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Abstract

Behind firewalls, more and more cybersecurity attacks are specifically targeted to the very network where they are
taking place. This review proposes a comprehensive framework for addressing the challenge of characterising novel
complex threats and relevant counter-measures. Two kinds of attacks are particularly representative of this issue:
zero-day attacks that are not publicly disclosed and multi-step attacks that are built of several individual steps, some
malicious and some benign. Two main approaches are developed in the artificial intelligence field to track these
attacks: statistics and machine learning. Statistical approaches include rule-based and outlier-detection-based
solutions. Machine learning includes the detection of behavioural anomalies and event sequence tracking.
Applications of artificial intelligence cover the field of intrusion detection, which is typically performed online, and
security investigation, performed offline.
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1 Introduction
An ever growing percentage of cyberattacks is explic-

itly targeted at a specific organisation in order to steal

data, to perform industrial espionage or to execute sabo-

tage or denial of service [1]. The most dangerous cyber-

attacks include zero-day attacks and complex attacks

[2]. Although they are beginning to be better under-

stood by the community, they remain difficult to track

and to identify in the massive haystack of system logs

and alerts. Artificial intelligence tools are thus required

to find both unknown and complex attacks. Unknown

attacks are known as zero-day attacks. They exploit pre-

viously unknown system flows. Around 4000 of them

were exploited in 2015 and 2016, 160 of which con-

cerned industrial control [1]. Complex attacks are known

asmulti-step attacks. The danger they pose often emerges

from the consecutive execution of steps which taken
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individually are either innocuous or insufficient to be

characterised as an aggression.

This paper provides a review of the two main

approaches for tracking hard-to-find cyberattacks: statis-

tical analysis and machine learning [3], which are the two

domains of data analysis. Statistical analysis covers the

extraction of statistical rules and outlier detection. Out-

lier detection in particular necessitates the availability of

suitable distance metrics, which can be computed either

between individual points or between full distributions as

for Kullback-Leibler Divergence. Machine learning sup-

ports the extraction of behaviour anomalies and abnormal

event sequences. Statistical analysis and machine learning

are applied in two complementary steps of the security

analysis process: intrusion detection for the online super-

vision of computer systems and infrastructures, and post

event investigation for the characterization of a given

event of interest.We identify four consecutive generations

of Intrusion Detection System (IDS) solutions, which are

now often integrated in commercial products: expert sys-

tems, alert correlation, data mining, and behavioural IDS.
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Post event investigation involves providing experts with

suitable security information to guide the search for sig-

nificant malicious events and when relevant to charac-

terise the actual properties of the cyberattack that these

events are an indication of.

In this work, we therefore propose a comprehensive

framework for the study of complex attacks and related

analysis strategies through statistical tools, on the one

side, and machine learning tools, on the other side. It

puts these complex attacks in perspective with their core

applications in the security domain: detection and inves-

tigation. Although numerous works and review papers

deal with individual issues of this framework [4–6],

no comprehensive survey, which is a strong requirement

for characterising novel threats and matching counter-

measures, exist so far.

We first define the core security concepts used in

this work and describe the hard-to-track anomalies and

attacks we focus on, such as zero-day attacks and multi-

step attacks in Section 2. Section 3 presents the statistical

foundations of anomaly detection relevant to cybersecu-

rity. Section 4 describes specific cybersecurity solutions

that are based on these foundations and take advan-

tage of machine learning techniques and Bayesian statis-

tics to highlight one-off security issues and to model

event sequences in order to identify multi-step intrusions.

Section 5 introduces the architectures and processes of

security detection and investigation that rely on these

models.

2 Definitions
The terms used in this paper are defined in this section.

2.1 The vocabulary around attacks

We use here the definition of the IETF RFC 4949 on

Internet Security Glossary [7].

Anomaly: an activity that is different from the normal

behaviour of system entities and system resources.

Attack: can be

1. An intentional act by which an entity attempts

to evade security services and violate the

security policy of a system. That is, an actual

assault on system security that derives from an

intelligent threat.

2. A method or technique used in an assault (e.g.,

masquerade).

Intrusion: can be

1. A security event, or a combination of multiple

security events, which constitutes a security

incident in which an intruder gains, or

attempts to gain, access to a system or system

resource without having authorization to do so.

2. A type of threat action whereby an

unauthorised entity gains access to sensitive

data by circumventing a system’s security

protections.

Threat: can be

1. A potential for violation of security, which

exists when there is an entity, circumstance,

capability, action, or event that could cause

harm.

2. Any circumstance or event with the potential

to adversely affect a system through

unauthorised access, destruction, disclosure, or

modification of data, or denial of service.

Traces: A mark, object, or other indication of the exis-

tence or passing of something1, in the IT context

an indicator of the occurrence of an action in the

network (event in the form of log, alert or network

packet).

Vulnerability: A flaw or weakness in a system’s design,

implementation, or operation and management that

could be exploited to violate the system’s security

policy.

2.2 The scope of security issues

The field of cybersecurity covers all activities which tend

to weaken [8]:

Confidentiality: the ability of a system to keep its data

and operations unknown to unauthorised entities,

Integrity: the ability of a system to avoid alteration of its

data or operations by unauthorised entities,

Availability: the ability of a system to continuously pro-

vide access to its data and operations to authorised

users.

These are known as the CIA principles. These defini-

tions emphasise the fact that the users of a system need

to be authorised and therefore, as a prerequisite, identi-

fied. Thus, to allow a user or an entity to access some data

or operation typically means that this access is forbidden

to somebody else. Of course, some resources can be freely

accessible, such as a web site, but this is a specific case

only.

