141. S. Maruf, F. Saleh, and G. Haffari. “A Survey on Document-level Neural Machine Translation:
Methods and Evaluation”. In: ACM Comput. Surv. 54.2 (Mar. 5, 2021), 45:1–45:36. ISSN:
0360-0300. DOI: https://doi.org/10.1145/3441691.

142. S. Merity, C. Xiong, J. Bradbury, and R. Socher. “Pointer Sentinel Mixture Models”. 2016.
arXiv: 1609.07843.

143. D. Metzler, Y. Tay, D. Bahri, and M. Najork. “Rethinking Search: Making Experts out of
Dilettantes”. May 5, 2021. arXiv: 2105.02274 [cs].

144. R. Mihalcea and P. Tarau. “Textrank: Bringing Order into Text”. In: Proc. 2004 Conf. Empir.
Methods Nat. Lang. Process. 2004, pp. 404–411.

145. S. Min, D. Chen, L. Zettlemoyer, and H. Hajishirzi. “Knowledge Guided Text Retrieval and
Reading for Open Domain Question Answering”. Apr. 13, 2020. arXiv: 1911.03868.

146. S. Min, J. Michael, H. Hajishirzi, and L. Zettlemoyer. “AmbigQA: Answering Ambiguous
Open-Domain Questions”. 2020. arXiv: 2004.10645.

147. S. Min et al. “NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons
Learned”. 2021. arXiv: 2101.00133.

148. F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein. “Fake News Detection on
Social Media Using Geometric Deep Learning”. 2019. arXiv: 1902.06673.

149. R. Nakano et al. “WebGPT: Browser-assisted Question-Answering with Human Feedback”.
2021. arXiv: 2112.09332.

150. C. Napoles, M. R. Gormley, and B. Van Durme. “Annotated Gigaword”. In: Proc. Jt.
Workshop Autom. Knowl. Base Constr. Web-Scale Knowl. Extr. AKBC-WEKEX. 2021, pp.
95–100.

151. S. Narayan, S. B. Cohen, and M. Lapata. “Don’t Give Me the Details, Just the Summary!
Topic-Aware Convolutional Neural Networks for Extreme Summarization”. In: Proc. 2018
Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018. Brussels, Belgium: Association
for Computational Linguistics, Oct. 2018, pp. 1797–1807. DOI: https://doi.org/10.18653/v1/
D18-1206.

152. P. Nayak. “Understanding Searches Better than Ever Before”. In: Google Blog Oct. 25 (2019).
153. T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. “MS

MARCO: A Human Generated Machine Reading Comprehension Dataset”. In: CoCo NIPS.
2016.

154. R. Nogueira, Z. Jiang, and J. Lin. “Document Ranking with a Pretrained Sequence-to-
Sequence Model”. 2020. arXiv: 2003.06713.

155. R. Nogueira, W. Yang, K. Cho, and J. Lin. “Multi-Stage Document Ranking with Bert”. 2019.
arXiv: 1910.14424.

156. R. Nogueira, W. Yang, J. Lin, and K. Cho. “Document Expansion by Query Prediction”. 2019.
arXiv: 1904.08375.

157. J. Novet. Microsoft and OpenAI Have a New A.I. Tool That Will Give Coding Suggestions
to Software Developers. CNBC. June 29, 2021. URL: https://www.cnbc.com/2021/06/29/
microsoft-github-copilot-ai-offers-coding-suggestions.html (visited on 02/19/2022).

158. B. Oguz et al. “Unified Open-Domain Question Answering with Structured and Unstructured
Knowledge”. 2020. arXiv: 2012.14610.

159. OpenAI. Example Prompts OpenAI API. Feb. 19, 2022. URL: https://beta.openai.com (visited
on 02/19/2022).

160. OpenAi. Prompt Examples for GPT-3. Sept. 3, 2021. URL: https://beta.openai.com/examples
(visited on 09/03/2021).

161. E. Orbach and Y. Goldberg. “Facts2Story: Controlling Text Generation by Key Facts”. 2020.
arXiv: 2012.04332.

162. L. Ouyang et al. “Training Language Models to Follow Instructions with Human Feedback”.
Jan. 31, 2022. arXiv: 2203.02155.

