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products, matrix signatures, and vector semispaces. From there, the construction and
structure of quantum density functions become clear and facilitate entry into the description
of quantum object sets, as well as into the construction of atomic shell approximations
(ASA). An application of the ASA is presented, consisting of the density surfaces of a
protein structure. Based on this previous background, quantum similarity measures are
naturally constructed, and similarity matrices, composed of all the quantum similarity
measures on a quantum object set, along with the quantum mechanical concept of
expectation value of an operator, allow the setup of a fundamental quantitative structure—
activity relationship (QSPR) equation based on quantum descriptors. An application
example is presented based on the inhibition of photosynthesis produced by some
naphthyridinone derivatives, which makes them good herbicide candidates. =~ ©2004 Wiley
Periodicals, Inc. Int ] Quantum Chem 101: 8-20, 2005
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Introduction

D uring the past 5 years, the theoretical struc-
ture of quantum similarity, the study of
which started at the beginning of the 1980s [1] has
been fully developed. Many possible applications
have been provided in the form of several quanti-
tative structure-activity relationships (QSPR), asso-
ciated with a broad scope of subjects, ranging from
biological responses up to molecular reactivity and
toxicity, a well as physical properties of molecular,
atomic, or nuclear systems (see, e.g., Ref. [2] and the
examples therein). The present study gives some
new insights into the problem within a brief sum-
mary of the mathematical basis, leading, through
density function structure and quantum similarity,
toward QSPR based on quantum descriptors. To
prove further the useful aspects of the theory that
have been developed thus far; some applications,
concerning density functions and molecular QSPR,
are also provided.

Tagged Sets

A given set, the object set, S, and another set,
made of mathematical elements, hereafter called
tags, forming a tag set, T, then a tagged set, Z, can
be constructed [3] using the ordered product:

Z=SXT.
Thus:
Z={V0EZ - IseSATET:0=(s, 1)}
Such a construction permits a wide variety of ap-

plications, including the well-known fuzzy sets [4]
as a particular case.

Inward Matrix Products, IMP
Inverses, and Matrix Signatures

An inward matrix product (IMP) [5], corre-
sponds to a well-defined matrix operation, which
can be easily programmed in any high-level lan-
guage, such as FORTRAN 90. Considering admitted
the matrix addition as can be defined in the usual
way, the matrices can then behave almost as a set of
scalars. Such an operation as IMP corresponds to a
multiplicative internal composition law applicable
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to matrix or hypermatrix spaces of arbitrary dimen-
sions, producing a new matrix belonging to the
same space; that is,

VA, B e M(m><n) :P=Ax*B - P& M(m><11)

and this is fulfilled whenever the following algo-
rithm applies:
P = {pij}r A= {aij}r B = {bij} — Vi, j: pi = aijbij-
Defined in such a way, provided that the in-
volved matrix elements are scalars obtained from a
field, IMP is associative, distributive with respect to
the matrix addition, and commutative.

If they exist, IMP inverses are defined in the
following terms:

A = {aij} € M(m><n) - HA[il] = {ai;l} € M(an)
such that
AUYA = AATY =1E My A1 ={1;=1; Vi, j}.

Matrix 1, the unity matrix, is constructed by the
multiplicative unit of the reference field. The unity
matrix is the neutral element of the IMP. That is

VA:Ax1=1*%A=A.

An IMP regular matrix does not possess zero ele-
ments, although pseudo-inverse extensions can be
also defined. IMP powers are constructed by the
rule:

AxAx. . A=AV =g}

MATRIX SIGNATURE

The concept of matrix signature appears to be
interesting because it is an obvious example of a
tagged set. Signatures can be defined by the follow-
ing prescription over (m X n) dimensional matrices,
constructed in principle over the real field R, and it
is extended straightforwardly over any matrix or
hypermatrix of arbitrary dimensions:

S = Sign(A)
={s; = sign(ay)} — s; €{+1, -1} ={1, 0}

In this manner, as one can write using IMP,
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A = Sign(A) * |A| A |A| = {la;},

where it can be deduced that there are only pmxn

types of matrix signatures of such a dimension. So,
taking the set of (m X 1) matrices defined over the
positive definite real field, R*, as objects belonging
to an object set made, in turn, by a matrix vector
space of the same dimension, a Boolean tagged set
can be easily constructed with the aid of the 2"
matrix signatures, associated with an appropriate
tag set. The term “Boolean tagged set” can be ap-
plied to these tagged sets with the tag set made by
bit strings. Besides this interesting construct, matrix
signatures generalize the concept of sign. The usual
sign of real numbers taken as scalars, thus as one-
dimensional objects, must have just two different
elements, while (2 X 2) matrices, say, necessarily
must have 2* = 16 signatures. Signatures may be
used alternatively to define matrix classes within a
matrix vector space. Moreover, matrix signatures
written with their elements as binary digits are just
isomorphic to the bit representation of the sequence
of natural numbers up to 2"".

Vector Semispaces and o-Shells

The separation of signatures from matrices, cre-
ating a new point of view of them as members of a
tagged set, also permits to consider the set of ob-
jects, formed by matrices with the same dimension,
but made of positive definite real elements. These
new objects are creating a new kind of sets, which
can be called vector semispaces [6]. A matrix object
set like the one belonging to the unity matrix sig-
nature, can be viewed as a vector space where the
additive group has been chosen as a semigroup. A
semigroup is an additive group without reciprocal
elements, permitting no differences or negative
signs. Thus, using a matrix space, one can form an
associated matrix semispace by means of the rule:

VA € Mxn(R) = F|A| € M (RY).

NORMS AND SHELLS

In a given matrix semispace, the most suitable
norm to be defined for all semispace elements, cor-
responds to a Minkowski norm, coincident with the
sum of all the elements of the chosen matrix:

VA € M,n(R") :(A) = X Do, ER™.
i

The sum of all matrices that possess the same
Minkowski norm o, constitutes a o-shell:

VA € S(o) — (A) = 0.

The unit shell or 1-shell is readily defined by
means of:

VA ES(1) — (A)=1.

This interesting form of partitioning matrix
semispaces can be easily extended to other possible
semispaces. For example, it can be defined in func-
tional semispaces, made of positive definite and
integrable functions. Also, upon multiplying the
matrices of any o-shell by the scalar factor o', this
operation transforms any shell element into one
belonging to the unit shell, that is:

VA € S(0) — o 'A € 5(1),
and conversely:
VZ € S(1) — oZ € S(o0).

From here one can infer that the unit shell po-
tentially contains all the elements of the matrix
semispace. Alternatively, one can say that from the
1-shell elements, all the semispace elements can be
generated. A semispace can thus be viewed as a
tagged set, where the objects are the elements be-
longing to the 1-shell, and the tags could be formed
by the elements of R™.

Norms in Vector Semispaces and
Convex Conditions

As was noted earlier, the concept of semispace
and o-shell can be extended into other kinds of
objects, like functions, provided that one can de-
scribe the following statements, associated with
these arbitrarily valued, but integrable, positive
definite function sets:

Vp(r) € V.(RY) — (p) = f p(r)dr ER".

D
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The integral above has the same role of the matrix
elements sum or Minkowski norm in matrix semi-
spaces, and in this manner can generate shells as
well:

iff (0)=0 — 6(r) € S(0) C V.(R).

Such general properties, which exhibit some
mathematical objects, have lead to the definition of
general properties, which can be summarized into a
unique symbol. The discrete convex conditions [7]
symbolized by K, (w), and applied to a known col-
umn vector w, belonging to some n-dimensional
semispace, have been defined as:

K, (w)= [w EV,R)AW) =D w,= 1}.

Also, continuous convex conditions can be set up
using a similar symbol, and applied to functions
belonging to some Hilbert semispace:

K.(p) = [p € H.(R") /\j p(r)dr = 1}.

As a result of these considerations, convex con-
ditions resume the fact that the object, described
within the convex conditions symbol, possess a
positive definite structure and belongs to the 1-shell
of some known semispace.