Confidentiality and integrity rely on mechanisms which

enable authorised users to gain access to data and oper-

ations while protecting these resources against unautho-

rised ones [9]. They are based on cryptographic or system

engineering tools used to identify the users and perform

proper authorization and at the same time to restrict

access to the data or operation without these controls. The
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definition of availability, on the other hand, poses a major

challenge. For instance, any unauthorised user can chal-

lenge the system’s ability to withstand numerous requests.

However, technical contingencies can drastically reduce

system access, with or without human intervention, and

with or without malevolent intention.

2.3 Security analysis

We use this generic term to describe the processing of

traces in order to find abnormal and potentially malicious

events. Analysis covers detection and investigation:

Detection: the process of identifying events suspected to

be of malicious origin, as the related traces arrive

through the system probes. It occurs at runtime.

Investigation: the process of exploiting post-incident

traces to reconstitute the actual course of an event

which is suspected to be of malicious origin. Investi-

gation is usually performed using technical forensics

tools, after the incident.

Signature detection: uses a set of known malicious data

patterns (signatures) or attack rules (heuristics) that

are compared with current behaviour to decide if

it is that of an intruder. It is also known as misuse

detection [10].

Anomaly detection: enables to determine with a high

level of confidence whether this behaviour is that

of a legitimate user or that of an intruder based on

the collection of data relating to the behaviour of

legitimate users over a period of time [10].

2.4 Zero-day attacks

Since the 1980s, most security solutions have been

based on the detection of malevolent communications

or code through a signature-based approach [11]. How-

ever, the exploitation of unknown attacks, known as

zero-day attacks, is a key success factor for highly

focused as well as large-scale intrusions [12]. Attacks

are considered zero-day when they occur before the

exploit they rely on is disclosed publicly, as shown in

Fig. 1.

Such a public disclosure typically concludes a process

of introduction and discovery of the vulnerability. The

vulnerability is first introduced in a new product or in

a new feature of an existing product as a software or

hardware flaw. Often, hacker groups discover the vulner-

ability and release exploit code in the wild, i.e. in more

or less ethical-minded communities. At some point, the

vulnerability becomes known by the vendor, for instance

through access to the exploit code, through a warning

of so-called white-hat hackers or even through an attack

specifically targeted at their system. At this point, the vul-

nerability is still unknown to the user base of the product,

including the system administrators of the editor’s clients.

No protection therefore exists and the exposure is maxi-

mal, but only a very restricted community is aware of the

exploit and thus able to take advantage of it. When the

vulnerability is disclosed publicly, a series of actions can

be undertaken: disabling the weak system, updating anti-

virus software signatures and publishing patches to close

the vulnerability. Up to the moment when the patch is

deployed on the complete software base using the vulner-

able product, follow-up attacks can be performed. Usually,

in this phase, scripts are released to ease the action of

wannabe hackers, which make unprotected systems more

vulnerable than in the pre-disclosure phase. The system

update and security maintenance are therefore crucial in

this regard.

In any case, zero-day attacks can only be identified

by the deviation they imply in the existing behaviour of

the system. Their discovery is a significant use case for

anomaly detection.

Fig. 1 The attack timeline for zero-day attacks [12]
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2.5 Multi-step attacks

Since the exploitation of zero-day attacks requires a high

skill level and significant time, they are usually used for

high-end, high value-added attacks. Usually, the objec-

tives are very specific, such as stealing valuable data in

espionage efforts or disabling specific systems like the

Stuxnet worm that hit the Iranian nuclear plants in 2010.

Therefore, they are not exploited on their own, but in

a sequence of operations that are specific to the system

to be abused. These are known as multi-step attacks, or

Advanced Persistent Threats (APTs). Their most relevant

characteristics are [13, 14]:

1. They attack specific targets;

2. They use sophisticated tactics, techniques and

procedures;

3. They constantly evolve their attack steps;

4. They largely infiltrate a network;

5. They perform repeated attack attempts;

6. They maintain long-term access to the target

environment.

Their detection is all the more difficult since certain

steps in the attack are performed manually to remain

stealthy and to bypass detection approaches [15]. The

detection of such attacks therefore requires a deep under-

standing of their construction and progress.

The main attack stages of multi-step attacks are:

• Pre-infection: reconnaissance, exploitation,

re-direction.
• Infection: payload delivery.
• Post-infection: command and control, update,

dropping, staging, exfiltration of stolen data.

A more detailed life-cycle, or ‘kill-chain’, can be identi-

fied [13, 16], as shown in Fig. 2 and including the following

steps : (1) perform initial reconnaissance, (2) perform

initial compromise, (3) establish foothold, (4) escalate

privileges, (5) perform internal reconnaissance, (6) move

laterally, (7) maintain presence and (8) complete mission.

The phases 4 to 7 are repeated by the attackers to gain and

maintain long-term access to the target environment.

The diverse technologies that are abused throughmulti-

step attacks is a complementary factor which makes their

identification difficult. Table 1 [15] shows the techniques

and methods used in the operational phases of the main

APT campaigns as of 2016, in the phases of initial compro-

mise, lateral movement inside the system and command

and control (C2). Exploitation of spear phishing is a com-

mon vector for initial compromise. Lateral movement,

which involves taking control of focused resources inside

the systems to support the final phase of the attack, is

based on Operating System tools, password abuse and

vulnerability exploitation. The final phase of the attacks,

which gives the attackers access to their target resource,

largely uses the HTTP and HTTPS protocols for commu-

nication and data exfiltration.

Their variety, as well as the generally semi-manual exe-

cution, make multi-step attacks very difficult to identify.

When considering zero-day, multi-step or more com-

mon attacks, the threats are identified through symptoms,

called Indicators of Compromise [17–19] (IoC). IoC are

‘artifacts observed on a network or in an operating system

that with high confidence indicates a computer intrusion’.

They are best identified as anomalies with regard to the

normal behaviour of a system.