163. Y. M. Palenzuela. Awesome GPT-3. Feb. 19, 2022. URL: https://github.com/elyase/awesome-
gpt3 (visited on 02/19/2022).

https://microsoft.github.io/msmarco/leaderboard/
https://microsoft.github.io/msmarco/leaderboard/
https://microsoft.github.io/msmarco/leaderboard/
https://microsoft.github.io/msmarco/leaderboard/
https://microsoft.github.io/msmarco/leaderboard/
https://microsoft.github.io/msmarco/leaderboard/
https://doi.org/10.1145/3441691
https://doi.org/10.1145/3441691
https://doi.org/10.1145/3441691
https://doi.org/10.1145/3441691
https://doi.org/10.1145/3441691
https://doi.org/10.1145/3441691
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples
https://github.com/elyase/awesome-gpt3
https://github.com/elyase/awesome-gpt3
https://github.com/elyase/awesome-gpt3
https://github.com/elyase/awesome-gpt3
https://github.com/elyase/awesome-gpt3
https://github.com/elyase/awesome-gpt3

References 307

164. P. Papalampidi, K. Cao, and T. Kocisky. “Towards Coherent and Consistent Use of Entities in
Narrative Generation”. Feb. 3, 2022. arXiv: 2202.01709 [cs].

165. D. Paperno et al. “The LAMBADA Dataset: Word Prediction Requiring a Broad Discourse
Context”. June 20, 2016. arXiv: 1606.06031 [cs].

166. T. Parshakova, J.-M. Andreoli, and M. Dymetman. “Distributional Reinforcement Learning
for Energy-Based Sequential Models”. Dec. 18, 2019. arXiv: 1912.08517.

167. N. Peng, M. Ghazvininejad, J. May, and K. Knight. “Towards Controllable Story Generation”.
In: Proc. First Workshop Storytell. 2018, pp. 43–49.

168. X. Peng, S. Li, S. Wiegreffe, and M. Riedl. “Inferring the Reader: Guiding Automated Story
Generation with Commonsense Reasoning”. 2021. arXiv: 2105.01311.

169. M. Ponza, L. Del Corro, and G. Weikum. “Facts That Matter”. In: Proc. 2018 Conf. Empir.
Methods Nat. Lang. Process. 2018, pp. 1043–1048.

170. S. Prabhumoye, A. W. Black, and R. Salakhutdinov. “Exploring Controllable Text Generation
Techniques”. 2020. arXiv: 2005.01822.

171. QAngaroo. WikiHop Leaderboard. Mar. 2, 2021. URL: http://qangaroo.cs.ucl.ac.uk/
leaderboard.html (visited on 03/02/2021).

172. P. Racsko. “Fake News Identification”. In: Soc. Econ. -1 (aop Nov. 11, 2021). ISSN: 1588-
9726, 1588-970X. DOI: https://doi.org/10.1556/204.2021.00020.

173. A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and I. Sutskever. “Better
Language Models and Their Implications”. In: OpenAI Blog (2019). URL: https://openai.com/
blog/better-language-models.

174. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language Models Are
Unsupervised Multitask Learners”. In: OpenAI blog 1.8 (2019), p. 9.

175. J. W. Rae et al. “Scaling Language Models: Methods, Analysis & Insights from Training
Gopher”. In: ArXiv Prepr. ArXiv211211446 (Dec. 8, 2021), p. 118.

176. J. W. Rae, G. Irving, and L. Weidinger. Language modelling at scale: Gopher, ethical
considerations, and retrieval. Deepmind. Dec. 8, 2021. URL: https://deepmind.com/blog/
article/language-modelling-at-scale (visited on 12/16/2021).