Linear Combinations in Vector
Semispaces

Linear combinations in vector semispaces have
properties of their own, which have important con-
sequences in the construction of density functions.
Suppose that one can describe a set of coefficients
associated with some convex conditions:

K{w})) =Vi:w,ER" A D w, =1\

1

Convex linear combinations of elements belong-
ing to some o-shell of an arbitrary semispace re-
main within the o-shell, as the following reasoning
proves:

QUANTUM SIMILARITY MEASURES AND QSPR

{A}CS(o)nZ = E wA; — (Z) = E wiA;)

1

=0 > w, — ZES(o) iff K(wy.

Thus, convex linear combinations of 1-shell ele-
ments of a given vector semispace can be used to
construct all the elements of the semispace. The
following property, deducible from this result, has
interest in applied quantum mechanics: any convex
linear combination of pth order density functions,
belonging to some shell, produces again a pth order
density function belonging to the same shell.

Quantum Density Functions and
Quantum Objects Sets

The origin of quantum mechanical density func-
tions is now well known. The first description of the
possible sense of the squared module of a wave
function appears to be attributed to Born [8]; how-
ever, in an early study, Schrodinger [9] also referred
to a density equation as a first step, from which one
can variationally deduce the equation that bears his
name, as this variational final form the source of
state energies and wave functions pairs. A generat-
ing rule [7] can thus be set, once a given system
state wave function, belonging to some Hilbert
space, is known:

R(¥ — p) ={V¥(r) € H.(C) —
Ip(r) = [P]* € H(R")}.

Thus, quantum mechanical density functions are
elements of a Hilbert semispace, which in any case
one shall consider definite positive and normalized
in the usual sense, that is, submitted to the convex-
ity conditions: K..(p). However, suppose a homoge-
neous set of such quantum mechanical density
functions is known, P = {p,(r)} C K,.(R"), using a
convex set of coefficients: K({w;}). A new density
function can be obtained of the same characteristics
as those contained in the set P:

p(r) = E wip(r) — K.(p)

I

simply because of the definite positive nature of
both coefficients and density function basis set, as
well as
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J p(r)dr = E le’ p(r)dr = E w;=1.

I

A finite dimensional generating rule can be in-
voked to construct sets of convex coefficients. It is
only necessary to construct the symbol:

R,(x - w)={¥xeV,(C) —
Jw=x**x € V,(R")},

where the IMP has been employed to construct the
elements of the finite dimensional semispace. This
means that any convex set of coefficients K, ({w;})
can be generated by the simple rule:

Viiw, = [xPAdw=1—- 2 =1,
I I

which, when collected into vectors, obeys the norm
properties:

(wy=1— (x**x) =x"x=(x]x) = 1.

This can be associated with the fact that, while
Minkowski norms are adequate to semispaces, Eu-
clidean norms have to be applied to the generating
complex space. Thus, a set of elements of the 1-shell
of a given n-dimensional vector semispace corre-
sponds to a set of discrete probability functions.
This can be generated, in turn, by a set of n-dimen-
sional complex vectors, in the same manner as the
set of quantum mechanical density functions that
represent continuous probability distributions,
when constructed by the squared modules of Hil-
bert Space wave functions. In fact, and as a conse-
quence of the previous properties and definitions,
any vector space of arbitrary dimension can be
employed as the generating source of vector semi-
space elements. Moreover, semispace subset pairs,
made up of finite and infinite dimensional ele-
ments, can be used together to construct new ele-
ments, with the same characteristics as those asso-
ciated with the building blocks themselves.

QUANTUM OBJECT SETS

Once a quantum mechanical probability density
distribution, p € P, is known for an arbitrary state
of a given submicroscopic system, s € S, the pair, 0
= {s; p}, constitutes an element of a tagged set,
where the objects are the submicroscopic systems

and the tags are made of quantum density func-
tions. These tagged set elements can be called quan-
tum objects and the corresponding tagged sets
quantum object sets. It can accordingly be written:
=S XP.