3 Statistical foundations of anomaly detection
Since AI technologies are now used by malevolent agents

to perform cyberattacks [20], it is of crucial impor-

tance for the protection of IT infrastructures that defen-

sive solutions support suitable protections. Numerous

Fig. 2 The APT life-cycle by Mandiant [16]
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research studies present overviews of the domain, for

example, from the point of view of anomaly detection [21]

or data mining and machine learning [22].

A classification of the problems of anomaly detec-

tion is now presented, as well as the two main detec-

tion strategies: rule-based and outlier-detection-based

anomaly detection.

3.1 The problems of anomaly detection

The problems of statistical anomaly detection are

described for discrete sequences by Chandola et al.

[23, 24]. They define three classes of problems, which

match three usage scenarios.

Scenario 1: The operator of a Security Operating Centre

(SOC) performs an investigation to detect illegit-

imate user sessions on an enterprise information

system in the current week. He or she will typi-

cally exploit the data of user sessions in previous

weeks, such as sequences of system calls and com-

mands, as training data. Using the first formulation,

the suspicious traces are tested against this training

data.

Scenario 2: The operator of a Security Operating Centre

(SOC) performs an investigation to detect whether

the account of a user was abused in the past few

weeks. To achieve this, the operator can use the sec-

ond formulation: the activity of the user is treated

as a long sequence and is tested for anomalous sub-

sequences.

Scenario 3: The operator of a Security Operating Cen-

tre (SOC) performs an investigation to deter-

mine whether the frequency of a given command

is higher or lower than usual. A query pattern

is defined as a sequence of commands. He or

she can use the third formulation to compare

the frequency of this query pattern in the activ-

ity of the user in a given time period with the

frequency of past sequences to detect malicious

behaviours.

For the specific case of semi-supervised learning, the

three scenarios can be formulated as follows [24]:

Formulation 1: Given a set of n sequences, S =

S1, S2, ..., Sn, and a sequence Sq belonging to a test

data set S, compute an anomaly score for Sq with

respect to the training data set S. The length of

sequences in S and the length of Sq are not necessar-

ily equal. After evaluating the anomaly score of the

test sequence Sq, a complementary test is required to

check whether it significantly deviates from the score

of other sequences to characterise an actual anomaly.

The problem itself can be defined as follows: Given

a training set of n sequences S = S1, S2, ..., Sn and a

test set S, find all sequences in S that are anomalous

wrt. S.

Formulation 2: Detect short sub-sequences s in a long

sequence S, which are anomalous with respect to the

rest of S.

Formulation 3: Given a short query pattern s, a long test

sequence S and a training set of long sequences S,

determine whether the frequency of occurrence of s

in S is anomalous with respect to the frequency of

occurrence of s in S.

The three main approaches for addressing these

problems are kernel-based techniques, window-based

techniques and Markovian techniques. Kernel-based

techniques consist in building a global model of the

system behaviour and looking for anomalies wrt. this

model. Window-based techniques consist in tracking

local behaviours and comparing each trace to be ana-

lyzed with each of the local behaviours. Markovian tech-

niques predict the probability of the occurrence of each

behaviour (each symbol), given n previous values. For

each of these approaches, rule-based or outlier-detection-

based strategies can be applied.

3.2 Rule-based anomaly detection

A representative example of how rules for anomaly detec-

tion are defined and applied is given by the LEarning Rules

for Anomaly Detection (LERAD) model [25, 26]. LERAD

defines a solution S as the representation of the normal

behaviour of system calls. It triggers alarms when these

rules are broken. LERAD is a supervised approach that

requires a training set free of anomalies.

A solution S is a set of rules which expresses the val-

ues of system call attributes observed in the training set.

S is defined as a 5-tuple, as given in Eq. 1. A is the set

of N attributes, � is the set of all possible values for the

attributes in A and I is the set of input tuples, which is

a subset of the N-ary Cartesian product over A. The rule

set itself is noted ℜ, and ς is the maximum number of

conditions in a rule. LERAD rules are defined in Eq. 2.

Each rule is defined by an antecedent, the left term of the

rule and, a consequent, the right term of the rule. The

antecedent expresses for each attribute αi,j,... the observed

values φp,q,... for a given system call, with the maximum

number of attributes less than or equal to ς . The conse-

quent gives the set of values observed in the training set

for the attribute αk (αk not in the antecedent) as a set

{φa,φb, . . . }.

S : (A,�, I,ℜ, ς) (1)

R :(αi=φp) ∧ (αj=φq) . . . ς terms⇒αk ∈{φa,φb, . . . } (2)

For each rule R, a probability p of interpreting a call as an

anomaly is defined according to n, the number of identical
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antecedent tuples (on the left term of the rule) that satisfy

the rule during training, and r, the cardinality of the set

of observed values for the consequent (right term of the

rule). It is given in Eq. 3. r is necessarily smaller than or

equal to n. r = n, and thus p = 1 if each occurrence of the

antecedent matches a different value φa of αk . r << n, and

thus p << 1, if the same value φa of αk occurs frequently

for a given antecedent. The anomaly score of a novel event

with regard to a given rule is defined as AS, as given in

Eq. 4. AS is the inverse of p. AS = 1 if each occurrence of

the antecedent matches a different value φa of αk ; in this

case, a new value for αk will not be a significant anomaly.

AS >> 1 means that the antecedent usually matches a

limited set of αk , that new observations of the antecedent

are likely to match a known value of αk , and therefore that

a call breaking the rule is likely to be a significant anomaly.