177. C. Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. In: J. Mach. Learn. Res. 21.140 (2020), pp. 1–67.

178. P. Rajpurkar. SQUAD: The Stanford Question Answering Dataset. Mar. 3, 2021. URL: https://
rajpurkar.github.io/SQuAD-explorer/ (visited on 03/03/2021).

179. P. Rajpurkar, R. Jia, and P. Liang. “Know What You Don’t Know: Unanswerable Questions
for SQuAD”. 2018. arXiv: 1806.03822.

180. S. Rao and J. Tetreault. “Gyafc Dataset: Corpus, Benchmarks and Metrics for Formality Style
Transfer”. 2018. arXiv: 1803.06535.

181. H. Rashkin, A. Celikyilmaz, Y. Choi, and J. Gao. “PlotMachines: Outline-Conditioned
Generation with Dynamic Plot State Tracking”. Oct. 9, 2020. arXiv: 2004.14967 [cs].

182. E. Reif, D. Ippolito, A. Yuan, A. Coenen, C. Callison-Burch, and J. Wei. “A Recipe for
Arbitrary Text Style Transfer with Large Language Models”. 2021. arXiv: 2109.03910.

183. N. Reimers and I. Gurevych. “Sentence-Bert: Sentence Embeddings Using Siamese Bert-
Networks”. 2019. arXiv: 1908.10084.

184. R. Ren et al. “RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage
Re-ranking”. 2021. arXiv: 2110.07367.

185. L. F. Ribeiro, M. Schmitt, H. Schütze, and I. Gurevych. “Investigating Pretrained Language
Models for Graph-to-Text Generation”. 2020. arXiv: 2007.08426.

186. S. Robertson and H. Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond.
Now Publishers Inc, 2009.

187. T. Rohde, X. Wu, and Y. Liu. “Hierarchical Learning for Generation with Long Source
Sequences”. 2021. arXiv: 2104.07545.

188. S. Roller, E. Dinan, and J. Weston. A state-of-the-art open source chatbot. Apr. 29, 2020. URL:
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/ (visited on 11/21/2020).

189. S. Roller et al. “Open-Domain Conversational Agents: Current Progress, Open Problems, and
Future Directions”. 2020. arXiv: 2006.12442.

http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
http://qangaroo.cs.ucl.ac.uk/leaderboard.html
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://doi.org/10.1556/204.2021.00020
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://deepmind.com/blog/article/language-modelling-at-scale
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/
https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

308 6 Foundation Models for Text Generation

190. S. Roller et al. “Recipes for Building an Open-Domain Chatbot”. 2020. arXiv: 2004.13637.
191. S. Rose, D. Engel, N. Cramer, and W. Cowley. “Automatic Keyword Extraction from

Individual Documents”. In: Text Min. Appl. Theory 1 (2010), pp. 1–20.
192. S. Ruder. Multi-Domain Multilingual Question Answering. Sebastian Ruder. Dec. 6, 2021.

URL: https://ruder.io/multi-qa-tutorial/ (visited on 02/10/2022).
193. S. Ruder and A. Sil. “Multi-Domain Multilingual Question Answering”. In: Proc. 2021 Conf.

Empir. Methods Nat. Lang. Process. Tutor. Abstr. Punta Cana, Dominican Republic & Online:
Association for Computational Linguistics, Nov. 2021, pp. 17–21. URL: https://aclanthology.
org/2021.emnlp-tutorials.4 (visited on 11/24/2021).

194. D. S. Sachan, S. Reddy, W. Hamilton, C. Dyer, and D. Yogatama. “End-to-End Training of
Multi-Document Reader and Retriever for Open-Domain Question Answering”. June 9, 2021.
arXiv: 2106.05346.

195. A. B. Sai, A. K. Mohankumar, and M. M. Khapra. “A Survey of Evaluation Metrics Used for
NLG Systems”. 2020. arXiv: 2008.12009.

196. K. Sakaguchi, C. Bhagavatula, R. L. Bras, N. Tandon, P. Clark, and Y. Choi. “Proscript:
Partially Ordered Scripts Generation via Pre-Trained Language Models”. 2021. arXiv:
2104.08251.