In this context, quantum object sets can be made
of submicroscopic systems and some built-in den-
sity function set, which does not necessarily have to
be exact, but can even be approximately con-
structed by means of an appropriate basis set of
density functions and a convex set of coefficients.
This is the case for atoms, say, where an atomic
shell approximation (ASA) [10] can be envisaged,
owing to the atomic spherical symmetry. For in-
stance, suppose that we know the density function
for a given atom, p,(r). Suppose also that we know
a set of spherical functions belonging to some func-
tional semispace, 3 = {o(r)} C F..(R"), and a set of
convex coefficients: K({w}). It is straightforward to
see that the following construction holds:

pa(r) = pi(r) = X wyoy(r) € F.(R").

Both coefficients and nonlinear parameters, pos-
sible embedded in the basis density functions, can
be optimized to fit the original atomic density. A
description of a correct fitting procedure can be
found in several papers [10]. In the same way, one
can imagine interating the above fitting procedure
to obtain approximate molecular density functions
for, once a set of approximate atomic functions is
known, i.e., P = {p%}, one can also choose a set of
convex coefficients: K({w,}) to represent a molecu-
lar density function: p,,. In this case,

pum(r) = piy(r) = E wspi(r — Ry),

AEM

where the sum runs over the atoms of the molecule.
Such approximations have been employed in crys-
tallography, where an approximate molecular den-
sity function is constructed in this way. However,
the coefficients of the atomic densities are chosen as
the atomic charges, producing the so-called “pro-
molecular density.”

ASA DENSITY SURFACES

Promolecular densities represent an outstand-
ing tool to generate approximate DF. Using this
approach, several calculations can benefit from

12
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FIGURE 1. Plots of 1PRC isodensity contours at different levels.

considerably increased speed, obtaining results
very close to those from regular electronic struc-
ture computations, as in Hartree-Fock proce-
dures (see, for example, Ref. [11]). As an illustra-
tive example of the computational performance
of promolecular densities, isodensity plots of the
photosynthetic reaction center of Rhodopseudomo-
nas viridis are presented in Figure 1. This protein
is composed of 20352 atoms, after including the H
atoms, which were missing in the experimental
X-ray structure [12]. The molecular coordinates
were retrieved from the Protein Data Bank (PDB
Id: 1PRC) (for more details, see http:/ /www.rcsb.

org/pdb/). The corresponding isodensity con-
tours were generated using fitting parameters to
the 6-311G basis set [10].

As can be seen in Figure 1, at low isodensity
levels, the outer electronic density distribution
can easily be plotted. Decreasing the isovalue
points, the bonding patterns become present
along the structure. Finally, at high density iso-
contours, the surface collapses the density
around atomic locations. Although present-day
computer speed does not permit comparison of
the contours presented above with those gener-
ated from ab initio densities, some comparisons
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between smaller molecules were previously pub-
lished [13], providing very similar results. How-
ever, it must be said that those surfaces calculated
from promolecular densities required only a
small fraction of computation time.

Quantum Similarity Measures,
Similarity Matrices, and Discrete
Quantum Object Sets

Owing to the previous definitions and properties
of vector semispaces, it should not be difficult to
find a natural way to compare elements of quantum
object sets to obtain information about the degree of
similarity or dissimilarity among two or more of
them. Such a procedure may be used in chemical
structures in countless ways and applications. In
addition, if the computational algorithm appears to
be unconstrained by the nature of the submicro-
scopic objects studied, the comparison technique
can be applied to nuclei, atoms, or molecules, with-
out changes other than those related to the nature of
the respective density functions.

A quantum similarity measure (QSM) [14] can be
associated with a function, which transforms a pair
or more of quantum object tags into a positive real
number. This is the same as starting with a quan-
tum object set, ® = S X P, and finding a function
such as

Z:PXPX...P — R".

A simple way to express this possible transfor-
mation, involving two density functions, in the
most usual form, is expressed as an integral:

Z45(Q) = ff pa(r)Q(xy, 1) pp(r,)drydr,,

where {p,; pg} are the density function tags of quan-
tum objects A and B, while (r;; r,) is a positive
definite weight operator. Overlap similarity mea-
sures are obtained when the operator is chosen as
the Dirac delta function: 8(r; — r,), while Coulomb
similarity measures appear when choosing: [r; —
1,| " These two operators seem the most suitable
and popular ones for similarity comparisons be-
tween molecules. However, alternative operator
choices are also possible. For example, the use of a
third density function tag attached to another quan-

tum object, as a possible operator, produces a triple
density QSM [15]:

Zagc = f pa(r)pc(r)pp(r)dr.