The total anomaly score TAS is computed by considering

all broken rules as well as the delay since last anomaly for

a given rule. It is given in Eq. 5. i is the index of a rule

which the tuple has violated. t is the time since the rule

was last broken, which is an indicator of the rule stabil-

ity and thus of its quality. Since anomalies often occur in

bursts during an attack, the TAS will be high at the begin-

ning of the attack, clearly labelling the moment when the

potential aggression starts.

p =
r

n
(3)

AS =
1

p
=

n

r
(4)

TAS =
∑

i

(

ti

pi

)

=
∑

i

(

tini

ri

)

(5)

LERAD is designed to minimise the total number of

rules and to avoid an excessive analysis overhead. One cri-

teria for selecting rules is to favour the ones that describe

the behaviour of the system well and that exhibit a sta-

ble behaviour over time, as shown in Fig. 3. The AS

value quickly reaches its nominal value during the train-

ing phase, is not significantly modified during the val-

idation phase and is stable during the test phase. This

Fig. 3 Evaluating the quality of anomaly detection rules [25]

behaviour increases the probability that rule breaking

indicates actual anomalies.

3.3 Measurement of distance between observations

Anomaly detection implies that ‘normal’ behaviours can

be discriminated from ‘abnormal’ ones. A strong prereq-

uisite is therefore that the degree of ‘normality’ can be

quantified, i.e. that a distance measure between observed

system traces and a reference trace set can be computed.

According to the type of information available, such as

single points, series or distributions of observations, vari-

ous approaches should be used.

3.3.1 Euclidian distance

A simple metric for distance measurement between two

points is the Euclidian distance, recalled in Eq. 6 for

two dimensions. When more parameters are considered,

the equation is extended accordingly. This is of course

the most widely used measure of distance between two

observations.

d =

√

(x2 − x1)2 + (y2 − y1)2 (6)

3.3.2 Manhattan distance

In case of compact distributions, the Manhattan distance

or city-block distance, defined in Eq. 7 for two dimensions,

can be used to discriminate dense observations. When

more parameters are considered, the equation is extended

accordingly.

d = |x2 − x1|+|y2 − y1| (7)

3.3.3 Reachability distance

When the objective is to extract observations that are fur-

ther away from the others, it is often convenient to smooth

the distance for densely located observations, where dis-

crimination would be computationally costly but would

contribute little additional information. This smooth-

ing is supported by the reachability distance reach_dist

[27]. The reachability distance is computed according to

d(p, o), the Euclidian distance between the objects p and

o, and the k-distance of object p wrt. object o, denoted as

k − distance(p). Its definition is given in Eq. 8.

reach_distk(p, o) = max(d(p, o), k − distance(o)) (8)

For any positive integer k, the k − distance of object p

is defined as the distance d(p, o) between p and an object

o ∈ D such that:

1. For at least k objects o′ ∈ D \ p, d(p, o′) ≤ d(p, o)

holds, and

2. For at most k-1 objects o′ ∈ D \ p, d(p, o′) < d(p, o)

holds.

Figure 4 shows an example of the reachability distance

reach_dist for four points. When an observation p is far



Parrend et al. EURASIP Journal on Information Security  (2018) 2018:4 Page 8 of 21

Fig. 4 Example of reach_dist for several points [27]

away from o, reach_distk(p, o) = d(p, o). When an obser-

vation p is close to o, the distance considered in the k −

distance of o.

3.3.4 Distance between sets of observations

It is often useful to reduce the dimension of sets of obser-

vations, for instance, as input to algorithm processing or

to facilitate visualisation. Tandon et al. [26] proposes to

use a distance metric between two sets of scalar obser-

vations inspired by the symmetric Mahalanobis distance

[28, 29], as shown in Eq. 9. As output, observation sets are

represented as points in a two-dimensional space. s1 is an

arbitrary reference observation set, and s2 is the observa-

tion set whose distance wrt. s1 is to be computed. x1i is the

value of the ith observation in s1; x2i is the value of the i
th

observation in s2. s1 includes n1 observations; s2 includes

n2 observations. (x̄, ȳ) are themeans along the x and y axes,

and (σx, σy) the standard deviations along these axes.

dx=

∑n1
i=1

(

x1i
−x̄2

)

σx2
+

∑n2
j=1

(

x2j
−x̄1

)

σx1

n1 + n2
, dy =

∑n1
i=1

(

y1i
−ȳ2

)

σy2
+

∑n2
j=1

(

y2j
−ȳ1

)

σy1

n1 + n2

(9)

This approach can be used to reduce the dimensions of

complex observations in order to plot the sequence space

of call sequences, as shown in Fig. 5.

3.3.5 Distance between distributions: the Kullback-Leibler

divergence

When the distribution of the observations is known,

rather than the observations themselves, computing the

distance between real sets is not relevant. Instead, the

distance between the distribution of observations is com-

puted. This approach allows in particular the evaluation

of the quality of data models wrt. the original datasets.

The Kullback-Leibler divergence [30, 31] is a tool which

supports the computation of such a distance, as shown

in Eq. 10. The Kullback-Leibler divergence between dis-

tributions P and Q is denoted DKL(P‖Q). It is based on

the probabilities P(i) and Q(i) of distributions P and Q for

each possible value i.

DKL(P‖Q) =
∑

i

P(i)log
P(i)

Q(i)
(10)

The Kullback-Leibler divergence is linked to the notion

of observed information, also known as the Fisher infor-

mation metric, which is its infinitesimal form. Fisher

Information and Kullback-Leiber divergence are signifi-

cant concepts from the emerging mathematical field of

Geometric Science of Information2.

3.4 Outlier detection

The identification of novel and hard-to-track attacks

such as zero-day attacks or multi-step attacks requires to

bypass classical signature-based, ruled-based approaches

for cyber-security such as defined in Section 3.2. More-

over, the rapid pace of evolution of IT ecosystems and the

increasing variety of interconnections strongly limit the

perspectives for the construction of a satisfactory explicit

model for these attacks. Hence, the field of outlier detec-

tion, which is used to identify abnormal data based on

previous observations, is currently experiencing a rapid

growth, in particular in the domain of cybersecurity [32].