197. B. Schwartz. Google: BERT Now Used on Almost Every English Query. Search
Engine Land. Oct. 15, 2020. URL: https://searchengineland.com/google-bert-used-on-
almost-everyenglish-query-342193 (visited on 01/24/2021).

198. T. Scialom, P.-A. Dray, S. Lamprier, B. Piwowarski, and J. Staiano. “MLSUM: The
Multilingual Summarization Corpus”. 2020. arXiv: 2004.14900.

199. P. Sen and A. Saffari. “What Do Models Learn from Question Answering Datasets?” 2020.
arXiv: 2004.03490.

200. R. Sennrich, B. Haddow, and A. Birch. “Improving Neural Machine Translation Models with
Monolingual Data”. 2015. arXiv: 1511.06709.

201. R. Sepúlveda-Torres, M. Vicente, E. Saquete, E. Lloret, and M. Palomar. “Exploring
Summarization to Enhance Headline Stance Detection”. In: Nat. Lang. Process. Inf. Syst. Ed.
by E. Métais, F. Meziane, H. Horacek, and E. Kapetanios. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2021, pp. 243–254. ISBN: 978-3-030-80599-9. DOI:
https://doi.org/10.1007/978-3-030-80599-9_22.

202. T. Sherborne and M. Lapata. “Zero-Shot Cross-lingual Semantic Parsing”. 2021. arXiv:
2104.07554.

203. P. Shi, R. Zhang, H. Bai, and J. Lin. “Cross-Lingual Training with Dense Retrieval for
Document Retrieval”. Sept. 3, 2021. arXiv: 2109.01628 [cs].

204. K. Shuster, M. Komeili, L. Adolphs, S. Roller, A. Szlam, and J. Weston. Language
Models That Seek for Knowledge: Modular Search & Generation for Dialogue and Prompt
Completion. Mar. 29, 2022. arXiv: 2203.13224 [cs].

205. K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston. “Retrieval Augmentation Reduces
Hallucination in Conversation”. 2021. arXiv: 2104.07567.

206. K. Shuster and J. Xu. Blender BlenderBot 3: A 175B parameter, publicly available chatbot
that improves its skills and safety over time. Aug. 5, 2022. URL: https://ai.facebook.com/
blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-
andsafety-over-time/ (visited on 08/07/2022).

207. H. Singh, G. Verma, A. Garimella, and B. V. Srinivasan. “DRAG: Director-Generator
Language Modelling Framework for Non-Parallel Author Stylized Rewriting”. 2021. arXiv:
2101.11836.

208. C. Song, N. Ning, Y. Zhang, and B. Wu. “A Multimodal Fake News Detection Model Based
on Crossmodal Attention Residual and Multichannel Convolutional Neural Networks”. In:
Inf. Process. Manag. 58.1 (2021), p. 102437.

209. Sserdoubleh. Large-Scale Open Domain KNOwledge Grounded conVERsation System Based
on PaddlePaddle. PaddlePaddle, Apr. 26, 2021. URL: https://github.com/PaddlePaddle/
Knover (visited on 05/08/2021).

https://ruder.io/multi-qa-tutorial/
https://ruder.io/multi-qa-tutorial/
https://ruder.io/multi-qa-tutorial/
https://ruder.io/multi-qa-tutorial/
https://ruder.io/multi-qa-tutorial/
https://ruder.io/multi-qa-tutorial/
https://aclanthology.org/2021.emnlp-tutorials.4
https://aclanthology.org/2021.emnlp-tutorials.4
https://aclanthology.org/2021.emnlp-tutorials.4
https://aclanthology.org/2021.emnlp-tutorials.4
https://aclanthology.org/2021.emnlp-tutorials.4
https://aclanthology.org/2021.emnlp-tutorials.4
https://aclanthology.org/2021.emnlp-tutorials.4
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://searchengineland.com/google-bert-used-on-almost-everyenglish-query-342193
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://doi.org/10.1007/978-3-030-80599-9_22
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-andsafety-over-time/
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover
https://github.com/PaddlePaddle/Knover

References 309

210. M. Stern, W. Chan, J. Kiros, and J. Uszkoreit. “Insertion Transformer: Flexible Sequence
Generation via Insertion Operations”. In: Int. Conf. Mach. Learn. PMLR, 2019, pp. 5976–
5985.