Finally, it must be said that the: Z,,(Q) type
integrals can be called quantum self-similarity mea-
sures.

MOLECULAR SUPERPOSITION

In the molecular context, the approximate den-
sity functions, discussed in the previous paragraph,
acquire a fundamental role. Indeed, molecular sim-
ilarity integrals between two or more molecular
structures are not invariant upon the relative spatial
positions of the molecular structures and have to be
calculated within an optimal repositioning of the
quantum objects involved. As the integrals attached
to the QSM produce, in any case, real positive def-
inite results, the problem can be expressed as a way
to determine the molecular relative positions,
which give a maximal QSM. For an overlap QSM,
this situation can be expressed by means of the
equation:

max Z,5(T; ®) = max J pa(1) pp(x|T; D)dr,
T, T;®

where it is implicitly supposed that the density tag
of molecule B is translated and rotated by the six
possible ways: (T; ®), which are shown as explicit
parameters in the integral [15]. Molecular superpo-
sition has also been studied in a simpler geometri-
cal way, resulting in a purely geometrical proce-
dure: the topogeometric algorithm (TGSA) [16],
which avoids the cumbersome calculation of the
similarity integrals for molecular superposition,
providing the user with an alternative superposi-
tion to QSM-directed alignments, as TGSA is based
on an alignment that uses the common molecular
backbone of both studied structures.

SIMILARITY MATRICES

Once known a quantum object set, ®, of cardi-
nality, #(®) = N, a matrix can be constructed with
the values of all the QSM between pairs of quantum
objects, choosing the simpler way to proceed. This
is so because choosing triple density QSM will pro-
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duce a matrix of three indices, and so on. Such
matrices are called similarity matrices. In the most
usual case, dealing with QSM between quantum
object pairs, a similarity matrix becomes a square
(N X N) symmetric matrix, Z. As QSM are always
definite positive real numbers, any quantum simi-
larity matrix could be considered as an element
belonging to the unity signature class. One can
conclude that similarity matrices constitute ele-
ments of some (N X N)-dimensional matrix semi-
space. One can then easily write

Z = {ZAB} — VA, B: ZAB S ].{Jr VA= V(NXI\T)(R+)

A similarity matrix could be also viewed as a
metric of the density tags, but only in the case in
which no maximization of the QSM has taken place.
Computed in this way, a metric similarity matrix
will be positive definite but, when the QSM are
optimized, the matrix no longer possesses this
property, and some eigenvalues could be negative.
In any case, equivalent column or row partitions of
a similarity matrix can be easily performed. A col-
umn partition may be written as

Z= (er Zy, . .. ZN)/

where {z;} collect the elements of the matrix associ-
ated with the QSM between the Ith quantum object
and the rest, including itself. A new tagged set can
be constructed in this way, substituting in the orig-
inal quantum object set the density tags by the
columns of the similarity matrix, that is,

O=SXP=>D=SXZ —>d=(6;z)ED,

such a tagged set can be called a discrete quantum
object set. Such tagged sets can be employed to
describe the quantum objects as N-dimensional
semispace entities, and used accordingly, for in-
stance, to classify or find out some ordering among
the quantum object set elements, using any of the
well-known algorithms, described for this purpose
[17]. Because of this possibility, QSM become a set
of unbiased and universal descriptors attached to
quantum objects. They are unbiased because they
are obtained from density function tags, so to con-
struct them, the user needs to do little more than
choose the weight operator. Even operators, as they
are necessarily positive definite, can be employed in
an optimal way, by using convex mixtures of them
and optimizing the mixing coefficients. The QSM

QUANTUM SIMILARITY MEASURES AND QSPR

can be also considered universal, because there are
no exceptions or limitations to the computation of
QSM among the elements of any quantum object
set, other than the knowledge of the density func-
tion tags.