Outlier detection can be both univariate or multivariate

[33]. According to the context and available data, it is

based on unsupervised, supervised or semi-supervised

algorithms [34].

Outliers can be either global, i.e. they deviate from

a comprehensive model or kernel of the data space, or

local, i.e. they exhibit properties deviating from neighbour

observations. Figure 6 illustrates a global outlier, for one

outlying observation in a two dimensional space.

3.4.1 Hawkins outlier

A generic definition of the concept of outlier is proposed

by Hawkins, as ‘an observation that deviates somuch from

other observations as to arouse suspicion that it was gen-

erated by a different mechanism’ [35]. Although useful,

this definition lacks the necessary formalism for further

implementation. A more specific definition for a global

outlier is thus needed.

3.4.2 DB(pct, dmin) outlier

An object p in a dataset D is a (global) DB(pct, dmin) out-

lier if at least a percentage pct of the objects in D lies at a

distance greater than distance dmin from p, i.e. the cardi-

nality of the set q ∈ D|d(p, q) ≤ dmin is less than or equal

to (100 − pct%) of the size of D [36].

Since the DB(pct, dmin) outlier is a global outlier, only

certain types of outliers, which are radically different than

the rest of the objects, can be captured.
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a b

Fig. 5 Sequence space for two applications a ftpd (File Transfer Protocol Daemon) and b lpr (Line PRinter) [26]

3.4.3 Local outlier factor

In several scenarios, anomalies are indeed characterised

as being abnormal wrt. similar elements, without neces-

sarily being significantly different from normal observa-

tions. It is therefore necessary to consider local outliers,

where abnormality is considered wrt. k-nearest neighbour

elements [37]. The Local Outlier Factor (LOF) provides an

example of local outlier detection.

The LOF is based on the reachability distance reach_dist

metric, introduced in Section 3.3. A local reachability den-

sity is calculated for each object, which is the inverse of the

average reachability distance of the object from its near-

est neighbours [27]. lrdMinPts(p) is the local reachability

Fig. 6 Example of a two dimensional space with one outlying
observation [33]

density of object p. It is defined in Eq. 11. The LOF is

defined for each object by comparing its reachability den-

sity with each of its neighbours. The local outlier factor

LOFMinPts(p) for object p is computed based on the reach-

ability distance as defined in Eq. 12.MinPts is the number

of neighbours which are considered to belong to the local

neighbourhood of the object, NMinPts(p) is the set of these

neigbours.

lrdMinPts(p) = 1/

∑

o∈NMinPts(p)reach_distMinPts(p,o)

|NMinPts(p)|
(11)

LOFMinPts(p) =

∑

o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|MinPts(p)|
(12)

It is noteworthy that the proposed solution is inappro-

priate for online detection, since the approach requires

knowledge of all process sequences. The Local Outlier

Factor (LOF) [27] is an unsupervised approach, which

is used in the LEarning Rules for Anomaly Detection

(LERAD) model [25]. When applied to sequences of sys-

tem calls, it defines the supervised Sequence-LERAD

(S-LERAD) model [26]. The LOF is an example of

distance-based outlier detection. When the number of

observations is excessive, such approaches are highly

resource consuming. Other approaches, such as density-

based outlier detection, are needed.

3.4.4 Importance w(x)

This density-based outlier detection metric is defined in

Eq. 13. To calculate the density at each potential location
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x, the distribution of the training data ptr(x) and the dis-

tribution of the test data pte(x) is taken into account.

w(x) =
ptr(x)

pte(x)
(13)

If the training and test data densities are equivalent, the

value of w(x) is 1. The importance value tends to be small

in the regions where the training data density is low and

the test data density is high. Thus, samples with small

importance values are plausible outliers. This implies that

the importance w(x) needs to be computed region-wise,

rather than on the whole distribution space [38].

3.4.5 Kullback-Leibler importance estimation procedure

Based on the definition of the importance metric, out-

lier detection can be performed through the estimation

of distribution similarities by using the Kullback-Leibler

Importance Estimation Procedure (KLIEP) as defined in

Eq. 15 [38]. The importance can be modelled with a

linear estimation of the importance distribution ŵ as

given in Eq. 14. To obtain ŵ, Kullback-Leibler divergence

KL[ ptr(x)‖p̂tr(x)] is minimised.

ŵ =

b
∑

l=1

αlφl(x) (14)

KL[ ptr(x)‖p̂tr(x)]=

∫

ptr(x)log
ptr(x)

ŵ(x)pte(x)
dx (15)

Other outlier strategies include the kernel density esti-

mator (KDE) and density ratio estimations [39] such as

one-class support vector machine (OSVM) [40], Least

Square Importance Setting (LSIF) and unconstrained

LSIF [26]. The efficiency challenge is another key prop-

erty of outlier detection algorithms, especially for high-

dimensional datasets [41].

4 Machine learning
The identification of unknown attacks faces two major

challenges: first, the ability to detect behaviour anomalies,

especially for identifying zero-day attacks and, secondly,

the ability to track abnormal event sequences, so as to

address APTs. Machine learning, as well as advanced

statistics, represents methods of critical importance for

the online detection of intrusions, on the one hand, and

the offline, ‘post-mortem’ investigation of security issues,

on the other.

4.1 Detection of behaviour anomalies

The detection of behaviour anomalies is a rich field

of investigation for machine learning approaches. More

specifically, recursive Bayesian estimation, which is used

to model the behaviour of individual entities of IT sys-

tems, provides an alternative method for quickly identify-

ing deviations of this model.

4.1.1 Benchmark ofmachine learning techniques

The systematic presentation of machine learning tech-

niques is beyond the scope of this work. Several significant

publications will help the reader find his/her way in this

vast domain [42, 43], although none of them provides a

comprehensive view of the subject.