211. N. Stiennon et al. “Learning to Summarize with Human Feedback”. In: Adv. Neural Inf.
Process. Syst. 33 (Feb. 15, 2022), pp. 3008–3021.

212. B. Sun and K. Li. “Neural Dialogue Generation Methods in Open Domain: A Survey”. In:
Nat. Lang. Process. Res. 1.3–4 (2021), pp. 56–70.

213. P. Sun. Announcing ScaNN: Efficient Vector Similarity Search. Google AI Blog. July 28, 2020.
URL: http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html (visited on
02/18/2021).

214. X. Sun, C. Fan, Z. Sun, Y. Meng, F. Wu, and J. Li. “Summarize, Outline, and Elaborate: Long-
Text Generation via Hierarchical Supervision from Extractive Summaries”. 2020. arXiv:
2010.07074.

215. I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with Neural
Networks”. In: Adv. Neural Inf. Process. Syst. 2014, pp. 3104–3112.

216. A. A. Syed, F. L. Gaol, and T. Matsuo. “A Survey of the State-of-the-Art Models in Neural
Abstractive Text Summarization”. In: IEEE Access 9 (2021), pp. 13248–13265.

217. B. Syed, G. Verma, B. V. Srinivasan, A. Natarajan, and V. Varma. “Adapting Language
Models for Non-Parallel Author-Stylized Rewriting”. In: Proc. AAAI Conf. Artif. Intell. Vol.
34. 05. 2020, pp. 9008–9015.

218. O. Tafjord and P. Clark. “General-Purpose Question-Answering with Macaw”. Sept. 6, 2021.
arXiv: 2109.02593 [cs].

219. B. Tan, Z. Yang, M. Al-Shedivat, E. Xing, and Z. Hu. “Progressive Generation of Long Text
with Pretrained Language Models”. In: Proc. 2021 Conf. North Am. Chapter Assoc. Comput.
Linguist. Hum. Lang. Technol. 2021, pp. 4313–4324.

220. B. Tan, Z. Yang, M. AI-Shedivat, E. P. Xing, and Z. Hu. “Progressive Generation of Long
Text”. 2020. arXiv: 2006.15720.

221. N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych. “BEIR: A Heterogenous
Benchmark for Zero-shot Evaluation of Information Retrieval Models”. Sept. 7, 2021. arXiv:
2104.08663.

222. R. Thoppilan et al. “LaMDA: Language Models for Dialog Applications”. Feb. 10, 2022.
arXiv: 2201.08239 [cs].

223. A. Toral. “Reassessing Claims of Human Parity and Super-Human Performance in Machine
Translation at WMT 2019”. 2020. arXiv: 2005.05738.

224. C. Tran, S. Bhosale, J. Cross, P. Koehn, S. Edunov, and A. Fan. “Facebook AI WMT21 News
Translation Task Submission”. 2021. arXiv: 2108.03265.

225. C. Tran, J. Cross, S. Bhosale, and A. Fan. The first-ever multilingual model to win WMT,
beating out bilingual models. Nov. 10, 2021. URL: https://ai.facebook.com/blog/the-firstever-
multilingual-model-to-win-wmt-beating-out-bilingual-models/ (visited on 02/08/2022).

226. triviaQA. Papers with Code - TriviaQA Benchmark (Question Answering). June 27,
2022. URL: https://paperswithcode.com/sota/question-answering-on-triviaqa (visited on
06/27/2022).

227. L. Vailshery. Number of Digital Voice Assistants in Use Worldwide 2019–2024. Jan. 22, 2021.
URL: https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/.