Similarity Matrix Transformations:
Similarity Indices and Stochastic
Matrices

From the early QSM definition, the literature has
described transformations of the resultant mea-
sures into the so-called similarity indices [1]. Dis-
cussions of the meaning of these indices have also
been present in the literature (e.g., see Ref. [18]).
Recently, other possible alternatives have been put
forward [19], and some applications given [20]. The
obvious transformation of the similarity matrix el-
ements, associated with a pair of quantum objects A
and B, corresponds to the computation of the cosine
of the angle subtended by the involved density
functions tags, within the Hilbert semispace, where
they belong:

ZAB
Tap = Ty,
\ZAAZBB

where z,p, is the QSM between both quantum ob-
jects, and z,,4, zpp the corresponding self-similarity
measures. This similarity index has been referred to
in the literature as the Carb¢ similarity index. The
interesting feature of such an index, when com-
pared with the QSM itself, is the fact that one can
easily see that 45 € (0, 1]. The upper value corre-
sponds to a similarity between two exact objects,
while the index will approach nullity as the objects
become dissimilar. Other possibilities are also well
described; see the discussion in Ref. [18] and the
extension of the similarity index areas in Ref. [21].

Another possible index corresponds to a dissim-
ilarity index, which can be expressed as an Euclid-
ean distance; employing the same symbols as be-
fore, an index can thus be defined varying inversely
as the Carb¢ index previously defined:

dap = \//ZAA + zgg — 22Z4p.

Similarity indices can be employed as quantum
object descriptors in the same way as the initial
similarity measures have been described.
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Besides this reciprocal forms of the two similar-
ity indices and all their variants [18, 21], simple
transformations have been put forward that pro-
duce a nonsymmetric matrix, when applied over
any similarity matrix. Suppose a diagonal matrix,
whose elements are formed by the Minkowski
norm of the rows (or columns) of a known similar-
ity matrix:

D = Diag((zy), (zy), . . . (zn)).

A stochastic column matrix S can be obtained from
the similarity matrix Z, simply by postmultiplica-
tion by the inverse of D:

S=7ZD}

the transposition of the previous stochastic matrix
is simply a stochastic matrix by rows. The interest-
ing feature now is the fact that the stochastic col-
umn matrix corresponds to a new similarity matrix
whose columns can be considered discrete proba-
bility distributions and, as such, the correspon-
dence between the quantum object tags, made up of
continuous quantum density distributions and col-
umns of such a stochastic matrix, appears to be
more adequately adapted to the problem than di-
rect correspondence with similarity matrix col-
umns. However, the unique distinction between
raw similarity measures and stochastic elements is
a normalization factor. Of course, the partition of
the stochastic column matrix in its columns:

S =1(s;,s...5y)

indicates that the column set {s;} C S(1), belongs to
the 1-shell of the corresponding vector semispace.
Discrete quantum object sets can be made in this
way, using as tags the columns of stochastic matri-
ces.

Expectation Values and Quantitative
Structure-Property Relationships:
Fundamental Equation

One of the most interesting applications of quan-
tum similarity consists of the possibility of con-
structing a matrix equation, which produces a way
to obtain a relationship between the involved quan-
tum objects structures and their properties. The
value of such a finding is well known since, in

chemistry, apparently equivalent relationships
have been sought for a century and a half. How-
ever, quantum mechanics and similarity show that
this situation is only apparent, and that the resem-
blance between classical and the quantum similar-
ity deduced equations ends when it is realized that
within quantum similarity theory appears the pos-
sibility to set up a causal relationship between the
structure and properties of submicroscopic objects.
Such a performance cannot be claimed at all by the
usual QSPR models.

EXPECTATION VALUES

To prove this, one must recall the usual statistical
way of computing expectation values of operators,
which can be expressed by the integral both in
quantum mechanics and theoretical statistics.
Moreover, it can be associated with a scalar product

[7]:

() = f Q(r)p(1)dr = (Qp).