For the evaluation of machine learning techniques, the

KDD99 dataset [44], as well as its improved version NSL-

KDD [45], are still widely used today, in spite of their age.

Some recent surveys using them give a good overview

of the methods and the results obtained [4–6]. Table 2

summarizes the performance of the algorithms contained

in the Weka workbench on the KDD99 dataset, accord-

ing to the evaluation made by Modi and Jain [4]. The

authors calculated the Percentage of Successful Predic-

tions (PSP) and the Training Time (TT) for each stud-

ied algorithm. The best results in terms of successful

predictions are achieved by MARS (Multivariate Adap-

tive Regression Splines). Of course, the results are fully

contextual for this specific benchmark, but nonetheless

provide an estimation of the relative performance of the

considered algorithms.

Since machine learning algorithms are typically diffi-

cult to parameterise, as well as very dependent on the

quantity of the training data, it is likely that solutions

Table 2 Performance comparison of algorithms in Weka
workbench on the KDD99 dataset [4]

Algorithm Percentage of successful
prediction (%)

Training time
(seconds)

K-Means 78.7 70.7

NEA 92.22 10.63

FCC 89.2 56.2

ID3 72.22 120

J48 92.06 15.85

PART 45.67 169

NBTree 92.28 25.88

SVM 81.38 222.28

Fuzzy logic 91.8 873.9

Naive Bayes 78.32 5.57

BayesNet 90.62 6.28

Decision Table 91.66 66.24

Random Forest Classifier 92.81 491

Jrip 92.30 207.47

OneR 89.31 3.75

MLP 92.03 350.15

SOM 91.65 192.16

GAU 69.9 177.4

MARS 96.5 67.9

Apriori 87.5 18
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focusing on a single technology will achieve better results.

This may be the case for instance for neural networks,

which have been the subject of significant progress in the

last few years.

4.1.2 Recursive Bayesian networks

Bayesian classification models have proved to be effi-

cient tools for intrusion detection [46, 47]. Figure 7 shows

an example of an anomaly detection approach based on

Bayesian alert correlation [48] for IDS alerts. The pro-

cess of alert correlation begins by the extraction of recent

intrusion alerts. The comparison with historical intrusion

alerts allows to extract the pseudo-Bayesian probabilities

between a given event and its precursors. Based on these

probabilities, the likelihood of alert correlation is com-

puted for all relevant events. A threshold is applied to

extract alert correlation graphs, which highlight alerts that

are worth investigating.

The application of this process for systems with evolving

states is called recursive estimation [49]. When perform-

ing such a recursive estimation at the level of each network

device, machine and system user, efficient solutions for

the identification of access rights abuses or of intrusions

can be devised.

4.2 Tracking abnormal event sequences

Machine learning is typically able to identify anoma-

lous behaviours and it is therefore a serious candidate

to improve the tracking of zero-day attacks. Multi-step

attacks, however, are only visible through traces that are

scattered in vast amounts of data over large time periods

and on heterogeneous devices. Their identification there-

fore requires the ability to track abnormal event sequences

and first of all to reconstruct these sequences. To achieve

this, two significant contributions have been proposed by

the community: Galois lattice to rank actions and taint

Fig. 7 High -level architecture for pseudo-Bayesian alert correlation [48]
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analysis to trace the correlation between events. Both are

based on oriented-graph models.

4.2.1 Galois lattice

A lattice is a mathematical object consisting of partially

ordered sets, where each pair of elements has a unique

least upper bound or supremum [50]. An example of a

lattice is the set of natural numbers, which are partially

ordered according to the divisibility operation: the least

upper bound of an element pair is their least common

multiple and their unique infimum is the greatest com-

mon divisor. A category theoretic approach to lattice leads

to the use of Galois connections to build the lattice: in this

case, the lattice is named a Galois lattice [51] and supports

ordered relationships between compound elements from

two different sets, provided these sets are monotonous.

When the information is semantic rather than algebraic,

the lattice becomes a concept lattice, according to Wille’s

theory of concepts [52]. It then supports formal concept

analysis [53]. A comprehensive definition of concepts and

Galois lattices can be found in [54].

Figure 8 shows an example of a Galois lattice for the

reconstruction of a malicious event escalation [55]. The

Galois lattice is built interactively: an event is codified

through a Galois connection in the context of a pre-

existing lattice. The event then inherits the properties of

the matching lattice node, including meta-data such as

the class of the performed action or the dangerousness

level. To support the evolution of the reference Galois lat-

tice wrt. the evolution of the system, this classification is

validated by an expert. If modifications are required, the

reference lattice is updated to integrate this new knowl-

edge. In any case, either the incident is confirmed and

suitable action is undertaken by the security operators

or the risk level evaluation for the infrastructure being

monitored is updated.

The classification of malicious actions can be used to

rank the suspicious actions that take place inside an IT

infrastructure, thereby announcing the escalation of dan-

gerous actions and thus potentially an actual intrusion.

Galois lattices support such ranking while taking into

account multiple orthogonal security-related attributes.

4.2.2 Taint analysis

Taint analysis has the objective of systematically labelling

paths available for data propagation. It originally comes

from the world of static analysis and is increasingly used

in the security domain both for the generation of virus

signatures and for security investigation [56, 57].

The first application of taint analysis to security was

designed for the automated detection and analysis of

malicious exploits [58]. Beyond security-specific issues, a

framework for the application of taint analysis to safety

issues was proposed by [59].

An original application of taint analysis has recently

been proposed for investigation by attack tracing and

event correlation [60]. Figure 9 shows the signature

derivation steps for tainted analysis of multi-step attacks

[61]. The events, which are represented by the system

logs, are first parsed, normalised and made available in

a dedicated database. Then, the tainting operation itself

is performed on this data according to taint policies and

meta information, in order to generate the taint graphs

of significant event sequences for the considered time

period. Taint policies define the event attributes to be

added to the set of taint sources or nodes, such as the

IP address of the source or the communication proto-

col. Meta-information includes complementary data that

Fig. 8 Example of a Galois lattice for the reconstruction of a malicious event sequence [55]
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Fig. 9 Signature derivation steps for tainted analysis of multi-step attacks [61]

enable the identification of indirect relations between

attributes. Finally, signatures are derived from the taint

graphs and stored for further analysis or exploitation in

later investigations.