228. A. Vaswani et al. “Attention Is All You Need”. In: Adv. Neural Inf. Process. Syst. 2017, pp.
5998–6008.

229. S. J. Vaughan-Nichols. GitHub’s Copilot Faces First Open Source Copyright Lawsuit. Nov.
11, 2022. URL: https://www.theregister.com/2022/11/11/githubs_copilot_opinion/ (visited on
12/17/2022).

230. M. Völske, M. Potthast, S. Syed, and B. Stein. “TL;DR: Mining Reddit to Learn Automatic
Summarization”. In: Proc. Workshop New Front. Summ. Copenhagen, Denmark: Association
for Computational Linguistics, Sept. 2017, pp. 59–63. DOI: https://doi.org/10.18653/v1/W17-
4508.

http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://ai.facebook.com/blog/the-firstever-multilingual-model-to-win-wmt-beating-out-bilingual-models/
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-inuse/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://www.theregister.com/2022/11/11/githubs_copilot_opinion/
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508
https://doi.org/10.18653/v1/W17-4508

310 6 Foundation Models for Text Generation

231. J. Weizenbaum. “ELIZA—a Computer Program for the Study of Natural Language Commu-
nication between Man and Machine”. In: Commun. ACM 9.1 (1966), pp. 36–45.

232. J. Welbl, P. Stenetorp, and S. Riedel. “Constructing Datasets for Multi-Hop Reading
Comprehension across Documents”. In: Trans. Assoc. Comput. Linguist. 6 (2018), pp. 287–
302.

233. J. Weston and K. Shuster. Blender Bot 2.0: An open source chatbot that builds long-term
memory and searches the internet. July 16, 2021. URL: https://ai.facebook.com/blog/blender-
bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
(visited on 02/25/2022).

234. Wikipedia. Narrative. In: Wikipedia. Apr. 10, 2021. URL: https://en.wikipedia.org/w/index.
php?title=Narrative&oldid=1017065535 (visited on 04/21/2021).

235. M. Woolf. How To Make Custom AI-Generated Text With GPT-2. Max Woolf’s Blog. Sept. 4,
2019. URL: https://minimaxir.com/2019/09/howto-gpt2/ (visited on 04/29/2021).

236. J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, and P. Christiano.
“Recursively Summarizing Books with Human Feedback”. 2021. arXiv: 2109.10862.

237. W. Xiao, I. Beltagy, G. Carenini, and A. Cohan. “Primer: Pyramid-based Masked Sentence
Pre-Training for Multi-Document Summarization”. 2021. arXiv: 2110.08499.

238. L. Xiong et al. “Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text
Retrieval”. 2020. arXiv: 2007.00808.

239. W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang. “Improving Question Answering over
Incomplete Kbs with Knowledge-Aware Reader”. 2019. arXiv: 1905.07098.

240. F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn. “A Systematic Evaluation of Large
Language Models of Code”. In: Proc. 6th ACM SIGPLAN Int. Symp. Mach. Program. 2022,
pp. 1–10.

241. J. Xu, D. Ju, M. Li, Y.-L. Boureau, J. Weston, and E. Dinan. “Recipes for Safety in Open-
Domain Chatbots”. 2020. arXiv: 2010.07079.

242. J. Xu, A. Szlam, and J. Weston. “Beyond Goldfish Memory: Long-Term Open-Domain
Conversation”. July 15, 2021. arXiv: 2107.07567.

243. P. Xu, M. Patwary, M. Shoeybi, R. Puri, P. Fung, A. Anandkumar, and B. Catanzaro.
“MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using
Large-Scale Language Models”. Oct. 2, 2020. arXiv: 2010.00840 [cs]. 6.6 Dialog Systems
301

244. Y. Xu et al. “GSPMD: General and Scalable Parallelization for ML Computation Graphs”.
Dec. 23, 2021. arXiv: 2105.04663 [cs].