Suppose, now, that a quantum object set is
known. The operator can then be expressed approx-
imately in terms of the quantum object density
function tags, in such a way as:

Q(r) = Z wp(r)

an expression that can be substituted in the expec-
tation value of some property m, of a quantum
object A:

Ty = <Q|PA> = E w1<P1|PA> = E Wi Za,

I 1

where use has been made of the definition of the
QSM between the elements of the quantum object
set and the chosen quantum object.

OSPR FUNDAMENTAL EQUATION

Owing to the symmetry of the similarity matrix
elements, as well as the validity of the expression
above, for all the quantum objects involved, it can
be deduced that the following equation must hold:

Zw = |m),

16
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where Z is the similarity matrix of the quantum
objects; the vector, w = {w}, collects the coefficients
approximating the unknown operator, related to
the studied observable property, expressed in the
basis of the density function tags; and |m) = {m} is
a vector collecting the properties associated with
every quantum object. This linear system consti-
tutes the QSPR fundamental equation based on
quantum descriptors.

Discussion of the characteristics of the above
equation is well documented [7, 14], even with the
possibility to add nonlinear terms and the non-
trivial solutions leading to an approximate semis-
pace vector w [22].

An interesting consequence of the previously es-
tablished considerations can be put forward as a
final result. The similarity matrix columns belong to
some N-dimensional semispace. Thus, the property
vector shall be also seen as a linear combination of
the similarity matrix columns. In other words, the
fundamental QSPR equation can also be written:

E wrz; = |7T>
I

So, in the case in which the properties vector can be
considered to belong to a vector semispace, the
coefficient vector w must necessarily belong to
some shell in the semispace of the adequate dimen-
sion, because

a=(|m)) = E wKzy).

I

Thus, no generality is lost, considering that the
similarity matrix columns are normalized such that
they belong to the 1-shell, considering their col-
umns normalized as in a stochastic transformation:

a=(m) =3 w=(w).

Consequently, in this case, both the property and
the QSPR fundamental equation solution vectors
must belong to the same semispace a-shell. An
adequate way to obtain such «, necessarily con-
strained, solution will be by means of a modified
least squares technique, quite similar to the optimi-
zation procedures to be applied in the approximate
density-fitting algorithms.

QUANTUM SIMILARITY MEASURES AND QSPR

STOCHASTIC TRANSFORMATION OF THE
OSPR FUNDAMENTAL EQUATION

The use of stochastic column matrices, instead of
the similarity matrix counterparts, corresponds to a
simple matrix transformation, as when one writes
the QSPR fundamental equation within the stochas-
tic transform as:

Sv = |m).
Then, one can easily write
ZD 'v = |m).

Thus, for the solution vectors of both systems, the
following straightforward relationship is obtained:

w =D"ly.

Then, suppose that the properties vector are nor-
malized to be contained in the unit shell, using:

p ={m)|m € S(1).
Thus, the conclusion is reached that
Sv =p,

has a solution, if existing, lying in the unit shell too.
Then, the existing solutions to the stochastic QSPR
equation will be formed by a set of complex scalars,
or using the usual notations:

S ={s} AK(sp) AK(p) = Sv=p — K(v).

This result appears to indicate that the solutions
of the stochastic QSPR fundamental equation exist
if the properties vector can be expressed as a convex
combination of the columns of initial stochastic ma-
trix, which represented the involved quantum ob-
jects.

This can be put in terms of still more precise
definitions. A convex cone, C(S), described by the
column set of the stochastic matrix S can be defined
as the set of all the possible convex combinations of
these columns:

Cc(s) = {uEC

u= E W;S; A K({wi})}r

1
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and it is easily seen that a convex cone, so defined,
can always be considered a subset of the unit shell:

C(S) C S(1).

Thus, solutions of the stochastic QSPR funda-
mental equation, if they exist, will belong to the
convex cone generated by the columns of the sto-
chastic matrix associated to the quantum objects.
Thus, it appears to be important to know whether
there is a convex solution.

A test designed to determine whether a convex
solution can be expected could be put forward in
the following way. Suppose a distance between
pairs of elements is defined in the unit shell:

Va, b€ S(1) — 3d(a,b) ERT,

a convex solution then exists, provided that the
following properties hold:

Vi:d(p,s) = max{d(s;, s)} — IvEK(1):Sv=p.
ij

The existence of the solution permits us to consider
that the normalized properties vector can be ob-
served as a point inside the polyhedron formed by
the stochastic matrix columns.