The signature format used by the authors is the Event

Description Language (EDL) language. Figure 10 shows an

example of a graph signature in the EDL language [61].

It is worth noting that attack signatures can entail several

paths for a single attack or even several different attacks

that can occur in a given context.

5 Applications
The applications of anomaly detection and event sequence

tracking to security analysis, i.e. detection and investiga-

tion, are now presented.

5.1 Intrusion detection

The first and probably most popular facet of security anal-

ysis is intrusion detection. It is defined as “the process

of monitoring for and identifying specific malicious traf-

fic” [62]. The devices that can monitor host processes or

network packets in the search of malicious actions are

called Intrusion Detection Systems (IDS). They are clas-

sified into two types, according to the method used for

detection: anomaly detection or signature-based detec-

tion [63]. There are also alternatives that combine the

two approaches [64]. Many surveys of work in Intru-

sion Detection Systems exist, each focusing on a certain

aspect of the problem [6, 11, 63, 65]. Based on this lit-

erature survey, we identify four consecutive generations

of IDSs: expert systems, alert correlation-based systems,

data mining approaches, and behavioural IDSs.

5.1.1 First IDS generation: expert systems

The historical reference for IDS is the seminal work

of Dorothy Denning in 1985 [66] concerning the

requirements and the reference model from 1987 [67].

This model is still applicable regarding the overall

requirements:

Detected intrusions should cover:

Attempted break-in by outsiders;

Masquerading, i.e. seemingly legitimate access fol-

lowing credential theft;

Penetration, in particular resulting in confidential-

ity or integrity loss;

Second-order access violation, i.e. gaining access

to unauthorised information through the

aggregation of individual information pieces to

which access is piecewise allowed;

Information leak through covert channels;

Denial of services;

Side-effects such as the disruption of services or

damages to data and software following mal-

ware attacks.

Applicability to different hardware, operating systems

and application environments;

Discriminating power ensuring a high detection rate as

well as a low rate of false alarms;

Ease of use

Modifiability to adapt to evolving threats;

Self-learning of the normal behaviour of the system;

Real-time detection as well as after-the-fact sleuthing

(or investigation);

Security of IDS and its database against confidentiality,

integrity and availability threats.

Denning’s work was focused on explicit expert rules,

which were pervasive throughout the first generation of

IDSs. Since then, richer solutions have been developed,

including machine learning, which provide implicit but

powerful models.

5.1.2 Second IDS generation: alert correlation

The second generation of IDSs was built around a model

for alert correlation, which is considered as a prerequi-

site to efficient detection of security anomalies. They were

typically built on three steps: normalisation, aggregation,
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Fig. 10 Example of graph signature in the EDL language [61]

and correlation, known as the NAC process [68]. This pro-

cess may be complemented by a clustering step [69, 70] to

enrich detection capacity.

The requirements for alert correlation are [68]:

The semantic of the information to be correlated, which

needs to be explicitly defined
The scalability of the analysis process for important data

volumes and for the Intrusion Detection System

itself
The reactivity, i.e. the automation of either collection of

more information, modification of IDS probes, esca-

lation to human experts or application of suitable

countermeasures

The proactivity to anticipate expected alerts according

to the data-flow type or time of day.

The CRIM model [71, 72] represents a potential archi-

tecture to support the NAC process as shown in Fig. 11.

The alerts are first collected and then clustered to identify

the main alert classes. Within these clusters, similar alerts

are merged, which provides a reduced set of global alerts.

Next, the correlation step itself is performed in order to

infer candidate attack plans and possibly attack objec-

tives, the ‘intentions’. Ideally, a suitable reaction is then

triggered [73].

The classic NACmodel has been reviewed by Salah et al.

[74]. They propose a new model taking into consideration

the most relevant published alert correlation proposals.

Their model is composed of four modules: preprocessing

(equivalent to ‘normalisation’), reduction (corresponding

to ‘aggregation’), correlation and prioritisation.
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Fig. 11 The CRIM architecture for alert clustering, merging and correlation [71]

5.1.3 Third IDS generation: datamining

The third generation of Intrusion Detection Systems

relied heavily on data mining approaches. It introduced

a three-level architecture corresponding to the levels

of data, information and knowledge, which are clearly

different from one another. The data level collects the

raw data, possibly enforcing normalisation to prepare for

later analysis. The information level processes this data

through transformation and selection. It is also known as

the data fusion or data mining layer. The knowledge level

Fig. 12 Information flow for intrusion detection data fusion [75]
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is responsible for discovering new behaviours and for the

interaction with human operators through visualisation

and external verification.

Figure 12 shows a representative model of the informa-

tion flow for intrusion detection using multi-sensor data

fusion [75]. Figure 13 shows a representative model of the

information flow for intrusion detection data mining [75].

Among the classes of data mining techniques, anomaly-

based intrusion detection plays a central role in the

discovery of new attacks such as zero-day attacks and

multi-step attacks: it encompasses both information and

knowledge layers. Figure 14 shows a classification of

anomaly-based detection techniques [76] used in IDSs,

which cover statistical, knowledge-based and machine-

learning-based techniques. Statistical approaches include

univariate, multivariate and time-series models [77].

Knowledge-based approaches include Frequent Subgraph

Mining (FSM), description languages and expert systems.