245. L. Xue et al. “Byt5: Towards a Token-Free Future with Pre-Trained Byte-to-Byte Models”.
In: Trans. Assoc. Comput. Linguist. 10 (2022), pp. 291–306.

246. L. Xue et al. “mT5: A Massively Multilingual Pre-Trained Text-to-Text Transformer”. 2020.
arXiv: 2010.11934.

247. L. Yang, M. Zhang, C. Li, M. Bendersky, and M. Najork. “Beyond 512 Tokens: Siamese
Multi-Depth Transformer-Based Hierarchical Encoder for Long-Form Document Matching”.
In: Proc. 29th ACM Int. Conf. Inf. Knowl. Manag. 2020, pp. 1725–1734.

248. S. Yang, Y. Wang, and X. Chu. “A Survey of Deep Learning Techniques for Neural Machine
Translation”. 2020. arXiv: 2002.07526.

249. Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning.
“Hotpotqa: A Dataset for Diverse, Explainable Multi-Hop Question Answering”. 2018. arXiv:
1809.09600.

250. X. Yi, Z. Liu, W. Li, and M. Sun. “Text Style Transfer via Learning Style Instance Supported
Latent Space”. In: IJCAI, 2020.

251. W. Yu, C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, and M. Jiang. “A Survey of Knowledge-
Enhanced Text Generation”. July 5, 2021. arXiv: 2010.04389.

252. C. Yuan, Q. Ma, W. Zhou, J. Han, and S. Hu. “Early Detection of Fake News by Utilizing the
Credibility of News, Publishers, and Users Based on Weakly Supervised Learning”. 2020.
arXiv: 2012.04233.

https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://en.wikipedia.org/w/index.php?title=Narrative&oldid=1017065535
https://minimaxir.com/2019/09/howto-gpt2/
https://minimaxir.com/2019/09/howto-gpt2/
https://minimaxir.com/2019/09/howto-gpt2/
https://minimaxir.com/2019/09/howto-gpt2/
https://minimaxir.com/2019/09/howto-gpt2/
https://minimaxir.com/2019/09/howto-gpt2/
https://minimaxir.com/2019/09/howto-gpt2/

References 311

253. M. Zaheer et al. “Big Bird: Transformers for Longer Sequences”. In: Adv. Neural Inf. Process.
Syst. 33 (Jan. 8, 2021).

254. M. Zaib, W. E. Zhang, Q. Z. Sheng, A. Mahmood, and Y. Zhang. “Conversational Question
Answering: A Survey”. 2021. arXiv: 2106.00874.

255. R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi. “Defending
against Neural Fake News”. Dec. 11, 2020. arXiv: 1905.12616.

256. H. Zhang, Y. Gong, Y. Shen, W. Li, J. Lv, N. Duan, and W. Chen. “Poolingformer: Long
Document Modeling with Pooling Attention”. May 10, 2021. arXiv: 2105.04371 [cs].

257. H. Zhang, H. Song, S. Li, M. Zhou, and D. Song. “A Survey of Controllable Text Generation
Using Transformer-based Pre-trained Language Models”. 2022. arXiv: 2201.05337.

258. X. Zhang, X. Ma, P. Shi, and J. Lin. “Mr. TyDi: A Multi-lingual Benchmark for Dense
Retrieval”. Nov. 8, 2021. arXiv: 2108.08787 [cs].

259. Y. Zhang, Y. Cao, M. Mahdieh, J. Zhao, and Y. Wu. “Improving Longer-range Dialogue State
Tracking”. 2021. arXiv: 2103.00109.

260. Y. Zhang, T. Ge, and X. Sun. “Parallel Data Augmentation for Formality Style Transfer”. May
4, 2020. arXiv: 2005.07522.

261. Y. Zhang, G. Wang, C. Li, Z. Gan, C. Brockett, and B. Dolan. “Pointer: Constrained Text
Generation via Insertion-Based Generative Pre-Training”. Sept. 27, 2020. arXiv: 2005.00558.