Application Example: Modeling the
Inhibition of Photosystem II by
1,8-Naphthyridin-4-ones

On the other hand, if simpler approaches are
applied, it is easier to use well-known statistical
algorithms, as in classical QSPR search, to deal with
the QSPR fundamental equation. In this way, we
have dealt with a large number of application ex-
amples, as can be seen within recent [20] and earlier
[23] references.

Owing to this possibility, this final section pre-
sents a QSPR example using quantum similarity-
based molecular descriptors. The present example
study consists of a set made by 20 1,8-naphthyridin-
4-ones, which inhibit photosystem II, thereby block-
ing the electron transport in a chloroplast [24].
Given that a good portion of present-day herbicides
formerly act as inhibitors of photosynthesis, the
naphthyridinone derivatives discussed represent a
novel class of potential herbicides.

The QSPR protocol can be summarized as fol-
lows:

0 T T T T T
2 3 4 5
Number of PLS factors

FIGURE 2. Evolution of r? (continuous line) and g®
(dashed line) vs. number of PLS factors.

1. Modeling molecular structures and geometry op-
timization: In this case, molecules have been
constructed and optimized at the AM1 level,
using AMPAC software (6.55, Semichem,
Shawnee, KS).

2. Molecular alignment and quantum similarity
measures: The optimized geometries have been
aligned by pairs using the TGSA [16] proce-
dure. Once superposed, a Coulomb coupling
QSM has been carried out over molecular
pairs, thus obtaining a symmetric (20 X 20)
similarity matrix.

3. Quantum similarity descriptors and QSAR: The
similarity matrix, with the elements trans-
formed into Carb6 similarity indices, has been
used as a source of molecular descriptors in a
partial least-squares (PLS) [25] technique, to
relate the molecular descriptors to the inhibi-
tion rate, expressed as pls.

Several models have been constructed using a
variable number of PLS factors, and the evolution
of the correlation, expressed in terms of ?, and
prediction capacity, in ¢* terms, is presented in
Figure 2. As can be observed in Figure 2, a sharp
increase in both magnitudes occurs up to the third
factor added, a minor improvement appears up to
the fourth, and whereas the correlation increases,
the prediction capacity decreases due to overfitting.
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So, as an optimal balance between the results and
factors used, also taking into account the risk of
chance correlations, a three-factor model is chosen,
yielding the following QSAR equation:

plsy=1.571+f, + 3441 f, + 4.699 - £,.

»=0670 ¢ =059 s=0.376

A cross-validated versus experimental values plot
is presented in Figure 3. As can be deduced from
Figure 3, most of the compounds are predicted
correctly within a narrow margin.

Finally, to state the absence of chance correlation
in the proposed QSAR model, a random test has
been carried out, randomly permuting the inhibi-
tion activity vector 1,000 times. As can be seen in
Figure 4, a clear separation between the original
unperturbed model and the randomly permuted
ones is present. Most of the random permutations
yield a negative prediction capacity, pointing out
the total absence of chance correlations.

Conclusions

Based on simple mathematical ideas and emerg-
ing from the quantum mechanical description of
submicroscopic systems, which can now be de-
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FIGURE 3. Cross-validated activities vs experimental
inhibition activity.

QUANTUM SIMILARITY MEASURES AND QSPR

0 0.2 0.4 0.6 0.8
72

FIGURE 4. Random test results. +, original model; @,
permuted models.

scribed as quantum objects, naturally appears in
this work to be the theoretical formalism of quan-
tum similarity, taking the form of a quantum me-
chanical geometric extension. After some reason-
ing, however, the theory is shown to contain more
than such a primary point of view. Properly han-
dled, quantum similarity provides valuable molec-
ular descriptors, which by means of the statistical
expectation value concept, permits us to demon-
strate that, in some cases, a sound relationship can
be found between the quantum object structures
and their properties.
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