Machine-learning-based approaches in this classification

include Bayesian networks and outlier detection, which

are advanced statistical techniques, as well as Markov

models [78], neural networks [79], fuzzy logic, genetic

algorithms [80], ant-colony-based solutions [81] and

clustering [69].

Much work has been done to improve intrusion detec-

tion based on data mining. This approach is especially

relevant when dealing with data from a set of heteroge-

neous sources. The high volume of data generated by the

devices connected to a network poses big data challenges

when trying to detect intrusions. The reader can find

more information in [82] about the intrusion detection

techniques developed in this context.

5.1.4 Fourth IDS generation: behavioural IDS

Advanced machine learning techniques can generate

models that are fine-grained enough to be able to track the

behaviour of individual entities of the IT infrastructure,

including network devices, systems and individual users

[4–6]. Any deviation of the usual behaviour of one of these

entities is therefore perceived, which greatly improves

the performance of the Intrusion Detection System, in

particular using deep learning [83, 84] and distance-based

[85, 86] approaches. These approaches have already been

presented in Section 4.1.

Fig. 13 Information flow for intrusion detection data mining [75]
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a

b

c

Fig. 14 Classification of anomaly-based detection techniques [76]

5.2 Security investigation

The second facet of security analysis is the so-called

sleuthing or investigation. In case of ascertained network

or system abuse, the reconstruction of the full-attack

process and a detailed understanding of individual steps

is necessary to be able to contain the attack, to patch

damaged services and systems and to avoid repeti-

tion of similar attacks. Data mining is again a useful

solution.

The process of security investigation relies more on

the actions of the human user than intrusion detection.

However, the amount of log data is steadily increasing,

so that an automated support of the investigation process

is of vital importance for its success. Figure 15 illus-

trates the process of data mining to support security

investigation [87]. As in intrusion detection, the process

starts with IDS alerts, which are stored in the IDS data-

warehouse. Through data mining, activity patterns are

extracted. The human investigators, for instance people

from a Security Operating Center (SOC), start their work

here. Through the interpretation of the activity patterns,

insights are gained and highly focused manual verifica-

tions can be performed. When the root causes leading to

the attack are determined, they can be fixed. Moreover,

suitable filtering and correlation rules can be setup in the

IDS to integrate the new aggressions as part as the IDS’s

knowledge. Clearly, systematic investigation is mandatory

for the maintenance of operational and efficient IDSs.

Figure 16 provides an example for a simple login to aWin-

dows system using the anomaly signature language EDL

[88], which is an attempt to provide a candidate language

for solving this issue.

Security investigation is emerging as a research domain

per se and poses several core challenges:

1. Cyber-threat intelligence [89] is becoming ever more

powerful, which poses two complementary challenges

to organisations: how to organise this intelligence

internally and how to face attackers having access to

a similarly growing amount of information.

2. No standardized language exists so far to support the

description of abnormal behaviours, which

dramatically reduces the perspectives for information

exchange between various actors.

3. The analysis of encrypted traffic is of course greatly

hindered [90], whereas clear text transmission is

clearly not an option and rather part of the security

problem. For instance, over 95% of the traffic on

Remote Desktop Protocol can be read by an external

malicious user. This is likely to strongly decline with

the growing security awareness in organisations.

Efficient tools for investigation of highly encrypted

traffic thus need to be devised to avoid an important

loss of security-critical information.
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Fig. 15 A process for data-mining-supported security investigation [87]

6 Conclusions
In this work, we therefore propose a comprehensive

framework for the study of complex attacks and related

analysis strategies through statistical tools, on the one

side, and machine learning tools, on the other side. It

puts these complex attacks in perspective with their core

applications in the security domain: detection and investi-

gation. Although numerous works and review papers deal

Fig. 16 Example of an EDL signature called UserLogin for a simple
login to a Windows system [88]

with individual issues of this framework [4–6], no com-

prehensive survey, which is a strong requirement for char-

acterising novel threats and matching counter-measures,

exist so far.

In this paper, we define a comprehensive framework

for the study of complex attacks, related analysis strate-

gies, and their core applications in the security domain:

detection and investigation. This framework eases in par-

ticular the characterisation of novel complex threats and

matching Artificial Intelligence-based counter-measures.

We first define the core terms necessary to understand

the domain: anomaly, intrusion, attack, traces, threats,

and vulnerabilities and the security properties confiden-

tiality, integrity, and availability, as well as the phases

of the security analysis process: detection and investiga-

tion. Zero-day attacks and multi-step attacks are intro-

duced and defined. The two main approaches of artificial

intelligence for security analysis are reviewed: statistical

analysis and machine learning techniques. Their applica-

tions in intrusion detection and security investigation are

presented.

The advent of artificial intelligence (AI) thus opens

up a promising field of investigation for cybersecurity

[91], which already includes significant operational break-

throughs like the Darktrace behaviour analysis system3 or

COSE cognitive security solution4. Darktrace is a com-

mercial solution based on recursive Bayesian networks

to model the actual behaviours of systems, users and

devices and to track abnormal deviations. COSE, now

part of CISCO, exploits machine learning and game the-

ory [92] with the objective of tracking advanced persis-

tence threats and polymorphic malwares. Both provide
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significant examples of technology transfer from universi-

ties, in Cambridge (UK) and in Prague (Czech Republic),

respectively, to successful industrial applications.

The diverse technologies contributing to the artificial

intelligence field provide numerous approaches to support

both online detection and offline investigation of security

anomalies. Their rapid development is providing suitable

solutions for tracking targeted zero-day and multi-step

intrusions in an ever growing amount of traces generated

by network devices, servers and application services.

Endnotes
1https://en.oxforddictionaries.com/definition/trace
2http://www.gsi2017.org/
3https://www.darktrace.com/
4https://www.cisco.com/c/dam/global/cs_cz/assets/

ciscoconnect/2013/pdf/7_keynote_cose_michal_

pechoucek.pdf
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