262. Y. Zhang et al. “Dialogpt: Large-scale Generative Pre-Training for Conversational Response
Generation”. May 2, 2020. arXiv: 1911.00536.

263. A. Zhavoronkov. Wu Dao 2.0 - Bigger, Stronger, Faster AI From China. Forbes. July 19, 2021.
URL: https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-
faster-ai-from-china/ (visited on 07/29/2021).

264. L. Zhou, J. Gao, D. Li, and H.-Y. Shum. “The Design and Implementation of Xiaoice, an
Empathetic Social Chatbot”. In: Comput. Linguist. 46.1 (2020), pp. 53–93.

265. F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T.-S. Chua. “Retrieving and Reading: A
Comprehensive Survey on Open-Domain Question Answering”. 2021. arXiv: 2101.00774.

266. J. Zhu. Bing Delivers Its Largest Improvement in Search Experience Using Azure
GPUs. Nov. 18, 2019. URL: https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-
improvement-in-search-experience-using-azure-gpus/ (visited on 01/08/2021).

267. Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.
“Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies
and Reading Books”. In: Proc. IEEE Int. Conf. Comput. Vis. 2015, pp. 19–27.

268. Y. Zhu, L. Pang, Y. Lan, H. Shen, and X. Cheng. “Adaptive Information Seeking for Open-
Domain Question Answering”. Sept. 14, 2021. arXiv: 2109.06747 [cs].

269. Z. M. Ziegler, L. Melas-Kyriazi, S. Gehrmann, and A. M. Rush. “Encoder-Agnostic Adapta-
tion for Conditional Language Generation”. 2019. arXiv: 1908.06938.

270. B. Zoph et al. “Designing Effective Sparse Expert Models”. 2022. arXiv: 2202.08906.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	6 Foundation Models for Text Generation
	6.1 Document Retrieval
	6.1.1 Dense Retrieval
	6.1.2 Measuring Text Retrieval Performance
	6.1.3 Cross-Encoders with BERT
	6.1.4 Using Token Embeddings for Retrieval
	6.1.5 Dense Passage Embeddings and Nearest Neighbor Search
	Available Implementations

	6.1.6 Summary

	6.2 Question Answering
	6.2.1 Question Answering Based on Training Data Knowledge
	Fine-Tuned Question Answering Models
	Question Answering with Few-Shot Language Models

	6.2.2 Question Answering Based on Retrieval
	6.2.3 Long-Form Question Answering Using Retrieval
	A Language Model with Integrated Retrieval
	Controlling a Search Engine by a Pre-trained Language Model
	Available Implementations

	6.2.4 Summary

	6.3 Neural Machine Translation
	6.3.1 Translation for a Single Language Pair
	6.3.2 Multilingual Translation
	6.3.3 Multilingual Question Answering
	Available Implementations

	6.3.4 Summary

	6.4 Text Summarization
	6.4.1 Shorter Documents
	6.4.2 Longer Documents
	6.4.3 Multi-Document Summarization
	Available Implementations

	6.4.4 Summary

	6.5 Text Generation
	6.5.1 Generating Text by Language Models
	6.5.2 Generating Text with a Given Style
	Style-Conditional Probabilities
	Prompt-Based Generation

	6.5.3 Transferring a Document to Another Text Style
	Style Transfer with Parallel Data
	Style Transfer without Parallel Data
	Style Transfer with Few-Shot Prompts

	6.5.4 Story Generation with a Given Plot
	Specify a Storyline by Keywords or Phrases
	Specify a Storyline by Sentences
	Other Control Strategies

	6.5.5 Generating Fake News
	Detecting Fake News

	6.5.6 Generating Computer Code
	Available Implementations

	6.5.7 Summary

	6.6 Dialog Systems
	6.6.1 Dialog Models as a Pipeline of Modules
	6.6.2 Advanced Dialog Models
	6.6.3 LaMDA and BlenderBot 3 Using Retrieval and Filters
	6.6.4 Limitations and Remedies of Dialog Systems
	Available Implementations

	6.6.5 Summary

	References

